WorldWideScience

Sample records for materials transportation expert

  1. Transporting particulate material

    Science.gov (United States)

    Aldred, Derek Leslie [North Hollywood, CA; Rader, Jeffrey A [North Hollywood, CA; Saunders, Timothy W [North Hollywood, CA

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  2. An Expert System in FRP Composite Material Design

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design,ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowledge bases, a material properties algorithm base, an explanation engine, various data bases, several function models and the user interface. The ESFRP can simulate human experts to make design scheme for fibre-reinforced plastics design, FRP layered plates design and FRP typical engineering components design. It can also predict the material properties and make strength analysis according to the micro and macro mechanics of composite materials. A satisfied result can be gained through the reiterative design.

  3. Expert model process control of composite materials in a press

    Science.gov (United States)

    Saliba, Tony E.; Quinter, Suzanne R.; Abrams, Frances L.

    An expert model for the control of the press processing of thermoset composite materials has been developed. The knowledge base written using the PC PLUS expert system shell was interfaced with models written in FORTRAN. The expert model, which is running on a single computer with a single processor, takes advantage of the symbol-crunching capability of LISP and the number crunching capability of FORTRAN. The Expert Model control system is a qualitative-quantitative process automation (QQPA) system since it includes both quantitative model-based and qualitative rule-based expert system operations. Various physical and mechanical properties were measured from panels processed using the two cycles. Using QQPA, processing time has been reduced significantly without altering product quality.

  4. Saturated Zone Flow and Transport Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, Kevin J.; Perman, Roseanne C.

    1998-01-01

    This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and

  5. Expert opinion regarding environmental enrichment materials for pigs

    NARCIS (Netherlands)

    Bracke, M.B.M.

    2006-01-01

    The aim of this article is to report on the expert opinion regarding the provision of environmental enrichment for pigs. A questionnaire was sent to 53 pig welfare scientists who were asked to specify which enrichment materials they considered sufficient to ensure pig welfare; 68% responded. 89% sta

  6. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  7. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  8. Transport Phenomena and Materials Processing

    Science.gov (United States)

    Kou, Sindo

    1996-10-01

    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  9. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  10. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  11. Transport of radioactive materials; Transporte de materiais radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material.

  12. Radioactive materials transport accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    McSweeney, T.I.; Maheras, S.J.; Ross, S.B. [Battelle Memorial Inst. (United States)

    2004-07-01

    Over the last 25 years, one of the major issues raised regarding radioactive material transportation has been the risk of severe accidents. While numerous studies have shown that traffic fatalities dominate the risk, modeling the risk of severe accidents has remained one of the most difficult analysis problems. This paper will show how models that were developed for nuclear spent fuel transport accident analysis can be adopted to obtain estimates of release fractions for other types of radioactive material such as vitrified highlevel radioactive waste. The paper will also show how some experimental results from fire experiments involving low level waste packaging can be used in modeling transport accident analysis with this waste form. The results of the analysis enable an analyst to clearly show the differences in the release fractions as a function of accident severity. The paper will also show that by placing the data in a database such as ACCESS trademark, it is possible to obtain risk measures for transporting the waste forms along proposed routes from the generator site to potential final disposal sites.

  13. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  14. Development of expert system for biobased polymer material selection: food packaging application.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  15. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  16. Recent development of organic electron transport materials

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This article reviews the recent development of organic electron transport materials applied in the fields of organic photoconductors, light-emitting diodes, field-effect transistors and solar cells. Several technologies for charge carrier mobility measurement are summarized and compared, and a series of basic principles for designing high-performance organic electron transport materials are suggested as well.

  17. Expert system for the reliability assessment of hydro-carbon transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Lukacs, J.; Nagy, G.; Toeroek, I. [Department of Mechanical Technology, University of Miskolc, Miskolc-Egyetemvaros (Hungary)

    1998-12-31

    Safety operation, condition monitoring, periodical inspection and rehabilitation of high-pressure hydro-carbon transporting pipelines are a complex problem. To answer arising questions is inconceivable without technical-critical evaluation of defects - originated during manufacturing or operation - can be found on the pipeline. This evaluation must be in line with requirements of our age, i.e. it has to assert such concept of which basis is not the `possible worst` but the `just happening wrong`. Solving these problems without application of computer resources is inconceivable in our time. The final purpose of the solution is the expert system and among the components of the expert system primarily the development of the knowledge base is needed. The paper demonstrates a possible structure of the knowledge base, furthermore its fundamental elements and their contents (defect types, evaluation possibilities of defects, categorisation of pipelines) and summaries the prospective advantages of its application. (orig.) 27 refs.

  18. Expert System for natural gas transportation network management; Sistema especialista para gerenciamento de redes de transporte de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonny Carlos da; Porciuncula, Gilson Simoes [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica Lab. de Sistemas Hidraulicos e Pneumaticos

    2003-07-01

    This paper presents a project to integrate expert system and dynamic simulation of natural gas transportation network applying the concept of agents. Natural gas pipeline operation requires the intermittent analysis of hundreds interrelated operational parameters, which represent the network state. The combination of expert system and dynamic simulation is a synergic solution for this kind of problem. With expert system techniques, it is possible to implement rules that describe the relationship between current operational parameters and the network normal operational conditions based on heuristic knowledge. By applying such rules, the system aims to evaluate the real network state and to predict abnormal conditions via dynamic simulation, allowing time analysis of operational situation in advance. At the current stage, the project presents a well defined model. The process of knowledge acquisition and representation has taken place following an incremental approach, considered as development paradigm. The project objectives are to reduce costs, increase the reliability and organize pipeline operation and maintenance information. This work is part of SEGRED project established as partnership among LASHIP/UFSC, SCGAS, TBG and PETROBRAS. The project also received support from FINEP. (author)

  19. Material Transport with Air Jet

    Directory of Open Access Journals (Sweden)

    István Patkó

    2005-11-01

    Full Text Available In the field of industry, there are only a very few examples of material transportwith air jet, and one of these is the air jet loom. In this weaving technology, the weft (thetransversal yarn of the fabric is shot by air jet. This paper will set up the mathematicalmodel of yarn end movement. For a special case, I will specify a solution of the model.

  20. Thermal transport in amorphous materials: a review

    Science.gov (United States)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  1. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  2. Meeting Materials for OECD Expert Meeting on Categorization of Manufactured Nanomaterials on September 17-19, 2014

    Science.gov (United States)

    Here are materials for the OECD Working Party on Nanomanufactured Materials Expert Meeting on Categorization of Nanomaterials (developing nanomaterial categories) took place on September 17-19, 2014 in Washington, D.C hosted by U.S. EPA.

  3. Modeling charge transport in organic photovoltaic materials.

    Science.gov (United States)

    Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M

    2009-11-17

    The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse

  4. 10 CFR 71.5 - Transportation of licensed material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of licensed material. 71.5 Section 71.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL General Provisions § 71.5 Transportation of licensed material. (a) Each licensee who transports...

  5. Factors influencing the Composition of the Urban Transport System in the Year 2030 - A Panel Analysis of Experts' Opinions

    NARCIS (Netherlands)

    Gorter, Cees; Rienstra, Sytze A.

    1997-01-01

    The future sustainability of the urban transport system is largely determined by the technological composition of and measures introduced in the system. This composition is dependent on many background factors. This paper investigates this relationship by means of a panel analysis of experts'

  6. Factors influencing the Composition of the Urban Transport System in the Year 2030 - A Panel Analysis of Experts' Opinions

    NARCIS (Netherlands)

    Gorter, Cees; Rienstra, Sytze A.

    1997-01-01

    The future sustainability of the urban transport system is largely determined by the technological composition of and measures introduced in the system. This composition is dependent on many background factors. This paper investigates this relationship by means of a panel analysis of experts' opinio

  7. METHODS OF IMPROVING THE RELIABILITY OF THE CONTROL SYSTEM TRACTION POWER SUPPLY OF ELECTRIC TRANSPORT BASED ON AN EXPERT INFORMATION

    Directory of Open Access Journals (Sweden)

    O. O. Matusevych

    2009-03-01

    Full Text Available The author proposed the numerous methods of solving the multi-criterion task – increasing of reliability of control system on the basis of expert information. The information, which allows choosing thoughtfully the method of reliability increasing for a control system of electric transport, is considered.

  8. Education and training in transport of radioactive material; Educacao e treinamento em transporte de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Bruno Natanael; Pastura, Valeria da Fonseca e Silva; Mattar, Patricia; Dias, Carlos R. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents the approach adopted by the Department of Transportation of the Brazilian National Nuclear Energy Commission - CNEN, in the creation of the course of education and training distance for transport companies, as well as for national institutions directly involved with the theme transportation of radioactive materials. The course will consist of 20 modules containing exercises and further assessment of learning, and enable participants to understand the regulatory terminology, assimilating the philosophy of nuclear and radiation safety, prepare the shipment and identify and fill the complete documents required in an operation transport.

  9. Recent benchmarking experience of the OECD/Nea expert group on three-dimensional radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.A. [Argonne National Laboratory, Illinois (United States); Lewis, E.E. [Northwestern Univ., Department of Mechanical Engineering, Evanston, Illinois (United States); Byung-Chan, Na [OECD/NEA, 92 - Issy-les-Moulineaux (France)

    2003-07-01

    Experience of the OECD/NEA Expert Group on three-dimensional radiation transport pertaining to the C5 MOX fuel problem is examined, and the group's activity since the project's initiation in the fall of 1999 is reviewed. Twenty groups from seven nations submitted solutions to the two- and/or three-dimensional forms of the problem. Their solution methods are compared and their results analyzed. Observations are drawn from the benchmarking experience to assess the strengths and weaknesses of current methods and to better understand the challenges encountered by those who seek to obtain accurate solutions to large-scale multidimensional neutron transport problems. Drawing on the tabulated results, our e-mail correspondence and telephone conversations with participants, and on our own parametric studies, we are able to share some insights concerning space-angle transport approximations. For light water reactor physics problems without spatial homogenization like this one, refinement of angular approximations proved to be a greater challenge than refinement of the spatial approximation. Either a stair-step representation of the fuel-coolant interface or a polygonal representation was sufficient to describe the pin cell geometry, but only if great care was take to preserve the fuel volume exactly. The use of a high order angular approximation, such as S32 or P31, was required to obtain an accurate pin power and eigenvalue solution. The dangers of employing just one level of space-angle approximation became apparent to a number of participants during the course of this benchmark exercise. Frequently, eigenvalue errors resulting from coarse angular and spatial approximations have opposing effects on the eigenvalue. Thus, by cancellation of error, an accurate eigenvalue can be obtained using a coarse space-angle approximation while the flux solution is quite inaccurate. As a result, refinement of the spatial or angular approximation in such situations can cause

  10. Evaluation of issues around road materials for sustainable transport

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2009-07-01

    Full Text Available In addition to a number of other factors (social, economic, etc) sustainable transport requires the sustainable supply and use of construction materials. This includes the use of marginal materials, waste materials, novel / innovative materials...

  11. Lightweight materials for transportation: Program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

  12. Lightweight materials for transportation: Program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

  13. Biology Teacher and Expert Opinions about Computer Assisted Biology Instruction Materials: A Software Entitled Nucleic Acids and Protein Synthesis

    Science.gov (United States)

    Hasenekoglu, Ismet; Timucin, Melih

    2007-01-01

    The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the…

  14. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  15. Quantum transport through 3D Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)

    2015-08-15

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  16. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Science.gov (United States)

    2010-07-01

    ... the Safe Transport of Radioactive Material (TS-R-1); Draft Revision Available for Comment AGENCY... International Atomic Energy Agency's (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R... Radioactive Material (TS-R-1), to promote the safe and secure transportation of radioactive material. The...

  17. Transport properties of colossal magnetoresistive materials

    CERN Document Server

    Yates, K A

    2002-01-01

    A microwave technique was developed in order to test the validity of the hypothesis that the microwave transport of polycrystalline, optimally doped, colossal magnetoresistive materials was dominated by intragranular material. The microwave surface resistance at 9GHz was compared with dc resistivity and magnetisation to study the influence of yttrium doping on the grain boundary regions of bulk polycrystalline samples of La sub 0 sub . sub 7 sub - sub x Y sub x Ca sub 0 sub . sub 3 MnO sub 3. It was found that, within the grains, the addition of yttrium causes the activation energy above T sub p to increase. A phenomenological model was introduced to explain the data in terms of the difference in structure between the grain and grain boundary regions. The technique was also used to study the influence of deoxygenation on the grain boundary regions of bulk, polycrystalline, La sub 0 sub . sub 6 sub 7 Ca sub 0 sub . sub 3 sub 3 MnO sub 3. For samples interconnected porosity, low temperature (600 deg C), short a...

  18. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  19. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  20. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items. (DC)

  1. An ab initio electronic transport database for inorganic materials

    Science.gov (United States)

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; Snyder, G. Jeffrey; Rignanese, Gian-Marco; Jain, Anubhav; Hautier, Geoffroy

    2017-07-01

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material's band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the workflow to generate the data, the data validation procedure, and the database structure. Our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.

  2. Experts' memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis.

    Science.gov (United States)

    Sala, Giovanni; Gobet, Fernand

    2017-02-01

    Experts' remarkable ability to recall meaningful domain-specific material is a classic result in cognitive psychology. Influential explanations for this ability have focused on the acquisition of high-level structures (e.g., schemata) or experts' capability to process information holistically. However, research on chess players suggests that experts maintain some reliable memory advantage over novices when random stimuli (e.g., shuffled chess positions) are presented. This skill effect cannot be explained by theories emphasizing high-level memory structures or holistic processing of stimuli, because random material does not contain large structures nor wholes. By contrast, theories hypothesizing the presence of small memory structures-such as chunks-predict this outcome, because some chunks still occur by chance in the stimuli, even after randomization. The current meta-analysis assessed the correlation between level of expertise and recall of random material in diverse domains. The overall correlation was moderate but statistically significant ([Formula: see text]), and the effect was observed in nearly every study. This outcome suggests that experts partly base their superiority on a vaster amount of small memory structures, in addition to high-level structures or holistic processing.

  3. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  4. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  5. Metal oxide charge transport material doped with organic molecules

    Science.gov (United States)

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  6. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...-AE44 Hazardous Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials... associated with the air transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on... they will be attending the Lithium Battery Public Meeting and wait to be escorted to the...

  7. Acceleration of Uncertainty Updating in the Description of Transport Processes in Heterogeneous Materials

    CERN Document Server

    Kucerova, A; Rosic, B; Matthies, H G

    2011-01-01

    The prediction of thermo-mechanical behaviour of heterogeneous materials such as heat and moisture transport is strongly influenced by the uncertainty in parameters. Such materials occur e.g. in historic buildings, and the durability assessment of these therefore needs a reliable and probabilistic simulation of transport processes, which is related to the suitable identification of material parameters. In order to include expert knowledge as well as experimental results, one can employ an updating procedure such as Bayesian inference. The classical probabilistic setting of the identification process in Bayes's form requires the solution of a stochastic forward problem via computationally expensive sampling techniques, which makes the method almost impractical. In this paper novel stochastic computational techniques such as the stochastic Galerkin method are applied in order to accelerate the updating procedure. The idea is to replace the computationally expensive forward simulation via the conventional finite...

  8. Transportation accidents/incidents involving radioactive materials (1971--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Cashwell, C. E. [Applied Physics, Inc., Albuquerque, NM (United States); McClure, J. D. [Sandia National Labs., Albuquerque, NM (United States)

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions.

  9. Preliminary Materials Transport Plan for the Plutonium Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gilkison, J.M.; Dyches, G.M.; Randall, W.J.; Steed, J.H.

    2000-01-26

    This Materials Transport Plan defines the methodology for moving process and non-process materials within the Plutonium Immobilization Plant (PIP) operations. The scope of the plan includes the movement of materials between plant operational units (gloveboxes or operational areas/rooms within the plant). The movements of materials within the various plant operational units are described in the System Design Description prepared for the individual units. The plan provides a design concept for transporting each type of material including the containerization used during the movements. Further, the plan identifies the high-level functions and requirements for movements of the materials.

  10. Development of an Anisotropic Thermal Transport Material

    Science.gov (United States)

    2014-01-13

    Oxide” Materials Research Society Cancun Meeting, 2010. 4) Oyer, A. J.; Dobrynin, A. V.; Asandei, A. D.; Adamson, D. H., “High Concentration...Graphene Suspensions” International Materials Research Congress XX, Cancun MX, 2011. 5) Oyer, A. J.; Carrillo, J.-M. Y.; Hire, C. C.; Schniepp, H. C

  11. Experience of air transport of nuclear fuel material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Toguri, D. [Transnuclear, LTD. (AREVA group), Tokyo (Japan); Kawasaki, M. [Japan Nuclear Cycle Development Inst., Muramatsu, Ibaraki (Japan)

    2004-07-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport.

  12. Packaging and transportation of radioactive materials: summary program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference. (DC)

  13. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  14. New basic safety regulations of radioactive material transport in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.V. [Div. of the Decommission of Nuclear and Radiation-Hazardous Object of the Federal Agency for Atomic Energy, Moscow (Russian Federation); Ershov, V.N. [FGUP ' ' Emergency Response Centre' ' , St-Petersburg (Russian Federation); Shvedov, M.O. [Div. of Nuclear and Radiation Safety of the Federal Agency for Atomic Energy, Moscow (Russian Federation)

    2004-07-01

    In the paper the system of normative regulation of radioactive material transport in Russia, basic principles and provisions of the new Russian regulations, available deviations from rules IAEA regulations are briefly considered. The problems, connected with putting in force of the new regulations in practice of transport, including problems of usage earlier designed and manufactured packages are considered as well.

  15. Data bases concerning the transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Cashwell, C [Applied Physics, Inc., Albuquerque, NM (United States); McClure, J D [Sandia National Labs., Albuquerque, NM (United States)

    1992-03-01

    This paper will describe two data bases which provide supporting information on radioactive material transport experience in the United States. The Radioactive Material Incident Report (RMIR) documents accident/incident experience from 1971 to the present from data acquired from the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). The Radioactive Material Postnotification (RAMPOST) data base documents the shipments that have taken place for Highway Route Controlled Quantities (HRCQ) of radioactive material. HRCQ shipments are post notified (that is, after the shipment) to the DOT.

  16. Influence of bed material size heterogeneity on bedload transport uncertainty

    Science.gov (United States)

    Chen, Li; Stone, Mark C.

    2008-01-01

    The bed material grain size distribution of gravel bed streams is often spatially heterogeneous. The heterogeneity is actually a random parameter, even for a "well-mixed mixture," which potentially causes the transport rate for a given bed material to become an uncertain variable. The cause of bed material heterogeneity is the nonuniformity of the bed material, which is analyzed in this paper using examples from field observations and experimental data. The Monte Carlo simulation method is applied to study the uncertainty of the bedload transport rate using Wilcock's experimental data (P. R. Wilcock et al., 2001; P. R. Wilcock and J. C. Crowe, 2003). Each realization of the Monte Carlo simulation employed a randomly generated grain size distribution field for the entire simulation domain. With sufficient realizations the simulation results were adequate to show that the transport rates were a random variable and the mean transport rates did not fall on a single-valued curve when the local heterogeneity was taken into account. The results indicate that the bedload transport rate of nonuniform sediment has an intrinsic uncertainty that can result solely from the bed material. The results also partially account for the scatter of the fractional transport rate within Wilcock's experimental data. This study presents an important concept in understanding the uncertainty associated with estimates of sediment transport.

  17. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed...

  18. Transport of hazardous materials in the Amazon area; Transporte de produtos perigosos na regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Wallace de Castro [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Fernandes, Elton; Nassi, Carlos David [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Amongst several exploratory sources of the subject 'hazardous materials transport', it is distinguished: 'the threat to the environment'. This paper presents an exploratory investigation of this subject line in the Amazon region. In view of the diversity of 'existing hazardous materials' and the raised dimension of the oil transport and its derivatives in this context, this paper focused in these products. Regarding to the geographic region, the approach was given to the State of Amazon, considering the amplitude of this State in the Amazon region and the availability of data. Therefore, this work explores and analyzes macro aspects inherent to the State of Amazon pertinent to the oil transport and its derivatives. In the macro context, it is observed the necessity of a higher control in the transport of hazardous materials in the region. The absence of registered data and the unfamiliarity on the risks related to the transport of hazardous materials by authorities and transporters indicate a relative absence of qualification in the region to deal with the monitoring of the transport of hazardous materials. So far, it is not possible up till now to make any evaluation of the environment threats of accidents with transport of hazardous materials in the Amazon region.(author)

  19. Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Lary G.; Purvis, James W.

    1999-07-21

    The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access.

  20. INES scale: French application to radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Sowinski, S.; Strawa, S.; Aguilar, J. [Direction Generale de la Surete Nucleaire et de la Radioprotection, Fontenay-aux-Roses (France)

    2004-07-01

    After getting the control of radioactive material transport in June 1997, the French safety Authority (ASN) decided to apply the INES scale to transport events. DGSNR (Directorate General for Nuclear Safety and Radioprotection) requests that radioactive material package consignors declare any event occurring during transportation, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. This paper deals with DGSNR's feedback during the past seven years concerning the french application of the INES scale. Significant events that occurred during transportation are presented. The French experience was used by IAEA to develop a draft guide in 2002 and IAEA asked countries to use a new draft for a trial period in July 2004.

  1. 30 years of experience in safe transportation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30{sup th} anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business.

  2. Assessment of Transportation Risk of Radioactive Materials in Uganda

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Menya; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector.

  3. Regulation of Transportation of Radioactive Material in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik [KAIST, Daejeon (Korea, Republic of)

    2011-05-15

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  4. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  5. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Science.gov (United States)

    2013-05-16

    ... Transport of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... regulations for the packaging and transportation of radioactive material. The NRC is issuing for public... in Transport of Radioactive Material.'' This draft regulatory guide describes a proposed method...

  6. A contribution to problems of clean transport of bulk materials

    Directory of Open Access Journals (Sweden)

    Fedora Jaroslav

    1996-03-01

    Full Text Available The lecture analyses the problem of development of the pipe conveyor with a rubber belt, the facitities of its application in the practice and environmental aspects resulting from its application. The pipe conveyor is a new perspective transport system. It enables ransporting bulk materials (coal, crushed, rock, coke, plant ash, fertilisers, limestones, time in a specific operations (power plants, heating plants.cellulose, salt, sugar, wheat and other materials with a minimum effect on the environment. The transported material is enclosed in the pipeline so that there is no escape of dust, smell or of the transported material itself. The lecture is aimed at: - the short description of the operating principle and design of the pipe conveyor which was developed in the firm Matador Púchov in cooperation with the firm TEDO, - the analysis of experiencie in working some pipe conveyors which were under operation for a certain

  7. 78 FR 30393 - Preparations for the 43rd Session of the United Nations Sub-Committee of Experts on the Transport...

    Science.gov (United States)

    2013-05-22

    ... Administration Preparations for the 43rd Session of the United Nations Sub- Committee of Experts on the Transport... preparation for United Nations meetings being held in Geneva, Switzerland, this summer. PHMSA is hosting the... portion of the meeting to discuss proposals in preparation for the 25th session of the United Nations...

  8. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  9. Effect of the background solution and material composition on the transport of silver nanoparticles in saturated aquifer materials

    Science.gov (United States)

    Adrian, Yorck; Schneidewind, Uwe; Fernandez-Steeger, Tomas; Azzam, Rafig

    2016-04-01

    Engineered silver nanoparticles (AgNP) are used in various consumer products such as cloth or personal care products due to their antimicrobial properties (Benn et al., 2010). Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNP in simple test systems with glass beads or soil materials (Braun et al., 2015), but studies investigating aquifer material are rare. However, the protection of fresh water resources in the subsurface is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport and fate of engineered nanoparticles as potential contaminants in aquifers is essential. Within the scope of the research project NanoMobil funded by German Federal Ministry of Education and Research, the transport and retention behavior of AgNP in aquifer material was investigated under saturated conditions in laboratory columns for different flow velocities, ionic strengths (IS) and background solutions. The used aquifer material consisted mainly of quartz and albite. The quartz grains were partially coated with iron hydroxides and oxides. Furthermore, 1% hematite was present in the silicate dominated aquifer material. The experiments were conducted using NaNO3 and Ca(NO3)2 background solutions to examine the effects of monovalent and divalent cations on the transport of AgNP. Flow velocities in the columns were chosen to represent typical flow velocities of groundwater in the subsurface. For the experiments two mean grain sizes of 0.3 and 0.7 mm were used to investigate the effect of the grain size on the transport behavior. Particle concentration was measured using ICP-MS and particle size was determined using flow field-flow fractionation (FlFFF). HYDRUS-1D (Šimůnek et al., 2013) was used to elucidate the transport and retention processes of the AgNP in the aquifer material. The obtained results show

  10. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  11. An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers.

    Science.gov (United States)

    Ebtehaj, Isa; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    In this study, an expert system with a radial basis function neural network (RBF-NN) based on decision trees (DT) is designed to predict sediment transport in sewer pipes at the limit of deposition. First, sensitivity analysis is carried out to investigate the effect of each parameter on predicting the densimetric Froude number (Fr). The results indicate that utilizing the ratio of the median particle diameter to pipe diameter (d/D), ratio of median particle diameter to hydraulic radius (d/R) and volumetric sediment concentration (C(V)) as the input combination leads to the best Fr prediction. Subsequently, the new hybrid DT-RBF method is presented. The results of DT-RBF are compared with RBF and RBF-particle swarm optimization (PSO), which uses PSO for RBF training. It appears that DT-RBF is more accurate (R(2) = 0.934, MARE = 0.103, RMSE = 0.527, SI = 0.13, BIAS = -0.071) than the two other RBF methods. Moreover, the proposed DT-RBF model offers explicit expressions for use by practicing engineers.

  12. TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL: IMPLICATIONS FOR CONTAMINANT TRANSPORT

    Science.gov (United States)

    The stability and transport of radiolabeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from a shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study incl...

  13. Simulation of perovskite solar cells with inorganic hole transporting materials

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liu, Yiming

    2015-01-01

    Device modeling organolead halide perovskite solar cells with planar architecture based on inorganic hole transporting materials (HTMs) were performed. A thorough understanding of the role of the inorganic HTMs and the effect of band offset between HTM/absorber layers is indispensable for further...

  14. Subthreshold electrical transport in amorphous phase-change materials

    Science.gov (United States)

    Le Gallo, Manuel; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-09-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole-Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation.

  15. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-10-31

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  16. Developing and evaluating rare disease educational materials co-created by expert clinicians and patients

    DEFF Research Database (Denmark)

    Badiu, Corin; Bonomi, Marco; Borshchevsky, Ivan

    2017-01-01

    completed the evaluation. Patients ranged in age from 18 to 66 years (median 36, mean 39 ± 11) and 52/63 (83%), had adequate health literacy. Patients scored understandability at 94.2% and actionability at 90.5%. The patient education materials were culturally adapted and translated into 20 languages...

  17. Expert judgement on enrichment materials for pigs validates preliminary RICHPIG model

    NARCIS (Netherlands)

    Bracke, M.B.M.; Zonderland, J.J.; Bleumer, E.J.B.

    2007-01-01

    EC directive 2001/93/EC states that pigs must have permanent access to a sufficient quantity of material to enable proper investigation and manipulation activities. This directive requires further interpretation. In order to facilitate the further implementation of the directive into national, Dutch

  18. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...... in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... media no convectional heat transport is found. It would be relevant to extend the investigation to media that enables convectional heat transport. A last conclusion is that such experiments, necessary for proper designing of sand-gravel storage types, are a very cheap form of collecting information...

  19. How planners' use and non-use of expert knowledge in land use and transport planning affect the goal achievement potential of plans? Experiences from three Scandinavian cities

    DEFF Research Database (Denmark)

    Tennøy, Aud; Hansson, Lisa; Lissandrello, Enza;

    2016-01-01

    the plans (if implemented) contribute to achieve defined objectives, which in this paper concern transition toward more sustainable mobility patterns and reduction of traffic volumes. The expert knowledge in question concerns how land use and transport systems developments influence traffic volumes in urban......Changing urban development in more sustainable directions poses numerous challenges for planning practitioners. Expert knowledge could be helpful for planners aiming at facing up to these challenges by developing innovative ways of meeting seemingly contradictive objectives and solving planning...... their planning problems. Instead, they rely on their embedded professional knowledge, which is sometimes outdated or misleading. It is found that changing towards land use and transport systems developments contributing to more sustainable mobility patterns requires considerable efforts from planning...

  20. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    Rajiv Vaidya; Madhavi Dave; S S Patel; S G Patel; A R Jani

    2004-09-01

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the as-grown crystals. The lattice parameters of these crystals were determined from the X-ray diffraction analysis. The grown crystals were examined under the optical zoom microscope for their surface microstructure study.

  1. Transient infrared spectroscopy of charge transport in emerging photovoltaic materials

    Science.gov (United States)

    Jeong, Kwang Seob

    Colloidal quantum dot (CQD) photovoltaic and organic photovoltaic (OPV) materials are promising alternative light absorbers for solar cells. Both CQD photovoltaics and OPVs can be fabricated on flexible substrates using low-cost solution cast fabrication methods at room temperature. Although intense research has been done for the last two decades in both materials, photophysical events underlying the device performance remain unclear. Here, the origin of the charge transport state in PbS CQD solids was explored and identified. The charge transport state was investigated using various optical and electrical methods: ultrafast transient infrared spectroscopy (UFIR), microsecond transient infrared spectroscopy (TRIR), steady state absorption spectroscopy, steady state photoluminescence emission spectroscopy, temperature dependent TRIR, temperature dependent transient photoconductivity and temperature dependent transient short-circuit current measurements. Furthermore, it was found that the mobility-lifetime product, which is dependent on the surface passivation strategy, significantly influences the device performance in CQD solar cells. Additionally, it was examined how the dielectric permittivity influences the photophysics in organic photovoltaic materials in conjunction with device performance. The experiments revealed that the increase of dielectric permittivity leads to enhancement of the mobility-lifetime product. For efficient conversion of excitons into charge carriers, it was suggested that high surface area between electron donor and acceptor materials is necessary. The findings provide better understanding of the fundamental properties of CQD and OPV materials and suggest pathways to improve the efficiency of solar cell based on these materials.

  2. Transporting radioactive materials: Q & A to your questions

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet.

  3. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  4. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  5. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles, freight containers, and... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General Handling and Stowage § 176.76 Transport... paragraphs (b) through (f) of this section, hazardous materials authorized to be transported by vessel may...

  6. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  7. IUTAM Symposium on Lubricated Transport of Viscous Materials

    CERN Document Server

    1998-01-01

    The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...

  8. Quantum transport in Rashba spin-orbit materials: a review.

    Science.gov (United States)

    Bercioux, Dario; Lucignano, Procolo

    2015-10-01

    In this review article we describe spin-dependent transport in materials with spin-orbit interaction of Rashba type. We mainly focus on semiconductor heterostructures, however we consider topological insulators, graphene and hybrid structures involving superconductors as well. We start from the Rashba Hamiltonian in a two dimensional electron gas and then describe transport properties of two- and quasi-one-dimensional systems. The problem of spin current generation and interference effects in mesoscopic devices is described in detail. We address also the role of Rashba interaction on localisation effects in lattices with nontrivial topology, as well as on the Ahronov-Casher effect in ring structures. A brief section, in the end, describes also some related topics including the spin-Hall effect, the transition from weak localisation to weak anti localisation and the physics of Majorana fermions in hybrid heterostructures involving Rashba materials in the presence of superconductivity.

  9. Multiscale modelling of charge transport in organic electronic materials

    Science.gov (United States)

    Nelson, Jenny

    2010-03-01

    Charge transport in disordered organic semiconductors is controlled by a complex combination of phenomena that span a range of length and time scales. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. In this presentation we will show how a set of computational methods, namely molecular modelling methods to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport can be used to reproduce experimental charge mobilities with few or no fitting parameters. Using case studies, we will show how such simulations can explain the relative values of electron and hole mobility and the effects of grain size, side chains and polymer molecular weight on charge mobility. Although currently applied to material systems of relatively high symmetry or well defined structure, this approach can be developed to address more complex systems such as multicomponent solids and conjugated polymers.

  10. Enhanced transport of materials into enamel nanopores via electrokinetic flow.

    Science.gov (United States)

    Gan, H Y; Sousa, F B; Carlo, H L; Maciel, P P; Macena, M S; Han, J

    2015-04-01

    The ability to infiltrate various molecules and resins into dental enamel is highly desirable in dentistry, yet transporting materials into dental enamel is limited by the nanometric scale of their pores. Materials that cannot be infiltrated into enamel by diffusion/capillarity are often considered molecules with sizes above a critical threshold, which are often considered to be larger than the pores of enamel. We challenge this notion by reporting the use of electrokinetic flow to transport solutions with molecules with sizes above a critical threshold-namely, an aqueous solution with a high refractive index (Thoulet's solution) and a curable fluid resin infiltrant (without acid etching)-deep into the normal enamel layer. Volume infiltration by Thoulet's solution is increased by 5- to 6-fold, and resin infiltration depths as large as 600 to 2,000 µm were achieved, in contrast to ~10 µm resulting from diffusion/capillarity. Incubation with demineralization solution for 192 h resulted in significant demineralization at noninfiltrated histologic points but not at resin infiltrated. These results open new avenues for the transport of materials in dental enamel. © International & American Associations for Dental Research 2015.

  11. Refuses and delays in the transportation by ship of radioactive material; Recusas e demoras no transporte maritimo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Clarice; Sobreira, Ana Celia [REM Industria e Comercio Ltda., Sao Paulo, SP (Brazil)

    2011-10-26

    Some Class 7 materials can only be transported by ship, making that load and unload activities can be done in a port. In the Brazil, the port of Santos posses the most volume of cargo manipulation, and cargoes which contain radioactive material are always present with all manipulation requisites according to applicable regulations. The transport and manipulation operations of radioactive material are performed in accordance with national and international requisites but, some individuals posses yet a high risk perception according to our experience, involving members of Brazilian port authorities, the Navy and cargoes handlers at the ports. So, exist yet a high quantity of refuses and delays during the transport by ship. Therefore, a communication strategy was developed and applied, to inform the risk perception, supplying information on the very principles of ionizing radiation, legislation and uses of radiation, and so, diminishing the quantity of refuses and delays. From that initial communication strategy on, it becomes evident the necessity of training and conscience making a movement for the problem of refuses and delays be diminished

  12. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction......The project is a basic study on the expected thermal behaviour of gravel storage initiated as a part of a research and demonstration gravel storage for seasonal heat storage.The goal of the investigation is to determine the heat transfer between heat pipes and sand-gravel storage media by carrying...... media no convectional heat transport is found. It would be relevant to extend the investigation to media that enables convectional heat transport. A last conclusion is that such experiments, necessary for proper designing of sand-gravel storage types, are a very cheap form of collecting information...

  13. Finger-gate manipulated quantum transport in Dirac materials.

    Science.gov (United States)

    Kleftogiannis, Ioannis; Tang, Chi-Shung; Cheng, Shun-Jen

    2015-05-27

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch.

  14. Electron Transport Materials: Synthesis, Properties and Device Performance

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

    2012-06-01

    We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

  15. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  16. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    Science.gov (United States)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  17. Calculations of Bed-Material Transport, Chetco River, Oregon

    Science.gov (United States)

    Anderson, S.; Wallick, R.; Cannon, C.; O'Connor, J. E.

    2009-12-01

    The Chetco River drains 914 square kilometers of the Klamath Mountains in far southwestern Oregon. The lower 18 kilometers of the river are flanked by large and abundant gravel bars, which have been commercially mined for aggregate during most of the last century. Increasing concern regarding the impact of this mining on aquatic habitats motivated an assessment of historical channel change and sediment transport rates along this lower reach. A key component of this research was estimating bed-material transport through the application of sediment transport equations at multiple locations along the study reach. Flow hydraulics were estimated with a 1-D hydraulic model constructed in HEC-RAS, using a combination of LiDAR and bathymetric surveys to characterize the valley morphology. Once calibrated to USGS rating curves, low flow water surfaces, and several high flow photos, this model allowed us to calculate energy slopes for a given cross section at a variety of flows. These flow-energy slope pairs, along with cross sections and sediment data collected from surface pebble counts, were then applied to a number of different modern bedload transport equations. This process was facilitated by the Bedload Assessment in Gravel-bedded Streams Excel macro, or BAGS, which allows users to quickly apply multiple transport equations using a single set of inputs (Pitlick et al., 2009). A review of the literature, along with tests of internal consistency and comparisons to direct bedload measurements taken in the winter of 2008-09, led us to choose the Parker (1991) and Wilcock-Crowe (2003) equations as the two most applicable to the Chetco River. Sediment transport-flow curves for both equations were calculated for seven cross sections spanning the study area. For each of these cross sections, we estimated annual transport fluxes using derived transport rating curves in conjunction with unit flow data from a USGS gage at the upstream end of study reach, with data extending back

  18. Expert and Knowledge Based Systems.

    Science.gov (United States)

    Demaid, Adrian; Edwards, Lyndon

    1987-01-01

    Discusses the nature and current state of knowledge-based systems and expert systems. Describes an expert system from the viewpoints of a computer programmer and an applications expert. Addresses concerns related to materials selection and forecasts future developments in the teaching of materials engineering. (ML)

  19. Defense Transportation: DOD Needs to Take Actions to Improve the Transportation of Hazardous Material Shipments

    Science.gov (United States)

    2014-05-01

    Air Force, the Navy, and the Marine Corps; and DOT’s Pipeline and Hazardous Materials Safety Administration. See appendix I for more information on...is a viable microorganism or its toxin that causes, or may cause, human disease. 31DOD guidance for safeguarding biological select agents and...Defense for Transportation Policy; the Defense Logistics Agency; the Army, the Air Force, the Navy, the Marine Corps; and DOT’s Pipeline and

  20. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  1. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  2. Hole-Transport Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada

    2016-11-14

    The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.

  3. Combinatorial materials approach to accelerate materials discovery for transportation (Conference Presentation)

    Science.gov (United States)

    Tong, Wei

    2017-04-01

    Combinatorial material research offers fast and efficient solutions to identify promising and advanced materials. It has revolutionized the pharmaceutical industry and now is being applied to accelerate the discovery of other new compounds, e.g. superconductors, luminescent materials, catalysts etc. Differing from the traditional trial-and-error process, this approach allows for the synthesis of a large number of compositionally diverse compounds by varying the combinations of the components and adjusting the ratios. It largely reduces the cost of single-sample synthesis/characterization, along with the turnaround time in the material discovery process, therefore, could dramatically change the existing paradigm for discovering and commercializing new materials. This talk outlines the use of combinatorial materials approach in the material discovery in transportation sector. It covers the general introduction to the combinatorial material concept, state of art for its application in energy-related research. At the end, LBNL capabilities in combinatorial materials synthesis and high throughput characterization that are applicable for material discovery research will be highlighted.

  4. Hazardous materials transportation: a risk-analysis-based routing methodology.

    Science.gov (United States)

    Leonelli, P; Bonvicini, S; Spadoni, G

    2000-01-07

    This paper introduces a new methodology based on risk analysis for the selection of the best route for the transport of a hazardous substance. In order to perform this optimisation, the network is considered as a graph composed by nodes and arcs; each arc is assigned a cost per unit vehicle travelling on it and a vehicle capacity. After short discussion about risk measures suitable for linear risk sources, the arc capacities are introduced by comparison between the societal and individual risk measures of each arc with hazardous materials transportation risk criteria; then arc costs are defined in order to take into account both transportation out-of-pocket expenses and risk-related costs. The optimisation problem can thus be formulated as a 'minimum cost flow problem', which consists of determining for a specific hazardous substance the cheapest flow distribution, honouring the arc capacities, from the origin nodes to the destination nodes. The main features of the optimisation procedure, implemented on the computer code OPTIPATH, are presented. Test results about shipments of ammonia are discussed and finally further research developments are proposed.

  5. Surface Diffusion Effect on Gas Transport in Nanoporous Materials

    Science.gov (United States)

    Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2016-11-01

    Polymer electrolyte fuel cells are one of the promising candidates for power sources of electric vehicles. For further improvement of their efficiency in high current density operation, a better understanding of oxygen flow inside the cells, which have micro- or nanoporous structures, is necessary. Molecular simulations such as the direct simulation of Monte Carlo (DSMC) are necessary to elucidate flow phenomena in micro- or nanostructures since the Knudsen number is close to unity. Our previous report showed that the oxygen diffusion resistance in porous structures with a characteristic pore size of 100 nm calculated by DSMC agrees well with that measured experimentally. On the other hand, when it comes to the transport in structures with much smaller pore sizes, it is expected that the surface diffusion has a significant impact on gas transport because of their higher specific surface area. Here we present the calculation of gas transport in porous structures with considering surface diffusion. The numerical porous structure models utilized in our simulations are constructed from three-dimensional imaging of materials. The effect of the distance of random walk on the total diffusion resistance in the structures is discussed. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).

  6. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  7. Photothermal heating in metal-embedded microtools for material transport

    Science.gov (United States)

    Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper

    2016-03-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.

  8. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    Science.gov (United States)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  9. Materials selection for a transport packaging of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Debora H.S.; Lucchesi, Raquel F.; Mancini, Victor A.; Rossi, Jesualdo L., E-mail: debora_hara@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fiore, Marina [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Escola Politecnica

    2015-07-01

    The radiopharmaceuticals are radioactive isotopes used in nuclear medicine for more accurate diagnosis and treatment of diseases or dysfunctions. Currently, the most important radionuclide for the preparation of radiopharmaceuticals for diagnostic purposes is technetium-99m ({sup 99m}Tc), a product of the radioactive decay of molybdenum-99 (Mo-99). The aim of this work was the materials selection that can enable the manufacture of a package for Mo-99 transport with the aid of CES EduPack program and the methodology developed by Ashby. The ESTAR program was used to check the occurrence of Bremsstrahlung and the XCOM program was used to calculate the attenuation coefficient of gamma radiation from some of the selected materials for the shield; after, the thickness required for radiation shielding was calculated. From the results, the materials selected as potential candidates for the manufacture of the shielding were the tungsten alloys. Related to the thermal insulation and the impact protection, woods, plywoods and particle boards stand out. With regard to internal and external coatings, the selected materials focus on groups of steels and nickel alloys. (author)

  10. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  11. Cementitious barriers partnership transport properties of damaged materials

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure do not necessarily creates additional pore space in

  12. Thermal transport in layered materials for thermoelectrics and thermal management

    Science.gov (United States)

    Qui, Bo

    Atomic level thermal transport in layered materials, namely, Bi 2Te3 and graphene is investigated using first principles calculations, lattice dynamics (LD) calculations, molecular dynamics simulations, spectral phonon analysis and empirical modeling. These materials resemble geometrically while differ significantly in the nature of thermal transport. Because of their uniquely low/high thermal conductivities, they are of great interest in thermoelectrics and thermal management applications, respectively. Besides Bi2Te3 and graphene, many other materials in the family of layered materials also exhibit great promises for various applications in thermoelectrics, thermal management, and electronics. In order to investigate the thermal properties of general layered materials, we explore the use of tight-binding molecular dynamics (TBMD) approach, which neither relies on the availability of classical potentials nor demands significant computational resources as ab initio MD approach does. In addition, a general model for the effective phonon group velocities, which is relevant for the lattice thermal transport in general few-layer materials, is developed. First of all, two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride. The density functional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic potentials are shown to reproduce the elastic and phonon data well. With the classical interatomic potentials developed, molecular dynamics simulations are performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. To facilitate phonon-engineering, we predict the thermal conductivity of Bi2Te3

  13. Transport of stone material by conveyor belt. Transporte de materiales rocosos por cintas transportadoras

    Energy Technology Data Exchange (ETDEWEB)

    Herranz Villafruela, F. (Lignitos de Meirama S.A., La Coruna (Spain))

    1990-04-01

    During one of the phases of the project (1976) to extract the brown lignite discovered in the Meirama valley (La Coruna) by opencast mining, it was decided, for economic reasons, to transport shale to the spoil tips by conveyor belts. Working on the basis of entirely theoretical data, for want of experience in this field, this waste stone material was crushed as near as possible to the working face in order to make it small enough to be transported by the general conveyor belt system. For this purpose, a semi-mobile crushing unit was selected which advances by means of a hydraulic platform mounted on caterpillar tracks. After several years of operation in the mining environment with what at the beginning was a totally new method, it can be confirmed that a saving has been made in the cost of transporting waste material compared to the use of dumper trucks and their two main cost elements - energy and spare parts. 4 figs., 2 tabs.

  14. Material Exchange Property of Organo Lead Halide Perovskite with Hole-Transporting Materials

    OpenAIRE

    Seigo Ito; Shusaku Kanaya; Hitoshi Nishino; Tomokazu Umeyama; Hiroshi Imahori

    2015-01-01

    Using X-ray diffraction (XRD), it was confirmed that the deposition of hole-transporting materials (HTM) on a CH3NH3PbI3 perovskite layer changed the CH3NH3PbI3 perovskite crystal, which was due to the material exchanging phenomena between the CH3NH3PbI3 perovskite and HTM layers. The solvent for HTM also changed the perovskite crystal. In order to suppress the crystal change, doping by chloride ion, bromide ion and 5-aminovaleric acid was attempted. However, the doping was unable to stabili...

  15. Exhaust Nozzle Materials Development for the High Speed Civil Transport

    Science.gov (United States)

    Grady, J. E.

    1999-01-01

    The United States has embarked on a national effort to develop the technology necessary to produce a Mach 2.4 High Speed Civil Transport (HSCT) for entry into service by the year 2005. The viability of this aircraft is contingent upon its meeting both economic and environmental requirements. Two engine components have been identified as critical to the environmental acceptability of the HSCT. These include a combustor with significantly lower emissions than are feasible with current technology, and a lightweight exhaust nozzle that meets community noise standards. The Enabling Propulsion Materials (EPM) program will develop the advanced structural materials, materials fabrication processes, structural analysis and life prediction tools for the HSCT combustor and low noise exhaust nozzle. This is being accomplished through the coordinated efforts of the NASA Lewis Research Center, General Electric Aircraft Engines and Pratt & Whitney. The mission of the EPM Exhaust Nozzle Team is to develop and demonstrate this technology by the year 1999 to enable its timely incorporation into HSCT propulsion systems.

  16. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Science.gov (United States)

    Zhao, Wenyu; Liu, Zhiyuan; Wei, Ping; Zhang, Qingjie; Zhu, Wanting; Su, Xianli; Tang, Xinfeng; Yang, Jihui; Liu, Yong; Shi, Jing; Chao, Yimin; Lin, Siqi; Pei, Yanzhong

    2017-01-01

    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an 'electron repository' role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.

  17. Transparency and dialogue: the keys of radioactive material transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J.; Hartenstein, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy

  18. Statistical thermodynamics of material transport in nonisothermal suspensions.

    Science.gov (United States)

    Semenov, Semen; Schimpf, Martin

    2015-02-26

    An approach to the transport of material in a temperature gradient is outlined using nonequilibrium thermodynamics theory. The model is applicable to the thermophoresis of colloids and nanoparticles in systems with limited miscibility. Component chemical potentials in binary systems are calculated using statistical mechanics. The local pressure distribution is obtained using the condition of local thermodynamic equilibrium around the suspended particle. The Laplace contribution of the local pressure distribution within the layer of liquid surrounding the particle leads to a size dependence that is consistent with empirical data. The contribution of Keezom interaction to the thermodiffusion coefficient is calculated using empirical values of the thermodiffusion coefficient for silica particles in water and acetonitrile. The resulting interaction energies are consistent with those found in the literature.

  19. Capture of Asteroids and Transport of Asteroid Materials to Earth

    Science.gov (United States)

    Chiu, Hong-Yee; no Team

    2014-01-01

    Recently there has been much discussion on the capture of asteroids or mining the asteroids. While the technology might be years away, in this paper we will discuss an energy efficient method to transport either a small asteroid or materials gathered from asteroids to the Earth. In particular, I will concentrate on a large and nearby asteroid, 8 Flora in the Flora Family. Generally, asteroids are located between 2 to 3 AU (astronomical unit) from the Earth, and in transporting materials from asteroids to the Earth, an energy equivalent of the gravitational potential energy difference between the Earth and the asteroids to the Sun. This amount of potential energy is a sizable fraction of the orbital kinetic energy of the Earth around the Sun. This amount of energy is considerable. In this paper I propose to use the planet Mars as a medium to remove much of the gravitational energy difference. In the case of the asteroid 8 Flora, it is only necessary to decelerate the asteroid mate- rials by a small decrement, of the order of 3 km/sec. This decrement could even be achieved (pending on the availability of technology) by mechanical devices such as catapults on 8 Flora. It is also proposed to separate a pair of contact asteroid binaries by using impulse propulsion, and to propel one component of the separated asteroids to pass by Mars to be decelerated to reach the Earth orbit and captured by the Earth or the Moon. The plausibility of this ambitious project will be discussed. The author is NASA-GSFC Astrophysicist, Retired.

  20. Criticality analysis for hazardous materials transportation; Classificacao da criticidade das rotas do transporte rodoviario de produtos perigosos da BRASKEM

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Katia; Brady, Mariana [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Diniz, Americo [BRASKEM S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    The bad conditions of Brazilians roads drive the companies to be more exigent with the transportation of hazardous materials to avoid accidents or materials releases with actions to contain the releases to community and water sources. To minimize this situation, DNV and BRASKEM developed a methodology for risk analysis called Criticality Analysis for Hazardous Materials Transportation. The objective of this methodology is identifying the most critical points of routes to make actions to avoid accidents. (author)

  1. Expert System

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas Troels; Cattani, Gian Luca

    2016-01-01

    An expert system is a computer system for inferring knowledge from a knowledge base, typically by using a set of inference rules. When the concept of expert systems was introduced at Stanford University in the early 1970s, the knowledge base was an unstructured set of facts. Today the knowledge...... base of expert systems is often given in terms of an ontology, extracted and built from various data sources by employing natural language-processing and statistics. To emphasize such capabilities, the term “expert” is now often replaced by “cognitive,” “knowledge,” “knowledge-based,” or “intelligent......” system. With very few exceptions, general-purpose expert systems have failed to emerge so far. However, expert systems are applied in specialized domains, particularly in healthcare. The increasing availability of large quantities of data to organizations today provides a valuable opportunity...

  2. Hole-Transporting Materials for Printable Perovskite Solar Cells

    Science.gov (United States)

    Salunke, Jagadish K.; Priimagi, Arri

    2017-01-01

    Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs. PMID:28914823

  3. Learning support of the basic concepts of mathematical logic by using e-learning materials in the teaching of expert systems

    Directory of Open Access Journals (Sweden)

    Mária Bakó

    2011-11-01

    Full Text Available Over the past decades, the importance of e-learning constantly increased. We believe that the most important property of the e-learning is: it is a user-centered system, which means that the student may proceed at its own place in the curriculum. It allows students to try things out, participate in courses, tests and simulations like never before, and get more out of learning than before.Teaching expert systems I realized that I can’t teach Prolog and Clips programming language because our students have no adequate knowledge of mathematical logic. In expert systems to describe it, even thousands statement-parameters should be used, therefore, the knowledge of basic concepts of mathematical logic is essential. In this article, an e-learning environment is presented, which enables agro-informatics students to learn or recall the basic concepts of mathematical logic necessary for the course Expert systems. According to the questionnaire the students like the e-learning materials, and would like to use it at other subjects, too. They don’t want to replace the standard lectures with e-learning materials; they would use them as additional material to lectures and practices.

  4. 76 FR 82163 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Science.gov (United States)

    2011-12-30

    ... Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of Dangerous... United Nations Recommendations on the Transport of Dangerous Goods: Model Regulations (UN Model... and from the United States. In this document, PHMSA responds to administrative appeals,...

  5. Material Exchange Property of Organo Lead Halide Perovskite with Hole-Transporting Materials

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2015-10-01

    Full Text Available Using X-ray diffraction (XRD, it was confirmed that the deposition of hole-transporting materials (HTM on a CH3NH3PbI3 perovskite layer changed the CH3NH3PbI3 perovskite crystal, which was due to the material exchanging phenomena between the CH3NH3PbI3 perovskite and HTM layers. The solvent for HTM also changed the perovskite crystal. In order to suppress the crystal change, doping by chloride ion, bromide ion and 5-aminovaleric acid was attempted. However, the doping was unable to stabilize the perovskite crystal against HTM deposition. It can be concluded that the CH3NH3PbI3 perovskite crystal is too soft and flexible to stabilize against HTM deposition.

  6. Expert Seeker

    Science.gov (United States)

    Fernandez, Becerra

    2003-01-01

    Expert Seeker is a computer program of the knowledge-management-system (KMS) type that falls within the category of expertise-locator systems. The main goal of the KMS system implemented by Expert Seeker is to organize and distribute knowledge of who are the domain experts within and without a given institution, company, or other organization. The intent in developing this KMS was to enable the re-use of organizational knowledge and provide a methodology for querying existing information (including structured, semistructured, and unstructured information) in a way that could help identify organizational experts. More specifically, Expert Seeker was developed to make it possible, by use of an intranet, to do any or all of the following: Assist an employee in identifying who has the skills needed for specific projects and to determine whether the experts so identified are available. Assist managers in identifying employees who may need training opportunities. Assist managers in determining what expertise is lost when employees retire or otherwise leave. Facilitate the development of new ways of identifying opportunities for innovation and minimization of duplicated efforts. Assist employees in achieving competitive advantages through the application of knowledge-management concepts and related systems. Assist external organizations in requesting speakers for specific engagements or determining from whom they might be able to request help via electronic mail. Help foster an environment of collaboration for rapid development in today's environment, in which it is increasingly necessary to assemble teams of experts from government, universities, research laboratories, and industries, to quickly solve problems anytime, anywhere. Make experts more visible. Provide a central repository of information about employees, including information that, heretofore, has typically not been captured by the human-resources systems (e.g., information about past projects, patents, or

  7. Material simulation of charge carrier transport properties of polymer dielectrics

    Science.gov (United States)

    Unge, Mikael; Christen, Thomas; Törnkvist, Christer; ABB Corporate Research Team

    To understand electron and hole transport in solid material requires to know its electronic properties, i.e. the density of states (DOS) and whether the states are spatially localized or delocalized. The states closest to the band edges may be localized, states further away can be delocalized. This transition from localized to delocalized states determines the mobility edge, above the mobility edge the mobility is expected to be high. A real polymer is never perfect; it contains a number of oxidative states, bonding defects and molecular impurities. These imperfections yield electronic states that can appear in the band gap of the polymer, traps. Traps can be shallow, i.e. close to the band edges, from these states the charge carrier easily can jump to a state in the band edge or another shallow state. Other traps can be deep, in these states it is likely that the charge carrier remains and become immobile. All these properties related to the electronic structure of the polymer, including its defects, affects the conductivity of the polymer. Linear scaling Density Functional Theory has been applied to calculate electronic structure of amorphous polyethylene. In particular DOS, trap levels and mobility edges are studied.

  8. FEMA: a Finite Element Model of Material Transport through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  9. The latent fingerprint in mass transport of polycrystalline materials

    Science.gov (United States)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  10. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  11. IMPACLIB: a material property data library for impact analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-12-01

    The paper describes the structural data library and graphical program for impact and stress analyses of radioactive material transport casks. Four kinds of material data, structure steels, stainless steels, leads and woods are compiled. These materials are main structural elements of casks. Structural data such as, coefficient of thermal expansion, modulus of longitudinal elasticity, modulus of transverse elasticity, Poisson`s ratio and stress-strain relationship have been tabulated. Main features of IMPACLIB are as follows: (1) data have been tabulated against temperature or strain rate, (2) thirteen kinds of polynominal fitting for stress-strain curve are available, (3) it is capable of graphical representations for structural data and (4) the IMPACLIB is able to be used on not only main frame computers but also work stations (OS UNIX) and personal computers (OS Windows 3.1). In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides a user`s guide for computer program and input data for the IMPACLIB. (author)

  12. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user`s guide for computer program and input data for THERMLIB. (author)

  13. Transportation of energy materials in the United states

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, R. C.

    1978-07-01

    This bibliography lists 459 books, periodical articles, research reports, and conference papers on the transportation of general/multi-fuel, coal, petroleum and gas, nuclear fuel, and electric power. Emphasis is on the various impacts of this transport in the U.S.: environmental, economic, social, safety, policy, etc. Arrangement is by commodity and by mode. An index by type of impact is included.

  14. 77 FR 31274 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Science.gov (United States)

    2012-05-25

    ... 2137-AE83 Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport... Goods Regulations (TDG Regulations), and the United Nations Recommendations on the Transport of... hazardous materials internationally, to, from, and within the United States. In this notice of...

  15. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  16. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  17. Expert Systems: What Is an Expert System?

    Science.gov (United States)

    Duval, Beverly K.; Main, Linda

    1994-01-01

    Describes expert systems and discusses their use in libraries. Highlights include parts of an expert system; expert system shells; an example of how to build an expert system; a bibliography of 34 sources of information on expert systems in libraries; and a list of 10 expert system shells used in libraries. (Contains five references.) (LRW)

  18. Expert Systems: What Is an Expert System?

    Science.gov (United States)

    Duval, Beverly K.; Main, Linda

    1994-01-01

    Describes expert systems and discusses their use in libraries. Highlights include parts of an expert system; expert system shells; an example of how to build an expert system; a bibliography of 34 sources of information on expert systems in libraries; and a list of 10 expert system shells used in libraries. (Contains five references.) (LRW)

  19. Promising indeed: the role of "experts" and practitioners in the introduction and use of new materials and techniques in restorative dentistry.

    Science.gov (United States)

    Donovan, Terry E

    2004-01-01

    Contemporary general practitioners are facing enormous challenges. Whether they want to or not, they are forced to manage a complex small business and are often ill equipped educationally and emo- tionally to do so. They also have to manage a substantial number of staff members, often with complex emotional interactions. Young dentists today are frequently forced to service considerable debt as a result of educational costs and high practice overheads. Manufacturers and dental laboratories are aggressively marketing new products and procedures at an unprecedented rate, often with sophisticated marketing techniques. These practitioners also have lives outside of work as wives or husbands, fathers or mothers, scout leaders, and coaches. Although contemporary clinicians are faced with many challenges, they also must accept some responsibilities regarding new products and practices. They must possess critical thinking skills and a basic knowledge of materials science. Whether contemporary dental schools provide their students with an education that stimulates this is a topic for another editorial. Educationally prepared or not, practitioners should filter information through common sense and past experience. New products should be introduced to the practice carefully and used in a conservative manner. These overstressed individuals deserve the best possible information from those of us who are considered experts. We cannot continue to be politically correct when describing new products and materials. We need to call it the way it is. Those who are considered experts have achieved that status through a combination of hard work, talent, luck, and perhaps some sleight of hand. There are legitimate rewards to be reaped as an expert, but with those come responsibilities. Referring to products with no clinical testing or evidence-based foundation as "promising indeed" does not meet those responsibilities.

  20. Transport Behavior of Engineered Nanosized Photocatalytic Materials in Water

    Directory of Open Access Journals (Sweden)

    Guang’an He

    2013-01-01

    Full Text Available Engineered nanoparticles (ENPs possess unique properties and are employed in many sectors, and thus their release into environment remains. The potential risks of ENPs have been confirmed by an increasing number of studies that necessitate a better knowledge to the fate and transport of ENPs. One important application of ENP is photocatalysis for production of H2 as energy and pollutant decomposition. Engineered photocatalytic nanoparticles (PCNPs can also easily enter the environment with the rapid increase in its manufacture and use. This review focuses on the transport of PCNPs in water by addressing the important factors that determine the transport of PCNPs, such as particle size, pH value, ionic strength (IS, ionic valence, and organic matter. The transport of PCNPs in natural water systems and wastewater systems is also presented with an attempt to provide more abundant information. In addition, the state of the art of the detection technologies of PCNPs has been covered.

  1. Energy-Efficient Devices for Transporting and Feeding Bulk Materials in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Ishkov Alexander

    2016-01-01

    Full Text Available Only in the construction industry millions of tons of bulk materials that need to be transported to the place of processing, storing and evenly or dosed feeding are recycled annually. Decreasing the costs of these processes will significantly reduce the cost of the finished product. The article presents a review of studies conducted in the field of storage, transport and feed bulk materials, and it describes the innovative design of energy-efficient disc vibrating feeder bulk materials.

  2. ExpertFOAF recommends experts

    DEFF Research Database (Denmark)

    Iofcu, Tereza; Diederich, Joerg; Dolog, Peter

    2007-01-01

    the GrowBag approach [1]. The main assumption is that such user profiles can provide good hints about users' expertise. Such extended FOAF files (called ExpertFOAF) can be published on a user's home page, on web pages of institutions or conferences to characterize them. They can be crawled by distributed...

  3. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  4. Bacteria transport through porous material: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1989-02-13

    The injection and penetration of bacteria into a reservoir is the most problematic and crucial of the steps in microbial enhanced recovery (MEOR). In the last phase of our work valuable information on bacterial transport in porous media was obtained. A great deal of progress was made to determine chemical bonding characteristics between adsorbed bacteria and the rock surfaces. In order to further enhance our knowledge of the effects of surface tensions on bacteria transport through porous media, a new approach was taken to illustrate the effect of liquid surface tension on bacterial transport through a sandpack column. Work in surface charge characterization of reservoir rock as a composite oxide system was also accomplished. In the last section of this report a mathematical model to simulate the simultaneous diffusion and growth of bacteria cells in a nutrient-enriched porous media is proposed.

  5. Hydrogen isotopes transport parameters in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E. [Politecnico di Torino (Italy). Dipartimento di Energetica; Benamati, G. [ENEA Fusion Division, CR Brasimone, 40032 Camungnano, Bologna (Italy); Ogorodnikova, O.V. [Moscow State Engineering Physics Institute, Moscow 115409 (Russian Federation)

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.) 62 refs.

  6. Radiological impact associated to the transport of radioactive material by road in Spain; Impacto radiologico asociado al transporte de material radiactivo por carretera en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J. A.; Gutierrez, F.

    2010-07-01

    Questions relating to the transport of radioactive materials are an issue of current interest because of the continuous increase in the mobility of these materials and the increasing commitment of these activities to the environment, the safety and protection of persons and the current legal framework. As a particularly contribution to the radiological impact study associated to the transport, a data-processing application for the treatment of data is propose, which allows progress to be made in this study and which may be of use in association with the legal documentation. Thus, by knowing the level of radiation at a distance of one metre from the transport vehicle and by selecting a route, it is possible to gain insight into the associated impacts, such as the affected populations, the dose received by the most exposed individual, the overall radiological impact and the contributions at population, transport route and national level. In preparing this work, consideration has been given to the relevant information provided by the different organisations involved in the issue (nuclear power plants, transport and inspection companies, etc.). The most important conclusion is that the, under normal operation, annual radiological impact from the transport by road of radioactive material in Spain is very low and does not imply any associated risks. (Author) 8 refs.

  7. Optical Field-Induced Mass Transport in Soft Materials

    Science.gov (United States)

    Teteris, J.; Reinfelde, M.; Aleksejeva, J.; Gertners, U.

    The dependence of the surface relief formation in amorphous chalcogenide (As2S3 and As-S-Se) and Disperse Red 1 dye grafted polyurethane polymer films on the polarization state of holographic recording light beams was studied. It is shown that the direction of lateral mass transport on the film surface is determined by the direction of light electric vector and photoinduced anisotropy in the film. We propose a photoinduced dielectropfhoretic model to explain the photoinduced mass transport in amorphous films. Model is based on the photoinduced softening of the matrix, formation of defects with enhanced or decreased polarizability, and their drift under the electrical field gradient of light.

  8. Anderson Transition for Classical Transport in Composite Materials

    Science.gov (United States)

    Murphy, N. Benjamin; Cherkaev, Elena; Golden, Kenneth M.

    2017-01-01

    The Anderson transition in solids and optics is a wave phenomenon where disorder induces localization of the wave functions. We find here that the hallmarks of the Anderson transition are exhibited by classical transport at a percolation threshold—without wave interference or scattering effects. As long range order or connectedness develops, the eigenvalue statistics of a key random matrix governing transport cross over toward universal statistics of the Gaussian orthogonal ensemble, and the field eigenvectors delocalize. The transition is examined in resistor networks, human bone, and sea ice structures.

  9. Charge and Spin Transport in Disordered Graphene-Based Materials

    OpenAIRE

    van Tuan, Dinh; Pascual, Jordi

    2014-01-01

    Esta tesis está enfocada en la modelización y simulación del transporte de carga y spin en materiales bidimensionales basados en Grafeno, así como en el impacto de la policristalinidad en el rendimiento de transistores de efecto campo diseñados con este tipo de materiales. Para este estudio se ha utilizado la metodología de transporte Kubo-Greenwood, la cual presenta grandes ventajas a la hora de realizar cálculos numéricos en sistemas microscópicos con el fin de obtener las propiedades de tr...

  10. A survey of the transport of radioactive materials by air to, from and within the UK

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.S.; Watson, S.J. [NRPB, Didcot, Oxfordshire (United Kingdom)

    2004-07-01

    Radioactive materials are frequently transported overseas by air for medical and industrial purposes. Among the advantages of this mode of transport is that urgent delivery is often required because some radionuclides are short lived. There are also a limited number of shipments by air within the UK. Scheduled passenger services or freight only aircraft may be used. Packages of radioactive materials are transported in aircraft holds at recommended segregation distances from areas occupied by passengers and crew. Many workers are involved in air transport and it is necessary to have procedures in place to minimise their exposure to ionising radiation.

  11. Neutron interaction and their transport with bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Esther Kalpana, E-mail: esther.kalpanarani@gmail.com [Department of Physics JNT University, Nachupally, Karimnagar, Telangana, 500055 (India); Radhika, K., E-mail: radhikanit@gmail.com [Department of Humanities and Applied Sciences, Talla Padmavathi College of Engineering, Warangal, Telangana, 506004 (India)

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  12. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... battery size and chemistry. The high energy density (i.e., high energy to weight ratio) of lithium... batteries are often used in medical devices, computer memory and as replaceable batteries (AA and AAA size... numbers, types, and sizes of lithium batteries moving in transportation have grown steadily in recent...

  13. 77 FR 21714 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2012-04-11

    ... Aviation Organization Technical Instructions on the Transport of Dangerous Goods by Air (ICAO Technical... parts 171-180) with provisions in the ICAO Technical Instructions; other proposals in the NPRM were... the ICAO Technical Instructions. \\1\\ Flammability Assessment of Bulk-Packed, Non rechargeable...

  14. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2013-01-07

    ... Civil Aviation Organization Technical Instructions on the Transport of Dangerous Goods by Air (ICAO... and carriers to choose between compliance with the existing HMR, or compliance with the ICAO Technical... the 2013-2014 Edition of the ICAO Technical Instructions will allow each shipper and carrier to...

  15. Hydrogen transport in non-ideal crystalline materials.

    Science.gov (United States)

    Auinger, Michael

    2014-10-06

    Hydrogen-transport behaviour under (non-)isothermal conditions is discussed. An extended modelling approach based on the effective diffusion coefficient is outlined for arbitrary temperature programmes, defect properties and hydrogen-loading pressures. The influence of mathematical terms, such as the trap equilibrium reaction or microstructural changes, is critically discussed and examples of thermal desorption spectra and isothermal diffusion behaviour are given.

  16. Measurements of strong correlations in the transport of light through strongly scattering materials

    NARCIS (Netherlands)

    Akbulut, D.

    2013-01-01

    In this thesis, we study light transport through multiple scattering random photonic materials. Light incident on such materials undergoes many scattering events before exiting the material. The relation between the incident and the transmitted fields is determined by the optical transmission matrix

  17. Measurements of strong correlations in the transport of light through strongly scattering materials

    NARCIS (Netherlands)

    Akbulut, D.

    2013-01-01

    In this thesis, we study light transport through multiple scattering random photonic materials. Light incident on such materials undergoes many scattering events before exiting the material. The relation between the incident and the transmitted fields is determined by the optical transmission matrix

  18. Expert`s discourse: methods and results on resorptional availability of relevant pollutants in contaminated soil and other material; Methoden und Ergebnisse zur Resorptionsverfuegbarkeit relevanter Schadstoffe in kontaminierten Boeden und Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Barkowski, D.; Guenther, P.; Krause, H.; Machtolf, M.

    1999-01-01

    The requirements in the Federal Soil Protection Law (Bundes-Bodenschutzgesetz) ask for more concrete forms of a legal decree on a sub-legal level concerning the judgement of risk evaluation of existing soil alterations. Among other items this would provide for the establishment of trigger and measure values, even if trigger values have already been proposed for priority substances, the discussion on the derivation of measure values - here concerning the direct pathway - has not come to an end yet. Especially it is still being criticized how far methodical basics would be yet available in order to identify the amount of human-toxicological material in the soil. In order to summarize the latest scientific findings, main topics of the experts` discourse on this research project were methods and results on resorptional availability of relevant pollutants in contaminated soil and other material. Preparing this discourse the experts were systematically questioned by a special inquiry form. Additionally to this, a short essay was provided for them, which made the momentary status quo available to the participants in order to be prepared for the experts` discourse. The guided experts` discourse took place on 10th February 1998 and dealed with those procedures methodically established and developed in Germany (Stomach-Intestine-Model of the Ruhr-Universitaet Bochum, Salive-Stomach-Intestine-Model of the Umweltbundesamt as well as the DIN/EN 71,3, which is being in use within the administrational execution in Baden-Wuerttemberg). In addition specifications regarding validation and further development as well as possibilities were discussed by means of how far a standardisation of the procedure for collecting data on the availability of resorption of contaminants would seem promising. Thus it could be outlined that on the basis of research and developmental projects of the recent years a state of methods has already been reached, which - including several detail-works to be

  19. Establishment and utilization of radiological protection programs for the transport of radioactive material; Establecimiento y utilizacion de programas de proteccion radiologica para el transporte de material radiactivo

    Energy Technology Data Exchange (ETDEWEB)

    Lopez V, J.; Capadona, N. [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250 (1429) Buenos Aires, (Argentina)]. e-mail: jlvietri@sede.arn.gov.ar

    2006-07-01

    The present work has by objective to indicate rules for the establishment and the use of the Radiological Protection Programs (PPR) that are of application to the transport of radioactive materials according to that required by the Transport Regulation of the International Atomic Energy Agency (IAEA). The PPR are established and applied in systematic form for remittent, transport and addressees, to consider the measures of radiological protection and its appropriately control during the transport stages of radioactive material. In particular, in the work it is analyzed the PPR applied to the operative stage, in the one that can be considered as one of the more important documents to use since it summarizes the evaluations and the necessary controls of radiological protection. Also it is analyzed the importance that this document gets ready on the base that it converges in the the analyses, evaluations and data that have been kept in mind during the previous stages of design of bundles and production of packings, the types and quantities of involved bundles, as well as of considering the quantities of expeditions and its frequencies, the ways of transport, etc. It is included a brief description of the parts that the PPR conforms on the base of that suggested in the advanced draft of the TS-G-1.5 Guide 'Radiation Protection Programmes for Transport of Radioactive Material', of October, 2005, of the IAEA: objectives. necessity, scope, basic elements of a PPR in function of the occupational dose. assignment of functions and responsibilities for the establishment of a PPR, evaluation and dose optimization, surface contamination, segregation and other protection measures, responses in emergencies. training and administration systems for baled and transport of radioactive material. Next an example of PPR for the transport of bundles of the A Type by lorry with content of radiopharmaceuticals that are the bundles more used worldwide in the expeditions of

  20. Molecular hole transporting materials for organic light-emitting diodes (OLEDs)

    Science.gov (United States)

    Loy, Douglas E.

    Organic light-emitting devices are rapidly becoming viable contenders in the display market. One of the major obstacles to the commercial viability of OLEDs is device stability and lifetime. Device stability has been partially, if not mostly, attributed to thermal instability of the organic charge transport layers. Some characteristics of good hole transporters for OLEDs are reversible oxidation, high thermal stability, and the ability to form amorphous films upon vacuum deposition. The main objective of this research was to design novel hole transporting materials with improved thermal stability, while retaining favorable electronic properties. Molecular structure can have drastic effects on the properties of the thin organic films of the hole transporting layers. Hole transporters with increased molecular asymmetry and rigidity have been demonstrated to give amorphous materials with higher glass transition temperatures. While asymmetry provides materials that are more thermally stable, the asymmetry must not be to an extent that would cause electronic asymmetry. Electronic asymmetry resulting from dipoles can act as local charge traps thus hindering hole transport. Increasing molecular rigidity provides materials with increased thermal stability, as well as improved hole mobility. The increased mobility is due in part to the better conjugation with materials held in a planar orientation. A direct correlation has been found between the thermal stability of a OLED and the glass transition of the hole transporting material used. Structural design, synthesis and characterization of novel hole transporting materials will be reported, as well as their performance in electroluminescent devices. Device operation and architecture will also be discussed, including the use of hole transporters as host for emitting materials.

  1. Developing and evaluating rare disease educational materials co-created by expert clinicians and patients: the paradigm of congenital hypogonadotropic hypogonadism.

    Science.gov (United States)

    Badiu, Corin; Bonomi, Marco; Borshchevsky, Ivan; Cools, Martine; Craen, Margarita; Ghervan, Cristina; Hauschild, Michael; Hershkovitz, Eli; Hrabovszky, Erik; Juul, Anders; Kim, Soo-Hyun; Kumanov, Phillip; Lecumberri, Beatriz; Lemos, Manuel C; Neocleous, Vassos; Niedziela, Marek; Djurdjevic, Sandra Pekic; Persani, Luca; Phan-Hug, Franziska; Pignatelli, Duarte; Pitteloud, Nelly; Popovic, Vera; Quinton, Richard; Skordis, Nicos; Smith, Neil; Stefanija, Magdalena Avbelj; Xu, Cheng; Young, Jacques; Dwyer, Andrew A

    2017-03-20

    Patients with rare diseases face health disparities and are often challenged to find accurate information about their condition. We aimed to use the best available evidence and community partnerships to produce patient education materials for congenital hypogonadotropic hypogonadism (CHH) and the olfacto-genital (Kallmann) syndrome (i.e., CHH and defective sense of smell), and to evaluate end-user acceptability. Expert clinicians, researchers and patients co-created the materials in a multi-step process. Six validated algorithms were used to assess reading level of the final product. Comprehensibility and actionability were measured using the Patient Education Materials Assessment Tool via web-based data collection. Descriptive statistics were employed to summarize data and thematic analysis for analyzing open-ended responses. Subsequently, translation and cultural adaption were conducted by clinicians and patients who are native speakers. Co-created patient education materials reached the target 6(th) grade reading level according to 2/6 (33%) algorithms (range: grade 5.9-9.7). The online survey received 164 hits in 2 months and 63/159 (40%) of eligible patients completed the evaluation. Patients ranged in age from 18 to 66 years (median 36, mean 39 ± 11) and 52/63 (83%), had adequate health literacy. Patients scored understandability at 94.2% and actionability at 90.5%. The patient education materials were culturally adapted and translated into 20 languages (available in Additional file 1). Partnering with patients enabled us to create patient education materials that met patient- identified needs as evidenced by high end-user acceptability, understandability and actionability. The web-based evaluation was effective for reaching dispersed rare disease patients. Combining dissemination via traditional healthcare professional platforms as well as patient-centric sites can facilitate broad uptake of culturally adapted translations. This process may serve as a

  2. Hazardous materials transportation. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations concerning the transportation of hazardous chemicals, gases, explosives, and spent nuclear fuel. Liquefied natural gas transportation is emphasized. Tanker ships, containers, and pipelines for these materials are discussed along with truck, rail, air, and submarine transportation. Safety programs and routing information are presented. Hazards specific to arctic shipping are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. 76 FR 32867 - Hazardous Materials: Requirements for Storage of Explosives During Transportation

    Science.gov (United States)

    2011-06-07

    ... preemptive effect of Federal hazardous materials transportation law is triggered. The commenter expresses... recommends that PHMSA ask FMCSA to strike 397.5(d)(3) and replace the condition for state and...

  4. A low cost azomethine-based hole transporting material for perovskite photovoltaics

    NARCIS (Netherlands)

    Petrus, M.L.; Bein, T.; Dingemans, T.J.; Docampo, P.

    2015-01-01

    Most hole transporting materials (HTMs) prepared for perovskite solar cell applications are synthesized via cross-coupling reactions that require expensive transition metal catalysts, inert reaction conditions and extensive product purification; making large-scale production cost-prohibitive. Here,

  5. Electron transport system activity of microfouling material: Relationships with biomass parameters

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Tulaskar, A.; Wagh, A.B.

    Microfouling material developed on aluminium panels immersed in surface waters of the Dona Paula Bay, Goa India was analysed for biomass (measured as dry weight, organic crabon, protein and chlorophyll @ia@@) and electron transport system actitity...

  6. A low cost azomethine-based hole transporting material for perovskite photovoltaics

    NARCIS (Netherlands)

    Petrus, M.L.; Bein, T.; Dingemans, T.J.; Docampo, P.

    2015-01-01

    Most hole transporting materials (HTMs) prepared for perovskite solar cell applications are synthesized via cross-coupling reactions that require expensive transition metal catalysts, inert reaction conditions and extensive product purification; making large-scale production cost-prohibitive. Here,

  7. Theoretical analysis of moisture transport in wood as an open porous hygroscopic material

    DEFF Research Database (Denmark)

    Hozjan, Tomaz; Svensson, Staffan

    2010-01-01

    Moisture transport in an open porous hygroscopic material such as wood is a complex system of coupled processes. For seasoned wood in natural climate three fully coupled processes active in the moisture transport are readily identified: (1) diffusion of vapor in pores; (2) phase change from one...

  8. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF... transport. (a) A general license is issued to any person to possess formula quantities of strategic...

  9. 78 FR 1101 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Science.gov (United States)

    2013-01-07

    ... 178 RIN 2137-AE83 Hazardous Materials: Harmonization With the United Nations Recommendations on the... Regulations), and the United Nations Recommendations on the Transport of Dangerous Goods: Model Regulations... a Department of Transportation (DOT) or United Nations (UN) standard packaging. Most...

  10. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  11. Application of ISO system to safety test for radioactive material transport package

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. S.; Lee, J. C.; Bang, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Safety tests for radioactive material transportation package are described in MOST notice 2001-23, IAEA Safety Standards Series No. TS-R-1 and US 10 CFR Part 71. Safety test facilities and equipments were provided to be capable of performing various tests prescribed in those regulations. Test methods and procedures appropriate in International Standard ISO were established and this laboratory of radioactive material transportation package is accredited by Korea Laboratory Accreditation Scheme(KOLAS)

  12. Charge transport model to predict intrinsic reliability for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Sean P. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States); Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yeap, Kong Boon [GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States)

    2015-09-28

    Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.

  13. Protective structure for storage and transport of explosive materials

    Energy Technology Data Exchange (ETDEWEB)

    Elshafey, M.; El Halim, Abd [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Contestabile, E. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2007-07-01

    A blast attenuation concept using leaky barriers as suppressive shields was presented. The technology was designed for use in the storage, transport and processing of explosives, and can also be used to protect targets and infrastructure vulnerable to explosive attacks. Experimental studies were conducted in which various configurations of commercially-available steel modules were assembled as barrier walls. A finite element analysis was then conducted to model the blast attenuations from different explosive charges interacting with the barrier walls. Results of the study showed that the barrier walls attenuated blast pressure by 30 per cent.

  14. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    Science.gov (United States)

    2012-01-01

    Electrochemical Society , 2013. 2. Wilson K. S. Chiu, "Part 1. Role of the 3-D Electrode Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells; Part 2. Ion and Water Transport in Alkaline Anion Exchange Membranes," technical seminar for the Army Research Laboratory (host: Dr. Deryn Chu), Adelphi, MD, August 13, 2012. (c) Presentations Number of Presentations: 2.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed

  15. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  16. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  17. Coupled Transport of PAH and Surfactants in Natural Aquifer Material

    Science.gov (United States)

    Danzer, J.; Grathwohl, P.

    1998-03-01

    Surfactants in aqueous solution adsorb onto mineral surfaces and form micelles above the critical micelle concentration (CMC) due to their physico-chemical properties. Hydrophobic organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have a high affinity for the adsorbed surfactant layers (monomers, hemimicelles and admicelles) and to the micelles in the mobile aqueous phase. The transport of PAHs is controlled by the concentration of the surfactant and the partition coefficients, of the PAHs between water and admicelles (adsolubilization: K adm) and water and micelles (solubilization: K mic), respectively. These partition coefficients were measured in laboratory batch and column experiments using phenanthrene as a chemical probe for the PAHs, a non-ionic surfactant (Terrasurf G50), natural aquifer sand (River Neckar Alluvium: RNA) and its petrographic subcomponents. The sorption of the surfactant can be described by a linear isotherm for concentrations below the CMC and a sorption maximum above the CMC, which both depend on the grain size and the surfactant accessible internal surface area of the particles. K adm was found to be higher than K mic. Both depend on the surfactant's properties, such as alkyl chain length, polar headgroup or ethoxylation. In column experiments an increasing retardation of phenanthrene was observed up to the CMC followed by a facilitated transport at surfactant concentration several times the CMC.

  18. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, W.

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane modul

  19. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials

    Science.gov (United States)

    Higgins, Daniel A.; Park, Seok Chan; Tran-Ba, Khanh-Hoa; Ito, Takashi

    2015-07-01

    Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

  20. Carbon materials for enhancing charge transport in the advancements of perovskite solar cells

    Science.gov (United States)

    Hu, Ruiyuan; Chu, Liang; Zhang, Jian; Li, Xing'ao; Huang, Wei

    2017-09-01

    Organic-inorganic halide perovskite solar cells (PSCs) have become a new favorite in the photovoltaic field, due to the boosted efficiency up to 22.1%. Despite a flow of achievements, there are certain challenges to simultaneously meet high efficiency, large scale, low cost and high stability. Due to the low cost, extensive sources, high electrical conductivity and chemical stability, carbon materials have made undeniable contributions to play positive roles in developing PSCs. Carbon materials not only have the favorable conductivity but also bipolar advantage, which can transfer both electrons and holes. In this review, we will discuss how the carbon materials transfer charge or accelerate charge transport by incorporation in PSCs. Carbon materials can replace transparent conductive oxide layers, and enhance electron transport in electron transport layers. Moreover, carbon materials with continuous structure, especially carbon nanotubes and graphene, can provide direct charge transport channel that make them suitable additives or even substitutes in hole transport layers. Especially, the successful application of carbon materials as counter electrodes makes the devices full-printable, low temperature and high stability. Finally, a brief outlook is provided on the future development of carbon materials for PSCs, which are expected to devote more contributions in the future photovoltaic market.

  1. Band structure and transport studies of copper selenide: An efficient thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay

    2014-10-01

    We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .

  2. Materials and Technological Developement of Screen Printing in Transportation

    Directory of Open Access Journals (Sweden)

    Eszter Horvath

    2012-06-01

    Full Text Available Screen printing is a widely used technology in electronic technology. Even though there were many developments in the technology, it is still being under improvement. This paper deals with the automotive industry related screen printing processes. The processes associated with layer deposition and the manufacturing process parameters, which affect the quality of the prints. As the repair of electronic control unit (ECU used in road vehicles is nearly impossible the quality of printing therefore unquestionable. It is very important that the accidents caused by mechanical failure must be kept as low as possible therefore the avoidanceof failure in screen printing is not only economical question but in case of transportation it is also question of road safety. Finally, an overview is given of the typical failure effect and possible causes appearing in screen printing.

  3. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    Science.gov (United States)

    Hankel, Marlies; Zhang, Hong; Nguyen, Thanh X; Bhatia, Suresh K; Gray, Stephen K; Smith, Sean C

    2011-05-07

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H(2)/D(2) and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D(2) transport is dramatically favored over H(2). However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients-implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H(2)/D(2) in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage through the pore mouth, is also

  4. Radiation exposures of workers and the public associated with the transport of radioactive material in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, G.; Fett, H.J.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Cologne (Germany)

    2004-07-01

    Most radioactive material packages transported emit penetrating ionising radiation and radiation exposures of transport workers and the public may occur during their transport. The radiation exposures incurred by transport workers and members of the public can vary significantly depending on a number of factors: most important is the type of radiation emitted (primarily gamma and neutron radiation), the radiation field intensity in the surrounding of a package and conveyance and the duration of exposure to ionising radiation. The information and guidance material on occupational exposures has primarily been derived from a survey and analysis of personal monitoring data provided by a number of commercial transport operators in Germany known as major carrier and handler organisations of fuel cycle and non-fuel cycle material (in terms of the number of pack-ages and the activity carriaged). To some extent advantage was taken of compilations of statistical transport and exposure data collated within other transport safety analysis studies including research projects funded by the European Commission. The exposure data collected cover the time period of the last 4 - 8 years and are most representative for routine transport operations closely related to the movement phase of packaged radioactive material, i.e. receipt, vehicle loading, carriage, in-transit storage, intra-/intermodal transfer, vehicle unloading and delivery at the final destination of loads of radioactive material and packages and the related supervisory and health physics functions. Radiation dose monitoring of members of the public, however, is generally impracticable and, consequently, the information available relies on employing dose assessment models and reflects radiation exposures incurred by hypothetical or critical group individuals of members of the public under normal conditions of transport.

  5. LABORATORY STUDIES ON THE STABILITY AND TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL

    Science.gov (United States)

    The stability and transport of radio-labeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study included flow rate, pH, i...

  6. A whole range hygric material model: Modelling liquid and vapour transport properties in porous media

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2010-01-01

    This paper addresses the modelling of hygric material coefficients bridging the gap between measured material properties and the non-linear storage and transport coefficients in the transfer equation. The conductivity approach and a bundle of tubes model are the basis. By extending this model...

  7. Animation of environmental assessment at sinking of vessel transporting radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, N.; Ozaki, S. (Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.); Noguchi, K.; Nakashima, K.; Suzuki, H.

    1993-01-01

    This report evaluated the concentration of radioactive materials in the sea and simulated the behavior of nuclides in the sea. Animation was used to depict the results of the simulation. We considered the hypothetical case of a ship that sank in a Japanese bay while transporting radioactive materials. (J.P.N.).

  8. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  9. Interplay between inhibited transport and reaction in nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, David Michael [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walk based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.

  10. Understanding Thermal Transport in Graded, Layered and Hybrid Materials

    Science.gov (United States)

    2014-04-01

    Trindade B, Weißgärber T, Kieback B (2008) Mater Sci Eng A 475:39-44. 11 Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T, Kieback B (2008...2011) 1097–1100. 14 Ł. Ciupiński, D. Siemiaszko, M. Rosiński, A. Michalski and K.J. Kurzydłowski, Advanced Materials Research Vol. 59 (2009) pp 120...Trindade B, Weißgärber T, Kieback B (2008) Mater Sci Eng A 475:39-44. 18 Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T, Kieback B (2008

  11. Transport of heavy load radioactive material in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, W.; Koelpin, E. [Nuclear Cargo and Service GmbH, Hanau (Germany)

    2004-07-01

    Nuclear generation has become over the last 4 decades a vital part of Germany's energetic fundament and is contributing to roughly one third of the overall electric generation (Figures of 2003: 31.7%, i. e. 156.4 thou. GWh nuclear of 493.3 thou. GWh generated in total). And anyone who seriously tries to look beyond the outlet sockets on the wall when considering an economic reasonable energy supply which moreover is sustainable past the foreseeable exhaustion date of fossil fuels (which, in turn, will gain in value in the decades to come as raw material in chemistry) as well as environmental friendly without carbon dioxide emission, reliable and safe - must inevitably come to conclusions that oppose that ''zeitgeist stand'' and unsubstantiated ''green dogma'' to depart from all forms of nuclear generation.

  12. Abrasion properties of homogenous and blended fill materials during pressure hydraulic transport

    Energy Technology Data Exchange (ETDEWEB)

    Turchaninov, S.P.

    1978-03-01

    A description is given of tests conducted to determine the abrasive properties of small and large-grain free-flowing fill materials during hydraulic transport of the materials under pressure. Data are given on the size, density, abrasiveness of various sized varieties of rock, sand, and blends comprising homogenous materials, simple and complex mixtures, and on the physical characteristics of various fill materials in relation to the trafficability and parameters of pipelines. Technical specifications are given for fill steel pipes. The study indicates that the durability of hydraulic fill pipelines largely depends on the abrasiveness of the fill materials. 3 references, 2 figures, 2 tables.

  13. Vertical transportation system of solid material for backfilling coal mining technology

    Institute of Scientific and Technical Information of China (English)

    Ju Feng; Zhang Jixiong; Zhang Qiang

    2012-01-01

    For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology,we developed a new vertical transportation system to transport this type of solid backfill material.Given the demands imposed on safely in feeding this material,we also investigated the structure and basic parameter of this system.For a mine in the Xingtai mining area the results show that:(1) a vertical transportation system should include three main parts,i.e.,a feeding borehole,a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes,the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process.To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel,we propose a series of security technologies for anti-blockage,storage silo cleaning.high pressure air release and aspiration.This vertical transporting system has been applied in one this particular mine,which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.

  14. Model and Method for Multiobjective Time-Dependent Hazardous Material Transportation

    Directory of Open Access Journals (Sweden)

    Zhen Zhou

    2014-01-01

    Full Text Available In most of the hazardous material transportation problems, risk factors are assumed to be constant, which ignores the fact that they can vary with time throughout the day. In this paper, we deal with a novel time-dependent hazardous material transportation problem via lane reservation, in which the dynamic nature of transportation risk in the real-life traffic environment is taken into account. We first develop a multiobjective mixed integer programming (MIP model with two conflicting objectives: minimizing the impact on the normal traffic resulting from lane reservation and minimizing the total transportation risk. We then present a cut-and-solve based ε-constraint method to solve this model. Computational results indicate that our method outperforms the ε-constraint method based on optimization software package CPLEX.

  15. 49 CFR 1572.201 - Transportation of hazardous materials via commercial motor vehicle from Canada or Mexico to and...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Transportation of hazardous materials via commercial motor vehicle from Canada or Mexico to and within the United States. 1572.201 Section 1572.201... Land Modes § 1572.201 Transportation of hazardous materials via commercial motor vehicle from Canada...

  16. 78 FR 42998 - Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials

    Science.gov (United States)

    2013-07-18

    ... published on April 11, 2000 (65 FR 19477). Robert C. Lauby, Deputy Associate Administrator for Regulatory..., Washington, DC 20590, (202) 493-6050, Kurt.Eichenlaub@dot.gov ; or Mr. Karl Alexy, Staff Director, Hazardous... Karl.Alexy@dot.gov . SUPPLEMENTARY INFORMATION: The Secretary of Transportation (Secretary)...

  17. Quantifying moisture transport in cementitious materials using neutron radiography

    Science.gov (United States)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated

  18. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Rawl, Richard R [ORNL; Scofield, Patricia A [ORNL; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low

  19. Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation.

    Science.gov (United States)

    Liu, Xiang; Saat, Mohd Rapik; Barkan, Christopher P L

    2014-07-15

    Railroads play a key role in the transportation of hazardous materials in North America. Rail transport differs from highway transport in several aspects, an important one being that rail transport involves trains in which many railcars carrying hazardous materials travel together. By contrast to truck accidents, it is possible that a train accident may involve multiple hazardous materials cars derailing and releasing contents with consequently greater potential impact on human health, property and the environment. In this paper, a probabilistic model is developed to estimate the probability distribution of the number of tank cars releasing contents in a train derailment. Principal operational characteristics considered include train length, derailment speed, accident cause, position of the first car derailed, number and placement of tank cars in a train and tank car safety design. The effect of train speed, tank car safety design and tank car positions in a train were evaluated regarding the number of cars that release their contents in a derailment. This research provides insights regarding the circumstances affecting multiple-tank-car release incidents and potential strategies to reduce their occurrences. The model can be incorporated into a larger risk management framework to enable better local, regional and national safety management of hazardous materials transportation by rail. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2014-07-15

    Railroads play a key role in the transportation of hazardous materials in North America. Rail transport differs from highway transport in several aspects, an important one being that rail transport involves trains in which many railcars carrying hazardous materials travel together. By contrast to truck accidents, it is possible that a train accident may involve multiple hazardous materials cars derailing and releasing contents with consequently greater potential impact on human health, property and the environment. In this paper, a probabilistic model is developed to estimate the probability distribution of the number of tank cars releasing contents in a train derailment. Principal operational characteristics considered include train length, derailment speed, accident cause, position of the first car derailed, number and placement of tank cars in a train and tank car safety design. The effect of train speed, tank car safety design and tank car positions in a train were evaluated regarding the number of cars that release their contents in a derailment. This research provides insights regarding the circumstances affecting multiple-tank-car release incidents and potential strategies to reduce their occurrences. The model can be incorporated into a larger risk management framework to enable better local, regional and national safety management of hazardous materials transportation by rail.

  1. Expert Systems: An Overview.

    Science.gov (United States)

    Adiga, Sadashiv

    1984-01-01

    Discusses: (1) the architecture of expert systems; (2) features that distinguish expert systems from conventional programs; (3) conditions necessary to select a particular application for the development of successful expert systems; (4) issues to be resolved when building expert systems; and (5) limitations. Examples of selected expert systems…

  2. Utilization of In-Situ Resources and Transported Materials for Infrastructure and Hardware Manufacturing on the Moon - Ongoing Developments by ESA Materials Scientists

    Science.gov (United States)

    Pambaguian, L.; Makaya, A.; Lafont, U.

    2016-11-01

    This contribution presents a review of completed and ongoing activities led by the European Space Agency's Materials Scientist on the use of in-situ resources and transported materials to enable exploration and settlement activities on the Moon.

  3. Transport and handling of construction materials in the hard coal mining industry and tunnel construction

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Stephan [Olko-Maschinentechnik GmbH, Olfen (Germany)

    2008-08-21

    In the German hard coal mining industry construction materials with the most diverse compositions are required for various applications. The largest proportion of the materials is required for the construction of roadside packs and for the backfilling of roadways because of the ever increasing depths and the resulting rock mechanical problems. Over the last 30 years handling, transport and processing systems have been developed to cope with these quantities of materials and to avoid further loads on the shaft hoisting installation. Nowadays these systems are standardised and are characterised by mobility, flexibility, small space requirement and the latest control engineering. This applies in particular to pneumatic and hydraulic transport and distribution of the construction materials. In future all mines will monitor and control all installations above and below ground from a central control room. The methods developed in the mining industry are also successfully used in tunnel and underground railway construction. (orig.)

  4. Influence of Microstructure and Sintering Routes on Transport Properties of Apatite Materials for Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    A.Chesnaud; C.Estournes; G.Dezannau

    2007-01-01

    1 Results Oxy-apatite materials are thought as zirconia-substitutes in Solid Oxide Fuel Cells due to their fast ionic conduction. However, the well known difficulties related to their densification prevent them from being used as such. This study presents strategies to obtain oxy-apatite dense materials and the influence of elaboration route on transport properties. Particular emphasis is put on the microstructure effect on ion conduction. By the combined use of freeze-drying and conventional or spark p...

  5. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    Science.gov (United States)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  6. COMPUTER-AIDED FLOW METER APPLICABLE TO LOOSE MATERIALS IN THE COURSE OF PNEUMATIC TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Gulyaev Valeriy Genrihovich

    2012-07-01

    Full Text Available The article covers the issues of development and the results of the pilot testing of the contact-free meter of the two-phase flow of loose construction materials in the course of their pneumatic transportation. The flow meter designed by the author is based on the method of registration of polarization currents caused by the motion of the dielectric material within the electric field of a measurement unit integrated into the pneumatic transportation line. The registration unit is the implementation of the original technology. Its functional concept is based on the Pockels transverse effect inside the lithium niobate crystal. This electro-optical effect is characterized by minimal persistence, as the phase of the optical wave varies within the time period of 10 second, and this effect makes it possible to improve the accuracy of measurements. The flow rates is identified on the basis of one variable integral parameter, the intensity of an optical wave passing through the Pockels cell simulated by the currents of polarization of the material. The paper contains the structural pattern of the computer-aided meter of loose dielectric materials in the course of their pneumatic transportation, the system of visualization of the mass flow, and the results of the pilot testing of the proposed meter. The proposed system may represent an unbiased system of management of construction materials, consumption procedures, and warehouse processing of materials.

  7. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  8. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  9. THE INFLUENCE OF RAW MATERIAL ON THE LIQUID MOISTURE TRANSPORT THROUGH KNITTED FABRIC

    Directory of Open Access Journals (Sweden)

    COLDEA Alina

    2014-05-01

    Full Text Available The comfort is undoubtedly the most important human attribute depends upon the moisture transport which in turn depends on the moisture transport behavior of the knitted fabric. Moisture transport is the transfer of liquid water capillary interstices of the yarns and depends on the wettability of fiber surfaces, as well as the structure of the yarn and fabric. Because of its good water absorption property, cotton is often used for next-to-skin wear such as t-shirts, underwear, socks. All these are known as ``moisture management`` which means the ability of a textile fabric to transport moisture away from the skin to the garment’s outer surface in multi-dimensions and it is one of the key performance criteria in today’s apparel industry since it has a significant effect on the human perception of moisture sensations. In order to study, plated knitted fabric for socks were knitted as plated single jersey in the same production conditions, from different types of yarns, produced in different yarn counts (Ne 20, Ne 24, Ne 30 and different raw material. (cotton, bamboo, soybean, polyester, viscose. Were chose two different density on circular knitting machine. The liquid moisture management of the samples was measured in order to determinate moisture transport index. Was study also the influence of raw material and fabric structure related to the moisture transport index. According to the obtained results, it was found that some of the knitted fabrics used in this study have goodmoisture management capability.

  10. Nuclear materials transportation workshops: USDOE outreach to local governments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-28

    To provide direct outreach to local governments, the Transportation Management Division of the United States Department of Energy asked the Urban Consortium and its Energy Task Force to assemble representatives for two workshops focusing on the transport of nuclear materials. The first session, for jurisdictions east of the Mississippi River, was held in New Orleans on May 5--6, 1988; the second was conducted on June 6--7, 1988 in Denver for jurisdictions to the west. Twenty local government professionals with management or operational responsibility for hazardous materials transportation within their jurisdictions were selected to attend each workshop. The discussions identified five major areas of concern to local government professionals; coordination; training; information resources; marking and placarding; and responder resources. Integrated federal, state, and local levels of government emerged as a priority coordination issue along with the need for expanded availability of training and training resources for first-reponders.

  11. Communications issues for international radioactive materials transport, Post 9/11

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.A. [International Transport, BNFL, Warrington, Cheshire (United Kingdom); Hartenstein, M. [Transport External Affairs, Marketing, Sales and Projects Div., Cogema Logistics, Saint Quentin en Yvelines (France); Nawano, M. [Transport Headquarters, Overseas Reprocessing Committee, Tokyo (Japan)

    2004-07-01

    The terrorist attacks of September 11{sup th} 2001 in New York and Washington (9/11) have increased government, public and media concern over terrorist attacks in general and attack on transport systems in particular. Antinuclear groups have increasingly made unsubstantiated claims about the terrorist threat to Radioactive Materials Transport and the consequences of such a threat being realised. At the same time, the international and national security regulations relating to Nuclear Materials Transport have been reviewed and tightened since 9/11. These changes have in some cases restricted the information that can be made publicly available. It is against this background that the Industry must operate and seek to inform the public through its communications activities whilst remaining within the new security framework of security regulations. These activities must necessarily provide sufficient information to counter the incorrect claims made by opponents, allay fears of the public as far as possible and provide factual and scientifically rigorous data without compromising security.

  12. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  13. Direct product quality control for energy efficient climate controlled transport of agro-material

    NARCIS (Netherlands)

    Verdijck, G.J.C.; Preisig, H.A.; Straten, van G.

    2005-01-01

    A (model-based) Product Quality Controller is presented for climate controlled operations involving agro-material, such as storage and transport. This controller belongs to the class of Model Predictive Controllers and fits in a previously developed hierarchical control structure. The new Product

  14. Hexaazatrinaphthylene Derivatives: Efficient Electron-Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Zhao, Dongbing; Zhu, Zonglong; Kuo, Ming-Yu; Chueh, Chu-Chen; Jen, Alex K-Y

    2016-07-25

    Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs.

  15. TRASMAR 2: improved tele operated mobile robot for the radioactive material transport; TRASMAR 2: Robot movil teleoperado mejorado para el transporte de material radiactivo

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Zamora S, C.A.; Garduno G, M. [Instituto Tecnologico de Toluca, 52140 Metepec, Estado de Mexico (Mexico)]. e-mail: asegovia@nuclear.inin.mx

    2007-07-01

    In the National Institute of Nuclear Research of Mexico (ININ), a new robot version for the radioactive material transport was developed trying to diminish the radiation quantity to which the ININ personnel is exposed taking it away by this way of the radioactive substance. The robot is operated by means of a remote control, for that which two data transmission modules by radiofrequency are used. As much the remote control as the vehicle control system were implemented with the help of micro controllers. Presently document the main characteristics of this mobile robot are explained, which is a more economic and functional version that it predecessor. (Author)

  16. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu

    2016-04-04

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  17. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  18. NASA research Program: The roles of fluid motion and other transport phenomena in the morphology of materials

    Science.gov (United States)

    Saville, D. A.

    1988-01-01

    The influence of transport phenomena on the morphology of crystalline materials was investigated. Two problems were studied: the effects of convection on the crystallization of pure materials, and the crystallization of proteins from solution.

  19. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  20. Nuclear materials transport worldwide. Greenpeace report 2. Der weltweite Atomtransport. Greenpeace Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy.

  1. Effect of film nanostructure on in-plane charge transport in organic bulk heterojunction materials

    Science.gov (United States)

    Danielson, Eric; Ooi, Zi-En; Dodabalapur, Ananth

    2013-09-01

    Bulk heterojunction (BHJ) organic solar cells are a promising alternative energy technology, but a thorough understanding of charge transport behavior in BHJ materials is necessary in order to design devices with high power conversion efficiencies. Parameters such as carrier mobilities, carrier concentrations, and the recombination coefficient have traditionally been successfully measured using vertical structures similar to organic photovoltaic (OPV) cells. We have developed a lateral BHJ device which complements these vertical techniques by allowing spatially resolved measurement along the transport direction of charge carriers. This is essential for evaluating the effect of nanoscale structure and morphology on these important charge transport parameters. Nanomorphology in organic BHJ films has been controlled using a variety of methods, but the effect of these procedures has been infrequently correlated with the charge transport parameter of the BHJ material. Electron beam lithography has been used to create lateral device structures with many voltage probes at a sub-micron resolution throughout the device channel. By performing in-situ potentiometry, we can calculate both carrier mobilities and determine the effect of solvent choice and annealing procedure on the charge transport in BHJ system. Spin coated P3HT:PCBM films prepared from solutions in chloroform and o-xylene are characterized using this technique.

  2. Heat and moisture transport in durian fiber based lightweight construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Charoenvai, S.; Khedari, J.; Hirunlabh, J.; Asasutjarit, C. [King Mongkut' s Univ. of Technology, Building Scientific Research Center, Thonburi, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Centre d' Etudes Fondamentales, Groupe de Mecanique, Acoustique et Instrumentation, Perpignan, 66 (France); Quenard, D.; Pratintong, N. [Centre Scientifique et Technique du Batiment (CSTB), Grenoble (France)

    2005-04-01

    This paper presents result on heat and moisture transport in durian (Durio zibethinus) fiber based lightweight construction materials composed of cement, sand and waste fiber from durian peel and the performance of the material was simulated with the surface treatment by using a computational tool. The commercial research software (WUFI 2D) was used to calculate heat and moisture transfer through a durian fiber based lightweight construction material. The materials were exposed to a climate condition similar to the one in Bangkok and the hygrothermal characteristics of the materials were investigated. The investigation reveals that the weekly mean water content on the surface of material was quite low. The effect of moisture on the apparent thermal performance of the composite was found to be higher as water absorbed in the pore structure contributed to higher thermal conductivity than the air it replaced. However, the mean value of thermal conductivity in material is still rather low as the mean value of water content in material is low. Coating the surface reduced the flow of moisture to or from the structure considerably. The results of simulation confirmed that the manufactured composite satisfied the requirement of construction materials. It is then reasonable to conclude that the use of such materials in the design and construction of passive solar buildings is promising. Laboratory investigation is undergoing to validate the simulated performance. (Author)

  3. High resolution model studies of transport of sedimentary material in the south-western Baltic

    Science.gov (United States)

    Seifert, Torsten; Fennel, Wolfgang; Kuhrts, Christiane

    2009-02-01

    The paper presents high resolution model simulations of transport, deposition and resuspension of sedimentary material in the south-western Baltic, based on an upgrade of the sediment transport model described in the work of Kuhrts et al. [Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the Western Baltic. Journal of Marine Systems 52, 167.]. In the western Baltic, a grid spacing of at least 1 nautical mile is required to resolve the shallow and narrow bathymetry and the associated current patterns. A series of experimental model simulations is carried out with forcing data for the year 1993, which include a sequence of storms in January. Compared to earlier model versions, a more detailed description of potential deposition areas can be provided. The study quantifies the influence of enhanced bottom roughness caused by biological structures, like mussels and worm holes, provides estimates of the regional erosion risks for fine grained sediments, and analyses scenarios of the settling and spreading of material at dumping sites. Although the effects of changed bottom roughness, as derived from more detailed, re-classified sea floor data, are relatively small, the sediment transport and deposition patterns are clearly affected by the variation of the sea bed properties.

  4. Identification and prioritization of hazardous material transportation strategies using DEA method

    Directory of Open Access Journals (Sweden)

    Saeid Esmaeili

    2012-09-01

    Full Text Available Development of industries needs expansion of public transportation and, consequently, heavy transportation increases hazardous and dangerous transportation too. Therefore, we need to consider some strategies to reduce bad effects of transportation of hazardous materials such as road accidents. Strength, Weakness, Opportunity and Treats (SWOT analysis is an applicable method for designing strategies in this area. However, SWOT analysis does not provide specific strategies and it does not consider the efficiency and performance of each strategy. Applying a hybrid method of analyzing the strategies and their performance evaluation help decision makers select the best strategies based on the current limitations. In this paper, different strategies for hazardous transportation risk reduction are designed and relative efficiencies of all alternatives are compared using DEA method. The proposed model of this paper uses three inputs including implementation costs, operation and maintenance cost and operational and four outputs including accident rate reduction, fuel consumption reduction, employment rate increment and deaths number reduction. The results of the implementation using seven different strategies have yielded two important strategies including continuous improvement of vehicle standards, driving skills, transportation system quality, and loading methods and expansion of petroleum pipe network.

  5. Mass transport in morphogenetic processes: A second gradient theory for volumetric growth and material remodeling

    Science.gov (United States)

    Ciarletta, P.; Ambrosi, D.; Maugin, G. A.

    2012-03-01

    In this work, we derive a novel thermo-mechanical theory for growth and remodeling of biological materials in morphogenetic processes. This second gradient hyperelastic theory is the first attempt to describe both volumetric growth and mass transport phenomena in a single-phase continuum model, where both stress- and shape-dependent growth regulations can be investigated. The diffusion of biochemical species (e.g. morphogens, growth factors, migration signals) inside the material is driven by configurational forces, enforced in the balance equations and in the set of constitutive relations. Mass transport is found to depend both on first- and on second-order material connections, possibly withstanding a chemotactic behavior with respect to diffusing molecules. We find that the driving forces of mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature. Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the rearrangement of the first- and second-order material inhomogeneities, respectively. In particular, an evolution law is proposed for the first-order transplant, extending a well-known result for inelastic materials. Moreover, we define the first stress-driven evolution law of the second-order transplant in function of the completely material Eshelby hyperstress. The theory is applied to two biomechanical examples, showing how an Eshelbian coupling can coordinate volumetric growth, mass transport and internal stress state, both in physiological and pathological conditions. Finally, possible applications of the proposed model are discussed for studying the unknown regulation mechanisms in morphogenetic processes, as well as for optimizing scaffold architecture in regenerative medicine and tissue engineering.

  6. Designing dye-nanochannel antenna hybrid materials for light harvesting, transport and trapping.

    Science.gov (United States)

    Calzaferri, Gion; Méallet-Renault, Rachel; Brühwiler, Dominik; Pansu, Robert; Dolamic, Igor; Dienel, Thomas; Adler, Pauline; Li, Huanrong; Kunzmann, Andreas

    2011-02-25

    We discuss artificial photonic antenna systems that are built by incorporating chromophores into one-dimensional nanochannel materials and by organizing the latter in specific ways. Zeolite L (ZL) is an excellent host for the supramolecular organization of different kinds of molecules and complexes. The range of possibilities for filling its one-dimensional channels with suitable guests has been shown to be much larger than one might expect. Geometrical constraints imposed by the host structure lead to supramolecular organization of the guests in the channels. The arrangement of dyes inside the ZL channels is what we call the first stage of organization. It allows light harvesting within the volume of a dye-loaded ZL crystal and also the radiationless transport of energy to either the channel ends or center. One-dimensional FRET transport can be realized in these guest-host materials. The second stage of organization is realized by coupling either an external acceptor or donor stopcock fluorophore at the ends of the ZL channels, which can then trap or inject electronic excitation energy. The third stage of organization is obtained by interfacing the material to an external device via a stopcock intermediate. A possibility to achieve higher levels of organization is by controlled assembly of the host into ordered structures and preparation of monodirectional materials. The usually strong light scattering of ZL can be suppressed by refractive-index matching and avoidance of microphase separation in hybrid polymer/dye-ZL materials. The concepts are illustrated and discussed in detail on a bidirectional dye antenna system. Experimental results of two materials with a donor-to-acceptor ratio of 33:1 and 52:1, respectively, and a three-dye system illustrate the validity and challenges of this approach for synthesizing dye-nanochannel hybrid materials for light harvesting, transport, and trapping.

  7. Channel change and bed-material transport in the Umpqua River basin, Oregon

    Science.gov (United States)

    Wallick, J. Rose; O'Connor, Jim E.; Anderson, Scott; Keith, Mackenzie K.; Cannon, Charles; Risley, John C.

    2011-01-01

    The Umpqua River drains 12,103 square kilometers of western Oregon; with headwaters in the Cascade Range, the river flows through portions of the Klamath Mountains and Oregon Coast Range before entering the Pacific Ocean. Above the head of tide, the Umpqua River, along with its major tributaries, the North and South Umpqua Rivers, flows on a mixed bedrock and alluvium bed, alternating between bedrock rapids and intermittent, shallow gravel bars composed of gravel to cobble-sized clasts. These bars have been a source of commercial aggregate since the mid-twentieth century. Below the head of tide, the Umpqua River contains large bars composed of mud and sand. Motivated by ongoing permitting and aquatic habitat concerns related to in-stream gravel mining on the fluvial reaches, this study evaluated spatial and temporal trends in channel change and bed-material transport for 350 kilometers of river channel along the Umpqua, North Umpqua, and South Umpqua Rivers. The assessment produced (1) detailed mapping of the active channel, using aerial photographs and repeat surveys, and (2) a quantitative estimation of bed-material flux that drew upon detailed measurements of particle size and lithology, equations of transport capacity, and a sediment yield analysis. Bed-material transport capacity estimates at 45 sites throughout the South Umpqua and main stem Umpqua Rivers for the period 1951-2008 result in wide-ranging transport capacity estimates, reflecting the difficulty of applying equations of bed-material transport to a supply-limited river. Median transport capacity values calculated from surface-based equations of bedload transport for each of the study reaches provide indications of maximum possible transport rates and range from 8,000 to 27,000 metric tons per year (tons/yr) for the South Umpqua River and 20,000 to 82,000 metric tons/yr for the main stem Umpqua River upstream of the head of tide; the North Umpqua River probably contributes little bed material. A

  8. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  9. Speech spectrogram expert

    Energy Technology Data Exchange (ETDEWEB)

    Johannsen, J.; Macallister, J.; Michalek, T.; Ross, S.

    1983-01-01

    Various authors have pointed out that humans can become quite adept at deriving phonetic transcriptions from speech spectrograms (as good as 90percent accuracy at the phoneme level). The authors describe an expert system which attempts to simulate this performance. The speech spectrogram expert (spex) is actually a society made up of three experts: a 2-dimensional vision expert, an acoustic-phonetic expert, and a phonetics expert. The visual reasoning expert finds important visual features of the spectrogram. The acoustic-phonetic expert reasons about how visual features relates to phonemes, and about how phonemes change visually in different contexts. The phonetics expert reasons about allowable phoneme sequences and transformations, and deduces an english spelling for phoneme strings. The speech spectrogram expert is highly interactive, allowing users to investigate hypotheses and edit rules. 10 references.

  10. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Soloveichik, Grigorii [GE Global Research, Niskayuna, New York (United States)

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  11. Expert system rheometry

    Directory of Open Access Journals (Sweden)

    Samiul Amin

    2009-09-01

    Full Text Available Inks, drilling fluids, shower gels and drug delivery vehicles are just a few examples of the many industrial and consumer products based on colloidal and nanostructured complex fluids. The successful formulation of these materials is promoted by understanding how rheological behaviour, which typically dictates performance, relates to underlying microstructure. However, this knowledge can be difficult to obtain for those without the necessary expertise. This article shows how recent developments in rheometer technology address this issue. New rheometers, exemplified by the Kinexus from Malvern have expert knowledge embedded within the instrument and are able to guide users through measurement and data analysis to relevant information. Such systems facilitate development of the design rules to optimize formulations and generate novel and high performance materials of the future.

  12. Titanium Trisulfide Monolayer as a Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study.

    Science.gov (United States)

    Zhang, Jie; Liu, Xiaolin; Wen, Yanwei; Shi, Lu; Chen, Rong; Liu, Huijun; Shan, Bin

    2017-01-25

    Good electronic transport capacity and low lattice thermal conductivity are beneficial for thermoelectric applications. In this study, the potential use as a thermoelectric material for the recently synthesized two-dimensional TiS3 monolayer is explored by applying first-principles method combined with Boltzmann transport theory. Our work demonstrates that carrier transport in the TiS3 sheet is orientation-dependent, caused by the difference in charge density distribution at band edges. Due to a variety of Ti-S bonds with longer lengths, we find that the TiS3 monolayer shows thermal conductivity much lower compared with that of transition-metal dichalcogenides such as MoS2. Combined with a high power factor along the y-direction, a considerable n-type ZT value (3.1) can be achieved at moderate carrier concentration, suggesting that the TiS3 monolayer is a good candidate for thermoelectric applications.

  13. Sources and Transportation of Bulk, Low-Cost Lunar Simulant Materials

    Science.gov (United States)

    Rickman, D. L.

    2013-01-01

    Marshall Space Flight Center (MSFC) has built the Lunar Surface Testbed using 200 tons of volcanic cinder and ash from the same source used for the simulant series JSC-1. This Technical Memorandum examines the alternatives examined for transportation and source. The cost of low-cost lunar simulant is driven by the cost of transportation, which is controlled by distance and, to a lesser extent, quantity. Metabasalts in the eastern United States were evaluated due to their proximity to MSFC. Volcanic cinder deposits in New Mexico, Colorado, and Arizona were recognized as preferred sources. In addition to having fewer green, secondary minerals, they contain vesicular glass, both of which are desirable. Transportation costs were more than 90% of the total procurement costs for the simulant material.

  14. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    Science.gov (United States)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  15. Charge transport in carbon nanotubes based materials: a Kubo-Greenwood computational approach

    Science.gov (United States)

    Ishii, Hiroyuki; Triozon, François; Kobayashi, Nobuhiko; Hirose, Kenji; Roche, Stephan

    2009-05-01

    In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy. To cite this article: H. Ishii et al., C. R. Physique 10 (2009).

  16. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  17. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Harris, M.S.

    1994-12-01

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities.

  18. Legal aspects of the maritime transport of radioactive materials its regulation in Mexico

    CERN Document Server

    Aguilar, S

    2001-01-01

    This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is appli...

  19. Phonons and thermal transport in graphene and graphene-based materials

    Science.gov (United States)

    Nika, Denis L.; Balandin, Alexander A.

    2017-03-01

    A discovery of the unusual thermal properties of graphene stimulated experimental, theoretical and computational research directed at understanding phonon transport and thermal conduction in two-dimensional material systems. We provide a critical review of recent results in the graphene thermal field focusing on phonon dispersion, specific heat, thermal conductivity, and comparison of different models and computational approaches. The correlation between the phonon spectrum in graphene-based materials and the heat conduction properties is analyzed in details. The effects of the atomic plane rotations in bilayer graphene, isotope engineering, and relative contributions of different phonon dispersion branches are discussed. For readers’ convenience, the summaries of main experimental and theoretical results on thermal conductivity as well as phonon mode contributions to thermal transport are provided in the form of comprehensive annotated tables.

  20. Performance Improvement of Bulk Heterojunction Organic Photovoltalc Cell by Addition of a Hole Transport Material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; LIU Qian; MAO Jie; LIU Zun-Feng; YANG Li-Ying; YIN Shou-Gen; CHEN Yong-Sheng

    2008-01-01

    @@ A novel photovoltaic cell with an active layer of poly(phenyleneethynylene)(PPE)/C60/N,N'-diphenyl-N,N'-di-(m-tolyl)-p-benzidine(TPD)is designed.In the active layer,PPE is the major component;C60 and TPD are the minor ones.Compared with a control BHJ device based on PPE/C60,the short circuit current density Jsc is increased by 1 order of magnitude,and the whole device performance is increased greatly,however the open circuit voltage Voc is largely decreased.The possible mechanism of the improved performance may be as follows:In the PPE/C60/TPD device,PPE,C60,and TPD serve as the energy harvesting material,the electron transport material,and the hole transport materiall respectively.As the TPD and C60 are spatially separated by PPE,the charge recombination is effectively retarded.

  1. Radioactive and hazardous materials transportation: What local officials are telling us

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J. A.; Ruberg, G. E. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (USA). Management Systems Labs.; Denny, S. H. [USDOE Assistant Secretary for Defense Programs, Washington, DC (USA). Transportation Management Div.

    1990-01-01

    This paper summarizes the results of a 1989 interactive meeting of US Department of Energy (DOE) representatives with over twenty local government officials from cities and counties around the country. Management Systems Laboratories of Virginia Tech, in coordination with the Energy Task Force Management Corporation (now called the Urban Energy Transportation Corporation), designed and facilitated the meeting with these goals: Share information that local government officials can apply to their own communities; exchange experiences and ideas applicable to other emergency management programs; and identify areas of productive action for DOE and local government to address issues of mutual concern. The highlight of the meeting was a Program Planning Exercise. The participants, playing the roles of federal managers in DOE, developed programs to address the concerns of local governments on the subjects of transportation of hazardous and nuclear materials, and emergency preparedness related to incidents involving shipments of those materials.

  2. Characteristic parameters of diffusive supersonic radiation transport in low density materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Shao-En; Yang Jia-Min; Zheng Zhi-Jian; Ding Yong-Kun

    2007-01-01

    Diffusive heat waves play an important role in radiation hydrodynamics. In low density material, it may be possible that the radiative energy flux dominates the material energy flux and thus energy flow can be determined. In this paper by means of a simple algebraic method, the expressions characterizing the condition of diffusion approximation and supersonic transport of heat wave are found. In this case, the ratio of the radiative energy flux to the material energy flux is directly proportional to the product of Mach number M multiplied by optical depth τ. And it may also be expressed by radiation temperature heating material. The materiel density and length may be determined in order to aceve above-mentioned conditions when the driven temperature and duration are given.

  3. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  4. Importance of interfaces in governing thermal transport in composite materials: modeling and experimental perspectives.

    Science.gov (United States)

    Roy, Ajit K; Farmer, Barry L; Varshney, Vikas; Sihn, Sangwook; Lee, Jonghoon; Ganguli, Sabyasachi

    2012-02-01

    Thermal management in polymeric composite materials has become increasingly critical in the air-vehicle industry because of the increasing thermal load in small-scale composite devices extensively used in electronics and aerospace systems. The thermal transport phenomenon in these small-scale heterogeneous systems is essentially controlled by the interface thermal resistance because of the large surface-to-volume ratio. In this review article, several modeling strategies are discussed for different length scales, complemented by our experimental efforts to tailor the thermal transport properties of polymeric composite materials. Progress in the molecular modeling of thermal transport in thermosets is reviewed along with a discussion on the interface thermal resistance between functionalized carbon nanotube and epoxy resin systems. For the thermal transport in fiber-reinforced composites, various micromechanics-based analytical and numerical modeling schemes are reviewed in predicting the transverse thermal conductivity. Numerical schemes used to realize and scale the interface thermal resistance and the finite mean free path of the energy carrier in the mesoscale are discussed in the frame of the lattice Boltzmann-Peierls-Callaway equation. Finally, guided by modeling, complementary experimental efforts are discussed for exfoliated graphite and vertically aligned nanotubes based composites toward improving their effective thermal conductivity by tailoring interface thermal resistance.

  5. Tribological properties of epoxy composite materials for marine and river transport

    Science.gov (United States)

    Buketov, A. V.; Maruschak, P. O.; Brailo, N. V.; Akimov, A. V.; Kobelnik, O. S.; Panin, S. V.

    2016-11-01

    Tribological properties of epoxy composites filled with thermoplastics and dispersed particles under sea water environment were analyzed. It has been revealed that the composition, sliding friction conditions, as well as the marine environment, substantially affect the tribological properties of the materials. The improvement of tribological properties of epoxycomposite thermosetting plastics after their filling with thermoplastic polyamide PA-6 granules under friction in sea water environment has been proved. The recommendations on applying the developed material in friction parts for marine and river transport were formulated.

  6. Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material.

    Science.gov (United States)

    De Wilde, Tineke; Spanoghe, Pieter; Sniegowksi, Kristel; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk

    2010-01-01

    Laboratory column displacement experiments were performed to examine whether addition of pesticide-primed material to the matrix of an on-farm biopurification system (BPS), intended to remove pesticides from agricultural waste water, positively affects the degradation of mobile pesticides in the system. Percolated column microcosms with varying types and amounts of metalaxyl and/or isoproturon-primed material or non-primed material were irrigated with water artificially contaminated with isoproturon and/or metalaxyl. Transport of isoproturon was well described using the convection dispersion equation and no dissipation was observed, even in columns inoculated with isoproturon-primed material. On the other hand, delayed dissipation of metalaxyl, i.e., after an initial lag phase, was encountered in all columns receiving metalaxyl. In all systems, dissipation could be described using the Monod model indicating that a metalaxyl degrading population grew in the systems. There was a clear correlation between the lag phase and the amount of metalaxyl-primed material added to the system, i.e., increasing amounts of added material resulted into shorter lag phases and hence more rapid initiation of growth-associated metalaxyl degradation in the system. Our observations suggest that indeed pesticide-primed material can reduce the start-up phase of degradation of mobile pesticides in a BPS and as such can increase its efficiency. However, the primed material should be chosen carefully and preferentially beforehand tested for its capacity to degrade the pesticide.

  7. Assessing and Minimizing Adversarial Risk in a Nuclear Material Transportation Network

    Science.gov (United States)

    2013-09-01

    GNF Global Nuclear Fuel – Americas, LLC HAZMAT hazardous material kg kilogram km kilometer LWR light water reactor MWt megawatt thermal MOX mixed-oxide...Fuel Cycle Facilities Uranium Fuel Fabrication Gaseous Diffusion Enrichment Gas Centrifuge Enrichment Uranium Hexafluoride Conversion MOX Fuel...manipulate for purposes of demonstration. The methods also apply to other transportation subnetworks, such as shipping enriched uranium, mixed-oxide ( MOX

  8. Application of New Techniques, Materials and Technologies in West-East Gas Transportation Pipeline Project

    Institute of Scientific and Technical Information of China (English)

    DongXu

    2004-01-01

    With the application of new techniques, materials and technologies in West-East Gas Transportation Pipeline (WEGTP) project, the design concept of domestic pipeline industrial construction has been updated, speeding up the development and improvement of the strength as a whole in aspects of smelting industry, pipe fabrication, pipeline construction and equipment manufacture, making China's pipeline industry catch up with the trend of development of the world advanced level.

  9. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  10. Effect of Longitudinal Motion of Boundary Material Points on Peristaltic Transport

    Science.gov (United States)

    Pal, Anupam; Brasseur, James

    1998-11-01

    During peristaltic transport of food through the esophagus, material points on the esophageal wall move axially as well as radially. These motions are a consequence of shortening of the longitudinal muscle. Here we evaluate the effect of these axial motions on the transport, forces and power associated with peristalsis. METHODS: The geometries of axisymmetric esophageal peristaltic waves are approximated as ``tear drop'' shaped. The trajectories of material points on the boundary are defined mathematically to resemble closely measurements in the esophagus. We apply the lubrication theory approximations, for low Reynolds number and gentle wall curvature. RESULTS: The longitudinal motions of the boundary material points do not significantly affect the flow rate. However, pressure and shear stress in the contraction zone can be lowered significantly by axial motion, leading to lower energy requirements. The magnitude of reduction in the stresses is greatest when the points of maximal axial strain and occlusion pressure are nearly aligned. DISCUSSION: The axial motion of the muscle wall has been hypothesized to play a physiological role by increasing muscle fiber density and thereby reducing average muscle fiber tension. This study shows that longitudinal motion also reduces the pressure and shear stress, implying even lower tension. The consequent lower energy requirement increases efficiency of transport.

  11. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.

    Science.gov (United States)

    Ameen, Sadia; Rub, Malik Abdul; Kosa, Samia A; Alamry, Khalid A; Akhtar, M Shaheer; Shin, Hyung-Shik; Seo, Hyung-Kee; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2016-01-08

    The recent advances in perovskite solar cells (PSCs) created a tsunami effect in the photovoltaic community. PSCs are newfangled high-performance photovoltaic devices with low cost that are solution processable for large-scale energy production. The power conversion efficiency (PCE) of such devices experienced an unprecedented increase from 3.8 % to a certified value exceeding 20 %, demonstrating exceptional properties of perovskites as solar cell materials. A key advancement in perovskite solar cells, compared with dye-sensitized solar cells, occurred with the replacement of liquid electrolytes with solid-state hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which contributed to enhanced PCE values and improved the cell stability. Following improvements in the perovskite crystallinity to produce a smooth, uniform morphology, the selective and efficient extraction of positive and negative charges in the device dictated the PCE of PSCs. In this Review, we focus mainly on the HTMs responsible for hole transport and extraction in PSCs, which is one of the essential components for efficient devices. Here, we describe the current state-of-the-art in molecular engineering of hole-transporting materials that are used in PSCs and highlight the requisites for market-viability of this technology. Finally, we include an outlook on molecular engineering of new functional HTMs for high efficiency PSCs.

  12. High-field electrical transport in amorphous phase-change materials

    Science.gov (United States)

    Kaes, Matthias; Le Gallo, Manuel; Sebastian, Abu; Salinga, Martin; Krebs, Daniel

    2015-10-01

    Electrical transport in chalcogenide-based phase change materials is an active area of research owing to the prominent role played by these materials in the field of information technology. Here, we present transport measurements (IV curves) obtained on line-cells of as-deposited amorphous phase change materials (Ge2Sb2Te5, GeTe, Ag4In3Sb66Te27) over a wide voltage and temperature range (300 K to 160 K). The well defined geometry of our devices enables a description of the transport behavior in terms of conductivity vs. electric field. At higher temperatures (300 K ≥ T ≥ 220 K) and low to intermediate fields (F Poole-Frenkel emission from a two-center Coulomb potential. Based on this model, we observe a temperature dependence of the inter-trap distance, which we can relate to a temperature dependence in the occupation of the defect creating the Coulomb potential governing Poole-Frenkel emission. At higher fields and lower temperatures, the dependency of the IV curve on the electric field can be described by ln(I/I0) = (F/Fc)2. By combining this contribution with that of the Poole-Frenkel emission, we can show that the slope at high fields, Fc, is independent of temperature. We argue that models based on direct tunneling or thermally assisted tunneling from a single defect into the valence band cannot explain the observed behavior quantitatively.

  13. Emergency response network design for hazardous materials transportation with uncertain demand

    Directory of Open Access Journals (Sweden)

    Kamran Shahanaghi

    2012-10-01

    Full Text Available Transportation of hazardous materials play an essential role on keeping a friendly environment. Every day, a substantial amount of hazardous materials (hazmats, such as flammable liquids and poisonous gases, need to be transferred prior to consumption or disposal. Such transportation may result in unsuitable events for people and environment. Emergency response network is designed for this reason where specialist responding teams resolve any issue as quickly as possible. This study proposes a new multi-objective model to locate emergency response centers for transporting the hazardous materials. Since many real-world applications are faced with uncertainty in input parameters, the proposed model of this paper also assumes that reference and demand to such centre is subject to uncertainty, where demand is fuzzy random. The resulted problem formulation is modelled as nonlinear non-convex mixed integer programming and we used NSGAII method to solve the resulted problem. The performance of the proposed model is examined with several examples using various probability distribution and they are compared with the performance of other existing method.

  14. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lauren E. Polander

    2014-08-01

    Full Text Available This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx−3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  15. [Perspective on the nuclear power plant accident caused by the great east Japan earthquake and tsunami: health impairment risks due to pollution by radioactive materials from the damaged plant as recognized by experts and by the general population and role of the experts].

    Science.gov (United States)

    Sugita, Minoru; Miyakawa, Michiko

    2012-01-01

    Large amounts of radioactive materials were leaked into the environment from the Fukushima Daiichi Nuclear Power Plant (FDNPP) of the Tokyo Electric Power Company damaged by the 2011 Great East Japan Earthquake and accompanying tsunami. Increased health impairment risks due to the leaked radioactive materials are of concern over a long period of time and over a wide geographical area. From the results of epidemiologic studies conducted after the Chernobyl accident, the health risks are not anticipated to be very marked. The purpose of the present study is to examine (i) the elevated health risks as viewed by the general population, (ii) tolerance to the risks that the general population suffer from their viewpoint, and (iii) the overall picture as seen by researchers and experts in specialized areas of study after the accident. Information was obtained from articles in print and on the Internet and by interviewing a psychologist and tens of employees of several corporations. Epidemiologic studies conducted after the severe accident of the nuclear power plant in Chernobyl revealed an elevated risk of thyroid cancer in children due to (131)I while elevated risks due to radioactive materials other than (131)I were not detected. The amount of radioactive materials leaked into the environment from the FDNPP was less than that in Chernobyl. Therefore, it is possible to estimate that health impairment risks due to the leaked radioactive materials from the FDNPP are low. However, it is impossible to conclude a zero risk. It is likely that the general population does not fully understand the health impairment risks due to the leaked radioactive materials from the FDNPP. Although no increased incidences of diseases other than thyroid cancer of children were scientifically shown en masse from studies in Chernobyl, individual risks and results in the future caused by the severe accident of FDNPP cannot be denied. Much of the general population is apt to demand the security of

  16. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  17. Expert systems for integrity management in a crude oil pipeline; Sistemas expertos para gestion de integridad en sistemas de transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.P.; Pini, J. [Oldelval S.A., General Roca RN (Argentina)]. E-mail: mmartine@oldelval.com.ar; jpini@oldelval.com.ar; Rossi, J.P.; Pellicano, A. [Sintec S.A., Mar del Plata, Buenos Aires (Argentina)]. E-mail: icesing@infovia.com.ar

    2003-07-01

    The study and modeling of corrosion processes aim at the accomplishment of three primary objectives: to increase safety operation margins, to reduce maintenance costs and to optimize available resources. The Integrity Expert System is based on a statistical propagation model of defects reported by high resolution magnetic inspection tool (MFL), fed with the information provided by corrosion sensors, repair interventions, field surveys and future inspections. As model results, defect depth, remaining strength and failure probability distributions were obtained. From the analysis, feasible courses of action were established: a medium term repair plan, an internal inspection program and both monitoring and mitigation technologies. System implementation in OLDELVAL was translated into two major effects of importance for the company integrity program: reduction in the pipeline probability of failure by corrosion by means of programmed repairs and optimization of the internal inspection investment plan by mans of an alternative programming. (author)

  18. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    Science.gov (United States)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  19. The application of fracture mechanics to the safety assessment of transport casks for radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Zencker, U.; Mueller, K.; Droste, B.; Roedel, R.; Voelzke, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2004-07-01

    BAM is the German responsible authority for the mechanical and thermal design safety assessment of packages for the transport of radioactive materials. The assessment has to cover the brittle fracture safety proof of package components made of potentially brittle materials. This paper gives a survey of the regulatory and technical requirements for such an assessment according to BAM's new ''Guidelines for the Application of Ductile Cast Iron for Transport and Storage Casks for Radioactive Materials''. Based on these guidelines higher stresses than before can become permissible, but it is necessary to put more effort into the safety assessment procedure. The fundamentals of such a proof with the help of the methods of fracture mechanics are presented. The recommended procedure takes into account the guidelines of the IAEA Advisory Material which are based on the prevention of crack initiation. Examples of BAM's research and safety assessment practices are given. Recommendations for further developments towards package designs with higher acceptable stress levels will be concluded.

  20. Task 6.7.3 - Interfacial Mass Transport Effects in Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jan W. Nowok

    1998-02-01

    Advanced metal-matrix composites (MMCS) consisting of titanium-based alloys possess some unique mechanical, physical, and chemical characteristics that make them highly desirable for aircraft and gas turbine engines. Tailoring MMC properties is essential for advanced product design in materials processing. The main factors that affect materials processing and, further, the nature of a metal-ceramic interface, its structure, and morphological stability is liquid surface mass transport related to adhesional wetting (physical effect) and reactive wetting (chemical effect).' Surfaces and interfaces dominate many of the technologically important processes in composite materials such as liquid-solid sintering and joining. The objective of this work is threefold: 1) to get insight into the role of the nonstoichiometry of chemical composition in ceramic materials used as reinforcement components in MMC processing, 2) to extend previous energetic analysis of mass transport phenomena to wetting behavior between liquid metal and the quasi-solidlike skin resulting from the presolidification of liquid on nonstoichiometric solids on a scale of interatomic distance, and 3) to provide experimental verification of our concept.

  1. Task 6.7.3 - Interfacial Mass Transport Effects in Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jan W. Nowok

    1998-02-01

    Advanced metal-matrix composites (MMCS) consisting of titanium-based alloys possess some unique mechanical, physical, and chemical characteristics that make them highly desirable for aircraft and gas turbine engines. Tailoring MMC properties is essential for advanced product design in materials processing. The main factors that affect materials processing and, further, the nature of a metal-ceramic interface, its structure, and morphological stability is liquid surface mass transport related to adhesional wetting physical effect) and reactive wetting (chemical effect). Surfaces and interfaces dominate many of the technologically important processes in composite materials such as liquid-solid sintering and joining. The objective of this work is threefold: 1) to get insight into the role of the nonstoichiometry of chemical composition in ceramic materials used as reinforcement components in MMC processing, 2) to extend previous energetic analysis of mass transport phenomena to wetting behavior between liquid metal and the quasi-solid like skin resulting from the presolidification of liquid on nonstoichiometric solids on a scale of interatomic distance, and 3) to provide experimental verification of our concept.

  2. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  3. Expert Meeting Report. Foundations Research Results

    Energy Technology Data Exchange (ETDEWEB)

    Ojczyk, C. [Univ. of Minnesota, St. Paul, MN (United States); Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States); Carmody, J. [Univ. of Minnesota, St. Paul, MN (United States)

    2013-05-01

    The NorthernSTAR Building America Partnership held an expert meeting on Foundations–Research Results on November 15, 2011, in Minneapolis, MN. Audience participation was actively encouraged during each presentation to uncover needs and promote dialog among researchers and industry professionals. Key results were: greater understanding of the role of moisture transport through foundation and insulation materials and its potential impact on building durability; greater understanding of the role of foundation type in the process of selecting an insulation system for energy performance and building durability; need for research to quantify the risks associated with insulation processes to better enable users to weigh costs and benefits against the existing conditions of a home; need for improved performance modeling capabilities that address variations in foundation types and soil conditions.

  4. Uncertainty Updating in the Description of Coupled Heat and Moisture Transport in Heterogeneous Materials

    CERN Document Server

    Kucerova, Anna

    2011-01-01

    To assess the durability of structures, heat and moisture transport need to be analyzed. To provide a reliable estimation of heat and moisture distribution in a certain structure, one needs to include all available information about the loading conditions and material parameters. Moreover, the information should be accompanied by a corresponding evaluation of its credibility. Here, the Bayesian inference is applied to combine different sources of information, so as to provide a more accurate estimation of heat and moisture fields [1]. The procedure is demonstrated on the probabilistic description of heterogeneous material where the uncertainties consist of a particular value of individual material characteristic and spatial fluctuations. As for the heat and moisture transfer, it is modelled in coupled setting [2].

  5. Maritime Transport of Environmentally Damaging Materials - A Balance Between Absolute Freedom and Strict Prohibition

    Directory of Open Access Journals (Sweden)

    Thaqal S. Al-Ajmi

    2007-06-01

    Full Text Available This study is intended to balance the rights of free navigation in all of its forms whether in the high seas or in the territorial waters of other States by resorting to the right of innocent passage and right of transit passage, which is enjoyable by all States and the obligation to protect the environment from any damaging materials as imposed upon all States at the same time, when such damaging materials are shipped from one State to another via seas or oceans. According to this study, which presented many evidence from international law and regional and even national practice, the obligation to protect the environment supersedes the right of free navigation, therefore restricting the right to ship or transport materials that could cause damage to the environment.

  6. What Are Expert Systems?

    Science.gov (United States)

    d'Agapeyeff, A.

    1986-01-01

    Intended for potential business users, this paper describes the main characteristics of expert systems; discusses practical use considerations; presents a taxonomy of the systems; and reviews several expert system development projects in business and industry. (MBR)

  7. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    Energy Technology Data Exchange (ETDEWEB)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  8. Training on Transport Security of Nuclear/Radioactive Materials for Key Audiences

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Ronald; Liu, Yung; Shuler, J.M.

    2016-01-01

    Beginning in 2013, the U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management has sponsored a series of three training courses on Security of Nuclear and Other Radioactive Materials during Transport. These courses were developed and hosted by Argonne National Laboratory staff with guest lecturers from both the U.S. and international organizations and agencies including the U.S. Nuclear Regulatory Commission (NRC), Federal Bureau of Investigation (FBI), the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), DOE national laboratories, the International Atomic Energy Agency (IAEA), the World Nuclear Transport Institute (WNTI), and the World Institute for Nuclear Security (WINS). Each of the three courses held to date were one-week in length. The courses delved in detail into the regulatory requirements for transport security, focusing on international and U.S.-domestic requirements and guidance documents. Lectures, in-class discussions and small group exercises, including tabletop (TTX) and field exercises were designed to enhance the learning objectives for the participants. For example, the field exercise used the ARG-US radio frequency identification (RFID) remote surveillance system developed by Argonne for DOE/PCP to track and monitor packages in a mock shipment, following in-class exercises of developing a transport security plan (TSP) for the mock shipment, performing a readiness review and identifying needed corrective actions. Participants were able to follow the mock shipment on the webpage in real time in the ARG-US Command Center at Argonne including “staged” incidents that were designed to illustrate the importance of control, command, communication and coordination in ensuring transport security. Great lessons were learned based on feedback from the participant’s course evaluations with the series of the courses. Since the

  9. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

    Science.gov (United States)

    Oshima, Keisuke; Inoue, Junta; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2017-05-01

    Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high "apparent" thermoelectric performance ( ZT ˜ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

  10. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  11. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Aleksei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolken, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vignes, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  12. Harmonisation at EU level: a way to increase confidence in the safe transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Waeterloos, C. [Nuclear Energy, European Commission, Brussels (Belgium)

    2004-07-01

    In the European Union, about one third of the electricity is produced by nuclear power stations. This involves numerous transports of materials to and from the various installations of the nuclear fuel cycle. But also and in particular outside the nuclear industry there is a high number of transports of radioactive materials in the medical, industrial or research area. As we live in a global market, many of these are trans-border operations. Of course, major accidents in Three Mile Island and Chernobyl made it more difficult in the last twenty years to look at nuclear as a major source of energy supply in an objective and not passionate way and gave the floor only to anti-nuclear lobbies. Some of the nuclear transport attracted in the past years, the media and public attention, in particular here in Germany, which is a clear indicator concerning the one sided approach. To reverse the trend and ensure a fair and constructive debate on the merits, but also on the drawbacks of nuclear energy, is a challenge that the European Commission has accepted to meet. The framework will be the Euratom Treaty maintained by the last Inter Governmental Conference, as a separate Treaty but alongside the Constitution.

  13. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

    Science.gov (United States)

    Oshima, Keisuke; Inoue, Junta; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2016-08-01

    Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high "apparent" thermoelectric performance (ZT ˜ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

  14. Study of transport of laser-driven relativistic electrons in solid materials

    Science.gov (United States)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  15. Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials

    Science.gov (United States)

    Petrikyte, Ieva; Zimmermann, Iwan; Rakstys, Kasparas; Daskeviciene, Maryte; Malinauskas, Tadas; Jankauskas, Vygintas; Getautis, Vytautas; Nazeeruddin, Mohammad Khaja

    2016-04-01

    Small-molecule hole transporting materials based on an indolocarbazole core were synthesized and incorporated into perovskite solar cells, which displayed a power conversion efficiency up to 15.24%. The investigated hole transporting materials were synthesized in three steps from commercially available and relatively inexpensive starting materials without using expensive catalysts. Various electro-optical measurements (UV-vis, CV, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole transporting materials.Small-molecule hole transporting materials based on an indolocarbazole core were synthesized and incorporated into perovskite solar cells, which displayed a power conversion efficiency up to 15.24%. The investigated hole transporting materials were synthesized in three steps from commercially available and relatively inexpensive starting materials without using expensive catalysts. Various electro-optical measurements (UV-vis, CV, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole transporting materials. Electronic supplementary information (ESI) available: Synthesis procedures, device construction and characterisation details. See DOI: 10.1039/c6nr01275b

  16. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Science.gov (United States)

    2010-10-01

    ... (LSA) Class 7 (radioactive) materials and surface contaminated objects (SCO). 173.427 Section 173.427... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.427 Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and surface contaminated objects (SCO). (a) In addition...

  17. Expert auditors’ services classification

    OpenAIRE

    Jolanta Wisniewska

    2013-01-01

    The profession of an expert auditor is a public trust occupation with a distinctive feature of taking responsibility for actions in the public interest. The main responsibility of expert auditors is performing financial auditing; however, expert auditors are prepared to carry out different tasks which encompass a wide plethora of financial and auditing services for different kinds of institutions and companies. The aim of the article is first of all the description of expert auditors’ service...

  18. Tactical Weather Expert System.

    Science.gov (United States)

    The objective of this project was to assess the feasibility of developing an expert system for tactical weather prediction. Using WILLARD, an expert ...indicate that intelligent interpretations of cloud formations can be made. These inferences can then be automatically passed to the expert system for...processing as another piece of information. It is anticipated that this technology will significantly reduce the dependence of the expert system on a

  19. Improved Insight into Transport Phenomena in Porous Materials at Submicrometer Resolution

    DEFF Research Database (Denmark)

    Gooya, Reza

    Traditionally it has been challenging to investigate ƒflow properties of porous media becauseof their complex and oft‰en heterogeneous pore geometry. However, these materialsare important for oil and gas, catalysts, fuel cells, groundwater quality, CO2 storageand in medical applications. In this ......Traditionally it has been challenging to investigate ƒflow properties of porous media becauseof their complex and oft‰en heterogeneous pore geometry. However, these materialsare important for oil and gas, catalysts, fuel cells, groundwater quality, CO2 storageand in medical applications....... In this thesis, transport phenomena- including single phaseƒow, two phase ƒow and reactive transport, were investigated at the pore scale. Œe motivationwas to €nd cheaper, easier and faster alternatives to macroscale investigations.In the fi€rst part, single phase ƒuid flƒow models were tested on experimentally...... materials at the pore scale. ThŒe coupled program wastested for two cases of chloride transport in a 2D channel and for a 2D ion exchanger.In this thesis, pore scale modeling was presented for several transport phenomenain porous media. ThŒeir agreement with the macroscale properties and the ability...

  20. Interfacial Structure, Dynamics, and Transport of Polyelectrolyte Membrane Materials for Fuel Cells

    Science.gov (United States)

    Soles, Christopher; Page, K.; Eastman, S.; Kim, S.; Kang, S.; Dura, J.; National Institute of Standards; Technology; Polymers Divison Team; NIST Collaboration

    2011-03-01

    Polymer electrolyte membranes (PEM) fuel cells show promise for a wide range of applications both in the transportation sector and for stationary power production due to their high charge density and low operating temperatures. While the structure and transport of bulk PEMs have been studied extensively, little is known about these materials at interfaces and under confinement, as they exist within the membrane electrode assembly (MEA). Using neutron/ x-ray reflectivity and polarization-modulation infrared reflection-absorption spectroscopy, we have studied the polymer-substrate interfacial structure, swelling, and water transport as function of humidity, surface chemistry, and film thickness. The interfacial structure is highly dependent upon the substrate surface chemistry and the swelling/water diffusivity are suppressed when the PEM is confined to a thin film. This new information will enable researchers to more accurately model the performance of the MEA as current simulations typically rely on bulk property values to predict water and proton transport under these conditions.

  1. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  2. Radioactive material (RAM) transportation accident and incident experience in the U.S.A. (1971--1997)

    Energy Technology Data Exchange (ETDEWEB)

    McClure, J.D.; Yoshimura, H.R.; Fagan, H.F. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Thomas, T. [Dept. of Energy National Transportation Program (United States)

    1997-11-01

    The Radioactive Materials Incident Report (RMIR) database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the National Transportation Program (EM-70) of the US Department of Energy. Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident incident events in the US for the period 1971--1997. Among the areas to be examined are: transportation accidents by mode, package response during accidents and an examination of accidents where release of contents has occurred.

  3. Persuasiveness of expert systems

    NARCIS (Netherlands)

    Dijkstra, JJ; Liebrand, WBG; Timminga, E; Liebrand, Wim B.G.

    1998-01-01

    Expert system advice is not always evaluated by examining its contents. Users can be persuaded by expert system advice because they have certain beliefs about advice given by a computer. The experiment in this paper shows that subjects (n = 84) thought that, given the same argumentation, expert syst

  4. Development Expert System

    Institute of Scientific and Technical Information of China (English)

    CAI Heng

    2010-01-01

    The expert system is a high-level technology.It is a sub-field of artificial intelligence.We demonstrated the character and software evaluation,carrying out an initial study of expert system.A good development expert system was developed.

  5. Electrical and thermal transport property studies of high-temperature thermoelectric materials

    Science.gov (United States)

    Bates, J. L.

    1984-12-01

    High-temperature materials that exhibit small polaron conduction appear to exhibit the highest figures of merit. A thermoelectric model based on small polaron transport has been developed. The model predicts that broad-band semiconductors with small polarons hopping along inequivalent sites of distorted sublattices can result in increases in both the electrical conductivity and the Seeback coefficient with increasing temperature without significant increases in thermal conductivity. High figures of merit (ZT), greater than 1 at 1000K, that increase with increasing temperatures are predicted. The model is being applied to the divalent metal containing (Y,LA)Cr0(3) systems with an ABO(3) perovskite structure. Transport properties have been determined for various doping elements and for different compositions. These data are being used for the evaluation of this model.

  6. Practical reasons for investigating ion transport in high temperature insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Sonder, E.

    1976-07-01

    Practical problems encountered in a number of advanced technology applications, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include (a) ceramic nuclear fuels for high temperature fission reactors, (b) high temperature gas turbine blades, (c) insulators in controlled thermonuclear reactors, and (d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed.

  7. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    Science.gov (United States)

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  8. Evaluation of the radiological risks associated with the routine transport of radioactive material within Michigan

    Science.gov (United States)

    Steinman, Rebecca Lee

    Radioactive materials play an important role in modern society. In addition to providing electrical power and supporting national defense, radioisotopes play significant roles in the fields of medicine, research, manufacturing, and industry. Since most of these materials are not manufactured or disposed of at the site where they are used, they must be transported between various processing, use, storage, and disposal facilities. This dissertation examines the mathematical model used to predict the collective dose to the population that resides along a potential transport route, commonly called the off-link dose. The currently accepted RADTRAN and RISKIND transient dose models are reviewed. Then three new individual transient dose models are derived by assuming that a point, line, or surface cylinder can approximate the actual transport package. Groundscatter effects were investigated using a Monte Carlo simulation of the surface cylinder model and found to contribute no more than 12% to the total individual dose from a passing shipment of radioactive material, thus not warranting explicit inclusion in the newly derived transient dose models. All five of the individual transient dose models were evaluated for representative shipments of spent nuclear fuel and low-level waste within the State of Michigan and compared to experimentally measured doses. The individual dose for the Michigan shipment scenarios was found to be on the order of 1 murem. Comparison to the experimental measurements revealed that RISKIND consistently predicts the best estimate of the measured dose, followed closely by the surface cylinder model. RADTRAN consistently over predicted the measured dose by at least a factor of two. Finally, the line dose model is integrated over strips of uniform population along the transport route to arrive at the collective off-link population dose. This off-link dose model was incorporated into an ArcView application using the Avenue scripting language. Then

  9. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications.

    Science.gov (United States)

    Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad

    2017-01-23

    Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area.

  10. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells

    Science.gov (United States)

    Dongxue, Liu; Liu, Yongsheng

    2017-01-01

    Organic–inorganic hybrid perovskite solar cells have undergone especially intense research and transformation over the past seven years due to their enormous progress in conversion efficiencies. In this perspective, we review the latest developments of conventional perovskite solar cells with a main focus on dopant-free organic hole transporting materials (HTMs). Regarding the rapid progress of perovskite solar cells, stability of devices using dopant-free HTMs are also discussed to help readers understand the challenges and opportunities in high performance and stable perovskite solar cells. Project supported by the Scientific Research Starting Foundation for Overseas Introduced Talents of College of Chemistry, Nankai University.

  11. An O2 transport study in porous materials within the Li-O2 - system

    Science.gov (United States)

    Schied, Thomas; Ehrenberg, Helmut; Eckert, Jürgen; Oswald, Steffen; Hoffmann, Martin; Scheiba, Frieder

    2014-12-01

    The research on lithium-oxygen batteries faces a number of issues ranging from design problems to elementary reaction kinetics. Depending on solvent, lithium salt and electrode materials several chemical reaction pathways of lithium and oxygen have been proposed. Oxygen solubility and transport are among the most pressing issues that limit the battery performance. In this work purging oxygen through an electrolyte soaked gas diffusion layer (GDL) was investigated as a possible route towards improving the availability of oxygen to the cell reaction. Additionally based on the findings, a method to estimating the absorption constant of oxygen into the electrolyte is proposed.

  12. Expert status and performance.

    Directory of Open Access Journals (Sweden)

    Mark A Burgman

    Full Text Available Expert judgements are essential when time and resources are stretched or we face novel dilemmas requiring fast solutions. Good advice can save lives and large sums of money. Typically, experts are defined by their qualifications, track record and experience. The social expectation hypothesis argues that more highly regarded and more experienced experts will give better advice. We asked experts to predict how they will perform, and how their peers will perform, on sets of questions. The results indicate that the way experts regard each other is consistent, but unfortunately, ranks are a poor guide to actual performance. Expert advice will be more accurate if technical decisions routinely use broadly-defined expert groups, structured question protocols and feedback.

  13. Training and improvement of professional person: multimedia training for radioactive material transport; Capacitacao e aperfeicoamento profissional: treinamento multimidia para transporte de materiais radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, A.; Sordi, G.M., E-mail: asahyun@ipen.br, E-mail: adelia@atomo.com.br [ATOMO - Radioprotecao e Seguranca Nuclear S/S Ltda, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ghobril, C.N., E-mail: nabil@sp.gov.br [Governo de Sao Paulo, SP (Brazil). Instituto de Economia Agricola - IEA; Levy, D.S.; Levy, P.J., E-mail: patrick@omiccron.com.br [Omiccron Programacao Grafica, Sao Paulo, SP (Brazil)

    2013-07-01

    The international transport of radioactive materials depends on national regulations of different countries, through which they pass. Therefore, it is necessary to learn the international recommendations in order to avoid contradictions among each country own regulations that can make radioactive materials transport impracticable. Information Technology and Communication has grown in Brazil and abroad, increasing demand for long distance learning, since it allows simultaneous training and education of a large number of geographically distant people in short time. The development of this first web-based course of transport for radioactive materials considered many advantages when compared to traditional courses, such as: agility in developing, translating and updating courses; facility of access and compatibility with various educational platforms all over the world. The course covers five topics. It presents regulations for transportation of dangerous materials and categorizes radioactive materials; it discusses the requirements and classification of radioactive material packing; ir discusses different risk labels and when they should be used; it presents responsibility and administrative requirements. Furthermore, considering the increasing use of mobile computing, the content is supposed to be automatically adjusted to different devices, allowing the user to make use of multiple access points without losing the sequence of the course. Initially developed in Portuguese and Spanish, this technology allows the dissemination of knowledge in Portuguese and Spanish spoken countries. It is our target to expand this Project, translating the course to other languages. The monitoring of access profiles and users feedback will guide the development of the next courses for the sector. (author)

  14. Selecting the minimum risk route in the transportation of hazardous materials

    Directory of Open Access Journals (Sweden)

    Marijan Žura

    1992-12-01

    Full Text Available The transportation of hazardous materials is a broad and complex topic. Percent and iveight of accidents of vehicles carrying dangerous goods are growing fast. Modern computer based information system for dangerous materials management is becoming more and more important. In this paper I present an interactive software system for minimum risk route selection based on the PC ARC/INFO. The model computes optimal path based on accident probability is computed from traffic accident rates, highway operational speed, traffic volume and technical characteristic of the roadwidth, radius and slope. Dangerous goods are classified into nine classes according to their impact to different sensible environment elements. Those sensible elements are drinking water resourses, natural heritage, forestry, agricultural areas, cultural heritage, urban areas and tourist resorts. Some results of system implementation on Slovenia road network are be presented.

  15. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  16. Channel Change and Bed-Material Transport in the Lower Chetco River, Oregon

    Science.gov (United States)

    Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.

    2010-01-01

    The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. Since the early twentieth century, the large gravel bars have been a source of commercial aggregate for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers shows that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, are zones of active sedimentation and channel migration. Multiple analyses, supported by direct measurements of bedload during winter 2008-09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000-100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5-30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably little bed material leaves the lower river under natural conditions, with most net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean. The year-to-year flux, however, varies tremendously. Some years may have less than 3,000 cubic meters of bed material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000-2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year

  17. Workshop on Functional Requirements for the Modeling of Fate and Transport of Waterborne CBRN Materials

    Energy Technology Data Exchange (ETDEWEB)

    Giles, GE

    2005-02-03

    The purpose of this Workshop on ''Functional Requirements for the Modeling of Fate and Transport of Waterborne CBRN Materials'' was to solicit functional requirements for tools that help Incident Managers plan for and deal with the consequences of industrial or terrorist releases of materials into the nation's waterways and public water utilities. Twenty representatives attended and several made presentations. Several hours of discussions elicited a set of requirements. These requirements were summarized in a form for the attendees to vote on their highest priority requirements. These votes were used to determine the prioritized requirements that are reported in this paper and can be used to direct future developments.

  18. Ion Transport and Microstructure of Sandwich Cementitious Materials Exposed to Chloride Environment

    Institute of Scientific and Technical Information of China (English)

    WANG Xingang; WANG Kai; WANG Rui; XIE Tao; HUANG Jie

    2015-01-01

    Ion transport of sandwich cementitious materials (SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were investigated by MIP and SEM-EDS. In comparison with the monolayer structural high performance concrete (HPC), conductive charge for 6 hours, chloride diffusion coefficient, and apparent chloride diffusion coefifcient of SCM were decreased by 30%-40%, two orders of magnitude and 40%-50%, respectively. Pore structure of ultra low ion permeability cementitious materials (ULIPCM) prepared for the facesheet is superior to that of HPC prepared for the core. As for porosity, the most probable pore radius, the content of pores with radius 50 nm and the surface area of pores, the order is ULIPCM

  19. 49 CFR 171.23 - Requirements for specific materials and packagings transported under the ICAO Technical...

    Science.gov (United States)

    2010-10-01

    ... transported under the ICAO Technical Instructions, IMDG Code, Transport Canada TDG Regulations, or the IAEA... transported under the ICAO Technical Instructions, IMDG Code, Transport Canada TDG Regulations, or the IAEA Regulations. All shipments offered for transportation or transported in the United States under the...

  20. Hierarchical transport networks optimizing dynamic response of permeable energy-storage materials.

    Science.gov (United States)

    Nilson, Robert H; Griffiths, Stewart K

    2009-07-01

    Channel widths and spacing in latticelike hierarchical transport networks are optimized to achieve maximum extraction of gas or electrical charge from nanoporous energy-storage materials during charge and discharge cycles of specified duration. To address a range of physics, the effective transport diffusivity is taken to vary as a power, m , of channel width. Optimal channel widths and spacing in all levels of the hierarchy are found to increase in a power-law manner with normalized system size, facilitating the derivation of closed-form approximations for the optimal dimensions. Characteristic response times and ratios of channel width to spacing are both shown to vary by the factor 2/m between successive levels of any optimal hierarchy. This leads to fractal-like self-similar geometry, but only for m=2 . For this case of quadratic dependence of diffusivity on channel width, the introduction of transport channels permits increases in system size on the order of 10;{4} , 10;{8} , and 10;{10} , without any reduction in extraction efficiency, for hierarchies having 1, 2 and, 8 levels, respectively. However, we also find that for a given system size there is an optimum number of hierarchical levels that maximizes extraction efficiency.

  1. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL`s extensive research and development program, funded primarily by the U. S. Department of Energy`s Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed.

  2. Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material

    Institute of Scientific and Technical Information of China (English)

    Li Han; Tang Xin-Feng; Cao Wei-Qiang; Zhang Qing-Jie

    2009-01-01

    This paper reports that the nanostructured β-FeSi2 bulk materials are prepared by a new synthesis process by combining melt spinning (MS) and subsequent spark plasma sintering (SPS). It investigates the influence of linear speed of the rolling copper wheel, injection pressure and SPS regime on microstructure and phase composition of the rapidly solidified ribbons after MS and bulk production respectively, and discusses the effects of the microstructure on Sis2 and ε-FeSi) in the rapidly solidified ribbons;thermal transport properties. There are two crystalline phases (α-Fe the crystal grains become smaller when the cooling rate increases (the 20 nm minimum crystal of ε-FeSi is obtained). Having been sintered for 1 min above 1123K and annealed for 5min at 923K, the single-phase nanostructured β- FeSi2 bulk materials with 200-500 nm grain size and 98% relative density are obtained. The microstructure of β-FeSi2has great effect on thermal transport properties. With decreasing sintering temperature, the grain size decreases, the thermal conductivity of β-FeSi2is reduced remarkably. The thermal conductivity of β-FeSi decreases notably (reduced 72% at room temperature) in comparison with the β-FeSi2prepared by traditional casting method.

  3. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    Science.gov (United States)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  4. Electrical Transport and Thermal Expansion in van der Waals Materials: Graphene and Topological Insulator

    Science.gov (United States)

    Jing, Lei

    Novel two-dimensional materials with weak interlayer Van der Waals interaction are fantastic platforms to study novel physical phenomena. This thesis describes our investigation on two different Van der Waals materials: graphene and bismuth selenide with calcium doping (CaxBi 2-xSe3, x as the doping level) in the topological insulator family. Firstly, we characterize the electrical transport behaviors of high-quality substrate-supported bilayer graphene devices with suspended metal gates. The device exhibits a transport gap induced by external electric field with an on/off ratio of 20,000, which could be explained by variable range hoping between localized states or disordered charge puddles. At large magnetic field, the device presents quantum Hall plateau at fractional values of conductance quantum, which arises from the equilibration of edge states between differentially doped regions. Secondly, we present our study on the electronic transport of CaxBi 2-xSe3 thin films, which are three-dimensional topological insulators and coupled with superconducting leads. In these novel Josephson transistors, we observe different characteristic features by energy dispersion spectrum (EDS) and Raman spectroscopy, and the weak suppression in the critical current Ic. Thirdly, we explore the thermal expansion of suspended graphene. By in-situ scanning electron microscope (SEM), we measure the thickness-dependence of graphene's negative thermal expansion coefficient (TEC). We propose that there is a competitive relation between the intrinsic TEC and the friction from the substrate and the graphene. Lastly, in collaboration with Dr. Nikolai Kalugin from New Mexico Tech., we explore the graphene's application as a quantum Hall effect infrared photodetector. This graphene-based detector can be operated at higher temperature (liquid nitrogen) and wider frequency than the previous implementations of quantum Hall detector.

  5. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  6. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David [United States Nuclear Regulatory Commission, Mail Stop EBB-03D-02M, 6003 Executive Boulevard, Rockville, MD 20852 (United States)

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (∼49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4

  7. Constraint-Based Routing Models for the Transport of Radioactive Materials

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Steven K [ORNL

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway, highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via a

  8. Radiological impact associated with the transport by road of radioactive material in Spain; Impact radiologique lie au transport par route de matieres radioactives en Espagne

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J.A. [TECNATOM, Prevention Service, Avenida Montes de Oca 1, 28703 San Sebastian de los Reyes, Madrid (Spain); EUITI, Dept. Electrical Engineering, Polytechnic University of Madrid (Spain); Gutierrez, F. [EUITI, Dept. Industrial and Polymer Chemistry, Polytechnic University of Madrid, Madrid (Spain)

    2011-07-15

    Questions relating to the transport of radioactive materials are very much an issue of current interest due to the increasing mobility of the materials involved in the nuclear fuel cycle, commitment to the environment, the safety and protection of persons and the corresponding regulatory legal framework. The radiological impact associated with this type of transport was assessed by means of a new data-processing tool that may be of use and serve as complementary documentation to that included in transport regulations. Thus, by determining the level of radiation at a distance of one metre from the transport vehicle and by selecting a route, the associated impacts will be obtained, such as the affected populations, the dose received by the most highly exposed individual, the overall radiological impact, the doses received by the population along the route and the possible detriment to their health. The most important conclusion is that the emissions of ionising radiation from the transport of radioactive material by road in Spain are not significant as regards the generation of adverse effects on human health, and that their radiological impact may be considered negligible. (authors)

  9. The transportation of fine arts materials aboard the space shuttle Columbia. GAS payload No. 481: Vertical horizons

    Science.gov (United States)

    Kurtz, Ellery; Wishnow, Howard

    1988-01-01

    The Vertical Horizons experiment represents an initial investigation into the transportation of fine arts materials aboard a space shuttle. Within the confines of a GAS canister, artist quality fine arts materials were packaged and exposed to the rigors of space flight in an attempt to identify adverse effects.

  10. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  11. Report of the experts group on the taxation of the access to gas transport and distribution network; Rapport du groupe d'experts sur la tarification de l'acces aux reseaux de transport et de distribution de gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    In the framework of a new french gas industry organization (directive of the 22 june 1998), a concerting mission has been realized on prices taxation for the transport and distribution facilities. The following topics have been debated: the integration and competition of the european gas market, the gas market liberalization consistency and the taxation of transport and distribution network access. (A.L.B.)

  12. Shield construction methods. Recent status and examples of development of material transportation systems; Shirudo koho. Saikin no shizai hanso system kaihatsu genkyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, M.; Tazaki, A.; Makigami, S. [Tomoe Electric Manufacturing Company, Limited, Tokyo (Japan)

    1998-03-25

    Material transportation in a shield construction is assigned to transporting segments, aggregates, and pipes, particularly the segment transportation being the major assignment. Other materials are transported in spare moments between the segment transportation as required. The other materials can often be transported by utilizing segment transporting vehicles. Thus, for a transportation system in the shield construction, a segment transportation system which can synchronize with construction cycles based on those for a shield excavation machine is considered most importantly, and developed as the main force. The segment transportation system is classified into a rail type transportation system and a tire type transportation system. A high-speed transportation system of the former type transports materials at as high speed as 8 to 15 km/h. An Abt-system railway type steep-slope transportation system operates on slopes as steep as 20 to 40%. The tire transportation system is advantageous from an environmental preservation viewpoint. This paper introduces examples of constructions using a high-speed construction system for long tunnel construction, a steep-slope material transportation system, and an automatic trackless system. 2 figs., 2 tabs.

  13. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  14. Tetra methyl substituted Cu(II) phthalocyanine as alternative hole transporting material for organometal halide perovskite solar cells

    Science.gov (United States)

    Sfyri, Georgia; Kumar, Challuri Vijay; Wang, Yu-Long; Xu, Zong-Xiang; Krontiras, C. A.; Lianos, Panagiotis

    2016-01-01

    Copper phthalocyanine is a promising hole transporting material, which can be employed with solid state perovskite solar cells. Tetra methyl substituted copper phthalocyanine was presently studied as a hole transporting material and demonstrated improved performance with respect to unsubstituted copper phthalocyanine. This material shows a strong absorption in the Visible and Near IR part of the electromagnetic spectrum contributing to the absorption of photons. Its LUMO and HOMO level are favourably positioned for injecting electrons and scavenging holes. Methyl substitution facilitates closer molecular packing leading to a stronger extinction coefficient, stronger Ͽ⿿Ͽ interaction and higher charge carrier mobility.

  15. Legal aspects of the maritime transport of radioactive materials: its regulation in Mexico; Aspectos legales del transporte maritimo de materiales radioactivos: su regulacion en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, S

    2001-07-01

    This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is applied to the transport of radioactive materials. Finally, the chapter 5 analyses and poses the requirements and necessities which lead Mexico to legislate broadly the transport of radioactive materials taking as basis International instruments from which the state is part also from some other agreements is analysed its adhesion to them. (Author)

  16. π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Gheno

    2016-01-01

    Full Text Available Hybrid organometal halide perovskites have attracted much attention these past four years as the new active layer for photovoltaic applications. Researches are now intensively focused on the stability issues of these solar cells, the process of fabrication and the design of innovative materials to produce efficient perovskite devices. In this review, we highlight the recent progress demonstrated in 2015 in the design of new π-conjugated organic materials used as hole transporters in such solar cells. Indeed, several of these “synthetic metals” have been proposed to play this role during the last few years, in an attempt to replace the conventional 2,2′,7,7′-tetrakis-(N,N-di-4-methoxyphenylamino-9,9′-spirobifluorene (Spiro-OMeTAD reference. Organic compounds have the benefits of low production costs and the abundance of raw materials, but they are also crucial components in order to address some of the stability issues usually encountered by this type of technology. We especially point out the main design rules to reach high efficiencies.

  17. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  18. Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?

    Science.gov (United States)

    Chen, Haining; Yang, Shihe

    2017-02-21

    Organometal trihalide perovskite solar cells (PSCs) have garnered recent interest in the scientific community. In the past few years, they have achieved power conversion efficiencies comparable to traditional commercial solar cells (e.g., crystalline Si, CuInGaSe and CdTe) due to their low-cost of production via solution-processed fabrication techniques. However, the stability of PSCs must be addressed before their commercialization is viable. Among various kinds of PSCs, carbon-based PSCs without hole transport materials (C-PSCs) seem to be the most promising for addressing the stability issue because carbon materials are stable, inert to ion migration (which originates from perovskite and metal electrodes), and inherently water-resistant. Despite the significant development of C-PSCs since they were first reported in 2013, some pending issues still need to be addressed to increase their commercial competitiveness. Herein, recent developments in C-PSCs, including (1) device structure and working principles, (2) categorical progress of and comparison between meso C-PSCs, embedment C-PSCs and paintable PSCs, are reviewed. Promising research directions are then suggested (e.g., materials, interfaces, structure, stability measurement and scaling-up of production) to further improve and promote the commercialization of C-PSCs.

  19. Thermal transport properties of thermally sprayed coatings: An integrated study of materials, processing and microstructural effects

    Science.gov (United States)

    Chi, Weiguang

    coatings. These results are analyzed from the point of view of modified percolation theory which considers the effect of anisotropic microstructural defects of sprayed coatings on the thermal transport property. In the case of the ceramic coatings (YSZ, Al2O3), the temperature dependent thermal conductivity is also examined for various starting microstructures in collaboration with the Oak Ridge National Laboratory (ORNL). The decisive role of starting microstructure on temperature dependent thermal conductivity is presented. In addition, sintering effects resulting from thermal cycling and isothermal exposure on both room temperature and temperature dependent thermal conductivity have been carefully examined in an effort to assess the relationship to effective starting microstructure and provide quantitative information for life prediction. This dissertation also extends to an investigation of thermal conductivity of metal and alloy thermal spray coatings. A range of metallic materials have been considered and the variation of thermal conductivity is interpreted from the point of view of intrinsic attributes (atomic structure, electronic structure and phase structure) as well as extrinsic effects (as a consequence of oxidation and defected microstructure). Finally, in order to achieve precise and reliable measurement of thermal transport property, the applicability and repeatability of both the laser and xenon flash techniques have been examined through the measurements on these coating systems: ceramics, semiconductors, metals, alloys and composites.

  20. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed......, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some...

  1. How to Characterize Thermal Transport Capability of 2D Materials Fairly? - Sheet Thermal Conductance and the Choice of Thickness

    OpenAIRE

    Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Pang, Yunsong; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Ever since the discovery of the record-high thermal conductivity of single layer graphene, thermal transport capability of monolayer 2D materials has been under constant spotlight. Since thermal conductivity is an intensive property for 3D materials and the thickness of 2D materials is not well defined, different definitions of thickness in literature have led to ambiguity towards predicting thermal conductivity values and thus in understanding the heat transfer capability of different monola...

  2. Report and Papers of the Expert Group Meeting on the Translation of Population Materials (Bangkok, Thailand, December 8-12, 1975). Asian Population Studies Series No. 34.

    Science.gov (United States)

    United Nations Economic and Social Commission for Asia and the Pacific, Bangkok (Thailand).

    This publication is the report of a meeting by the Economic and Social Commission for Asia and the Pacific (ESCAP) to discuss the translation of population materials. The goals of the meeting were to review the current status of translating population materials into languages appropriate to various nations and to develop guidelines for the…

  3. How to characterize thermal transport capability of 2D materials fairly? - Sheet thermal conductance and the choice of thickness

    Science.gov (United States)

    Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Pang, Yunsong; Roy, Ajit K.; Luo, Tengfei

    2017-02-01

    Thermal transport capability of monolayer 2D materials has been under constant spotlight. However, different definitions of thickness in literature have led to ambiguity towards predicting thermal conductivity values and thus in understanding the heat transfer capability of different monolayer 2D materials. We argue that the same thickness should be used and a 'sheet thermal conductance' should be defined as an intensive 2D material property when characterizing the heat transfer capability of 2D materials. When converting literature thermal conductivity values of monolayer materials to this new property, some new features that were not displayed when using different thicknesses show up.

  4. Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells

    Science.gov (United States)

    Wang, Junxia; Li, Jingling; Xu, Xueqing; Xu, Gang; Shen, Honglie

    2016-10-01

    In an attempt to further enhance the photovoltaic performance of perovskite solar cells (PSCs) fabricated by spray deposition under ambient conditions, carbon nanotubes (CNTs) are introduced for incorporation into hole transport materials (HTM). The effect of CNT category and length on the efficiency of the perovskite solar cell for incorporation into HTM is investigated. The enhanced photovoltaic performance is achieved in multi-walled carbon nanotubes (MWCNTs) with the shortest length. The efficiency of acid-treated MWCNT-based cells is improved compared to that of purified MWCNTs due to the better dispersibility and the π-π interaction between the -COOH group and spiro-OMeTAD. As the volume ratio of the spiro-OMeTAD and spiro/MWCNTs mixture is 2:2 or 3:1, the highest power conversion efficiency (PCE) of PSCs containing MWCNTs reaches 8.7% with the enhanced short-circuit current density ( J sc) and open-circuit voltage ( V oc).

  5. Novel spiro-based hole transporting materials for efficient perovskite solar cells.

    Science.gov (United States)

    Li, Ming-Hsien; Hsu, Che-Wei; Shen, Po-Shen; Cheng, Hsin-Min; Chi, Yun; Chen, Peter; Guo, Tzung-Fang

    2015-11-04

    Three spiro-acridine-fluorene based hole transporting materials (HTMs), namely CW3, CW4 and CW5, are employed in the fabrication of organic-inorganic hybrid perovskite solar cells. The corresponding mesoscopic TiO2/CH3NH3PbI3/HTM devices are investigated and compared with that made with commercial spiro-OMeTAD. The best conversion efficiency of 16.56% is achieved for CW4 in the presence of tBp and Li-TFSI as additives and without a cobalt dopant. The performances of CW4 are further examined in terms of conductivity, mobility, morphology, and stability to show its potential as an alternative HTM.

  6. First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Terumasa [Department of Applied Physics, The University of Tokyo, Tokyo 113-8656 (Japan); Tsuneyuki, Shinji [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan)

    2015-12-31

    We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi{sub 2}Te{sub 3} based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO{sub 3} can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.

  7. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells

    KAUST Repository

    Yu, Weili

    2016-02-18

    We demonstrate that ultrathin P-type Cu2O thin films fabricated by a facile thermal oxidation method can serve as a promising hole-transporting material in perovskite solar cells. Following a two-step method, inorganic-organic hybrid perovskite solar cells were fabricated and a power conversion efficiency of 11.0% was achieved. We find that the thickness and properties of Cu2O layers must be precisely tuned in order to achieve the optimal solar cell performance. The good performance of such perovskite solar cells can be attributed to the unique properties of ultrathin Cu2O, including high hole mobility, good energy level alignment with CH3NH3PbI3, and longer lifetime of photo-excited carriers. Combining merits of low cost, facile synthesis, and high device performance, ultrathin Cu2O films fabricated via thermal oxidation hold promise for facilitating the developments of industrial-scale perovskite solar cells.

  8. Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells.

    Science.gov (United States)

    Molina-Ontoria, Agustín; Zimmermann, Iwan; Garcia-Benito, Inés; Gratia, Paul; Roldán-Carmona, Cristina; Aghazada, Sadig; Graetzel, Michael; Nazeeruddin, Mohammad Khaja; Martín, Nazario

    2016-05-17

    New star-shaped benzotrithiophene (BTT)-based hole-transporting materials (HTM) BTT-1, BTT-2 and BTT-3 have been obtained through a facile synthetic route by crosslinking triarylamine-based donor groups with a benzotrithiophene (BTT) core. The BTT HTMs were tested on solution-processed lead trihalide perovskite-based solar cells. Power conversion efficiencies in the range of 16 % to 18.2 % were achieved under AM 1.5 sun with the three derivatives. These values are comparable to those obtained with today's most commonly used HTM spiro-OMeTAD, which point them out as promising candidates to be used as readily available and cost-effective alternatives in perovskite solar cells (PSCs).

  9. WATERS Expert Query Tool

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Expert Query Tool is a web-based reporting tool using the EPA’s WATERS database.There are just three steps to using Expert Query:1. View Selection – Choose what...

  10. How Expert Designers Design

    NARCIS (Netherlands)

    C. Carr; Dr. Peter Sloep; P. Kirschner; J. van Merrienboer

    2003-01-01

    This paper discusses two studies - the one in a business context, the other in a university context - carried out with expert educational designers. The studies aimed to determine the priorities experts claim to employ when designing competence-based learning environments. Designers in both contexts

  11. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  12. Expert networks in CLIPS

    Science.gov (United States)

    Hruska, S. I.; Dalke, A.; Ferguson, J. J.; Lacher, R. C.

    1991-01-01

    Rule-based expert systems may be structurally and functionally mapped onto a special class of neural networks called expert networks. This mapping lends itself to adaptation of connectionist learning strategies for the expert networks. A parsing algorithm to translate C Language Integrated Production System (CLIPS) rules into a network of interconnected assertion and operation nodes has been developed. The translation of CLIPS rules to an expert network and back again is illustrated. Measures of uncertainty similar to those rules in MYCIN-like systems are introduced into the CLIPS system and techniques for combining and hiring nodes in the network based on rule-firing with these certainty factors in the expert system are presented. Several learning algorithms are under study which automate the process of attaching certainty factors to rules.

  13. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    Science.gov (United States)

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  14. Preliminary assessment of channel stability and bed-material transport along Hunter Creek, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; Wallick, J. Rose; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Risley, John C.

    2011-01-01

    This preliminary assessment of (1) bed-material transport in the Hunter Creek basin, (2) historical changes in channel condition, and (3) supplementary data needed to inform permitting decisions regarding instream gravel extraction revealed the following: Along the lower 12.4 km (kilometers) of Hunter Creek from its confluence with the Little South Fork Hunter Creek to its mouth, the river has confined and unconfined segments and is predominately alluvial in its lowermost 11 km. This 12.4-km stretch of river can be divided into two geomorphically distinct study reaches based primarily on valley physiography. In the Upper Study Reach (river kilometer [RKM] 12.4-6), the active channel comprises a mixed bed of bedrock, boulders, and smaller grains. The stream is confined in the upper 1.4 km of the reach by a bedrock canyon and in the lower 2.4 km by its valley. In the Lower Study Reach (RKM 6-0), where the area of gravel bars historically was largest, the stream flows over bed material that is predominately alluvial sediments. The channel alternates between confined and unconfined segments. The primary human activities that likely have affected bed-material transport and the extent and area of gravel bars are (1) historical and ongoing aggregate extraction from gravel bars in the study area and (2) timber harvest and associated road construction throughout the basin. These anthropogenic activities likely have varying effects on sediment transport and deposition throughout the study area and over time. Although assessing the relative effects of these anthropogenic activities on sediment dynamics would be challenging, the Hunter Creek basin may serve as a case study for such an assessment because it is mostly free of other alterations to hydrologic and geomorphic processes such as flow regulation, dredging, and other navigation improvements that are common in many Oregon coastal basins. Several datasets are available that may support a more detailed physical assessment

  15. Annual replenishment of bed material by sediment transport in the Wind River near Riverton, Wyoming

    Science.gov (United States)

    Smalley, M.L.; Emmett, W.W.; Wacker, A.M.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Transportation, conducted a study during 1985-87 to determine the annual replenishment of sand and gravel along a point bar in the Wind River near Riverton, Wyoming. Hydraulic- geometry relations determined from streamflow measurements; streamflow characteristics determined from 45 years of record at the study site; and analyses of suspended-sediment, bedload, and bed- material samples were used to describe river transport characteristics and to estimate the annual replenishment of sand and gravel. The Wind River is a perennial, snowmelt-fed stream. Average daily discharge at the study site is about 734 cubic feet per second, and bankfull discharge (recurrence interval about 1.5 years) is about 5,000 cubic feet per second. At bankfull discharge, the river is about 136 feet wide and has an average depth of about 5.5 feet and average velocity of about 6.7 feet per second. Streams slope is about 0.0010 foot per foot. Bed material sampled on the point bar before the 1986 high flows ranged from sand to cobbles, with a median diameter of about 22 millimeters. Data for sediment samples collected during water year 1986 were used to develop regression equations between suspended-sediment load and water discharge and between bedload and water discharge. Average annual suspended-sediment load was computed to be about 561,000 tons per year using the regression equation in combination with flow-duration data. The regression equation for estimating bedload was not used; instead, average annual bedload was computed as 1.5 percent of average annual suspended load about 8,410 tons per year. This amount of bedload material is estimated to be in temporary storage along a reach containing seven riffles--a length of approximately 1 river mile. On the basis of bedload material sampled during the 1986 high flows, about 75 percent (by weight) is sand (2 millimeters in diameter or finer); median particle size is

  16. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors

    Science.gov (United States)

    Mihuţ, N. M.

    2015-11-01

    Excavation tailings (scraping) and extracting the useful (lignite) in surface mine pits in Mining Basin Oltenia is achieved with technological lines of excavation - transport - dump of high productivity. A correlation of working capacity of the main components of technological lines (motor rotor, high capacity transport, car dumps) is necessary for economic reasons on electricity consumption. To achieve experience in the process was chosen excavator SRS 1400 from South Jilt career in the CET Turceni. The question of coal excavated volume has a great importance in the mine pits. At the excavation is desired a density estimate for each machine production tracking, cost estimation and tracking product unit profitability of each band on various sections zones. Permanent display size excavated volume snapshots in the excavator's cabin permits to track tape loading, eliminating unproductive times and information management to determine profitability. Another important requirement is closing the loop of the machine drive system of an excavator for a uniform deposition of carbon on the strip, thus achieving automatic control of the loading belt. Such equipment is important for the system dispatching in surface mine pits. Through a system of three ultrasound transducers to determine the smart instant of coal excavated section which, coupled with the tape speed, integrated over time will determine the amount of excavated coal. The basis of the system developed is a device for determining the volume and quantity of coal excavated acting on the march and optimize the system speed excavator working order. The device is designed primarily following the careers of lignite production: rotor excavators, rubber conveyor belts and dump facilities. Newly developed system aims to achieve the following determines: the optimum energy excavation depending on the nature of excavated material - lignite, shale, clay, etc., economic times to use the excavator bucket teeth rotor, energy

  17. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Science.gov (United States)

    2010-04-01

    ... licensee or permittee knowingly may transport, ship, cause to be transported, or receive any explosive... limited permit may— (1) Transport, ship, cause to be transported, or receive in interstate or foreign... and Nationality Act (8 U.S.C. 1101)); or (ii) Is in lawful nonimmigrant status, is a refugee admitted...

  18. Tetraphenylmethane-Arylamine Hole-Transporting Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Xuepeng; Kong, Fantai; Cheng, Tai; Chen, Wangchao; Tan, Zhan'ao; Yu, Ting; Guo, Fuling; Chen, Jian; Yao, Jianxi; Dai, Songyuan

    2017-03-09

    A new class of hole-transporting materials (HTM) containing tetraphenylmethane (TPM) core have been developed. After thermal, charge carrier mobility, and contact angle tests, it was found that TPA-TPM (TPA: arylamine derivates side group) showed higher glass-transition temperature and larger water-contact angle than spiro-OMeTAD with comparable hole mobility. Photoluminescence and impedance spectroscopy studies indicate that TPA-TPM's hole-extraction ability is comparable to that of spiro-OMeTAD. SEM and AFM results suggest that TPA-TPM has a smooth surface. When TPA-TPM is used in mesoscopic perovskite solar cells, power conversion efficiency comparable to that of spiro-OMeTAD is achieved. Notably, the perovskite solar cells employing TPA-TPM show better long-term stability than that of spiro-OMeTAD. Moreover, TPA-TPM can be prepared from relatively inexpensive raw materials with a facile synthetic route. The results demonstrate that TPM-arylamines are a new class of HTMs for efficient and stable perovskite solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ductile fracture behaviour of primary heat transport piping material of nuclear reactors

    Indian Academy of Sciences (India)

    S Tarafder; V R Ranganath; S Sivaprasad; P Johri

    2003-02-01

    Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break concepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade 6 steel — the material used for Indian PHWR — under monotonic and cyclic tearing loading has been documented. An attempt has also been made to understand the mechanism responsible for the high fracture toughness of the steel through determination of the effect of constraint on the fracture behaviour and fractographic observations. From J–R tests over a range of temperatures, it was observed that SA333 steel exhibits embrittlement tendencies in the service temperature regime. The fracture resistance of the steel is inferior in the longitudinal direction with respect to the pipe geometry as compared to that in the circumferential direction. Imposition of cyclic unloading during ductile fracture tests for simulation of response to seismic activities results in a dramatic decrease of fracture resistance. It appears, from the observations of effects of constraint on fracture toughness and fractographic examinations, that fracture resistance of the steel is derived partly from the inability of voids to initiate and grow due to a loss of constraint in the crack-tip stress field.

  20. Modelling origin and transport fate of waste materials on the south-eastern Adriatic coast (Croatia

    Directory of Open Access Journals (Sweden)

    M. Tudor

    2014-12-01

    Full Text Available The south-eastern parts of the Adriatic Sea coastline were severely polluted by large amounts of accumulated waste material in the second half of November 2010. The waste, reported by major news agencies, accumulated dominantly during 21 November 2010 by favourable wind – ocean current transport system. In the study we analysed meteorological and oceanographic conditions that lead to the waste deposition using available in situ measurements, remote sensing data as well numerical models of the ocean and the atmosphere. The measured data reveal that an intensive rainfall event from 7 till 10 November 2010, over the parts of Montenegro and Albania, was followed by a substantial increase of the river water levels indicating flash floods that possibly splashed the waste material into a river and after to the Adriatic Sea. In order to test our hypothesis we set a number of numerical drifter experiments with trajectories initiated off the coast of Albania during the intensive rainfall events following their faith in space and time. One of the numerical drifter trajectory experiment resulted with drifters reached right position (south-eastern Adriatic coast and time (exactly by the time the waste was observed when initiated on 00:00 and 12:00 UTC of 10 November 2010 during the mentioned flash flood event.

  1. An Efficient approach for selective collection made by scavengers for transportation logistics of recyclable materials

    Directory of Open Access Journals (Sweden)

    Adelino Carlos Maccarini

    2014-01-01

    Full Text Available The advance of technology, associated to the increase in the production of recyclable waste due to the increase of consumption and population, has been led to a search for alternatives of management and minimization of this waste. A part of this recyclable material is collected by scavengers, who do it to guarantee their livelihood. Many of them face logistical difficulties in transportation, mainly when they have to walk long distances and the streets have high slopes. Therefore, to minimize these efforts, the purpose of this paper is to settle mobile warehouses to receive recyclable items, with trucks that receive in bulk all materials collected by the collectors, who will deliver them to someone who will be in the truck for weighing and subsequent payment to the collector. With the help of the Analysis of Variance – ANOVA, studies were made so that this receipt is a quick operation, with the historical record of each sampling in a spreadsheet and value calculations based on this description, thus minimizing errors in weighing in bulk and improving, in every collection, the system reliability.

  2. Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials

    OpenAIRE

    Pourchez, Jérémie; Ruot, Bertrand; Debayle, Johan; Rouèche-Pourchez, Emilie; Grosseau, Philippe

    2010-01-01

    International audience; This paper evaluates and compares the impact of cellulose ethers (CE) on water transport and porous structure of cement-based materials in both fresh and hardened state. Investigations of the porous network (mercury intrusion porosimetry, apparent density, 2D and 3D observations) emphasize an air-entrained stabilisation depending on CE chemistry. We also highlight that CE chemistry leads to a gradual effect on characteristics of the water transport. The global tendenci...

  3. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid

    2015-03-23

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mathematical models of functioning and allocation indicators of road-transport complex resources in the fuel and raw materials region

    Science.gov (United States)

    Buyvis, V. A.; Novichikhin, A. V.; Temlyantsev, M. V.

    2017-09-01

    A number of features of coal industry functioning was determined for the conditions of Kemerovo region, and the specifics of planning and organization of coal transportation were revealed. The analysis of indicators of motor and railway types of transport in the process of coal transportation was executed. The necessity of improving the tools of coal products transportation in the modern conditions is substantiated. Specific features of functioning of a road-transport complex in the fuel and raw material region (on the example of Kemerovo region) are determined. The modern scientific and applied problems of functioning and allocation of the road-transport complex resources are identified. To justify the management decisions on the development and improvement of road-transport complex a set of indicators are proposed: infrastructural, transportation performance, operating, social and economic. Mathematical models of indicators are recommended for formulation and justification of decisions made during operational and strategic planning of development, evaluation and development of algorithms of functioning and allocation of road-transport sector in Kemerovo region in the future.

  5. Material Transport and Synthesis by Cantilever-free Scanning Probe Lithography

    Science.gov (United States)

    Liao, Xing

    Reliably synthesizing and transporting materials in nanoscale is the key question in many fields of nanotechnology. Cantilever-free scanning probe lithography, by replacing fragile and costly cantilevers with a robust and low cost elastomeric structure, fundamentally solved the low-throughput nature of scanning probe lithography, which has great potential to be a powerful and point-of-use tool for high throughput synthesis of various kinds of nanomaterials. Two nanolithographic methods, polymer pen lithography (PPL) and beam pen lithography (BPL), have been developed based on the cantilever-free architecture to directly deliver materials and transfer energy to substrates, respectively. The first portion of my thesis, including chapter two and chapter three, addresses major challenges remaining in the cantilever-free scanning probe lithographic techniques. Chapter two details the role of contact force in polymer pen lithography. A geometric model was developed to quantitatively explain the relationship between the z-piezo extension, the contact force and the resulted feature size. With such a model, force can be used as the in-situ feedback during the patterning and a new method for leveling the pen arrays was developed, which utilizes the total force between the pen arrays and the surface to achieve leveling with a tilt of less than 0.004°. In chapter three, massively multiplexed near-field photolithography has been demonstrated by combining BPL with a batch method to fabricate nanometer scale apertures in parallel fashion and a strategy to individually actuation of each pen in the pen array are discussed. This transformative combination enables one to writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures, creating a unified tool for constructing and studying nanomaterials. The second portion of this thesis focuses on applications of cantilever-free scanning

  6. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events.

    Science.gov (United States)

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk.

  7. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials

    Science.gov (United States)

    Levin, E. M.; Besser, M. F.; Hanus, R.

    2013-08-01

    GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ˜700 K, GeTe has a very large power factor, 42 μWcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

  8. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  9. Expert F# 20

    CERN Document Server

    Syme, Don; Cisternino, Antonio

    2009-01-01

    Expert F# 2.0 is about practical programming in a beautiful language that puts the power and elegance of functional programming into the hands of professional developers. In combination with .NET, F# achieves unrivaled levels of programmer productivity and program clarity. Expert F# 2.0 is * The authoritative guide to F# by the inventor of F# * A comprehensive reference of F# concepts, syntax, and features * A treasury of expert F# techniques for practical, real-world programming F# isn't just another functional programming language. It's a general-purpose language ideal for real-world develop

  10. Benchmarking expert system tools

    Science.gov (United States)

    Riley, Gary

    1988-01-01

    As part of its evaluation of new technologies, the Artificial Intelligence Section of the Mission Planning and Analysis Div. at NASA-Johnson has made timing tests of several expert system building tools. Among the production systems tested were Automated Reasoning Tool, several versions of OPS5, and CLIPS (C Language Integrated Production System), an expert system builder developed by the AI section. Also included in the test were a Zetalisp version of the benchmark along with four versions of the benchmark written in Knowledge Engineering Environment, an object oriented, frame based expert system tool. The benchmarks used for testing are studied.

  11. Energy material transport, now through 2000, system characteristics and potential problems. Task 3. Final report - petroleum transportation

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, J.G.

    1979-03-01

    This report contains a summary characterization of the petroleum transportation system and an assessment of some potential problems that may impact petroleum transportation in the United States during the balance of the century. A primary purpose of this task is to provide information and perspective that contribute to the evaluation of research and development needs and priorities in future programs. The system characterization in Section 3 includes a review of petroleum product movements, modal operations and comparisons, and transportation regulations and safety. This system overview summarizes domestic production and consumption scenarios to the year 2000. A median scenario based on published projections shows that the US will probably rely on foreign oil to supply between 40 and 50 percent of domestic petroleum needs throughout the balance of the century. Potential problems in petroleum transportation were identified by the analysis and prioritization of current issues. The relative priorities of problem concerns were judged on the basis of their overall impact on the system and the immediacy of this potential impact. Two classes of concern are distinguished: 1. Potential problems that appear to require new programmatic action, in addition to effort already committed, to minimize the possible future impact of these concerns. 2. Latent concerns that may increase or decrease in priority or entirely change in nature as they develop. While the trend of these concerns should be monitored, new program action does not appear necessary at this time.

  12. Open literature review of threats including sabotage and theft of fissile material transport in Japan.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

    2005-06-01

    This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.

  13. Impact limiters for radioactive materials transport packagings: a methodology for assessment; Amortecedores de impacto em embalagens para transporte de materiais radioativos: uma metodologia para sua avaliacao

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio Pimenta

    2002-07-01

    This work aims at establishing a methodology for design assessment of a cellular material-filled impact limiter to be used as part of a radioactive material transport packaging. This methodology comprises the selection of the cellular material, its structural characterization by mechanical tests, the development of a case study in the nuclear field, preliminary determination of the best cellular material density for the case study, performance of the case and its numerical simulation using the finite element method. Among the several materials used as shock absorbers in packagings, the polyurethane foam was chosen, particularly the foam obtained from the castor oil plant (Ricinus communis), a non-polluting and renewable source. The case study carried out was the 9 m drop test of a package prototype containing radioactive wastes incorporated in a cement matrix, considered one of the most severe tests prescribed by the Brazilian and international transport standards. Prototypes with foam density pre-determined as ideal as well as prototypes using lighter and heavier foams were tested for comparison. The results obtained validate the methodology in that expectations regarding the ideal foam density were confirmed by the drop tests and the numerical simulation. (author)

  14. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    Science.gov (United States)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  15. Insights from transport modeling of unusual charge carrier behavior of PDTSiTzTz:PC71BM bulk heterojunction materials

    Science.gov (United States)

    Slobodyan, Oleksiy; Moench, Sarah; Liang, Kelly; Danielson, Eric; Holliday, Bradley; Dodabalapur, Ananth

    2015-03-01

    Development of hole-transporting copolymers for use in bulk heterojunctions (BHJs) has significantly improved organic solar cell performance. Despite advances on the materials side, the physics of charge carrier transport remains unsettled. Intrigued by its ability to maintain high fill factors in thick active layers, we studied the copolymer poly[2-(5-(4,4-dioctyl-4H-silolo[3,2-b:4,5-b’]dithiophen-2-yl)-3-tetradecylthiophen-2-yl)- 5-(3-tetradecylthiophen-2-yl)thiazolo[5,4-d]thiazole] (PDTSiTzTz) blended with PC71BM. Results show mobilities which are carrier-concentration-dependent and characterized by a negative Poole-Frenkel effect. Such behavior is not described by current carrier transport models. Established transport mechanisms like multiple-trap-and-release or variable range hopping yield dependence of mobility on carrier concentration. However, a more basic model like Gaussian distribution model (GDM) is needed to produce the negative Poole-Frenkel effect, though GDM cannot describe carrier-concentration-dependent mobility. We have combined key aspects of existing models to create a unified transport model capable of describing phenomena observed in PDTSiTzTz:PC71BM. This model can be used to address open questions about transport physics of organic BHJ materials. U.S. Department of Energy, Award Number DE-SC0001091.

  16. DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsha Keister

    2001-02-01

    DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program

  17. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Jian; Chen, Bai-Xue; Zhang, Fang-Shuai; Yu, Hui-Juan; Ma, Shuang; Kuang, Dai-Bin; Shao, Guang; Su, Cheng-Yong

    2016-04-05

    Two new electron-rich molecules based on 3,4-phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). X-ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT-core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10(-4)  cm(2)  V(-1)  s(-1) , being higher than that of spiro-OMeTAD, 2.34×10(-5)  cm(2)  V(-1)  s(-1)). The PSC based on MeO-PheDOT as HTM exhibits a short-circuit current density (Jsc) of 18.31 mA cm(-2) , an open-circuit potential (Voc ) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high-efficiency and low-cost HTMs for PSCs.

  18. Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation.

    Science.gov (United States)

    Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia

    2017-02-15

    This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed.

  19. Analysis on Topological Properties of Dalian Hazardous Materials Road Transportation Network

    Directory of Open Access Journals (Sweden)

    Pengyun Chong

    2015-01-01

    Full Text Available To analyze the topological properties of hazardous materials road transportation network (HMRTN, this paper proposed two different ways to construct the cyberspace of HMRTN and constructed their complex network models, respectively. One was the physical network model of HMRTN based on the primal approach and the other was the service network model of HMRTN based on neighboring nodes. The two complex network models were built by using the case of Dalian HMRTN. The physical network model contained 154 nodes and 238 edges, and the statistical analysis results showed that (1 the cumulative node degree of physical network was subjected to exponential distribution, showing the network properties of random network and that (2 the HMRTN had small characteristic path length and large network clustering coefficient, which was a typical small-world network. The service network model contained 569 nodes and 1318 edges, and the statistical analysis results showed that (1 the cumulative node degree of service network was subjected to power-law distribution, showing the network properties of scale-free network and that (2 the relationship between nodes strength and their descending order ordinal and the relationship between nodes strength and cumulative nodes strength were both subjected to power-law distribution, also showing the network properties of scale-free network.

  20. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the

  1. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the

  2. Transport, Growth Mechanisms, and Material Quality in GaN Epitaxial Lateral Overgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Baca, Albert G.; Bartram, M.E.; Coltrin, M.E.; Crawford, M.H.; Han, J.; Missert, N.; Willan, C.C.

    1999-01-11

    Growth kinetics, mechanisms, and material quality in GaN epitaxial lateral over-growth (ELO) were examined using a single mask of systematically varied patterns. A 2-D gas phase reaction/diffusion model describes how transport of the Ga precursor to the growth surface enhances the lateral rate in the early stages of growth. In agreement with SEM studies of truncated growth runs, the model also predicts the dramatic decrease in the lateral rate that occurs as GaN over-growth reduces the exposed area of the mask. At the point of convergence, a step-flow coalescence mechanism is observed to fill in the area between lateral growth-fronts. This alternative growth mode in which a secondary growth of GaN is nucleated along a single convergence line, may be responsible for producing smooth films observed to have uniform cathodoluminescence (CL) when using 1{micro}m nucleation zones. Although emission is comprised of both UV ({approximately}365nm) and yellow ({approximately}550nm) components, the spectra suggest these films have reduced concentrations of threading dislocations normally associated with non-radiative recombination centers and defects known to accompany growth-front convergence lines.

  3. [Medical and hygienic aspects of instrumental supervision system over nuclear materials and radioactive substances transport on Russian Federation territory].

    Science.gov (United States)

    Grabskiĭ, Iu V; Gavrish, N N; Shevchenko, G T; Viaz'min, S O; Pertsev, V S; Kirillov, V F; Tsov'ianov, A G

    2014-01-01

    Hygienic evaluation of radiation situation in operation of mobile and stationery elements within a project of national system for instrumental supervision over nuclear materials and radioactive substances transport, created with a Global initiative against nuclear terrorism. Levels of exposure to ionizing radiation of the screening complexes appeared to match requirements on radiation safety for service personnel and general population.

  4. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    Science.gov (United States)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  5. CSIR at TREC 2008 Expert Search Task: Modeling Expert Evidence in Expert Search

    Science.gov (United States)

    2008-11-01

    CSIR at TREC 2008 Expert Search Task: Modeling Expert Evidence in Expert Search Jiepu Jiang1, Wei Lu1, Haozhen Zhao2 1 Center for Studies of...AND SUBTITLE CSIR at TREC 2008 Expert Search Task: Modeling Expert Evidence in Expert Search 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...15. J. Jiang, W. Lu, D. Liu. CSIR at TREC 2007. In Proceedings of the 16th Text REtrieval Conference (TREC 2007), 2007. 16. J. Jiang, W. Lu. IR

  6. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  7. Fission products and structural materials release, transport and containment behaviour in Phebus FPT-0 and FPT-1

    Energy Technology Data Exchange (ETDEWEB)

    Hanniet, N.; Garnier, Y.; Jacquemain, D. [Institut de Protection et de Surete Nucleaire - IPSN, Departement de Recherches en Securite - DRS, CEA Cadarache - F 13108 Saint Paul Lez Durance (France)

    1999-07-01

    The Phebus F.P. program is a wide international effort to investigate, through a series of in-pile integral experiments, LWR severe accident phenomena, in particular bundle degradation and the subsequent release and transport of radioactive materials up to the containment. Two tests simulating a low pressure cold leg break under a steam rich environment have already been successfully performed: FPT-0 in December 1993 with trace irradiated fuel and FPT-1 in July 1996 with re-irradiated BR3 fuel. Both tests have provided experimental data of high interest, particularly in the field of fission products and structural materials release from the fuel bundle, transport in the reactor coolant system (RCS) and behaviour in the containment. The analysis of FPT-1 is currently in progress, nevertheless main observations made for FPT-10 are confirmed by first FPT-1 results, i.e.: - the main mass transport phases through the RCS correspond to bundle degradation events (fuel oxidation, material re-location, pool formation); - significant amount of gaseous iodine are injected in the model containment during bundle oxidation phases; - the aerosols are multi-component with the structural materials dominant in mass; - the retention is low in the RCS pipes but aerosol deposition on containment walls is significant; - the containment sump chemistry is marked by aerosol material dissolution and the resulting iodine trapping by silver. Those results are described in some detail in the following paper. (author)

  8. Bed-material entrainment and associated transportation infrastructure problems in streams of the Edwards Plateau, central Texas

    Science.gov (United States)

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.

  9. Auxetic and Ferroelastic Borophane: A Novel 2D Material with Negative Possion's Ratio and Switchable Dirac Transport Channels.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Tang, Chun; Sun, Ziqi; Du, Aijun; Chen, Changfeng

    2016-12-14

    Recently synthesized atomically thin boron sheets (that is, borophene) provide a fascinating template for new material property discovery. Here, we report findings of an extraordinary combination of unusual mechanical and electronic properties in hydrogenated borophene, known as borophane, from first-principles calculations. This novel 2D material has been shown to exhibit robust Dirac transport physics. Our study unveils that borophane is auxetic with a surprising negative Poisson's ratio stemming from its unique puckered triangle hinge structure and the associated hinge dihedral angle variation under a tensile strain in the armchair direction. Our results also identify borophane to be ferroelastic with a stress-driven 90° lattice rotation in the boron layer, accompanied by a remarkable orientation switch of the anisotropic Dirac transport channels. These outstanding strain-engineered properties make borophane a highly versatile and promising 2D material for innovative applications in microelectromechanical and nanoelectronic devices.

  10. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  11. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  12. Techniques for capturing expert knowledge - An expert systems/hypertext approach

    Science.gov (United States)

    Lafferty, Larry; Taylor, Greg; Schumann, Robin; Evans, Randy; Koller, Albert M., Jr.

    1990-01-01

    The knowledge-acquisition strategy developed for the Explosive Hazards Classification (EHC) Expert System is described in which expert systems and hypertext are combined, and broad applications are proposed. The EHC expert system is based on rapid prototyping in which primary knowledge acquisition from experts is not emphasized; the explosive hazards technical bulletin, technical guidance, and minimal interviewing are used to develop the knowledge-based system. Hypertext is used to capture the technical information with respect to four issues including procedural, materials, test, and classification issues. The hypertext display allows the integration of multiple knowlege representations such as clarifications or opinions, and thereby allows the performance of a broad range of tasks on a single machine. Among other recommendations, it is suggested that the integration of hypertext and expert systems makes the resulting synergistic system highly efficient.

  13. Expert Oracle application express

    CERN Document Server

    Scott, John Edward

    2011-01-01

    Expert Oracle Application Express brings you groundbreaking insights into developing with Oracle's enterprise-level, rapid-development tool from some of the best practitioners in the field today. Oracle Application Express (APEX) is an entirely web-based development framework that is built into every edition of Oracle Database. The framework rests upon Oracle's powerful PL/SQL language, enabling power users and developers to rapidly develop applications that easily scale to hundreds, even thousands of concurrent users. The 13 authors of Expert Oracle Application Express build their careers aro

  14. Terpolymer polyrotaxanes: a promising supramolecular system as electron-transporting materials for optoelectronics

    Science.gov (United States)

    Farcas, A.; Resmerita, A.-M.; Farcas, F.

    2016-12-01

    Optical, electrochemical and surface-morphological properties of three terpolymer polyrotaxanes (1a, 1b and 1c) composed of 2,7-dibromo-9,9-dicyanomethylenefluorene encapsulated into γ-cyclodextrin (γCD), β- or γ-persilylated cyclodextrin (PS-γCD, PS-γCD) cavities (acceptor) and 4,4'-dibromo-4''-methyltriphenylamine (donor) randomly distributed into 9,9-dioctylfluorene conjugated chains have been evaluated and compared to those of the reference 1. The role of the encapsulation on the thermal stability, solubility, film forming ability and transparency was also investigated. High fluorescence efficiency, almost identical normalized absorbance maximum in solution and solid-states of 1a, 1b and 1c provides the lower aggregation tendency. The fluorescence lifetimes (τ) of 1a, 1b and 1c follow a mono-exponential decay with a value τ = 1.11, 1.03 and 1.14 ns, compared with the neat 1, where a bi-exponential decay was identified. AFM studies reveal a smooth and homogenous surface morphology for polyrotaxanes than that of the reference. The electrochemical data provided that the investigated compounds exhibited n- and p-doping processes. The HOMO/LUMO energy levels 1a, 1b, 1c and 1 and in combination with the work function of anodic ITO glass substrates coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (-5.2 eV) and cathodic Ca (-2.8 eV) or Al (-2.2 eV) indicate that the compounds are electrochemically accessible as electron-transporting materials.

  15. Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells

    Science.gov (United States)

    Cheng, Nian; Liu, Pei; Qi, Fei; Xiao, Yuqin; Yu, Wenjing; Yu, Zhenhua; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2016-11-01

    The two-step spin coating process produces rough perovskite surfaces in ambient condition with high humidity, which are unfavorable for the contact between the perovskite film and the low temperature carbon electrode. To tackle this problem, multi-walled carbon nanotubes (MWCNTs) are embedded into the perovskite layer. The MWCNTs can act as charge transport high way between individual perovskite nanoparticles and facilitate the collection of the photo-generated holes by the carbon electrode. Longer carrier lifetime is confirmed in the perovskite solar cells with addition of MWCNTs using open circuit voltage decay measurement. Under optimized concentration of MWCNT, average power conversion efficiency of 11.6% is obtained in hole transport material free perovskite solar cells, which is boosted by ∼15% compared to solar cells without MWCNT.

  16. 75 FR 63 - Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery...

    Science.gov (United States)

    2010-01-04

    ... Batteries and Battery-Powered Devices; and Harmonization With the United Nations Recommendations... safe transportation of batteries and battery-powered devices. This final rule corrects several errors... clarifications addressing the safe transportation of batteries and battery-powered devices. This final rule...

  17. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    Cement-based materials are the most widely used man-made materials in the world. The durability of cement-based materials has been a major concern due to the premature failure and serviceability issues of many reinforced concrete structures. Durability of cement-based materials is to a large content

  18. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    Cement-based materials are the most widely used man-made materials in the world. The durability of cement-based materials has been a major concern due to the premature failure and serviceability issues of many reinforced concrete structures. Durability of cement-based materials is to a large content

  19. Ask an Expert.

    Science.gov (United States)

    Trautman, Steve; Klein, Kate

    1993-01-01

    Offers guidelines for determining when and how to recruit subject matter experts (SMEs) and for ensuring that they deliver high quality training. Considers common problems of SMEs, such as giving too much information, conflicts with their job commitments, and stage fright. (JOW)

  20. Computers Simulate Human Experts.

    Science.gov (United States)

    Roberts, Steven K.

    1983-01-01

    Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)

  1. Expert Systems Research.

    Science.gov (United States)

    Duda, Richard O.; Shortliffe, Edward H.

    1983-01-01

    Discusses a class of artificial intelligence computer programs (often called "expert systems" because they address problems normally thought to require human specialists for their solution) intended to serve as consultants for decision making. Also discusses accomplishments (including information systematization in medical diagnosis and…

  2. Bloggers as experts

    NARCIS (Netherlands)

    K. Balog; M. de Rijke; W. Weerkamp

    2008-01-01

    We address the task of (blog) feed distillation: to find blogs that are principally devoted to a given topic. The task may be viewed as an association finding task, between topics and bloggers. Under this view, it resembles the expert finding task, for which a range of models have been proposed. We

  3. Computers Simulate Human Experts.

    Science.gov (United States)

    Roberts, Steven K.

    1983-01-01

    Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)

  4. Development of a impact limiter for radioactive material transport packages - characterization of the polymeric material used; Desenvolvimento de amortecedor de impacto para embalagens para transporte de material radioativo - caracterizacao do material polimerico utilizado

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio Pimenta [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: mouraor@urano.cdtn.br; Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mmattar@net.ipen.br

    2000-07-01

    Impact limiters are sacrificial components widely used to protect radioactive waste packages against damages arising from falls, fires and collisions with protruding objects. Several materials have been used as impact limiter filling: wood, aluminum honeycomb, and metallic or polymeric foams. Besides, hollow structures are also used as shock absorbers, either as a single shell or as a tube array. One of the most popular materials among package designers is rigid polyurethane foam, owing to its toughness, workability, low specific weight, low costs and commercial availability. In Brazil, a foam developed using the polymer extracted from the castor oil plant (Ricinus communis) is being studied as a potential impact limiter filling. For a better performance of this material, it is necessary to minimize the impact limiter dimensions without compromising the package safety. For this, a detailed knowledge of the foam physical and mechanical properties is essential. A relatively vast amount of data about regular polymeric foams can be found in the literature and in foreign manufacturers brochures, but no data has been published about the properties of the castor oil foam. This paper presents data gathered in an ongoing research program aiming at the development of a Type-B packaging. Foam samples were submitted to uniaxial static compression tests and to hydrostatic tests. The results obtained reveal that the castor oil foam has a mechanical behavior similar to that of regular foams, with good property reproducibility and homogeneity. (author)

  5. Estimation of bed-material transport in the lower Chetco River, Oregon, water years 2009-2010

    Science.gov (United States)

    Wallick, J. Rose; O'Connor, Jim E.

    2011-01-01

    This assessment of bed-material transport uses methods developed in a previous study (Wallick and others, 2010) to estimate bed-material flux at the USGS Chetco River streamflow gaging station located at flood-plain kilometer 15 (14400000). On the basis of regressions between daily mean flow and transport capacity, daily bed-material flux was calculated for the period October 1, 2008 to March 30, 2011. The daily flux estimates were then aggregated by water year (WY) for WY 2009 and WY 2010 and the period April 1-March 31 during 2008-09, 2009-10 and 2010-11. The main findings were: *Estimated bed-material flux for WY 2009 (October 1, 2008 to September 30, 2009) was 87,300 metric tons as calculated by the Parker (1990a, b) equation (hereinafter \\'the Parker equation\\') and 116,900 metric tons as calculated by the Wilcock and Crowe (2003) equation (hereinafter \\'the Wilcock-Crowe equation\\'). *Estimated bed-material flux for water year 2010 (October 1, 2008 to September 30, 2009) was 56,800 metric tons as calculated by the Parker equation and 96,700 metric tons as calculated by the Wilcock-Crowe equation. *Estimated bed-material flux for April 1, 2008, to March 31, 2009, was 84,700 metric tons as calculated by the Parker equation and 111,700 metric tons as calculated by the Wilcock-Crowe equation. Flux values from April 1 to September 30, 2008, are from Wallick and others (2010). *Estimated bed-material flux for April 1, 2009, to March 31, 2010, was 45,500 metric tons as calculated by the Parker equation and 79,100 metric tons as calculated by the Wilcock-Crowe equation. *Estimated bed-material flux for April 1, 2010, to March 31, 2011, was 67,100 metric tons as calculated by the Parker equation and 134,300 metric tons as calculated by the Wilcock-Crowe equation. These calculations used provisional flow data for December 29, 2010, to March 31, 2011, and may be subject to revision. *Water years 2009 and 2010 both had less bed-material transport than the average

  6. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.

  7. Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite material

    Science.gov (United States)

    Miettinen, Arttu; Harjupatana, Tero; Kataja, Markku; Fortino, Stefania; Immonen, Kirsi

    2016-07-01

    Natural fibre composites are prone to absorb moisture from the environment which may lead to dimensional changes, mold growth, degradation of mechanical properties or other adverse effects. In this work we develop a method for direct non-intrusive measurement of local moisture content inside a material sample. The method is based on X-ray microtomography, digital image correlation and image analysis. As a first application of the method we study axial transport of water in a cylindrical polylactic acid/birch pulp composite material sample with one end exposed to water. Based on the results, the method seems to give plausible estimates of water content profiles inside the cylindrical sample. The results may be used, e.g., in developing and validating models of moisture transport in biocomposites.

  8. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    Science.gov (United States)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  9. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials

    Science.gov (United States)

    Stieger, Christian; Szabo, Aron; Bunjaku, Teutë; Luisier, Mathieu

    2017-07-01

    Through advanced quantum mechanical simulations combining electron transport and phonon transport from first-principles, self-heating effects are investigated in n-type transistors with single-layer MoS2, WS2, and black phosphorus as channel materials. The selected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which have a direct influence on the increase in their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.

  10. Synthesis of AgGaGeS4 polycrystalline materials by vapor transporting and mechanical oscillation method

    Science.gov (United States)

    Huang, Wei; Zhao, Beijun; Zhu, Shifu; He, Zhiyu; Chen, Baojun; Pu, Yunxiao; Lin, Li; Zhao, Zhangrui; Zhong, Yikai

    2017-06-01

    Single-phase AgGaGeS4 polycrystalline materials were synthesized directly from the constituent elements by vapor transporting and mechanical oscillation method. The problem of explosions was solved by careful control of the heating and cooling cycle and adopting the two-zone rocking furnace with specially designed temperature profile. The mechanical and temperature oscillations, as well as gradient cooling, were introduced in the synthesis process. The X-ray diffraction (XRD) analysis and Energy Dispersive Spectrometer (EDS) micro analysis indicated that the synthesized compound is a single-phase AgGaGeS4 polycrystalline material.

  11. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    OpenAIRE

    Yoon, Se Yoon

    2012-01-01

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nano...

  12. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  13. 75 FR 27273 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Science.gov (United States)

    2010-05-14

    ... search the electronic form of any written communications and comments received into any of our dockets by... transportation. We note that it is highly unlikely that a carrier or other entity without intimate knowledge of a...

  14. Transport and dielectric studies of metallic, semiconducting, and magnetic materials and devices

    Science.gov (United States)

    Vasic, Relja

    Several organic and inorganic systems of importance for fundamental physics and applications have been studied by magnetotransport, dielectric constant, and Raman spectroscopy techniques. At the beginning of my thesis work, I investigated three carbon based organic systems: carbon fibers, pentacene derivatives, and a nanomagnetic material ("V15"). In the latter stages of my dissertation, I used the techniques I had developed to explore the properties of two inorganic systems: NiFe nanopillars in a silicon matrix, and spin systems in multiferroic rare earth-transition metal oxides. The main activities and achievements of my thesis work are as follows: The carbon fibers were characterized by magnetotransport and Raman spectroscopy studies. I found that carbon fibers are promising as wires in molecular electronics and compatible with organic films. Preliminary results on simple films of melted pentacene derivatives connected with carbon fiber wires were a first step in the fabrication and characterization of pentacene field effect transistors (FET's). The work on the pentacene system resulted in a series of successful logic circuits based on field-effect transistors such as NOT (inverter), NOR, and NAND. The temperature-dependent mobility was described as thermally activated at low gate voltages, but at high gate voltages the mobility was enhanced due to shallow traps. The second system investigated was the organic nanomagnetic material, polyoxovanadate, K6[V15As6O42(H 2O)]˙8H2O (i.e. V15). The conductivity and the dielectric measurements at high and low temperatures respectively were used to determine electrical properties of this single magnet molecule system. The main accomplishments were the determination of the energy gap (0.2eV) and the identification of multiple dipole relaxation modes. Raman vibrational spectroscopy was used to correlate dielectric relaxation with the Raman intramolecular vibrations. An investigation was then carried out on NiFe nanopillars

  15. Thermo-mechanical Investigations and Predictions for Oxygen Transport Membrane Materials

    OpenAIRE

    Pecanac, Goran

    2013-01-01

    One of the most efficient ways to realize an Oxy-fuel process is the utilization of ceramic oxygen transport membranes (OTMs) for air separation, since this process provides a significantly lower efficiency loss compared to conventional cryogenic separation technologies. Driven by the difference in oxygen partial pressure, the oxygen transport takes place via oxygen vacancies in the crystal lattice of the membrane. Thin membrane layers supported by a porous substrate are considered as the mos...

  16. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Philip D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  17. PATRAM 2004 - The 14th international symposium on the packaging and transportation of radioactive materials. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The 14th International Symposium on the Packaging and Transport of Radioactive Materials, PATRAM 2004, was held at the Estrel Convention Center in Berlin, Germany, from 20-24 September 2004. PATRAM '04 was held under the auspices of the German Federal Ministry for Transport, Building and Housing (BMNBW), and was hosted by the German Bundesanstalt fur Materialforschung und -Prufung (BAM). Further, the conference was held in cooperation with the International Atomic Energy Agency (IAEA) and the US Institute for Nuclear Materials Management. As with past PATRAM conferences, this one covered a wide range of topics that are of concern to the nuclear materials transport industry; regulations, operations, technical analyses and testing, design, institutional issues, security, risk assessment and emergency response. Presentation of these topics was provided through a number of fora, plenary presentations, panel presentations, oral presentations, posters and technical tours. Coupled with the opening reception on Monday evening and the coffee breaks, a forum was provided at this PATRAM that allowed all participants ample opportunities to increase their technical knowledge, to learn about compelling issues around the world and to network with colleagues. (orig.)

  18. Route planning of raw materials transportation in the industrial hub of Mariupol city

    Directory of Open Access Journals (Sweden)

    Юлія Вікторівна Булгакова

    2017-07-01

    Full Text Available The multi-modal freight transportation routes planning problem is viewed in this paper. The case study of iron ore deliveries to the metallurgical enterprises of Mariupol from Kryvyi Rih is presented. Based on the analysis of Ukrainian railroads and sea ports infrastructures six possible routes of multi-modal iron ore transportation are built. The paper presents a short review of route planning problem in multi-modal freight transportations, which are use sea and land parts together, regarding decision support methods of routes evaluation and selection. The lack of studies dedicated to fuzzy logic theory application for solving the stated problems is identified. The relevance of fuzzy set application to the route planning problem is proved. Taking into account the peculiarities of iron ore transportations technology, the following criterions of routes evaluation are chosen: «transportation costs», «delivery times», «transportation risks». The model of multicriterion decision-making of routes evaluation and the optimal route selection, based on fuzzy logic theory, is developed. Criteria of routes evaluation are set by three terms Gaussian and sigmoidal membership functions. The approach to each function construction is practice-based and executed together with iron ore supply chain manager. The model is created in MATLAB Fuzzy Logic Tool Box environment using Mamdani’s fuzzy inference

  19. Decreased bio-inhibition of building materials due to transport of biocides

    NARCIS (Netherlands)

    Erich, S.J.F.; Mendoza, S.M.; Floor, W.; Hermanns, S.P.M.; Homan, W.J.; Adan, O.C.G.

    2011-01-01

    Bio-inhibition of buildings and structures is an important issue. In many cases building materials have biocides added to prevent growth of micro-organisms. Growth of microorganisms on building materials has several negative effects; (1) Aesthetic damage, e.g. fungi, algae grow on the material, resu

  20. Development of a consistent geochemical modelling approach for leaching and reactive transport prosesses in contaminated materials

    NARCIS (Netherlands)

    Dijkstra, J.J.

    2007-01-01

    Waste materials often contain increased levels of potentially toxic trace elements compared to natural materials such as soils. In many countries, the recycling of waste materials in the environment, such as in construction works, is regulated by environmental criteria that aim to ensure long-term e

  1. Bioethics for Technical Experts

    Science.gov (United States)

    Asano, Shigetaka

    Along with rapidly expanding applications of life science and technology, technical experts have been implicated more and more often with ethical, social, and legal problems than before. It should be noted that in this background there are scientific and social uncertainty elements which are inevitable during the progress of life science in addition to the historically-established social unreliability to scientists and engineers. In order to solve these problems, therefore, we should establish the social governance with ‘relief’ and ‘reliance’ which enables for both citizens and engineers to share the awareness of the issues, to design social orders and criterions based on hypothetical sense of values for bioethics, to carry out practical use management of each subject carefully, and to improve the sense of values from hypothetical to universal. Concerning these measures, the technical experts can learn many things from the present performance in the medical field.

  2. Expert Script Generator

    Science.gov (United States)

    Sliwa, Nancy E.; Cooper, Eric G.

    1991-01-01

    Program provides additional level of interface to facilitate use of telerobotic system. ESG (Expert Script Generator) is software package automatically generating high-level task objective commands from complex menu-driven language of the NASA Intelligent Systems Research Laboratory (ISRL). Makes telerobotics laboratory accessible to researchers not familiar with comprehensive language developed by ISRL for interacting with various systems of ISRL test bed. Incorporates expert-system technology to capture typical rules of operation that skilled operator uses. Result: operator interfact optimizing ability of system to perform task remotely in hazardous environment, in timely manner, and without undue stress to operator, while minimizing change for operator erros that damage equipment. Written in CLIPS.

  3. Expert PLSQL Practices

    CERN Document Server

    Beresniewicz, John

    2011-01-01

    Expert PL/SQL Practices is a book of collected wisdom on PL/SQL programming from some of the best and the brightest in the field. Each chapter is a deep-dive into a specific problem, technology, or feature set that you'll face as a PL/SQL programmer. Each author has chosen their topic out of the strong belief that what they share can make a positive difference in the quality and scalability of code that you write. The path to mastery begins with syntax and the mechanics of writing statements to make things happen. If you've reached that point with PL/SQL, then let the authors of Expert PL/SQL

  4. ALICE Expert System

    CERN Document Server

    Ionita, C

    2014-01-01

    The ALICE experiment at CERN employs a number of human operators (shifters), who have to make sure that the experiment is always in a state compatible with taking Physics data. Given the complexity of the system and the myriad of errors that can arise, this is not always a trivial task. The aim of this paper is to describe an expert system that is capable of assisting human shifters in the ALICE control room. The system diagnoses potential issues and attempts to make smart recommendations for troubleshooting. At its core, a Prolog engine infers whether a Physics or a technical run can be started based on the current state of the underlying sub-systems. A separate C++ component queries certain SMI objects and stores their state as facts in a Prolog knowledge base. By mining the data stored in dierent system logs, the expert system can also diagnose errors arising during a run. Currently the system is used by the on-call experts for faster response times, but we expect it to be adopted as a standard tool by reg...

  5. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  6. Experiences in certification of packages for transportation of fresh nuclear fuel in the context of new safety requirements established by IAEA regulations (IAEA-96 regulations, ST-1) for air transportation of nuclear materials (requirements to C-type packages)

    Energy Technology Data Exchange (ETDEWEB)

    Dudai, V.I.; Kovtun, A.D.; Matveev, V.Z.; Morenko, A.I.; Nilulin, V.M.; Shapovalov, V.I.; Yakushev, V.A.; Bobrovsky, V.S.; Rozhkov, V.V.; Agapov, A.M.; Kolesnikov, A.S. [Russian Federal Nuclear Centre - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)]|[JSC ' ' MSZ' ' , Electrostal (Russian Federation)]|[JSC ' ' NPCC' ' , Novosibirsk (Russian Federation)]|[Minatom of Russia, Moscow (Russian Federation)]|[Gosatomnadzor of Russia, Moscow (Russian Federation)

    2004-07-01

    Every year in Russia, a large amount of domestic and international transportation of fresh nuclear fuel (FNF) used in Russian and foreign energy and research atomic reactors and referred to fissile materials based on IAEA Regulations is performed. Here, bulk transportation is performed by air, and it concerns international transportation in particular. According to national ''Main Regulations for Safe Transport and physical Protection of Nuclear Materials (OPBZ- 83)'' and ''Regulations for the Safe Transport of Radioactive Materials'' of the International Atomic Energy Agency (IAEA Regulations), nuclear and radiation security under normal (accident free) and accident conditions of transport must be completely provided by the package design. In this context, high requirements to fissile packages exposed to heat and mechanical loads in transport accidents are imposed. A long-standing experience in accident free transportation of FM has shown that such approach to provide nuclear and radiation security pays for itself completely. Nevertheless, once in 10 years the International Atomic Energy Agency on every revision of the ''Regulations for the Safe Transport of Radioactive Materials'' places more stringent requirements upon the FM and transportation thereof, resulting from the objectively increasing risk associated with constant rise in volume and density of transportation, and also strained social and economical situation in a number of regions in the world. In the new edition of the IAEA Regulations (ST-1), published in 1996 and brought into force in 2001 (IAEA-96 Regulations), the requirements to FM packages conveyed by aircraft were radically changed. These requirements are completely presented in new Russian ''Regulations for the Safe Transport of Radioactive Materials'' (PBTRM- 2004) which will be brought into force in the time ahead.

  7. Thermally driven hopping and electron transport in amorphous materials from density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abtew, Tesfaye A; Drabold, D A [Department of Physics and Astronomy, Ohio University, Athens, OH 45701-2979 (United States)

    2004-11-10

    In this paper we study electron dynamics and transport in models of amorphous silicon and amorphous silicon hydride. By integrating the time-dependent Kohn-Sham equation, we compute the time evolution of electron states near the gap, and study the spatial and spectral diffusion of these states due to lattice motion. We perform these calculations with a view to developing ab initio hopping transport methods. The techniques are implemented with the ab initio local basis code SIESTA, and may be applicable to molecular, biomolecular and other condensed matter systems.

  8. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm

    2017-01-19

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  9. The use of recycled and renewable material : A study of the passenger vehicle production at Bombardier Transportation

    OpenAIRE

    Kinch, Fredrik; Patay, Christian

    2009-01-01

    Resultatet av den globala miljömedvetenheten har resulterat i en ökad medvetenhet inom användandet av återvunna och förnyelsebara material. Idag börjar Bombardier Transportations (BT) kunder att kräva att dessa material används och dessa krav kommer bara öka med tiden. BT har startat flera projekt för att försäkra sig om en stark utveckling inom detta område. Syftet med detta projekt är att undersöka och se på möjligheterna med att öka användandet av återvunna och förnyelsebara material i pro...

  10. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower

  11. Expert Systems and Special Education.

    Science.gov (United States)

    Hofmeister, Alan M.; Ferrara, Joseph M.

    1986-01-01

    The article discusses the characteristics of expert systems (computer programs designed to replicate human expertise in a variety of areas), describes recently available expert system development tools, suggests applications within the field of special education, and reviews recent efforts to apply expert systems technology to special education…

  12. How to regulate energy levels and hole mobility of spiro-type hole transport materials in perovskite solar cells.

    Science.gov (United States)

    Chi, Wei-Jie; Sun, Ping-Ping; Li, Ze-Sheng

    2016-10-21

    Methoxyaniline-based organic small molecules with three-dimensional structure have been proven as the most promising hole conductor for state-of-the-art perovskite devices. A fundamental understanding of the electronic properties and hole transport behavior of spiro-CPDT analogues, which is dependent on the number and position of the -OCH3 groups, is significant for their potential applications as hole transport materials of perovskite solar cells. Our results from density functional theory calculations indicate that meta-substitution is more beneficial to reduce the highest occupied molecular orbital (HOMO) levels of molecules compared with ortho- and para-substitution. Furthermore, the hole mobility can be improved by ortho-substitution or mixed ortho- and para-substitution. Most interestingly, it is found that the improvement in hole mobility is at the expense of raising the HOMO level of spiro-CPDT analogues. These results can be useful in the process of designing and synthesizing excellent hole transport materials with suitable HOMO levels and high hole mobility.

  13. 76 FR 4847 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Science.gov (United States)

    2011-01-27

    ...: Safety Requirements for External Product Piping on Cargo Tanks Transporting Flammable Liquids AGENCY... flammable liquids in unprotected external product piping on DOT specification cargo tank motor vehicles. If... specification cargo tank motor vehicle (CTMV), unless the vehicle is equipped with bottom damage...

  14. 76 FR 14643 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Science.gov (United States)

    2011-03-17

    ...: Safety Requirements for External Product Piping on Cargo Tanks Transporting Flammable Liquids AGENCY... external product piping (wetlines) on a cargo tank motor vehicle (CTMV) unless the CTMV is equipped with... National Tank Truck Carriers, Inc., and the Tank Truck Manufacturers Association requesting an extension...

  15. Influence of the nature of interfaces on the capillary transport in layered materials

    DEFF Research Database (Denmark)

    Derluyn, Hannelore; Janssen, Hans; Carmeliet, Jan

    2011-01-01

    This paper presents an experimental and quantitative analysis of capillary transport across the interface brick–mortar joint in masonry. Moisture profiles are measured with X-ray projection. The influence of curing conditions is analyzed by considering three types of mortars: cured in a mould, be...... simulations reveal the existence of a hydraulic interface resistance between brick and wet/dry cured mortar....

  16. Interlayer material transport during layer-normal shortening. Part I. The model

    NARCIS (Netherlands)

    Molen, I. van der

    1985-01-01

    To analyse mass-transfer during deformation, the case is considered of a multilayer experiencing a layer-normal shortening that is volume constant on the scale of many layers. Strain rate is homogeneously distributed on the layer-scale if diffusion is absent; when transport of matter between the

  17. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole;

    2014-01-01

    . The sensitivity analysis presents a formal definition of quasi-1D current transport, which was recently observed experimentally in chemical-vapor-deposition graphene. Our numerical model for calculating sensitivity is verified by comparing the model to analytical calculations based on conformal mapping...

  18. The Influence of Calcium Chloride Salt Solution on the Transport Properties of Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Yaghoob Farnam

    2015-01-01

    Full Text Available The chemical interaction between calcium chloride (CaCl2 and cementitious binder may alter the transport properties of concrete which are important in predicting the service life of infrastructure elements. This paper presents a series of fluid and gas transport measurements made on cementitious mortars before and after exposure to various solutions with concentrations ranging from 0% to 29.8% CaCl2 by mass. Fluid absorption, oxygen diffusivity, and oxygen permeability were measured on mortar samples prepared using Type I and Type V cements. Three primary factors influence the transport properties of mortar exposed to CaCl2: (1 changes in the degree of saturation, (2 calcium hydroxide leaching, and (3 formation of chemical reaction products (i.e., Friedel’s salt, Kuzel’s salt, and calcium oxychloride. It is shown that an increase in the degree of saturation decreases oxygen permeability. At lower concentrations (~12%, the formation of chemical reaction products (mainly calcium oxychloride is a dominant factor decreasing the fluid and gas transport in concrete.

  19. Low cost transportable device for transference of atmosphere sensitive materials from glove box to SEM

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Saxild, Finn B.

    Moisture or air sensitive materials are often encountered within several highly important fields such as catalyst R&D, pharmaceutical R&D, and battery R&D. Essential to all materials research and development is microstructure characterization, which often implies electron microscopy. Entering the...

  20. Modelling transport of waste material leachate in soils in support of environmental standards

    NARCIS (Netherlands)

    van Eijkeren JCH; Aalbers TG; de Wilde PGM

    1992-01-01

    In the Netherlands a process of defining environmental standards is going on. These standards serve to protect the environment at the one hand, and to stimulate the reuse of rest-materials, e.g. ash from blast-furnaces, as building materials at the other hand. In order to come to an environmental

  1. 75 FR 10973 - Hazardous Materials: Risk-Based Adjustment of Transportation Security Plan Requirements

    Science.gov (United States)

    2010-03-09

    ... Any quantity of Organic None. peroxide, Type B, liquid peroxide, Type B, liquid or solid, temperature... or suspensions or gels in a large bulk quantity. 5.2 Any quantity of Organic peroxide, Type B, liquid... materials; 2.3 poison gases; 4.3 dangerous when wet material; 5.2 Type B organic peroxides, liquid or...

  2. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository; Couplage chimie-transport et retroaction sur les proprietes des materiaux en contexte de stockage geologique profond. Synthese des activites de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Bildstein, O.

    2010-06-15

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  3. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    Science.gov (United States)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  4. Guide relative to the regulatory requirements applicable to the radioactive materials transport in airport area; Guide relatif aux exigences reglementaires applicables au transport des matieres radioactives en zone aeroportuaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This guide makes an inventory of all the points necessary for the correct functioning of the transport of radioactive materials in airport zone. Stowage of the parcels, program of radiological protection (P.R.P.), operation of transport, quality assurance, radiation dose evaluation, radiation monitoring, dose optimization, storage management, are the principal points of this guide. (N.C.)

  5. Experts on public trial

    DEFF Research Database (Denmark)

    Blok, Anders

    2007-01-01

    Citizen deliberation on technoscientific developments is regularly regarded as a hallmark of Danish democracy, embodied in particular by the Danish Board of Technology. Few empirically guided questions have been raised, however, as to how the Board's democratic projects actually work. Through...... a case study of the May 2003 Danish consensus conference on environmental economics as a policy tool, the article reflects on the politics of expert authority permeating practices of public participation. Adopting concepts from the sociology of scientific knowledge (SSK), the conference is seen...

  6. Expert Oracle Exadata

    CERN Document Server

    Johnson, Randy

    2011-01-01

    Throughout history, advances in technology have come in spurts. A single great idea can often spur rapid change as the idea takes hold and is propagated, often in totally unexpected directions. Exadata embodies such a change in how we think about and manage relational databases. The key change lies in the concept of offloading SQL processing to the storage layer. That concept is a huge win, and its implementation in the form of Exadata is truly a game changer. Expert Oracle Exadata will give you a look under the covers at how the combination of hardware and software that comprise Exadata actua

  7. Expert Systems Development Methodology

    Science.gov (United States)

    1989-07-28

    expert systems has been hardware development. In the middle 1950’s at the very birth of AI, hardware was large very slow and extremely expensive. In...into another report. For example, MOBPLEX provides output into the Lotus spreadsheet as a semi-automated destination. From the spreadsheet the user of...designed on top of the Lotus 1-2- 3 interface. Lotus was used because it was decided there was no need to build a powerful ad hoc report generator

  8. Developing of an expert system for nonferrous alloy design

    Institute of Scientific and Technical Information of China (English)

    李义兵; 何红波; 周继承; 李斌

    2004-01-01

    Expert systems have been used widely in the predictions and design of alloy systems. But the expert systems are based on the macroscopic models that have no physical meanings. Microscopic molecular dynamics is also a standard computational technique used in materials science. An approach is presented to the design system of nonferrous alloy that integrates the molecular dynamical simulation together with an expert system. The knowledge base in the expert system is able to predict nonferrous alloy properties by using machine learning technology. The architecture of the system is presented.

  9. Correlation between Cohesive Energy Density, Fractional Free Volume, and Gas Transport Properties of Poly(ethylene-co-vinyl acetate Materials

    Directory of Open Access Journals (Sweden)

    Piotr Kubica

    2015-01-01

    Full Text Available The transport properties of the poly(ethylene-co-vinyl acetate (EVA materials to He, N2, O2, and CO2 are correlated with two polymer molecular structure parameters, that is, cohesive energy density (CED and fractional free volume (FFV, determined by the group contribution method. In our preceding paper, the attempt was made to approximate EVA permeability using a linear function of 1/FFV as predicted by the free volume theory. However, the deviations from this relationship appeared to be significant. In this paper, it is shown that permeation of gas molecules is controlled not only by free volume but also by the polymer cohesive energy. Moreover, the behavior of CO2 was found to differ significantly from that of other gases. In this instance, the correlation is much better when diffusivity instead of permeability is taken into account in a modified transport model.

  10. Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells.

    Science.gov (United States)

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu-Chen; Jo, Sae Byeok; Luo, Jingdong; Jang, Sei-Hum; Jen, Alex K-Y

    2016-09-14

    In this paper, an electron donor-acceptor (D-A) substituted dipolar chromophore (BTPA-TCNE) is developed to serve as an efficient dopant-free hole-transporting material (HTM) for perovskite solar cells (PVSCs). BTPA-TCNE is synthesized via a simple reaction between a triphenylamine-based Michler's base and tetracyanoethylene. This chromophore possesses a zwitterionic resonance structure in the ground state, as evidenced by X-ray crystallography and transient absorption spectroscopies. Moreover, BTPA-TCNE shows an antiparallel molecular packing (i.e., centrosymmetric dimers) in its crystalline state, which cancels out its overall molecular dipole moment to facilitate charge transport. As a result, BTPA-TCNE can be employed as an effective dopant-free HTM to realize an efficient (PCE ≈ 17.0%) PVSC in the conventional n-i-p configuration, outperforming the control device with doped spiro-OMeTAD HTM.

  11. Monitoring and analysis of nonlinear dynamic damage of transport roadway supported by composite hard rock materials in Linglong Gold Mine

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The study concentrates mainly on the development of failure process in composite rock mass. By use of acoustic emission(AE), convergence inspection, pressure monitoring, level measurement techniques and the modem signal analysis technology, as wellas scan electron microscopy (SEM) experiment, various aspects of nonlinear dynamic damage of composite rock mass surroundingthe transport roadway in Linglong gold mine are discussed. According to the monitoring results, the stability of the rock mass can besynthetically evaluated, and the intrinsic relation between the damage and the characteristic parameters of acoustic emission can bedetermined. The location of the damage of rock mass can also be detected based on the acoustic emission couple monitoring signals.Finally, the key factors which influence the stability of the transport roadway supported by composite hard rock materials are foundout.

  12. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  13. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios

    2017-04-24

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  14. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    Science.gov (United States)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  15. A Coupled Transport and Chemical Model for Durability Predictions of Cement Based Materials

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica;

    initial and exposure conditions. Different numerical calcium silicate hydrate reaction approaches are studied and reactive transport modeling results using these are compared. Modeling results of ion ingress are compared with experimental results where mortar samples has been exposed to a NaCl solution...... are coupled by a sorption hysteresis function and the chemical equilibrium is solved in terms of mass actions laws using the geochemical code phreeqc. The overall durability model accounts for, ion diffusion, ion migration, two phase moisture transport including for hysteresis, ionic convection and chemical...... of the algorithm established. A calculated test example shows the model response to varying vapor content at the boundary, where saturated conditions occurs in periods and leaching of ions is only allowed in this period. The effect of the sorption hysteresis function is demonstrated in this test by a comparison...

  16. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    of Additives and Impurities from Polymeric Materials; EPA 560/5-85-015; U.S. Environmental Protection Agency, Office of Pesticides and Toxic...performance, a penetrating decontaminant may cause damage to the material, such as the swelling of polymers caused by solvents or any active...Chemical Warfare Agent Degradation Products. Environ . Health Perspect. 1999, 107 (12), 933–974. 5. Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G

  17. Carrier mobility in mesoscale heterogeneous organic materials: Effects of crystallinity and anisotropy on efficient charge transport

    Science.gov (United States)

    Kobayashi, Hajime; Shirasawa, Raku; Nakamoto, Mitsunori; Hattori, Shinnosuke; Tomiya, Shigetaka

    2017-07-01

    Charge transport in the mesoscale bulk heterojunctions (BHJs) of organic photovoltaic devices (OPVs) is studied using multiscale simulations in combination with molecular dynamics, the density functional theory, the molecular-level kinetic Monte Carlo (kMC) method, and the coarse-grained kMC method, which was developed to estimate mesoscale carrier mobility. The effects of the degree of crystallinity and the anisotropy of the conductivity of donors on hole mobility are studied for BHJ structures that consist of crystalline and amorphous pentacene grains that act as donors and amorphous C60 grains that act as acceptors. We find that the hole mobility varies dramatically with the degree of crystallinity of pentacene because it is largely restricted by a low-mobility amorphous region that occurs in the hole transport network. It was also found that the percolation threshold of crystalline pentacene is relatively high at approximately 0.6. This high percolation threshold is attributed to the 2D-like conductivity of crystalline pentacene, and the threshold is greatly improved to a value of approximately 0.3 using 3D-like conductive donors. We propose essential guidelines to show that it is critical to increase the degree of crystallinity and develop 3D conductive donors for efficient hole transport through percolative networks in the BHJs of OPVs.

  18. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H., E-mail: dirch.petersen@nanotech.dtu.dk [Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); Hansen, Ole [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); Danish National Research Foundation' s Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Kjær, Daniel [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); CAPRES A/S, Scion-DTU, Building 373, DK-2800 Kgs. Lyngby (Denmark)

    2014-08-04

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects.

  19. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials

    Science.gov (United States)

    Hao, Qing; Xiao, Yue; Zhao, Hongbo

    2016-08-01

    In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.

  20. Expert system prototype developments for NASA-KSC business and engineering applications

    Science.gov (United States)

    Ragusa, James M.; Gonzalez, Avelino J.

    1988-01-01

    Prototype expert systems developed for a variety of NASA projects in the business/management and engineering domains are discussed. Business-related problems addressed include an assistant for simulating launch vehicle processing, a plan advisor for the acquisition of automated data processing equipment, and an expert system for the identification of customer requirements. Engineering problems treated include an expert system for detecting potential ignition sources in LOX and gaseous-oxygen transportation systems and an expert system for hazardous-gas detection.

  1. Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability.

    Science.gov (United States)

    Reddy, Saripally Sudhaker; Gunasekar, Kumarasamy; Heo, Jin Hyuck; Im, Sang Hyuk; Kim, Chang Su; Kim, Dong-Ho; Moon, Jong Hun; Lee, Jin Yong; Song, Myungkwan; Jin, Sung-Ho

    2016-01-27

    Small molecules based on N-atom-linked phenylcarbazole-fluorene as the main scaffold, end-capped with spirobifluorene derivatives, are developed as organic hole-transporting materials for highly efficient perovskite solar cells (PSCs) and bulk heterojunction (BHJ) inverted organic solar cells (IOSCs). The CzPAF-SBF-based devices show remarkable device performance with excellent long-term stability in PSCs and BHJ IOSCs with a maximum PCE of 17.21% and 7.93%, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Decomposition of the absorbed dose by LET in tissue-equivalent materials within the SHIELD-HIT transport code

    CERN Document Server

    Sobolevsky, N; Buyukcizmeci, N; Ergun, A; Latysheva, L; Ogul, R

    2015-01-01

    The SHIELD-HIT transport code, in several versions, has been used for modeling the interaction of therapeutic beams of light nuclei with tissue-equivalent materials for a long time. All versions of the code include useful option of decomposition of the absorbed dose by the linear energy transfer (LET), but this option has not been described and published so far. In this work the procedure of decomposition of the absorbed dose by LET is described and illustrated by using the decomposition of the Bragg curve in water phantom, irradiated by beams of protons, alpha particles, and of ions lithium, carbon and oxygen.

  3. Study on the safety during transport of radioactive materials. Pt. 4. Events during transport. Final report work package 6; Untersuchungen zur Sicherheit bei der Befoerderung radioaktiver Stoffe. T. 4. Ereignisse bei der Befoerderung. Abschlussbericht zum Arbeitspaket 6

    Energy Technology Data Exchange (ETDEWEB)

    Sentuc, Florence-Nathalie

    2014-09-15

    This report presents the results from a data collection and an evaluation of the safety significance of events in the transportation of radioactive material by all modes on public routes in Germany. Systems for reporting and evaluation of the safety significance of events encountered in the transport of radioactive material are a central element in monitoring and judging the adequacy and effectiveness of the transport regulations and their underlying safety philosophy, this allows for revision by experience feedback (lessons learned). The nationwide survey performed covering the period from the mid 1990s through 2013 identified and analysed a total of 670 transport events varying in type and severity. The vast majority of recorded transport events relate to minor deviations from the provisions of the transport regulations (e.g. improper markings and error in transport documents) or inappropriate practices and operational procedures resulting in material damage of packages and equipment such as handling incidents. Severe traffic accidents and fires represented only a small fraction (ca. 3 percent) of the recorded transport events. Four transport events were identified in the reporting period to have given rise to environmental radioactive releases. Three transport events have reportedly resulted in minor radiation exposures to the transport personnel; in one case an exposure in excess of the statutory annual dose limit for the public seems possible. Based on the EVTRAM scale, with seven significance levels, the broad majority of transport events has been classified as ''non-incidents'' (Level 0) and ''events without affecting the safety functions of the package'' (Level 1). On the INES scale most transport events would be classified as events with ''no safety significance'' (Below Scale/Level 0). The survey results show no serious deficiencies in the transport of radioactive material, supporting the

  4. Environmental Impact Assessment of a School Building in Iceland Using LCA-Including the Effect of Long Distance Transport of Materials

    OpenAIRE

    Nargessadat Emami; Björn Marteinsson; Jukka Heinonen

    2016-01-01

    Buildings are the key components of urban areas and society as a complex system. A life cycle assessment was applied to estimate the environmental impacts of the resources applied in the building envelope, floor slabs, and interior walls of the Vættaskóli-Engi building in Reykjavik, Iceland. The scope of this study included four modules of extraction and transportation of raw material to the manufacturing site, production of the construction materials, and transport to the building site, as d...

  5. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan

    2013-10-01

    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  6. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang

    2010-07-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  7. Vocabulary of the transportation of dangerous goods. Vocabulaire du transport des marchandises dangereuses

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, H.

    1988-01-01

    This glossary of English-French, French-English terms in the transportation of dangerous goods is based on the terminology used in the Environment Canada EnviroTIPS collection of manuals, supplemented by other bilingual works dealing with regulation, submitted terms from a phone-in service, and the comments of experts in the field. The EnviroTIPS manuals cover physical and chemical properties of dangerous goods; production, transportation and commerce; material handling; compatibility of materials; contaminant spills and movement; environmental protection; laboratory animals; health protection; safety and countermeasures; and contaminant analysis and levels. 136 tabs.

  8. Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

    2008-07-09

    An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

  9. Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials

    Directory of Open Access Journals (Sweden)

    X. Ding

    2015-05-01

    Full Text Available Thermal conductivity of ferroelastic device materials can be reversibly controlled by strain. The nucleation and growth of twin boundaries reduces thermal conductivity if the heat flow is perpendicular to the twin wall. The twin walls act as phonon barriers whereby the thermal conductivity decreases linearly with the number of such phonon barriers. Ferroelastic materials also show elasto-caloric properties with a high frequency dynamics. The upper frequency limit is determined by heat generation on a time scale, which is some 5 orders of magnitude below the typical bulk phonon times. Some of these nano-structural processes are irreversible under stress release (but remain reversible under temperature cycling, in particular the annihilation of needle domains that are a key indicator for ferroelastic behaviour in multiferroic materials.

  10. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    Science.gov (United States)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  11. The influence of increasing riverbank vegetation density on bed shear stresses and transport of bed material

    Science.gov (United States)

    Liu, Da; Valyrakis, Manousos

    2017-04-01

    Riverbank vegetation can significantly influence the hydrodynamics of the river, such as flow velocity and bed shear stress, as well as affecting geomorphic processes across it. The aim of this study is to report preliminary results from extensive set of experiments aiming to better establish the link between flow and solid transport processes at the vicinity of the riverbank. A set of laboratory experiments is conducted in a recirculating flume with a series of acrylic panels mounted on the side of the flume at an angle to simulate the riverbank, and a large number of acrylic rods placed on top of it simulating riparian vegetation. Ten different vegetation configurations are examined, for the range of vegetation densities found in natural river systems. Three of these are configured in linear arrangement; another three of them in staggered; and the other four follow a random configuration at chosen densities. Turbulent flow is measured across the channel using acoustic Doppler velocimetry (ADV) along a dense measurement grid. The measurements covered the whole cross-section of the channel at the main measurement plane, as well as the riverbank region. The results reported include mean streamwise flow velocity and turbulent intensity profiles, bed shear stresses, momentum transfer at the riverbank region. These are associated with transport metrics obtained using an instrumented tracer particle entrained from different release locations (both from the centerline of the main channel and the near bank region). The results show that the flow velocity at the riverbank reduces with increasing densities of riparian vegetation, while they increase at the main channel. Likewise, the bed shear stresses increased at the main channel, and decreased within the vegetated riverbank, which is replicated by the observations from the particle transport experiments.

  12. Structural and fast ion transport properties of glassy and amorphous materials

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, D.H.; Georgopoulos, P.

    1989-11-01

    This research has dealt with ionic conductivity in two classes of electrolytes. Solid inorganic, as well as polymer. In the former case, a structural characterization study of the fast Ag{sup +} ion conducting glassy electrolyte Ag{sub 0.25}Ge{sub 0.19}Se{sub 0.56} was undertaken by means of differential anomalous x-ray scattering techniques. The Ag{sup +} ion transport behavior was probed with the aid of complex impedance spectroscopy and pulsed field gradient NMR measurements of the Ag{sup +} ion diffusivity. We found evidence suggesting that short (3.1--3.5 A) Ag-Ag distances are present. The observed prefactor for conductivity suggests that the number of mobile Ag{sup +} ions in this glass is significantly less than expected from its stoichiometry. The transport property results were examined in the light of our structural findings and analyses were attempted in terms of some reasonable microscopic models. The other major aspect of this research, dealing with amorphous poly(ethylene glycol)-LiCF{sub 3}SO{sub 3} electrolytes, involved measurements, via the pulsed field gradient NMR method, of the diffusivity of the polymer host, the cation (Li{sup +}) and the anion (CF{sub 3}SO{sub 3}{sup -}) in these complexes and the ionic conductivity, via complex impedance spectroscopy. Based on the conductivity prefactors, it appears that these amorphous polymer electrolytes exhibit classical Meyer-Nelder behavior; moreover, our ion transport results could be rationalized in terms of an ion association model (involving ion pairs and higher order aggregates).

  13. Fire Safety Aspects of Polymeric Materials. Volume 8. Land Transportation Vehicles

    Science.gov (United States)

    1979-01-01

    f LAND TRANSPORTATION VEHICLES The polyesters considered here are the linear thermoplastics; polylethylene terephthalate ), ( PET ...Polyvinyl Chloride 4.5.4 Acrylics 4.5.5 Nylons 4.5.6 Cellulosics 4.5.7 Polyacetals 4.5.8 Polyesters 4.5.9 Polycarbonates 4.5.10 Chlorinated and...Chlorosulfonated Polyethylene 4.6 Thermosetting Resins 4.6.1 Phenolic Resins and Molding Compounds 4.6.1.1 Resoles 4.6.1.2 Novolaks 4.6.1.3 Fire Safety

  14. Transport phenomena during vapor growth of optoelectronic material - A mercurous chloride system

    Science.gov (United States)

    Singh, N. B.

    1990-01-01

    Crystal growth velocity was measured in a mercurous chloride system in a two-zone transparent furnace as a function of the Rayleigh number by varying a/L, where a is the radius of the growth tube and L is the transport length. Growth velocity data showed different trends at low and high aspect ratio, a result that does not support the velocity-aspect ratio trend predicted by theories. The system cannot be scaled on the basis of measurements done at a low aspect ratio. Some change in fluid flow behavior occurs in the growth tube as the aspect ratio increases.

  15. Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations.

    Science.gov (United States)

    Grisorio, Roberto; Iacobellis, Rosabianca; Listorti, Andrea; De Marco, Luisa; Cipolla, Maria Pia; Manca, Michele; Rizzo, Aurora; Abate, Antonio; Gigli, Giuseppe; Suranna, Gian Paolo

    2017-07-26

    Due to a still limited understanding of the reasons making 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) the state-of-the-art hole-transporting material (HTM) for emerging photovoltaic applications, the molecular tailoring of organic components for perovskite solar cells (PSCs) lacks in solid design criteria. Charge delocalization in radical cationic states can undoubtedly be considered as one of the essential prerequisites for an HTM, but this aspect has been investigated to a relatively minor extent. In marked contrast with the 3-D structure of Spiro-OMeTAD, truxene-based HTMs Trux1 and Trux2 have been employed for the first time in PSCs fabricated with a direct (n-i-p) or inverted (p-i-n) architecture, exhibiting a peculiar behavior with respect to the referential HTM. Notwithstanding the efficient hole extraction from the perovskite layer exhibited by Trux1 and Trux2 in direct configuration devices, their photovoltaic performances were detrimentally affected by their poor hole transport. Conversely, an outstanding improvement of the photovoltaic performances in dopant-free inverted configuration devices compared to Spiro-OMeTAD was recorded, ascribable to the use of thinner HTM layers. The rationalization of the photovoltaic performances exhibited by different configuration devices discussed in this paper can provide new and unexpected prospects for engineering the interface between the active layer of perovskite-based solar cells and the hole transporters.

  16. Theoretical studies on electronic structures and photophysical properties of anthracene derivatives as hole-transporting materials for OLEDs.

    Science.gov (United States)

    Chitpakdee, Chirawat; Namuangruk, Supawadee; Khongpracha, Pipat; Jungsuttiwong, Siriporn; Tarsang, Ruangchai; Sudyoadsuk, Taweesak; Promarak, Vinich

    2014-05-05

    The electronic structures and photophysical properties of anthracene derivatives as hole-transporting materials (HTM) in OLEDs have been studied by DFT and TD-DFT methods. Thiophene and triphenylamine (TPA) moieties are used as substituents in anthracene based HTMs providing FATn and FAPn compounds (n=1-2), respectively. The calculated electronic levels by B3LYP show proper energy matching of FAPn and hole-injecting layer (HIL), indicating that the hole-transports of the FAPn compounds are better than the FATn compounds. The photophysical properties calculated by TD-B3LYP elucidate that TPA in FAPn compounds acts as electron donating group and induces charge transfer character in the absorptions. Furthermore, the calculated ionization potential (IP), electron affinity (EA) and reorganization energies also revealed that the extended FAP2 compound has the highest charge-transporting ability among the studied compounds. The calculated results are consistent to our experimental observations showing that FAP2 exhibits bright fluorescence with highest quantum yield in electroluminescent devices. Understanding of these properties is useful for further design of new HTMs of desired properties, such as high efficiency and stability.

  17. Capital requirements for the transportation of energy materials: 1979 ARC estimates. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-13

    This report contains TERA's estimates of capital requirements to transport natural gas, crude oil, petroleum products, and coal in the United States by 1990. The low, medium, and high world-oil-price scenarios from the EIA's Mid-range Energy Forecasting System (MEFS), as used in the 1979 Annual Report to Congress (ARC), were provided as a basis for the analysis and represent three alternative futures. TERA's approach varies by energy commodity to make best use of the information and analytical tools available. Summaries of transportation investment requirements through 1990 are given. Total investment requirements for three modes (pipelines, rails, waterways and the three energy commodities can accumulate to a $49.9 to $50.9 billion range depending on the scenario. The scenarios are distinguished primarily by the world price of oil which, given deregulation of domestic oil prices, affects US oil prices even more profoundly than in the past. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past.

  18. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...

  19. Thermoelectric transport properties of novel nanoscaled materials via homemade and commercial apparatus measurements

    Science.gov (United States)

    Lukas, Kevin C.

    Thermoelectric (TE) materials are of broad interest for alternate energy applications, specifically waste heat applications, as well as solid-state refrigeration. The efficiency of TE materials can be improved through either the enhancement of the Seebeck coefficient and electrical conductivity, or through the reduction of the thermal conductivity, kappa, specifically the lattice portion of thermal conductivity, kappalatt. Nanostructuring has been proven to reduce kappalatt and therefore increase efficiency. The inability to accurately model the lattice and electronic contributions to kappa makes optimizing the reduction of kappalatt difficult. This work demonstrates that the lattice and electronic contributions to kappa in nanostructured materials can be directly measured experimentally by separating the contributions using magnetic field. We use this technique along with other characterization techniques to determine the effects of doping Ce, Sm, and Ho into Bi88Sb12. Along with enhancing the efficiency of the material, TE devices must be thermally stable in the temperature range of operation. Therefore we also study the effects of temperature cycling, annealing, oxidation, and diffusion barriers on TE devices. These studies are accomplished through both homemade and commercially available measurement equipment.

  20. The system of emergency cards for primary actions in accident at radioactive material transport in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.V. [Div. of the Decommission of Nuclear and Radiation-Hazardous Object of the Federal Agency for Atomic Energy, Moscow (Russian Federation); Ermakov, S.V.; Ershov, V.N.; Stovbur, V.I. [FGUP ' ' Emergency Response Centre of Minatom of Russia' ' , St-Petersburg (Russian Federation); Shvedov, M.O. [Div. of Nuclear and Radiation Safety of the Federal Agency for Atomic Energy, Moscow (Russian Federation)

    2004-07-01

    In the paper are reviewed the current and new designed system of the emergency cards for consignments of radioactive materials in Russian Federation, within the framework of a uniform state system of warning and liquidation of consequences of extraordinary situations and functional subsystem of warning and liquidation of accident situations of Federal Agency for Atomic Energy.

  1. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  2. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  3. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells.

    Science.gov (United States)

    Matsui, Taisuke; Petrikyte, Ieva; Malinauskas, Tadas; Domanski, Konrad; Daskeviciene, Maryte; Steponaitis, Matas; Gratia, Paul; Tress, Wolfgang; Correa-Baena, Juan-Pablo; Abate, Antonio; Hagfeldt, Anders; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Getautis, Vytautas; Saliba, Michael

    2016-09-22

    Triarylamine-based polymers with different functional groups were synthetized as hole-transport materials (HTMs) for perovskite solar cells (PSCs). The novel materials enabled efficient PSCs without the use of chemical doping (or additives) to enhance charge transport. Devices employing poly(triarylamine) with methylphenylethenyl functional groups (V873) showed a power conversion efficiency of 12.3 %, whereas widely used additive-free poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) demonstrated 10.8 %. Notably, devices with V873 enabled stable PSCs under 1 sun illumination at maximum power point tracking for approximately 40 h at room temperature, and in the dark under elevated temperature (85 °C) for more than 140 h. This is in stark contrast to additive-containing devices, which degrade significantly within the same time frame. The results present remarkable progress towards stable PSC under real working conditions and industrial stress tests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simple dopant-free hole-transporting materials with p-π conjugated structure for stable perovskite solar cells

    Science.gov (United States)

    Sun, Mengna; Liu, Xueyuan; Zhang, Fei; Liu, Hongli; Liu, Xicheng; Wang, Shirong; Xiao, Yin; Li, Dongmei; Meng, Qingbo; Li, Xianggao

    2017-09-01

    Two simple hole-transporting materials, Me-QTPA and Me-BPZTPA, which consist of p-π conjugated structure, have been synthesized and studied in solid-state perovskite solar cells. Me-QTPA and Me-BPZTPA show outstanding thermal stabilities and appropriate HOMO levels; in addition, these two materials show wide band gaps, thus they can block the electron transport and hence suppress the carrier recombination. The solution-processed CH3NH3PbI3-based device using dopant-free Me-QTPA and Me-BPZTPA can achieve a power conversion efficiency of 9.07% and 8.16%, respectively. The perovskite solar cells with dopant-free Me-QTPA show better performance than the cells with dopant-free spiro-OMeTAD, especially in long-term stability. The power conversion efficiency for the perovskite solar cells with dopant-free Me-QTPA remains almost constant after 600 h. The dopant-free Me-QTPA layer shows strong hydrophobicity with a contact angle of 101.6° to water, which indicates that Me-QTPA has a promising long-term stability at room temperature.

  6. Expert Systems for the Analytical Laboratory.

    Science.gov (United States)

    de Monchy, Allan R.; And Others

    1988-01-01

    Discusses two computer problem solving programs: rule-based expert systems and decision analysis expert systems. Explores the application of expert systems to automated chemical analyses. Presents six factors to consider before using expert systems. (MVL)

  7. Expert Systems as Tools for Technical Communicators.

    Science.gov (United States)

    Grider, Daryl A.

    1994-01-01

    Discusses expertise, what an expert system is, what an expert system shell is, what expert systems can and cannot do, knowledge engineering and technical communicators, and planning and managing expert system projects. (SR)

  8. Electronic structure and microscopic charge-transport properties of a new-type diketopyrrolopyrrole-based material.

    Science.gov (United States)

    Huang, Jin-Dou; Li, Wen-Liang; Wen, Shu-Hao; Dong, Bin

    2015-04-15

    Recently, diketopyrrolopyrrole (DPP)-based materials have attracted much interest due to their promising performance as a subunit in organic field effect transistors. Using density functional theory and charge-transport models, we investigated the electronic structure and microscopic charge transport properties of the cyanated bithiophene-functionalized DPP molecule (compound 1). First, we analyzed in detail the partition of the total relaxation (polaron) energy into the contributions from each vibrational mode and the influence of bond-parameter variations on the local electron-vibration coupling of compound 1, which well explains the effects of different functional groups on internal reorganization energy (λ). Then, we investigated the structural and electronic properties of compound 1 in its isolated molecular state and in the solid state form, and further simulated the angular resolution anisotropic mobility for both electron- and hole-transport using two different simulation methods: (i) the mobility orientation function proposed in our previous studies (method 1); and (ii) the master equation approach (method 2). The calculated electron-transfer mobility (0.00003-0.784 cm(2) V(-1) s(-1) from method 1 and 0.02-2.26 cm(2) V(-1) s(-1) from method 2) matched reasonably with the experimentally reported value (0.07-0.55 cm(2) V(-1) s(-1) ). To the best of our knowledge, this is the first time that the transport parameters of compound 1 were calculated in the context of band model and hopping models, and both calculation results suggest that the intrinsic hole mobility is higher than the corresponding intrinsic electron mobility. Our calculation results here will be instructive to further explore the potential of other higher DPP-containing quinoidal small molecules.

  9. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    DEFF Research Database (Denmark)

    Lotz, Mikkel Rønne; Boll, Mads; Hansen, Ole;

    2014-01-01

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead...... to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D...... contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects. (C) 2014 AIP Publishing LLC....

  10. Material transport in laser-heated diamond anvil cell melting experiments

    Science.gov (United States)

    Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.

    1992-01-01

    A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.

  11. Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials

    KAUST Repository

    Das, Mita

    2010-10-06

    High-performance hybrid materials using carbon molecular sieve materials and 6FDA-6FpDA were produced. A detailed analysis of the effects of casting processes and the annealing temperature is reported. Two existing major obstacles, sieve agglomeration and residual stress, were addressed in this work, and subsequently a new membrane formation technique was developed to produce high-performing membranes. The successfully improved interfacial region of the hybrid membranes allows the sieves to increase the selectivity of the membranes above the neat polymer properties. Furthermore, an additional performance enhancement was seen with increased sieve loading in the hybrid membranes, leading to an actual performance above the upper bound for pure polymer membranes. The membranes were also tested under a mixed-gas environment, which further demonstrated promising results. © 2010 American Chemical Society.

  12. Sources, transport and deposition of terrestrial organic material: A case study from southwestern Africa

    Science.gov (United States)

    Herrmann, Nicole; Boom, Arnoud; Carr, Andrew S.; Chase, Brian M.; Granger, Robyn; Hahn, Annette; Zabel, Matthias; Schefuß, Enno

    2016-10-01

    Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific δ13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific δ13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific δ13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific δ13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.

  13. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    Science.gov (United States)

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos

  14. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  15. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes

    Science.gov (United States)

    Xiao, Yuqing; Cheng, Nian; Kondamareddy, Kiran Kumar; Wang, Changlei; Liu, Pei; Guo, Shishang; Zhao, Xing-Zhong

    2017-02-01

    Doping of TiO2 by metal elements for the scaffold layer of the perovskite solar cells has been proved to be one of the effective methods to improve the power conversion efficiency. In the present work, we report the impact of doping of TiO2 nanoparticles with different amounts of tungsten (W) on the photovoltaic properties of hole transport material free perovskite solar cells (PSCs) that employ carbon counter electrode. Light doping with W (less than 1000 ppm) improves the power conversion efficiencies (PCEs) of solar cells by promoting the electron conductivity in the TiO2 layer which facilitates electron transfer and collection. With the incorporation of W, average efficiency of PSCs is increased from 9.1% for the un-doped samples to 10.53% for the 1000 ppm W-doped samples, mainly originates from the increase of short circuit current density and fill factor. Our champion cell exhibits an impressive PCE of 12.06% when using the 1000 ppm W-doped TiO2 films.

  16. Fires in Operating or Abandoned Coal Mines or Heaps of Reactive Materials and the Governing Transport and Reaction Processes

    Science.gov (United States)

    Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.

    2007-05-01

    Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M

  17. Expert system aids reliability

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.T. [Tennessee Gas Pipeline, Houston, TX (United States)

    1997-09-01

    Quality and Reliability are key requirements in the energy transmission industry. Tennessee Gas Co. a division of El Paso Energy, has applied Gensym`s G2, object-oriented Expert System programming language as a standard tool for maintaining and improving quality and reliability in pipeline operation. Tennessee created a small team of gas controllers and engineers to develop a Proactive Controller`s Assistant (ProCA) that provides recommendations for operating the pipeline more efficiently, reliably and safely. The controller`s pipeline operating knowledge is recreated in G2 in the form of Rules and Procedures in ProCA. Two G2 programmers supporting the Gas Control Room add information to the ProCA knowledge base daily. The result is a dynamic, constantly improving system that not only supports the pipeline controllers in their operations, but also the measurement and communications departments` requests for special studies. The Proactive Controller`s Assistant development focus is in the following areas: Alarm Management; Pipeline Efficiency; Reliability; Fuel Efficiency; and Controller Development.

  18. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    Institute of Scientific and Technical Information of China (English)

    Lu Ming-Ming; Yuan Jie; Wen Bo; Liu Jia; Cao Wen-Qiang; Cao Mao-Sheng

    2013-01-01

    We investigate the dielectric properties of muhi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz.M WCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  19. CASKET: a computer code system for thermal and structural analyses of radioactive material transport and/or storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-05-01

    A computer code system CASKET (CASK thermal and structural analyses and Evaluation code system) for the thermal and structural analyses which are indispensable for radioactive material transport and/or storage cask designs has been developed. The CASKET is a simplified computer code system to perform parametric analyses on sensitivity evaluations in designing a cask and conducting its safety analysis. Main features of the CASKET are as follow: (1) it is capable to perform impact analysis of casks with shock absorbers, (2) it is capable to perform impact analysis of casks with fins. (3) puncture analysis of casks is capable, (4) rocking analysis of casks during seismic load is capable, (5) material property data library are provided for impact analysis of casks, (6) material property data library are provided for thermal analysis of casks, (7) fin energy absorption data library are provided for impact analysis of casks with fins are and (8) not only main frame computers (OS MSP) but also work stations (OS UNIX) and personal computers (OS Windows 3.1) are available. In the paper, brief illustrations of calculation methods are presented. Some calculation results are compared with experimental ones to confirm the computer programs are useful for thermal and structural analyses. (author)

  20. CASKET: a computer code system for thermal and structural analyses of radioactive material transport and/or storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-05-01

    A computer code system CASKET (CASK thermal and structural analyses and Evaluation code system) for the thermal and structural analyses which are indispensable for radioactive material transport and/or storage cask designs has been developed. The CASKET is a simplified computer code system to perform parametric analyses on sensitivity evaluations in designing a cask and conducting its safety analysis. Main features of the CASKET are as follow: (1) it is capable to perform impact analysis of casks with shock absorbers, (2) it is capable to perform impact analysis of casks with fins. (3) puncture analysis of casks is capable, (4) rocking analysis of casks during seismic load is capable, (5) material property data library are provided for impact analysis of casks, (6) material property data library are provided for thermal analysis of casks, (7) fin energy absorption data library are provided for impact analysis of casks with fins are and (8) not only main frame computers (OS MSP) but also work stations (OS UNIX) and personal computers (OS Windows 3.1) are available. In the paper, brief illustrations of calculation methods are presented. Some calculation results are compared with experimental ones to confirm the computer programs are useful for thermal and structural analyses. (author)

  1. Development of reactive artificial liner using recycled materials. 2. Chemical transport properties.

    Science.gov (United States)

    Chin, Johnnie Y; Asavanich, Pitch; Moon, Kyong-Whan; Park, Jae K

    2013-07-01

    Volatile organic compounds (VOCs) have so far been found to permeate through geomembranes within days and potentially pollute the surrounding groundwater if no sufficient depth of underlain soil barrier existed In order to cope with the fast breakthrough of VOCs through high-density polyethylene (HDPE) geomembrane in the composite liner system, a composite material made of recycled materials was proposed and its mechanical properties were analyzed in a previous study. This artificial liner was composed of crumb rubber, organo-clay, silica fume and epoxy binder together with an environmentally-friendly solvent recycled from paper pulping, and dimethyl sulfoxide as a plasticizer. In this study, the new artificial liner and a typical HDPE geomembrane were tested to compare their abilities to mitigate the movement of VOCs, specifically partition coefficient, diffusion coefficient and mass fluxes. It was found that this new artificial liner had 2-3 orders of magnitude less VOC mass flux than the HDPE geomembrane. The new artificial liner is thought to have a great potential for containing VOCs, even with a thickness of 2.5 cm, and as a substitute for the clay liner. The cost of installing the artificial liner was estimated to be $13.78/m(2). This is lower than the current geomembrane-related price of $19.70-26.91/m(2). The new liner might give a new perspective in future liner design and alleviate the concerning issue of groundwater pollution caused by landfill leachate, which might contain highly mobile VOCs.

  2. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  3. Expert and novice facilitated modelling

    DEFF Research Database (Denmark)

    Tavella, Elena; Papadopoulos, Thanos

    2015-01-01

    This paper provides an empirical study based on action research in which expert and novice facilitators in facilitated modelling workshops are compared. There is limited empirical research analysing the differences between expert and novice facilitators. Aiming to address this gap we study...

  4. Analytical model of electron transport characteristics for 4H-SiC material and devices

    Institute of Scientific and Technical Information of China (English)

    lü Hong-Liang; Zhang Yi-Men; Zhang Yu-Ming

    2004-01-01

    Based on 4H-SiC material parameters, three different analytical expressions are used to characterize the electron mobility as the function of electric field. The first model is based on simple saturation of the steady-state drift velocity with electric field (conventional three-parameter model for silicon). The second GaAs-based mobility model partially reflects the peak velocity in high electric fields. The third multi-parameter model proposed in this paper is more realistic since it well reproduces the drift velocity-field characteristics obtained by Monte Carlo calculations, revealing the peak drift velocity with subsequent saturation at higher electric fields. Thus, the drift velocity model presented in this paper is much better for device simulation. In this paper, the influence of mobility model on DC characteristics of 4H-SiC MESFET is calculated and the better accordance with the experimental results is presented with multi-parameter model.

  5. Fractional derivatives in the transport of drugs across biological materials and human skin

    Science.gov (United States)

    Caputo, Michele; Cametti, Cesare

    2016-11-01

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, because of its inhomogeneous nature, yielding a diffusion rate and a drug solubility strongly dependent on the local position across the membrane itself. These problems are particularly strengthened in composite structures of a considerable thickness like, for example, the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we propose a generalization of the diffusion model based on Fick's 2nd equation by substituting a diffusion constant by means of the memory formalism approach (diffusion with memory). In particular, we employ two different definitions of the fractional derivative, i.e., the usual Caputo fractional derivative and a new definition recently proposed by Caputo and Fabrizio. The model predictions have been compared to experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug, and 4-cyanophenol, a test chemical model compound. Moreover, we have also considered water penetration across human stratum corneum and the diffusion of an antiviral agent employed as model drugs across the skin of male hairless rats. In all cases, a satisfactory good agreement based on the diffusion with memory has been found. However, the model based on the new definition of fractional derivative gives a better description of the experimental data, on the basis of the residuals analysis. The use of the new definition widens the applicability of the fractional derivative to diffusion processes in highly heterogeneous systems.

  6. Engineering monitoring expert system's developer

    Science.gov (United States)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  7. International Congress of Automotive and Transport Engineering

    CERN Document Server

    Ispas, Nicolae

    2017-01-01

    The volume will include selected and reviewed papers from CONAT - International Congress of Automotive and Transport Engineering to be held in Brasov, Romania, in October 2016. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in automotive vehicles and environment, advanced transport systems and road traffic, heavy and special vehicles, new materials, manufacturing technologies and logistics, accident research and analysis and innovative solutions for automotive vehicles. The conference will be organized by SIAR (Society of Automotive Engineers from Romania) in cooperation with FISITA. .

  8. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Fire, Police, Transportation and Hazardous Materials

    Science.gov (United States)

    Van Anne, Craig; Scawthorn, Charles R.

    1994-01-01

    The papers in this chapter discuss some of the failures and successes that resulted from the societal response by a multitude of agencies to the Loma Prieta earthquake. Some of the lessons learned were old ones relearned. Other lessons were obvious ones which had gone unnoticed. Still, knowledge gained from past earthquakes spawned planning and mitigation efforts which proved to be successful in limiting the aftermath effects of the Loma Prieta event. At least four major areas of response are presented in this chapter: the Oakland Police Department response to the challenge of controlled access to the Cypress freeway collapse area without inhibiting relief and recovery efforts; search and rescue of the freeway collapse and the monumental crisis management problem that accompanied it; the short- and long-term impact on transbay transportation systems to move a large work force from home to business; and the handling of hazardous material releases throughout the Bay Area.

  9. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    Science.gov (United States)

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-01-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524

  10. Ti/Au Cathode for Electronic transport material-free organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Shi, Tongfei; Chen, Jian; Zheng, Jianqiang; Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi

    2016-12-01

    We have fabricated organic-inorganic hybrid perovskite solar cell that uses a Ti/Au multilayer as cathode and does not use electron transport materials, and achieved the highest power conversion efficiency close to 13% with high reproducibility and hysteresis-free photocurrent curves. Our cell has a Schottky planar heterojunction structure (ITO/PEDOT:PSS/perovskite/Ti/Au), in which the Ti insertion layer isolate the perovskite and Au layers, thus proving good contact between the Au and perovskite and increasing the cells’ shunt resistance greatly. Moreover, the Ti/Au cathode in direct contact with hybrid perovskite showed no reaction for a long-term exposure to the air, and can provide sufficient protection and avoid the perovskite and PEDOT:PSS layers contact with moisture. Hence, the Ti/Au based devices retain about 70% of their original efficiency after 300 h storage in the ambient environment.

  11. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...... for the non-linear global matrix formulation. The developed model and its numerical solution procedure are checked by running test examples which results demonstrates robustness of the proposed approach....

  12. Logistica de coleta e transporte de material biologico e organizacao do laboratorio central no ELSA-Brasil

    Directory of Open Access Journals (Sweden)

    Ligia G Fedeli

    2013-06-01

    Full Text Available O Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil é um estudo de coorte multicêntrico com o objetivo de identificar os fatores de risco associados ao diabetes tipo 2 e à doença cardiovascular na população brasileira. O artigo descreve as estratégias de coleta, processamento, transporte e de controle de qualidade dos exames de sangue e urina no ELSA. O estudo optou pela centralização dos exames em um único laboratório. O processamento das amostras foi realizado nos laboratórios locais, reduzindo o peso do material a ser transportado e diminuindo os custos do transporte para o laboratório central no Hospital da Universidade de São Paulo. O estudo incluiu exames para avaliação de diabetes, resistência à insulina, dislipidemias, alterações eletrolíticas, hormônios tireoidianos, ácido úrico, alterações de enzimas hepáticas, inflamação e hemograma completo. Além desses exames, foram estocados DNA de leucócitos, amostras de urina, plasma e soro. O laboratório central realizou aproximadamente 375.000 exames.

  13. Role of Inelastic Electron–Phonon Scattering in Electron Transport through Ultra-Scaled Amorphous Phase Change Material Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Xu, Xu; Anantram, M.P.

    2014-09-01

    The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.

  14. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT Images

    Directory of Open Access Journals (Sweden)

    Michael Angelo B. Promentilla

    2016-05-01

    Full Text Available Pore structure, tortuosity and permeability are considered key properties of porous materials such as cement pastes to understand their long-term durability performance. Three-dimensional image analysis techniques were used in this study to quantify pore size, effective porosity, tortuosity, and permeability from the X-ray computed tomography (CT images of deteriorated pastes that were subjected to accelerated leaching test. X-ray microtomography is a noninvasive three-dimensional (3D imaging technique which has been recently gaining attention for material characterization. Coupled with 3D image analysis, the digitized pore can be extracted and computational simulation can be applied to the pore network to measure relevant microstructure and transport properties. At a spatial resolution of 0.50 μm, the effective porosity (ψe was found to be in the range of 0.04 to 0.33. The characteristic pore size (d using a local thickness algorithm was found to be in the range of 3 to 7 μm. The geometric tortuosity (τg based on a 3D random walk simulation in the percolating pore space was found to be in the range of 2.00 to 7.45. The water permeability values (K using US NIST Permeability Stokes Solver range from an order of magnitudes of 10−14 to 10−17 m2. Indications suggest that as effective porosity increases, the geometric tortuosity increases and the permeability decreases. Correlation among these microstructure and transport parameters is also presented in this study.

  15. Towards the Semantic Web Expert System

    OpenAIRE

    Verhodubs, O; Grundspeņķis, J

    2011-01-01

    The paper presents a conception of the Semantic Web Expert System which is the logical continuation of the expert system development. The Semantic Web Expert System emerges as the result of evolution of expert system concept and it means expert system moving toward the Web and using new Semantic Web technologies. The proposed conception of the Semantic Web Expert System promises to have new useful features that distinguish it from other types of expert systems

  16. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries

    Science.gov (United States)

    Guin, M.; Tietz, F.

    2015-01-01

    One important issue in future scenarios predominantly using renewable energy sources is the electrochemical storage of electricity in batteries. Among all rechargeable battery technologies, Li-ion cells have the largest energy density and output voltage today, but they have yet to be optimized in terms of capacity, safety and cost for use as stationary systems. Recently, sodium batteries have been attracting attention again because of the abundant availability of Na. However, much work is still required in the field of sodium batteries in order to mature this technology. Sodium superionic conductor (NASICON) materials are a thoroughly studied class of solid electrolytes. In this study, their crystal structure, compositional diversity and ionic conductivity are surveyed and analysed in order to correlate the lattice parameters and specific crystal structure data with sodium conductivity and activation energy using as much data sets as possible. Approximately 110 compositions with the general formula Na 1 + 2 w + x - y + zMw(II) Mx(III) My(V) M2- w - x - y (IV) (SiO4)z(PO4) 3 - z were included in the data collection to determine an optimal size for the M cations. In addition, the impact of the amount of Na per formula unit on the conductivity and the substitution of P with Si are discussed. An extensive study of the size of the structural bottleneck for sodium conduction (formed by triangles of oxygen ions) was carried out to validate the influence of this geometrical parameter on sodium conductivity.

  17. Development of the Algorithm for Energy Efficiency Improvement of Bulk Material Transport System

    Directory of Open Access Journals (Sweden)

    Milan Bebic

    2013-06-01

    Full Text Available The paper presents a control strategy for the system of belt conveyors with adjustable speed drives based on the principle of optimum energy consumption. Different algorithms are developed for generating the reference speed of the system of belt conveyors in order to achieve maximum material cross section on the belts and thus reduction of required electrical drive power. Control structures presented in the paper are developed and tested on the detailed mathematical model of the drive system with the rubber belt. The performed analyses indicate that the application of the algorithm based on fuzzy logic control (FLC which incorporates drive torque as an input variable is the proper solution. Therefore, this solution is implemented on the newvariable speed belt conveyor system with remote control on an open pit mine. Results of measurements on the system prove that the applied algorithm based on fuzzy logic control provides minimum electrical energy consumption of the drive under given constraints. The paper also presents the additional analytical verification of the achieved results trough a method based on the sequential quadratic programming for finding a minimum of a nonlinear function of multiple variables under given constraints.

  18. Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Ince, C.

    2015-06-01

    Full Text Available The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs on water transport kinetics and mechanical properties of hydrated lime (CL90 and Portland cement (PC mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.El objetivo de este artículo es investigar el papel de los materiales cementantes suplementarios (SCMs en la cinética de transporte del agua y en las propiedades mecánicas de los morteros de cal hidratada (CL90 y cemento Portland. Las propiedades de la cal hidratada son significativamente diferentes a las del cemento y por lo tanto el control de las propiedades de los morteros frescos y endurecidos es fundamental en la optimización mortero/substrato en albañilería. Los parámetros estudiados en este trabajo son a menudo las principales barreras para el uso de la cal hidratada en la práctica de la construcción. Los resultados indican que la absortividad y el tiempo necesario para deshidratar morteros de cal hidratada recién mezclados pueden ser controlados cuando el conglomerante es parcialmente remplazado por SCMs. La resistencia a compresión de los morteros CL90 aumenta sistem

  19. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    Science.gov (United States)

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO2 film.

  20. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...