WorldWideScience

Sample records for materials transportation expert

  1. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  2. Expert systems for the transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-01-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic trademark programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them

  3. Development of an expert system for transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Michelhaugh, R.D.; Rawl, R.R.

    1994-01-01

    Under the sponsorship of the US Department of Energy's (DOE's) Transportation Management Division (EM-261), the Transportation Technologies Group at Oak Ridge National Laboratory (ORNL) has designed and developed an expert system prototype application of the hazardous materials transportation regulations. The objective of this task was to provide a proof-of-concept for developing a computerized expert system that will ensure straightforward, consistent, and error-free application of the hazardous materials transportation regulations. The expert system prototype entailed the analysis of what an expert in hazardous materials shipping information could/should do. From the analysis of the different features required for the expert system prototype, it was concluded that the developmental efforts should be directed to a Windows trademark 3.1 hypermedia environment. Hypermedia technology usually works as an interactive software system that gives personal computer users the ability to organize, manage, and present information in a number of formats--text, graphics, sound, and full-motion video

  4. Development of expert system for transport of radioactive materials with the KEE tools

    International Nuclear Information System (INIS)

    Kimura, Yoshitaka; Hasegawa, Keisuke; Ikezawa, Yoshio

    1990-01-01

    This paper presents the prototype of the expert system for the transport of radioactive material developed in the first step to the AI application to build an advanced radiation monitoring system. The system is composed of three subsystems on 'Judgment on the packages and the packagings', 'Diagnosis of confirmity of the packagings' and 'Judgment of transportable activities' and it will judge the type of the packages and the packagings and transportable activities, etc.. The system has brought the improvements on the rationalization and the reliability for our interpretations and judgments on the preparation of the transport of radioactive material. (author)

  5. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    Science.gov (United States)

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  6. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    2001-01-01

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  7. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  8. Concept of expert system for modal split in transportation planning

    Directory of Open Access Journals (Sweden)

    Popović Maja M.

    2006-01-01

    Full Text Available The objective of this paper is to develop a concept of expert system based on the survey of experts' opinions and their experience concerning relations in modal split, on the basis of parameters of transport system demand and transport supply, defined through PT travel time and city size, i.e. mean trip length. This expert system could be of use both to experts and less experienced planners who could apply the knowledge contained in this expert system for further improvement, on operational as well as on strategic level.

  9. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  10. Expert system aids transport regulation users

    International Nuclear Information System (INIS)

    Cheshire, R.D.; Straw, R.J.

    1990-01-01

    During late 1984 the IAEA Regulations were identified as an area of application for an expert system adviser which could offer many advantages. Over the following year some simple tests were carried out to examine its feasibility, but TRANAID did not get underway until 1986 when British Nuclear Fuels (BNFL) Corporate Management services were engaged on the product. By this time a greater choice of suitable software, in the form of expert system shells, had become available. After a number of trial systems the shell Leonardo was finally adopted for the final system. In order for TRANAID to emulate the expert it was necessary to spend time extracting and documenting the expert knowledge. This was a matter of investigating how the regulations are used and was achieved by a series of meetings including opportunity for the computer specialists to interview the regulations experts. There are several benefits in having an expert system advisor in this area. It is useful to both experienced and inexperienced users of regulations. For those who are learning to use the regulations it is an excellent training aid. For those who know the regulations but use them infrequently it can save time and provide a valuable reassurance. The adviser has enabled the expert user's know how to be captured and to be made widely available to those with less experience. (author)

  11. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Lenail, B.

    1984-01-01

    Transport of radioactive materials is dependent of transport regulations. In practice integrated doses for personnel during transport are very low but are more important during loading or unloading a facility (reactor, plant, laboratory, ...). Risks occur also if packagings are used outside specifications. Recommendations to avoid these risks are given [fr

  12. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  13. Critical review of expert system validation in transportation

    Science.gov (United States)

    1997-01-01

    Expert system validationthat is, testing systems to ascertain whether they achieve acceptable performance levelshas with few exceptions been ad hoc, informal, and of dubious value. Very few efforts have been made in this regard in the transport...

  14. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  15. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  16. Nuclear materials transportation

    International Nuclear Information System (INIS)

    Ushakov, B.A.

    1986-01-01

    Various methods of nuclear materials transportation at different stages of the fuel cycle (U 3 O 8 , UF 6 production enrichment, fuel element manufacturing, storage) are considered. The advantages and drawbacks of railway, automobile, maritime and air transport are analyzed. Some types of containers are characterized

  17. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  18. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  19. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  20. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  1. Radioactive material transport

    International Nuclear Information System (INIS)

    White, M.C.

    1979-10-01

    All movements of radioactive materials in Canada are governed by a comprehensive body of regqlations, both national and international. These regulations are designed to maximize shielding to the public and transport workers, allow for heat dissipation, and to prevent criticality accidents, by prescribing specific packaging arrangements, administrative controls, labelling and storage measures. This report describes in some detail specific requirements and summarizes some incidents that occurred between 1974 and 1978

  2. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Huck, W.

    1992-01-01

    The book presents a systematic survey of the legal provisions governing the transport of radioactive materials, placing emphasis on the nuclear licensing provisions of sections 4, 4b of the Atomic Energy, Act (AtG) and sections 8-10 of the Radiation Protection Ordinance (StrlSchV), also considering the provisions of the traffic law governing the carriage of hazardous goods. The author's goal is to establish a systematic basis by comparative analysis of the licensing regulations under atomic energy law, for the purpose of formulating a proposed amendment to the law, for the sake of clarity. The author furthermore looks for and develops criteria that can be of help in distinguishing the regulations governing the carriage of hazardous goods from the nuclear regulatory provisions. He also examines whether such a differentiation is detectable, particularly in those amendments to the StrlSchV which came after the Act on Carriage of Hazardous Goods. The regulations governing the transport of radioactive materials under the AtG meet with the problem of different classification systems being applied, to radioactive materials in the supervisory regulations on the one hand, and to nuclear materials in Annex 1 to the AtG on the other hand. A classification of natural, non-nuclear grade uranium e.g. by the financial security provisions is difficult as a result of these differences in the laws. The author shows that the transport regulations of the StrlSchV represent an isolated supervisory instrument that has no connecting factor to the sections 28 ff StrlSchV, as radiation protection is provided for by the regulations of the Act on Carriage of Hazardous Goods. The author suggests an amendment of existing law incorporating the legal intent of sections 8-10 StrlSchV and of sections 4, 4b AtG into two sections, and abolishing the supervisory provisions of the StrlSchV altogether. (orig./HP) [de

  3. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  4. Research on the Importance of Language Culture for Transport Experts

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2014-06-01

    Full Text Available The article analyses the importance of language culture for transport experts. The analysis has been conducted on a questionnaire basis. Pursuant to the questionnaire, the obtained data were aimed at establishing if the use of a correct language might increase employment possibilities, if service suppliers talking correctly were stronger preferred, what sources designated for language culture were used in order to revise the accuracy of the employed terminol- ogy (or word, etc. The questionnaire also presents terms more relevant to transport staff and investigates the frequency of the used terminology both correct and incorrect. The researched data have been systemized and presented in the form of charts.

  5. Saturated Zone Flow and Transport Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, Kevin J.; Perman, Roseanne C.

    1998-01-01

    This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and

  6. Transports of radioactive materials

    International Nuclear Information System (INIS)

    Sousselier, Yves

    1982-01-01

    Transport safety depends on the packaging, and the degree of safety must be adapted to the potential hazards of the substance carried. The various kinds of packagings and their strength are examined and the transport of irradiated fuels from the safety angle is taken as example and a comparison is made with the transport of conventional dangerous substances [fr

  7. Safe transport of radioactive material. 4. ed

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been publishing Regulations for the Safe Transport of Radioactive Material since 1961. Meeting its statutory obligation to foster the exchange and training of scientists and experts in the field of peaceful uses of atomic energy, the IAEA has developed a standardized approach to transport safety training. This training manual is an anchor of the standardized approach to training. It is a compendium of training modules for courses related to the different aspects of safety of transport of radioactive material. Keeping in view the specific needs of the potential users, the manual includes material that can be used for a variety of training programmes of duration ranging from half-a-day to ten days, for specific audiences such as competent authority personnel, public authorities, emergency response personnel and cargo handlers

  8. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    Delivering radioactive material to where it is needed is a vital service to industry and medicine. Millions of packages are shipped all over the world by all modes of transport. The shipments pass through public places and must meet stringent safety requirements. This video explains how radioactive material is safely transported and describes the rules that carriers and handlers must follow

  9. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  10. Radioactive material transporting container

    International Nuclear Information System (INIS)

    Watabe, Yukio.

    1990-01-01

    As a supporting member of a sealing container for containing spent fuels, etc., a straight pipe or a cylinder has been used. However, upon dropping test, the supporting member is buckled toward the central axis of a transporting container and a shock absorber is crushed in the axial direction to prevent its pushing force to the outer side, which may possibly hinder normal shock moderating function. Then, at least more than one-half of the supporting member is protruded radially to the outer side of the sealing container beyond the fixed portion with the sealed container, so that the member has a portion extended in the radial outside of the transporting container with an angle greater than the angle formed between a line connecting the outer circumference at the bottom of an outer cylinder with the gravitational center of the transporting container and the central axis of the transporting container. As a result, buckling of the supporting member toward the central axis of the transporting container upon dropping test can be prevented and the deformation of the shock absorber is neither not prevented to exhibit normal shock absorbing effect. This can improve the reliability and reduce the amount of shock absorbers. (N.H.)

  11. Transport of nuclear materials

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During november and december 2001, 2 events concerning nuclear transport were reported and classified on the first grade (grade 1) of the INES scale. The first event concerns a hole in a transport cask of contaminated tools. The hole seems to have been made by the fork of a handling equipment. The second event concerns the loss of a parcel containing a technetium generator, this generator represented an activity of about 141 G Becquerel of 99 Mo the day it left the premises of CIS-bio in Saclay. (A.C.)

  12. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  13. Radioactive materials transport experience

    International Nuclear Information System (INIS)

    Langhaar, J.W.

    1976-01-01

    This paper presents a brief review of the kinds of packaging suitable for different types of waste, the roles of highway and rail transport, restrictions imposed by political entities and carriers, and safety. The U. S. accident record is described, with some statistics given

  14. Safe transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The film shows the widespread use of radioactive materials in industry, medicine and research and explains the need for transporting nuclear material from producer to user. It shows the way in which packages containing radioactive materials are handled during transport and explains the most important provisions of the IAEA transport regulations, safety series no. 6, such as packaging design criteria and testing requirements, illustrated by various tests carried out, specimen packages and package and freight container labelling. Also illustrated are practical measures to be taken in case of an accident

  15. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  16. Overview of nuclear materials transportation

    International Nuclear Information System (INIS)

    Grella, A.W.

    1986-01-01

    This presentation is an overview of transportation as it relates to one specific type of material, low specific activity (LSA) material. It is the predominant type of material that fits into the low-level waste category. An attempt is made to discuss how LSA is regulated, setting forth the requirements. First the general scheme of regulations are reviewed. In addition future changes in the regulations which will affect transportation of LSA materials and, which quite likely, will have an impact on R and D needs in this area are presented

  17. The transport of hazardous materials

    International Nuclear Information System (INIS)

    Goemmel, F.

    1987-01-01

    The rapid development of all kinds of transports has been leading to a continuously increasing number of accidents involving the release and escape of hazardous materials. The risks involved for men and the environment have to be realized and reduced to a minimum. Efforts in this field have meanwhile been accumulating an enormous quantity of rules, recommendations and regulations. They comprise, among others, both national and international rail transport, maritime transport, inland shipping, air and road transport regulations adding up to a total of about 5000 pages. The publication discusses the necessity and justification of the existing quantity of regulations, it deals with their possible simplification and modified user-oriented arrangement as well as with a possible international harmonization of regulations. Apart from giving a general survey of the transport of hazardous materials the author reviews the intensive efforts which are going into the safety of the transport of hazardous materials and points out technical and legal problems which have remained unsolved so far. The publication essentially contributes to clearing up the background, perspectives and prospects of the complex regulations controlling the transport of hazardous materials. (orig./HP) [de

  18. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Hamel, P.E.

    In Canada, large numbers of packages containing radioactive materials are shipped for industrial, medical and commercial purposes. The nature of the hazards and the associated risks are examined; the protection measures and regulatory requirements are indicated. The result of a survey on the number of packages being shipped is presented; a number of incidents are analyzed as a function of their consequences. Measures to be applied in the event of an emergency and the responsibility for the preparation of contingency plans are considered. (author) [fr

  19. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  20. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  1. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1990-01-01

    Recently the Agency redefined its policy for education and training in radiation safety. The emphasis is now on long-term strategic planning of general education and training programmes. In line with this general policy the Agency's Standing Advisory Group for the Safe Transport of Radioactive Material (SAGSTRAM) in its 7th meeting (April 1989) agreed that increased training activity should be deployed in the area of transport. SAGSTRAM specifically recommended the development of a standard training programme on this subject area, including audio-visual aids, in order to assist Member States in the implementation of the Agency's Regulations for the Safe Transport of Radioactive Material. This training programme should be substantiated by a biennial training course which is thought to be held either as an Interregional or a Regional Course depending on demand. This training manual, issued as a first publication in the Training Course Series, represents the basic text material for future training courses in transport safety. The topic areas covered by this training manual and most of the texts have been developed from the course material used for the 1987 Bristol Interregional Course on Transport Safety. The training manual is intended to give guidance to the lecturers of a course and will be provided to the participants for retention. Refs, figs and tabs

  2. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  3. Transport of radioactive materials. 2. rev. ed.

    International Nuclear Information System (INIS)

    Vogt, H.W.; Falkhof, W.; Heibach, K.; Ungermann, N.; Hungenberg, H.

    1991-01-01

    With the last changes in the Ordinance Concerning the Transport of Hazardous Goods two regulations which are important for the carrying trade were introduced: 1. The conveyer must train the driver. He must only employ reliable drivers. 2. The driver must participate in a training course (as of July 1, 1991). These obligations, which already existed in the past in regard to the transport of nuclear fuel, have been extended to include the transport of other radioactive materials. In part I the book deals with basic training courses for parcelled goods, and part II goes into the special knowledge which is required of drivers of radioactive materials. The parts consist of the following sections: 1. General regulations, 2, Responsibility when transporting hazardous goods, 3. General danger features, 4. Information on dangers and their designation, 5. The vehicle's equipment and carrying out the transport, 6. Measures for avoiding accidents. At the end of each section the participant in the course finds a series of questions which pertain to the subject matter just treated so that he can test his own learning performance. So as to make things easier for the trainee, the corect answers are listed in the appendix. As a supplementary section on radioactive materials, part II offers additional detailed explanations by experts in the field on the features of radioactive materials and the dangers they pose. In the margin - next to the instructory text - the key words are given so that the right place in the text of the instruction manual can be readily found. These key words are compiled in the appendix to form an index. (orig./HP) [de

  4. Truck transportation of radioactive materials

    International Nuclear Information System (INIS)

    Madsen, M.M.; Wilmot, E.L.

    1983-01-01

    Analytical models in RADTRAN II are used to calculate risks to population subgroups such as people along transport routes, people at stops, and crewman. The stops model, which calculates the dose to persons adjacent to the transport vehicle while it is stopped, frequently provides the largest contribution to incident-free radiological impacts. Components such as distances from the vehicle containing radioactive material to nearby people at stops, stop duration, and number of crew members are required for the stops model as well as other incident-free models. To provide supporting data for RADTRAN II based on operational experience, selected truck shipments of radioactive material were observed from origin to destination. Other important aspects of this program were to correlate package size to effective shipment transport index (TI) using radiological surveys and to characterize population distributions and proximities of people to the shipment at a generic truck stop

  5. Uncontrolled transport of nuclear materials

    International Nuclear Information System (INIS)

    Wassermann, U.

    1985-01-01

    An account is given of international transport of plutonium, uranium oxides, uranium hexafluoride, enriched uranium and irradiated fuel for reprocessing. Referring to the sinking of the 'Mont Louis', it is stated that the International Maritime Organization has been asked by the National Union of Seamen and 'Greenpeace' to bar shipment of radioactive material until stricter international safety regulations are introduced. (U.K.)

  6. Auditors of safety in hazardous materials transportation

    International Nuclear Information System (INIS)

    Manas Lahoz, J.L.

    1993-01-01

    The author describes the methodology for safety auditory and control, prevention, risks of hazardous materials transport through ship, airplane, rail, etc. In this way, The author presents the classification of damage materials transport, characteristic damage and different transport methods

  7. Perspective on transporting nuclear materials

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1975-01-01

    An evaluation is made of the material flow to be expected up to the year 2000 to and from the various steps in the nuclear cycle. These include the reactors, reprocessing plants, enrichment plants, U mills, U conversion plants, and fuel fabrication plants. A somewhat more-detailed discussion is given of the safety engineering that goes into the design of containers and packages and the selection of the mode of transportation. The relationship of shipping to siting and transportation accidents is considered briefly

  8. The transportation of hazardous materials

    International Nuclear Information System (INIS)

    Hillman, J.C.

    1981-04-01

    The increasing use of dangerous chemicals and petroleum products by S.A. industry makes it necessary for some form of control to be introduced to regulate the transport of these materials before a major disaster occurs, such as has occurred overseas. This report examines all the aspects that could increase the likelihood of such a disaster occurring, including the preparedness of emergency services. It also recommends the improvements or changes required to minimize this possibility. It is apparent that the training and ability of vehicle drivers are key areas in this respect and they are discussed at length. Forthcoming regulations under the Hazardous Substances Act No. 15 of 1973 are examined and the effects of over-restrictive legislation considered. The report concludes that legislation promulgated gradually to reinforce voluntary industrial practices will ultimately restrict this type of transport to the safety-conscious and competent operator, therefore minimizing the risk as much as possible

  9. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  10. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Doroszlai, P.; Ferroni, F.

    1984-01-01

    A cylindrical container for the transportation of radioactive reactor elements includes a top end, a bottom end and a pair of removable outwardly curved shock absorbers, each including a double-shelled construction having an internal shell with a convex intrados configuration and an external shell with a convex extrados configuration, the shock absorbers being filled with a low density energy-absorbing material and mounted at the top end and the bottom end of the container, respectively, and each of the shock absorbers having a toroidal configuration, and deformable tubes disposed within the shock absorbers and extending in the axial direction of the container

  11. The expert system OPTRAN (Ver 1.0) and its application to beam transportation line design

    International Nuclear Information System (INIS)

    Xiao Meiqin; Lu Hongyou; Fan Mingwu

    1994-01-01

    The expert system OPTRAN (Ver 1.0) used for beam transportation line design is introduced. The knowledge storage and reasoning principle, of which the intelligence part of OPTRAN are composed, have been described in detail. By using OPTRAN (Ver 1.0), the design of a beam transportation line for extracted ion beam of Cyclone 30 was completed

  12. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  13. A method for estimation of fatigue properties from hardness of materials through construction of expert system

    International Nuclear Information System (INIS)

    Jeon, Woo Soo; Song, Ji Ho

    2001-01-01

    An expert system for estimation of fatigue properties from simple tensile data of material is developed, considering nearly all important estimation methods proposed so far, i.e., 7 estimation methods. The expert system is developed to utilize for the case of only hardness data available. The knowledge base is constructed with production rules and frames using an expert system shell, UNIK. Forward chaining is employed as a reasoning method. The expert system has three functions including the function to update the knowledge base. The performance of the expert system is tested using the 54 ε-N curves consisting of 381 ε-N data points obtained for 22 materials. It is found that the expert system developed has excellent performance especially for steel materials, and reasonably good for aluminum alloys

  14. International Regulations for Transport of Radioactive Materials, History and Security

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2013-01-01

    International Regulations for the transport of radioactive materials have been published by International Atomic Energy Agency (IAEA) since 1961. These Regulations have been widely adopted into national Regulations. Also adopted into different modal Regulations such as International Air Transport Association (IATA) and International Martime Organization (IMO). These Regulations provide standards for insuring a high level of safety of general public, transport workers, property and environment against radiation, contamination, criticality hazard and thermal effects associated with the transport of radioactive wastes and materials. Several reviews conducted in consultation with Member States (MS) and concerned international organizations, resulted in comprehensive revisions till now. Radioactive materials are generally transported by specialized transport companies and experts. Shippers and carriers have designed their transport operations to comply with these international Regulations. About 20 million consignments of radioactive materials take place around the world each year. These materials were used in different fields such as medicine, industry, agriculture, research, consumer product and electric power generation. After September 11,2001, the IAEA and MS have worked together to develop a new guidance document concerning the security in the transport of radioactive materials. IAEA have initiated activities to assist MS in addressing the need for transport security in a comprehensive manner. The security guidance and measures were mentioned and discussed. The transport security becomes more developed and integrated into national Regulations of many countries beside the safety Regulations. IAEA and other International organizations are working with MS to implement transport security programs such as guidance, training, security assessments and upgrade assistance in these fields.

  15. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Messenger, W. de L.M.

    1979-02-01

    The hazards of radioactive materials in transport are surveyed. The system whereby they are safely transported between nuclear establishments in the United Kingdom and overseas is outlined. Several popular misconceptions are dealt with. (author)

  16. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  17. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    International Nuclear Information System (INIS)

    Apisit, Patchimpattapong; Alireza, Haghighat; Shedlock, D.

    2003-01-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  18. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    Energy Technology Data Exchange (ETDEWEB)

    Apisit, Patchimpattapong [Electricity Generating Authority of Thailand, Office of Corporate Planning, Bangkruai, Nonthaburi (Thailand); Alireza, Haghighat; Shedlock, D. [Florida Univ., Department of Nuclear and Radiological Engineering, Gainesville, FL (United States)

    2003-07-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  19. Radioactive material accidents in the transport

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Magalhaes, M.H.; Sanches, M.P.; Sordi, G.M.A.A.

    2008-01-01

    Transport is an important part of the worldwide nuclear industry and the safety record for nuclear transport across the world is excellent. The increase in the use of radioactive materials in our country requires that these materials be moved from production sites to the end user. Despite the number of packages transported, the number of incidents and accidents in which they are involved is low. In Brazil, do not be records of victims of the radiation as a result of the transport of radioactive materials and either due to the accidents happened during the transports. The absence of victims of the radiation as result of accidents during the transports is a highly significant fact, mainly to consider that annually approximately two hundred a thousand packages containing radioactive material are consigned for transport throughout the country, of which eighty a thousand are for a medical use. This is due to well-founded regulations developed by governmental and intergovernmental organizations and to the professionalism of those in the industry. In this paper, an overview is presented of the activities related to the transport of radioactive material in the state of Sao Paulo. The applicable legislation, the responsibilities and tasks of the competent authorities are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. It also presents the packages amounts of carried and the accidents occurred during the transport of radioactive materials, in the last five years. The main occurred events are argued, demonstrating that the demanded requirements of security for any transport of radioactive material are enough to guarantee the necessary control of ionizing radiation expositions to transport workers, members of general public and the environment. (author)

  20. Nuclear materials transport in France

    International Nuclear Information System (INIS)

    Korycanek, J.

    1990-01-01

    About 1.5 million tons of uranium ore, 8000 tons of uranium concentrate, 1000 tons of UF 6 , 340 spent fuel containers, and 30 000 m 3 of nuclear wastes are transported annually by trucks, trains and ships in France. Annual costs of this transportation amount to 500-600 million FRF, and about 200 employees are engaged in this activity. Transportation of spent fuel to the La Hague and Marcoule fuel reprocessing plants, and the transport of plutonium are dealt with in detail. (Z.M.). 5 figs., 1 ref

  1. Accidents during transport of radioactive material

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Radioactive materials are a part of modern technology and life. They are used in medicine, industry, agriculture, research and electrical power generation. Tens of millions of packages containing radioactive materials are consigned for transport each year throughout the world. In India, about 80000 packages containing radioactive material are transported every year. The amount of radioactive material in these packages varies from negligible amounts used in consumer products to very large amounts in shipment of irradiator sources and spent nuclear fuel

  2. Safe and secure: transportation of radioactive materials

    International Nuclear Information System (INIS)

    Howe, D.

    2015-01-01

    Western Waste Management Facility is Central Transportation Facility for Low and Intermediate waste materials. Transportation support for Stations: Reactor inspection tools and heavy water between stations and reactor components and single bundles of irradiated fuel to AECL-Chalk River for examination. Safety Track Record: 3.2 million kilometres safely travelled and no transportation accident - resulting in a radioactive release.

  3. A demonstration of expert systems applications in transportation engineering : volume III, evaluation of the prototype expert system TRANZ.

    Science.gov (United States)

    1990-01-01

    The validation and evaluation of an expert system for traffic control in highway work zones (TRANZ) is described. The stages in the evaluation process consisted of the following: revisit the experts, selectively distribute copies of TRANZ with docume...

  4. Safe transport of radioactive material. 3. ed

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA

  5. Safe transport of radioactive material. 3. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA.

  6. Desirability and feasibility of sustainable urban transport systems. An expert-based strategic scenario approach

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, P.; Ouwersloot, H.; Rienstra, S.A. [Department of Spatial Economics, Faculty of Economics and Econometrics, Vrije Universiteit, Amsterdam (Netherlands)

    1995-09-01

    Current trends in transport indicate that the system is moving away from sustainability and that major changes are necessary to make the transport system more compatible with environmental sustainability. Main problems may occur in urban transport, where not many promising solutions are expected, while the problems are severe. In view of the great number of uncertainties, we will in our paper resort to scenarios. In the paper, expert scenarios, which lead to a sustainable transport system are constructed by applying the recently developed `Spider model`. Based on a set of distinct characteristics, leading to eight axes in the spatial, institutional, economic and social-psychological field, an evaluation framework is constructed, which visualizes the driving forces that largely influence the future of the transport system. Next, expected and desired scenarios are constructed by means of opinions of Dutch transport experts - both average scenarios and scenarios of segments of the respondents - which have been investigated by means of a survey. The expected scenarios indicate that many current trends will continue, while the transport system is largely the same as the current one. The desired scenarios on the other hand, suggest the emergence and the need for a more collective system, in which also many new modes are operating. In the paper the resulting urban transport systems are also discussed. By calculating the CO2 emissions in the average expected and desired scenario, it appears that the expected scenario does not lead to a large scale reduction of those emissions; the desired scenario however, may lead to a large scale reduction of the emissions. The conclusion is that the differences in expert opinion are small and that the road towards a sustainable (urban) transport system is still far away, although the compact city concept may perhaps offer some solution. 6 figs., 2 tabs., 18 refs.

  7. Transportation of radioactive materials - a utility view

    International Nuclear Information System (INIS)

    Futter, J.L.

    1979-01-01

    Local restrictions to transportation of radioactive materials have proliferated, and the reasons for this are described. Some of the measures which could be undertaken to counteract this trend are discussed. People should speak out on the need for nuclear power in general and for transportation of nuclear materials in particular

  8. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  9. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  10. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items

  11. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Bibby, D.

    1978-01-01

    A transport container for transporting irradiated nuclear fuel is described comprising a steel flask with detachable cover and having external heat exchange fins. The flask contains a solid annular shield comprised of discrete bodies of Pb or Fe bonded together by a solid matrix, for attenuating gamma rays and neutron emission. This may comprise lead shot bonded together by concrete or polyethylene, or alternatively iron shot bonded by concrete. (UK)

  12. Legal aspects of radioactice materials transport

    International Nuclear Information System (INIS)

    Frejman, Eh.S.

    1986-01-01

    The main statements of the Safety rules for radioactive materials transport PBTRV-73 applied in the USSR are considered. The rules cover the whole complex of security measures at all the stages of radioactive materials transprt including requirements to packaging, radiation monitoring, measures of individual protection and personal hygiene, measures at accidents and fires. Separate rules for radioactive materials handling when using rail, air, maritime and road transports are developed on the basis of this document

  13. Ontario hydro radioactive material transportation field guide

    International Nuclear Information System (INIS)

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  14. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  15. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  16. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  17. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  18. Alternative materials for sustainable transportation.

    Science.gov (United States)

    2012-08-01

    A shortage of asphalt and polymers is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oil, untreated bio oil (UTB), treated bio oil (TB) and polymer-modified bio oil (PMB) were studied in this resear...

  19. Plasma transport near material boundaries

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix

  20. Radioactive Material (Road Transport) Act 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act came into force on 27 August 1991. It replaces earlier legislation dating from 1948 and enables the United Kingdom to give effect to the International Atomic Energy Agency's (IAEA) latest recommended Regulations for the Safe Transport of Radioactive Material. The new Act clarifies and extends the power of the Secretary of State to make regulations regarding, among other things, the design, labelling, handling, transport and delivery of packages containing radioactive material and the placarding of vehicles transporting such packages. The Act gives the Secretary of State the power to appoint inspectors to assist him in enforcing the regulations. (NEA)

  1. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  2. Storage and transport of hazardous materials

    International Nuclear Information System (INIS)

    Jaeger, P.; Haferkamp, K.

    1986-01-01

    The attempt has been made to characterise the present risk scenario, and to set out approaches or methods for remedy and risk control. For this purpose, a retrospective analysis has been made of accidents, damage and consequential damage that occurred in the past either during storage of hazardous materials, or during road transport. A risk-benefit model facilitates assessment of accident frequency. The history of accidents during storage or transport allows assessment of the dangerousness of various materials. Another important aspect discussed is the property and behaviour of containers used for storage or transport. (DG) [de

  3. Role IAEA implementation of ICRP-60 on regulations the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Elshinawy, R.K.M.; Gomaa, M.A.

    1994-01-01

    In november 1990, the (ICRP) adopted its 1990 recommendations (ICRP-60) ( 1). These recommendations will significantly influence not only IAEA's basic safety standards (safety series 9) ( 2), but also the IAEA regulations for the safe transport of radioactive material ( 3) and its supporting documents ( 4-6). IAEA experts are currently engaged in the revision of the transport regulations. This revision process led to the publication of the revised transport regulations of 1966. The transport regulations are developed to ensure safety during movement of radioactive materials, and to provide reasonable assurance that the transport activities comply with the basic safety standards for radiation protection

  4. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    In the course of transport by road, rail, sea and air, consignments of radioactive material are in close proximity to ordinary members of the public and in most cases they are loaded and unloaded by transport workers who have no special training or experience in the handling of radioactive substances. The materials being transported cover a wide variety - ranging from small batches of short-lived radionuclides used in medical practice which can be transported in small sealed lead pots in cardboard boxes, to large, extremely radioactive consignments of irradiated nuclear fuel in flasks weighing many tons. With the growing development of nuclear power programmes the transport of irradiated fuel is likely to increase markedly. It is clear that unless adequate regulations concerning the design and assembly of the packages containing these materials are precisely set down and strictly carried out, there would be a high probability that some of the radioactive contents would be released, leading to contamination of other transported goods and the general environment, and to the delivery of a radiation dose to the transport workers and the public. An additional requirement is that the transport should proceed smoothly and without delay. This is particularly important for radioactive materials of short half-life, which would lose significant amounts of their total activity in unnecessary delays at international boundaries. Therefore, it is essential that the regulations are also enforced, to ensure that the radioactive material is contained and the surrounding radiation level reduced to a value which poses no threat to other sensitive goods such as photographic film, or to transport workers and other passengers. These regulations should be as uniform as possible on an international basis, so that consignments can move freely from one country to another with as little delay as possible at the frontiers. (author)

  5. INES- French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After gaining control of radioactive material transport in June 1997, the French Nuclear Safety Authority (ASN) decided to apply the International Nuclear Event Scale (INES scale) to transport events. The Directorate General for Nuclear Safety and Radioprotection (DGSNR) requests that radioactive material package consignors declare any event occurring during transport, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. The INES scale is applicable to events arising in nuclear installations associated with the civil nuclear industry and events occurring during the transport of radioactive materials to and from them. The INES scale consists of seven levels. It is based on the successive application of three types of criterion (off-site impact, on-site impact and degradation of defence in depth) and uses the maximum level to determine the rating of an accident. As the transport in question takes place on public thoroughfares, only the off-site impact criteria and degradation of defence in-depth criteria apply. This paper deals with DGSNR's feedback during the past 7 years concerning the French application of the INES scale. Significant events that occurred during transport are presented. The French experience was used by the International Atomic Energy Agency (IAEA) to develop a draft guide in 2002 and the IAEA asked countries to use a new draft for a trial period in July 2004. (author)

  6. Expert system for the reliability assessment of hydro-carbon transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Lukacs, J.; Nagy, G.; Toeroek, I. [Department of Mechanical Technology, University of Miskolc, Miskolc-Egyetemvaros (Hungary)

    1998-12-31

    Safety operation, condition monitoring, periodical inspection and rehabilitation of high-pressure hydro-carbon transporting pipelines are a complex problem. To answer arising questions is inconceivable without technical-critical evaluation of defects - originated during manufacturing or operation - can be found on the pipeline. This evaluation must be in line with requirements of our age, i.e. it has to assert such concept of which basis is not the `possible worst` but the `just happening wrong`. Solving these problems without application of computer resources is inconceivable in our time. The final purpose of the solution is the expert system and among the components of the expert system primarily the development of the knowledge base is needed. The paper demonstrates a possible structure of the knowledge base, furthermore its fundamental elements and their contents (defect types, evaluation possibilities of defects, categorisation of pipelines) and summaries the prospective advantages of its application. (orig.) 27 refs.

  7. The transport of radioactive materials - Future challenges

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Materials, TS-R-1, set the standards for the packages used in the transport of radioactive materials under both normal and accident conditions. Transport organisations are also required to implement Radiation Protection Programmes to control radiation dose exposure to both workers and the public. The industry has now operated under this regulatory regime safely and efficiently for nearly 50 years. It is vital that this record be maintained in the future when the demands on the transport industry are increasing. Nuclear power is being called upon more and more to satisfy the world's growing need for sustainable, clean and affordable electricity and there will be a corresponding demand for nuclear fuel cycle services. There will also be a growing need for other radioactive materials, notably large sources such as Cobalt 60 sources for a range of important medical and industrial uses, as well as radio-pharmaceuticals. A reliable transport infrastructure is essential to support all these industry sectors and the challenge will be to ensure that this can be maintained safely and securely in a changing world where public and political concerns are increasing. This paper will discuss the main issues which need to be addressed. The demand for uranium has led to increased exploration and the development of mines in new locations far removed from the demand centres. This inevitably leads to more transport, sometimes from areas potentially lacking in transport infrastructure, service providers, and experience. The demand for sources for medical applications will also increase, particularly from the rapidly developing regions and this will also involve new transport routes and increased traffic. This raises a variety of issues concerning the ability of the transport infrastructure to meet the future challenge, particularly in an environment where there already exists reluctance on

  8. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1991-01-01

    The transport of radioactive material embraces the carriage of radioisotopes for industrial, medical and research uses, and the movement of waste, in addition to consignments of nuclear fuel cycle material. It has been estimated that between eighteen and thirty-eight million package shipments take place each year. On the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), which enjoys wide representations from the Agency's Member States and international organizations, the Secretariat is preparing a training kit comprising this training manual and complementary visual aids. The kit is intended to be the basis for an extensive course on the subject and can be used in whole or in part for inter-regional, regional and even national training purposes. Member States can thus benefit from the material either through training courses sponsored by the Agency, or, alternatively, organized by themselves. As a step towards achieving that goal, the current training manual was compiled using material from the first Inter-Regional Training Course on the Safe Transport of Radioactive material that was held in co-operation with the Nuclear Power Training Centre of the then Central Electricity Generating Board at Bristol, United Kingdom. This Manual was initially published in 1990. On the recommendation of the Agency's Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), the Manual has since been expanded and updated in time for the second Inter-Regional Training Course, that will in 1991 similarly be held in Bristol. Refs, figs, tabs

  9. Biomechanical differences between expert and novice workers in a manual material handling task.

    Science.gov (United States)

    Plamondon, Andre; Denis, Denys; Delisle, Alain; Lariviere, Christian; Salazar, Erik

    2010-10-01

    The objective was to verify whether the methods were safer and more efficient when used by expert handlers than by novice handlers. Altogether, 15 expert and 15 novice handlers were recruited. Their task was to transfer four boxes from a conveyor to a hand trolley. Different characteristics of the load and lifting heights were modified to achieve a larger variety of methods by the participants. The results show that the net moments at the L5/S1 joint were not significantly different (p > 0.05) for the two groups. However, compared with the novices, the experts bent their lumbar region less (experts 54° (SD 11°); novices 66° (SD 15°)) but bent their knees more (experts approx. 72° (SD approx. 30°); novices approx. 53° (SD approx. 33°), which brought them closer to the box. The handler's posture therefore seems to be a major aspect that should be paid specific attention, mainly when there is maximum back loading. STATEMENT OF RELEVANCE: The findings of this research will be useful for improving manual material handling training programmes. Most biomechanical research is based on novice workers and adding information about the approach used by expert handlers in performing their tasks will help provide new avenues for reducing the risk of injury caused by this demanding physical task.

  10. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  11. Transport of radioactive material in Canada

    International Nuclear Information System (INIS)

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material

  12. Transport of radioactive material in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material.

  13. Current trends in nuclear material transportation

    International Nuclear Information System (INIS)

    Ravenscroft, Norman; Oshinowo, Franchone

    1997-01-01

    The business of radioactive material transportation has evolved considerably in the past 40 years. Current practices reflect extensive international experience in handling radioactive cargo within a mature and tested regulatory framework. Nevertheless, new developments continue to have an impact on how shipments of nuclear material are planned and carried out. Entities involved in the transport of radioactive materials must keep abreast of these developments and work together to find innovative solutions to ensure that safe, smooth transport activities may continue. Several recent trends in the regulatory environment and political atmosphere require attention. There are four key trends that we'll be examining today: 1) the reduction in the pool of available commercial carriers; 2) routing restrictions; 3) package validation issues; and 4) increasing political sensitivities. Careful planning and cooperative measures are necessary to alleviate problems in each of these areas. (author)

  14. Safe transport of radioactive materials in Egypt

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    1994-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 and 1991 and their nationalities are also discussed. The protective measures are mentioned. A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes. (Author)

  15. Radioactive materials transporting container and vehicles

    International Nuclear Information System (INIS)

    Reese, S.L.

    1980-01-01

    A container and vehicle therefor for transporting radioactive materials is provided. The container utilizes a removable system of heat conducting fins made of a light weight highly heat conductive metal, such as aluminum or aluminum alloys. This permits a substantial reduction in the weight of the container during transport, increases the heat dissipation capability of the container and substantially reduces the scrubbing operation after loading and before unloading the radioactive material from the container. The vehicle utilizes only a pair of horizontal side beams interconnecting a pair of yoke members to support the container and provide the necessary strength and safety with a minimum of weight

  16. Perception of risks in transporting radioactive materials

    International Nuclear Information System (INIS)

    Shepherd, E.W.; Reese, R.T.

    1983-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation is presented in which perceived risk was described in six basic terms: technical feasibility, political palatability, social responsibility, benefit assessment, media interpretation, and familiarity as a function of time. Scientists, the media and public officials contribute to the discussion of risks but ultimately people will decide for themselves how they feel and what they think. It is not sufficient to consider the public of not being enlightened enough to participate in the formulation of radioactive material transport policy. The framework provides the technologist with an initial formulation to better inform the public and to understand public perception

  17. Expert System for natural gas transportation network management; Sistema especialista para gerenciamento de redes de transporte de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonny Carlos da; Porciuncula, Gilson Simoes [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica Lab. de Sistemas Hidraulicos e Pneumaticos

    2003-07-01

    This paper presents a project to integrate expert system and dynamic simulation of natural gas transportation network applying the concept of agents. Natural gas pipeline operation requires the intermittent analysis of hundreds interrelated operational parameters, which represent the network state. The combination of expert system and dynamic simulation is a synergic solution for this kind of problem. With expert system techniques, it is possible to implement rules that describe the relationship between current operational parameters and the network normal operational conditions based on heuristic knowledge. By applying such rules, the system aims to evaluate the real network state and to predict abnormal conditions via dynamic simulation, allowing time analysis of operational situation in advance. At the current stage, the project presents a well defined model. The process of knowledge acquisition and representation has taken place following an incremental approach, considered as development paradigm. The project objectives are to reduce costs, increase the reliability and organize pipeline operation and maintenance information. This work is part of SEGRED project established as partnership among LASHIP/UFSC, SCGAS, TBG and PETROBRAS. The project also received support from FINEP. (author)

  18. Instructions for safe transport of radioactive materials

    International Nuclear Information System (INIS)

    2005-01-01

    This entrance includes 5 chapters and tables and supplement. Chapter I contains the definitions and general provisions contained 5 materials. Chapter II contains radioactive materials packaging and permissible limits and it contains 8 materials. The provisions of Chapter III contains descriptions Missionaries. Chapter IV describes shipping instructions. As for the separation of V It contains Final provisions. The entrance contains number of tables speaks of the basic values of radioactive isotopes and radiation also limits activity and the requirements of industrial parcels and limits transactions to transport freight containers, as well as the International Classification of hazardous materials. This also includes entrance to the Supplement to some forms and Alohat

  19. Electronic Transport in Two-Dimensional Materials

    Science.gov (United States)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  20. Transport of radioactive materials by post

    International Nuclear Information System (INIS)

    1984-11-01

    The objective of the Seminar was to encourage safe and efficient carriage of radioactive material by post. Adequate, up-to-date regulations for international and domestic shipment of radioactive material by all modes of transport, including by mail, have been published by the IAEA. UPU, ICAO, IATA and other international organizations as well as a majority of the countries of the world have adopted most sections of the Agency's Regulations for the Safe Transport of Radioactive Material. Although there is an apparent need for shipping radioactive material by mail, some countries allow only domestic shipments and the postal regulations applied in these countries often differs from the international regulations. Only about 25 countries are known to allow international (as well as domestic) shipments. From the discussions and comments at the Seminar, it appears that the option of shipment by post would be advantageous to enhance both the safety and economy of transporting, as well as to increase availability of, radioactive materials. The Agency's Regulations for transport by post as adopted by the UPU and ICAO are considered to provide a high level of safety and ensure a negligible element of risk. A more uniform application of these regulations within UPU Member States should be encouraged. The competent authority for implementation of the other parts of the Agency's Regulations in each of the Member States should be invited to advise the Postal Administrators and assist in applying the requirements to national as well as international postal shipments

  1. Transportation of hazardous and nuclear materials

    International Nuclear Information System (INIS)

    Boryczka, M.; Shaver, D.

    1989-01-01

    Transportation of hazardous and radioactive materials is a vital part of the nation's economy. In recent years public concern over the relative safety of transporting hazardous materials has risen sharply. The United States has a long history of transporting hazardous and radioactive material; rocket propellants, commercial spent fuel, low-level and high-level radioactive waste has been shipped for years. While the track record for shipping these materials is excellent, the knowledge that hazardous materials are passing through communities raises the ire of citizens and local governments. Public outcry over shipments containing hazardous cargo has been especially prominent when shippers have attempted to transport rocket propellants or spent nuclear fuel. Studies of recent shipments have provided insight into the difficulties of shipping in a politically charged environment, the major issues of concern to citizens, and some of the more successful methods of dealing with public concerns. This paper focuses on lessons learned from these studies which include interviews with shippers, carriers, and regulators

  2. RADTRAN3, Risk of Radioactive Material Transport

    International Nuclear Information System (INIS)

    Madsen, M.M.; Taylor, J.M.; Ostmeyer, R.M.; Reardon, P.C.

    2001-01-01

    1 - Description of program or function: RADTRAN3 is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population sub- groups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Ground-shine, ingestion, inhalation, direct exposure, resuspension, and cloud-shine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN3 can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable. RADTRAN4 offers advances in the handling of route-related data and in the treatment of multiple-isotope materials. 2 - Method of solution: There are several modes used in the transporting of radioactive material such as trucks, passenger vans, passenger airplanes, rail and others. With these modes of transport come several shipment scenarios. The RADTRAN4 methodology uses material, transportation, population distribution, and health effects models to treat the incident-free case. To handle the vehicle accident impacts, accident severity and package release, meteorological dispersion, and economic models are also employed. 3 - Restrictions on the complexity of the problem: There are no apparent limitations due to programming dimensions

  3. Legal aspects of transport of nuclear materials

    International Nuclear Information System (INIS)

    Jacobsson, Mans.

    The Paris Convention and the Brussels Supplementary Convention are briefly discussed and other conventions in the field of civil liability for nuclear damage are mentioned: the Vienna Convention, the Nuclear Ships Convention and the 1971 Convention relating to civil liability in the field of maritime carriage of nuclear material. Legislation on civil liability in the Nordic countries, which is based on the Paris Convention and the Supplementary Convention is discussed, notably the principle of channelling of liability and exceptions from that principle due to rules of liability in older transport conventions and certain problems due to the limited geographical scope of the Paris Convention and the Supplementary Convention. Insurance problems arising in connection with transport of nuclear materials are surveyed and an outline is given of the administrative provisions concerning transport (based on the IAEA transport regulations) which govern transport of radioactive materials by different means: road, rail, sea and air. Finally, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons is discussed. (NEA) [fr

  4. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  5. Expert-guided optimization for 3D printing of soft and liquid materials

    Science.gov (United States)

    Abdollahi, Sara; Davis, Alexander; Miller, John H.

    2018-01-01

    Additive manufacturing (AM) has rapidly emerged as a disruptive technology to build mechanical parts, enabling increased design complexity, low-cost customization and an ever-increasing range of materials. Yet these capabilities have also created an immense challenge in optimizing the large number of process parameters in order achieve a high-performance part. This is especially true for AM of soft, deformable materials and for liquid-like resins that require experimental printing methods. Here, we developed an expert-guided optimization (EGO) strategy to provide structure in exploring and improving the 3D printing of liquid polydimethylsiloxane (PDMS) elastomer resin. EGO uses three steps, starting first with expert screening to select the parameter space, factors, and factor levels. Second is a hill-climbing algorithm to search the parameter space defined by the expert for the best set of parameters. Third is expert decision making to try new factors or a new parameter space to improve on the best current solution. We applied the algorithm to two calibration objects, a hollow cylinder and a five-sided hollow cube that were evaluated based on a multi-factor scoring system. The optimum print settings were then used to print complex PDMS and epoxy 3D objects, including a twisted vase, water drop, toe, and ear, at a level of detail and fidelity previously not obtained. PMID:29621286

  6. Expert-guided optimization for 3D printing of soft and liquid materials.

    Science.gov (United States)

    Abdollahi, Sara; Davis, Alexander; Miller, John H; Feinberg, Adam W

    2018-01-01

    Additive manufacturing (AM) has rapidly emerged as a disruptive technology to build mechanical parts, enabling increased design complexity, low-cost customization and an ever-increasing range of materials. Yet these capabilities have also created an immense challenge in optimizing the large number of process parameters in order achieve a high-performance part. This is especially true for AM of soft, deformable materials and for liquid-like resins that require experimental printing methods. Here, we developed an expert-guided optimization (EGO) strategy to provide structure in exploring and improving the 3D printing of liquid polydimethylsiloxane (PDMS) elastomer resin. EGO uses three steps, starting first with expert screening to select the parameter space, factors, and factor levels. Second is a hill-climbing algorithm to search the parameter space defined by the expert for the best set of parameters. Third is expert decision making to try new factors or a new parameter space to improve on the best current solution. We applied the algorithm to two calibration objects, a hollow cylinder and a five-sided hollow cube that were evaluated based on a multi-factor scoring system. The optimum print settings were then used to print complex PDMS and epoxy 3D objects, including a twisted vase, water drop, toe, and ear, at a level of detail and fidelity previously not obtained.

  7. Radioactive material (road transport) bill. [Third reading

    International Nuclear Information System (INIS)

    Fishburn, D.; Walley, J.; Currie, E.

    1991-01-01

    This is a private members Bill which will enable new rules to be set out that will govern the way in the which nearly 500,000 shipments of radioactive and nuclear material go by road in the United Kingdom every year. It would give the Department of Transport, which would become the enforcing authority, the powers of entry and inspection and allows penalties to be exacted from those breaking the rules. The present regulations for transport by road are those set out in 1947 and these need to be updated to comply with International Atomic Energy Authority Standards. The debate which lasted over one and a half hours is reported verbatim. The main points raised were about which emergency services if any should be notified on the transport of nuclear materials, with particular reference to Derbyshire. Nuclear power in general was also discussed. (UK)

  8. GIS risk analysis of hazardous materials transport

    International Nuclear Information System (INIS)

    Anders, C.; Olsten, J.

    1991-01-01

    The Geographic Information System (GIS) was used to assess the risks and vulnerability of transporting hazardous materials and wastes (such as gasoline, explosives, poisons, etc) on the Arizona highway system. This paper discusses the methodology that was utilized, and the application of GIS systems to risk analysis problems

  9. International transport of uranium materials from China

    International Nuclear Information System (INIS)

    Xu Chizhi; Long Xiuaowei; Achilles, G.

    1993-01-01

    An example of international cooperation is given on the transport of frontend materials from China to Europe. With the assistance of NCS, CNEIC entered into discussions and negotiations with COSCO, the national Chinese shipping line in order to make much cheaper sea transport possible. One of the difficulties to overcome was the passage through the Suez canal but CNEIC, NCS and the port authorities were present to assure smooth operation, during the first passage through the canal, CNEIC key personnels had training at the NCS office in Germany in relation to transport regulations and practice on the job. In turn, NCS personnels were introduced into site specific conditions in China by CNEIC. In the meantime, about 150 containers loaded with yellow cake and about 120 cylinders with low enriched UF6 have been smoothly transported by sea from Shanghai through the Suez canal to European ports. (E.Y.)

  10. Questions raised on transport of nuclear material

    International Nuclear Information System (INIS)

    Lubinska, A.

    1984-01-01

    Public opinion is demanding safer rules for the shipment of radioactive materials since the recent collision and sinking of a French freighter carrying uranium hexafluoride. At issue is the secrecy of the cargo, the delay in releasing information to the public and salvage crews, and the use of unmarked trucks. The nuclear industry points out that no recent incidents have led to the loss of human life, but there is concern among European Community members that a number of countries have yet to ratify international conventions and agreements on hazardous materials transport, that none of these agreements are mandatory, and that none address the transfrontier movement of waste materials

  11. Relative consequences of transporting hazardous materials

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Rhyne, W.R.; Simmons, J.A.; Reese, R.T.

    1980-01-01

    The objective of this paper is to discuss methods under study at Transportation Technology Center to develop a perspective on how technical measures of hazard and risk relate to perception of hazards, harm, and risks associated with transporting hazardous materials. This paper is concerned with two major aspects of the relative hazards problem. The first aspect is the analyses of the possible effects associated with exposure to hazardous materials as contained in the following two parts: outlines of possible problems and controversies that could be encountered in the evaluation and comparisons of hazards and risks; and description of the various measures of harm (hazards or dangers) and subsequent comparisons thereof. The second aspect of this paper leads into a presentation of the results of a study which had the following purposes: to develop analytical techniques for a consistent treatment of the phenomenology of the consequences of a release of hazardous materials; to reduce the number of variables in the consequence analyses by development of transportation accident scenarios which have the same meteorological conditions, demography, traffic and population densities, geographical features and other appropriate conditions and to develop consistent methods for presenting the results of studies and analyses that describe the phenomenology and compare hazards. The results of the study are intended to provide a bridge between analytical certainty and perception of the hazards involved. Understanding the differences in perception of hazards resulting from transport of various hazardous materials is fraught with difficulties in isolating the qualitative and quantitative features of the problem. By relating the quantitative impacts of material hazards under identical conditions, it is hoped that the perceived differences in material hazards can be delineated and evaluated

  12. Expert training on physical protection of nuclear materials at universities of Russia

    International Nuclear Information System (INIS)

    Pogozhin, N.S.; Bondarev, P.V.; Geraskin, N.I.; Kryuchkov, E.F.; Tolstoy, A.I.

    2002-01-01

    Full text: The expert training on physical protection of nuclear materials in Russia is carry out by the universities on the following directions: 'Physical Protection, Control and Accountability of Nuclear Materials (MPCA)' master educational program. 'Physical and technical problems of atomic engineering' master educational standard. 'Technical Physics' direction. Qualification - master of physics. Duration of training - two years. 'Physical protection of nuclear objects' specialization. 'Nuclear physics and technology' educational standard of a direction for professionally qualified expert training. 'Safety and nonproliferation of nuclear materials' specialty. Qualification - engineer-physician. Duration of training - five years. The Master educational program is intended for the expert training with fundamental knowledge. The masters are assigned to work at the establishments of the Ministry of Atomic Energy of Russia and at the state committee on nuclear supervision (Gosatomnaozor). Many graduates continue their education as post-graduate students. The program is designed for the experts having education of an engineer or a bachelor. The program concept consists in integration in a uniform educational process: profound scientific and technical knowledge; system approach to designing MPCA systems; knowledge of scientific and technical principles, means, devices; MPCA facilities and tools; legal, political and economic aspects of nuclear material management; modern computer and information technologies for MPCA systems; research work and practice of the students. The educational program for 'physical protection of nuclear objects' specialization is intended for the expert training of a practical orientation. Engineer-physicians are assigned as a rule to work at the nuclear objects and are intended for operation and servicing of the certain physical protection systems (PPS). The program concept consists in training not only fundamental aspects of an engineering

  13. Meeting Materials for OECD Expert Meeting on Categorization of Manufactured Nanomaterials on September 17-19, 2014

    Science.gov (United States)

    Here are materials for the OECD Working Party on Nanomanufactured Materials Expert Meeting on Categorization of Nanomaterials (developing nanomaterial categories) took place on September 17-19, 2014 in Washington, D.C hosted by U.S. EPA.

  14. Perceptions, perspectives, proportions: Radioactive material transport

    International Nuclear Information System (INIS)

    1985-01-01

    Nearly a hundred years ago in 1893 - when railroads still monopolized land transport, the first set of international rules governing shipments of hazardous materials were issued to cover their movement by rail. Since then, more than a dozen international bodies, and scores of national regulatory agencies, have published regulations directed at the carriage of dangerous goods by road, sea, air, as well as rail. The regulatory network today covers virtually all kinds of substances and commodities that are used for beneficial purposes, but that under certain conditions are potentially harmful to people and the environment. 'The Problems Encountered by International Road Transport in Multimodal Transport Operations', by M. Marmy, paper presented at the 8th International Symposium on the Transport and Handling of Dangerous Goods by Sea and Associated Modes, Havana, Cuba, 1984. These include the chemical fertilizers farmers spread on their fields, the nuclear fuel now powering electricity plants in some two dozen countries, the drugs physicians use to diagnose and treat illnesses, and the fossil fuels, such as gasoline, routinely used in transport vehicles. All told today, about 21 different international labels are required to identify separate classes of dangerous goods among them, explosives, corrosives, and flammables. Another separate class radioactive materials is the specific subject of feature articles in this issue of the IAEA Bulletin. The evolving regulatory system reflects at once the growth in traffic of hazardous materials, essentially a post-World War II trend. Since the mid-1940s, for example, the transport of all dangerous goods just on the seas has grown 1000%. based on reports at a recent international conference. Overall, years ahead will see further increases

  15. Levitation, coating, and transport of particulate materials

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown

  16. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1996-01-01

    In 1991, the International Atomic Energy Agency published Training Course Series No. 1 (TCS-1), a training manual that provides in 20 chapters a detailed discussion of the background, philosophy, technical bases and requirements and implementation aspects of the Regulations for the Safe Transport of Radioactive Material. The Transport Regulations are widely implemented by the IAEA's Member States and are also used as the bases for radioactive material transport requirements of modal organisations such as the International Maritime Organization and the International Civil Aviation Organization. This document is a supplement of TCS-1 to provide additional material in the form of learning aids and new exercises, that have been developed with the use of TCS-1 at succeeding IAEA training courses. The learning aids in the first part of the supplement are hitherto unpublished material that provide detailed guidance useful in solving the exercises presented in the second part. Solutions to the exercises are on field at the IAEA Secretariat and are available by arrangement to lectures presenting IAEA training courses. 4 refs, 1 fig., 6 tabs

  17. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  18. Report on the combined meeting of the core confinement and internal transport barrier expert group, confinement database and modeling expert group and edge pedestal expert group, 12-16 April 1999, Garching

    International Nuclear Information System (INIS)

    Janeschitz, G.; Connor, J.W.; Cordey, G.; Kardaun, O.; Mukhovatov, V.; Stambaugh, R.; Ryter, F.; Wakatani, M.

    1999-01-01

    This contribution to the ITER EDA Newsletter reports on the combined meeting of the core confinement and internal transport barrier expert group, confinement database and modeling expert group and edge pedestal expert group in Garching, Germany. This is the first workshop of its kind after the re-organisation of the expert groups. The new scheme of the meetings, namely to permit more interaction between groups by arranging them at the same time and location turned out to be very successful. The main issues discussed were for the Confinement Database: merging of edge pedestal and confinement data, improvement of the density- and magnetic shape parameters, addition of new dedicated threshold data, the effect of different divertors in JET; for the H-Mode Power Threshold Database: assembly of a new version of the database with about 650 time points from 10 tokamaks; for the 1-D Modelling Workshop: management of the database after the re-organisation of the Joint Central Team an ongoing efforts in plasma transport modelling; for the newly formed pedestal group: issues of the H-mode shear layer at the plasma edge. There was also an executive summary given of a recent USA workshop on internal transport barriers and regimes with weak or negative magnetic shear

  19. Leaktightness definitions for and leakage tests on packages for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Tanguy, L.

    1989-07-01

    In 1986, the International Organization for Standardization asked a group of experts representing some fifteen countries to draft a standard for the leaktightness of packagings used for the transport of radioactive materials. Progress of work and test before shipping of packages are reviewed

  20. MAX: an expert system for running the modular transport code APOLLO II

    International Nuclear Information System (INIS)

    Loussouarn, O.; Ferraris, C.; Boivineau, A.

    1990-01-01

    MAX is an expert system built to help users of the APOLLO II code to prepare the input data deck to run a job. APOLLO II is a modular transport-theory code for calculating the neutron flux in various geometries. The associated GIBIANE command language allows the user to specify the physical structure and the computational method to be used in the calculation. The purpose of MAX is to bring into play expertise in both neutronic and computing aspects of the code, as well as various computational schemes, in order to generate automatically a batch data set corresponding to the APOLLO II calculation desired by the user. MAX is implemented on the SUN 3/60 workstation with the S1 tool and graphic interface external functions

  1. Determining the nature of transported material

    International Nuclear Information System (INIS)

    Wykes, J.S.; Surzyn, P.M.; Croke, G.M.; Adsley, I.

    1980-01-01

    An improved method is described of determining the nature of a coal/stone mixture, transported on a conveyor, by measuring the relative transmission of two different energy x-ray beams. Details are given of the collimation, scintillation counters and shielding required to obtain the necessary accuracy to obtain information on the mass and the nature of the material being monitored. Compensation is provided for background radioactivity. (U.K.)

  2. Provision of transport packaging for radioactive materials

    International Nuclear Information System (INIS)

    1981-04-01

    The safe transport of radioactive materials is governed by various regulations based on International Atomic Energy Agency Regulations. This code of practice is a supplement to the regulations, its objects being (a) to advise designers of packaging on the technical features necessary to conform to the regulations, and (b) to outline the requirements for obtaining approval of package designs from the competent authority. (U.K.)

  3. Perceived safety of transporting hazardous materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Shepherd, E.W.

    1981-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation was presented. The framework consisted of a conditional mathematical equation in which perceived safety was described by six basic terms (technical feasibility, political palatability, social responsibility, utility assessment, media interpretation, and familiarity as a function of time). The resulting framework provides the technologist with an initial formulation to better understand public perception

  4. 10 CFR 71.5 - Transportation of licensed material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of licensed material. 71.5 Section 71.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL General Provisions § 71.5 Transportation of licensed material. (a) Each licensee who transports licensed...

  5. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  6. Radioactive materials' transportation main routes in Brazil. Radiation protection aspects about radioactive materials transportation

    International Nuclear Information System (INIS)

    Vaz, Solange dos Reis e; Andrade, Fernando de Menezes; Aleixo, Luiz Claudio Martins

    2007-01-01

    The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)

  7. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  8. Selection of engineering materials for heat exchangers (An expert system approach)

    International Nuclear Information System (INIS)

    Ahmed, K.; Abou-Ali, M.; Bassuni, M.

    1997-01-01

    The materials selection as a part of the design process of the heat exchangers is one of the most important steps in the whole industry. The clear recognition of the service requirements of the different types of the heat exchangers is very important to select the adequate and economic materials to meet such requirements. of course the manufacturer should ensure that failure does not occur in service specially it is one of the main and fetal component of the nuclear reactor, pressurized water type (PWR). It is necessary to know the possible mechanisms of failure. Also the achievement of the materials selection using the expert system approach in the process sequence of heat exchanger manufacturing is introduced. Different parameters and requirements controlling each process and the linkage between these parameters and the final product will be shown. 2 figs., 3 tabs

  9. Readability of written medicine information materials in Arabic language: expert and consumer evaluation.

    Science.gov (United States)

    Al Aqeel, Sinaa; Abanmy, Norah; Aldayel, Abeer; Al-Khalifa, Hend; Al-Yahya, Maha; Diab, Mona

    2018-02-27

    Written Medicine Information (WMI) is one of the sources that patients use to obtain information concerning medicine. This paper aims to assess the readability of two types of WMIs in Arabic language based on vocabulary use and sentence structure using a panel of experts and consumers. This is a descriptive study. Two different types of materials, including the online text from King Abdullah Bin Abdulaziz Arabic Health Encyclopaedia (KAAHE) and medication leaflets submitted by the manufacturers to the Saudi Food and Drug Authority (SFDA) were evaluated. We selected a group of sentences from each WMI. The readability was assessed by experts (n = 5) and consumers (n = 5). The sentence readability of each measured using a specific criteria and rated as 1 = easy, 2 = intermediate, or 3 = difficult. A total of 4476 sentences (SFDA 2231; KAHEE 2245) extracted from websites or patient information leaflets on 50 medications and evaluated. The majority of the vocabulary and sentence structure was considered easy by both expert (SFDA: 68%; KAAHE: 76%) and consumer (SFDA: 76%; KAAHE: 84%) groups. The sentences with difficult or intermediate vocabulary and sentence structure are derived primarily from the precautions and side effects sections. The SFDA and KAAHE WMIs are easy to read and understand as judged by our study sample. However; there is room for improvement, especially in sections related to the side effects and precautions.

  10. A Computer Clone of Human Expert for Mobility Management Scheme (E-MMS): Step toward Green Transportation

    Science.gov (United States)

    Resdiansyah; O. K Rahmat, R. A.; Ismail, A.

    2018-03-01

    Green transportation refers to a sustainable transport that gives the least impact in terms of social and environmental but at the same time is able to supply energy sources globally that includes non-motorized transport strategies deployment to promote healthy lifestyles, also known as Mobility Management Scheme (MMS). As construction of road infrastructure cannot help solve the problem of congestion, past research has shown that MMS is an effective measure to mitigate congestion and to achieve green transportation. MMS consists of different strategies and policies that subdivided into categories according to how they are able to influence travel behaviour. Appropriate selection of mobility strategies will ensure its effectiveness in mitigating congestion problems. Nevertheless, determining appropriate strategies requires human expert and depends on a number of success factors. This research has successfully developed a computer clone system based on human expert, called E-MMS. The process of knowledge acquisition for MMS strategies and the next following process to selection of strategy has been encode in a knowledge-based system using a shell expert system. The newly developed computer cloning system was successfully verified, validated and evaluated (VV&E) by comparing the result output with the real transportation expert recommendation in which the findings suggested Introduction

  11. Safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The report describes the development of system concepts for the safeguarding of special strategic nuclear materials (SNM) against malevolent adversary action during the interfacility transport of the SNM. The methodology used includes techniques for defining, classifying, and analyzing adversary action sequences; defining safeguards system components; assessing the vulnerability of various safeguards systems and their component parts to the potential adversary action sequences, and conceptualizing system design requirements. The method of analysis is based primarily on a comparison of adversary actions with safeguards measures, to estimate vulnerability. Because of the paucity of the data available for assessing vulnerability, the Delphi approach was used to generate data: values were estimated in a structured exercise by a panel of experts in the safeguards and terrorist fields. It is concluded that the probability of successful attack against a truck/escort convoy manned by well-trained, well-armed personnel is low enough to discourage all but the strongest adversaries. Secrecy of operations and careful screening of personnel are very important. No reliance should be placed on current capabilities of local law enforcement agencies. The recommendation of the study is the use of road transport in the near future and air transport at a later time when the number of shipments reaches a level to justify it, and when present safety problems are resolved

  12. Colloid transport in model fracture filling materials

    Science.gov (United States)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  13. Lithium mass transport in ceramic breeder materials

    International Nuclear Information System (INIS)

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H 2 to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400 degree C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T 2 O(g) above Li 2 O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs

  14. Evaluation of issues around road materials for sustainable transport

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2009-07-01

    Full Text Available In addition to a number of other factors (social, economic, etc) sustainable transport requires the sustainable supply and use of construction materials. This includes the use of marginal materials, waste materials, novel / innovative materials...

  15. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  16. METHODS OF IMPROVING THE RELIABILITY OF THE CONTROL SYSTEM TRACTION POWER SUPPLY OF ELECTRIC TRANSPORT BASED ON AN EXPERT INFORMATION

    Directory of Open Access Journals (Sweden)

    O. O. Matusevych

    2009-03-01

    Full Text Available The author proposed the numerous methods of solving the multi-criterion task – increasing of reliability of control system on the basis of expert information. The information, which allows choosing thoughtfully the method of reliability increasing for a control system of electric transport, is considered.

  17. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    1997-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (Author)

  18. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    2000-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and the regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  19. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  20. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  1. Quantum transport through 3D Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)

    2015-08-15

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  2. Quantum transport through 3D Dirac materials

    International Nuclear Information System (INIS)

    Salehi, M.; Jafari, S.A.

    2015-01-01

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect

  3. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  4. Transportation of hazardous materials (hazmat) a literature survey

    OpenAIRE

    Zafer YILMAZ; Serpil EROL; Hakan Soner APLAK

    2016-01-01

    ransportation has a great role in logistics. Many researchers have studied on transportation and vehicle routing problems. Transportation of hazardous materials (hazmat) is a special subject for logistics. Causalities due to the accidents caused by trucks carrying hazardous materials will be intolerable. Many researchers have studied on risk assessment of hazmat transportation to find ways for reducing hazardous material transportation risks. Some researchers have studied routing of hazmat tr...

  5. Transportation of radioactive materials in Sweden

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1979-06-01

    This report is designed to calculate the total risk due to shipping radioactive materials in Sweden. The base case developed is the shipment model that is used now or the best estimate for expected shipments. The model for the calculations and the computer program used has been developed at the Sandia Laboratories, Albuquerque, N.M., USA and is the same that was used for the NUREG-0170 study. The results from the calculations show an annual expected population dose of 30 person-rem due to normal transport conditions. The annual expected dose from accidents were calculated to be between 2.3-20.8 person rem. The higher figure represents the case where plutonium is shipped back to Sweden from reprocessing plants abroad in the form of PuO2 and the lower figure represent the case when plutonium is shipped back in the form of mixed oxide fuel. The total additional population dose in Sweden due to both normal and accident conditions in the transportation of radioactive materials will be 30 - 50 person rem/year. Compared to the natural background radiation that is 8x10 5 person rem per year in Sweden, this figure is very low. If converted to latent cancer fatalities this population dose will add approximately 3.5x10 3 cancers each year. The consequences due to accidents have been calculated and are discussed separately from their probabilities. The most severe accident that was found was an accident involving PuO 2 . This accident would give 82 400 rem as a maximum individual dose and 8.1x10 5 person rem as a population dose. (Auth.)

  6. Regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Kgogo, Obonye

    2016-04-01

    The report provides insight and investigates whether Transport Regulations in Botswana follow international standards for transport of radioactive material. Radioactive materials are very useful in most of our activities and are manufactured in different countries, therefore end up traversing from one country to another and being transported in national roads .The IAEA regulation for the Transport of radioactive material is used as the reference guideline in this study. The current Regulations for Transport of radioactive material in Botswana do not cover all factors which need to be considered when transporting radioactive although they refer to IAEA regulations. Basing on an inadequacy of the regulations and category of radioactive materials in the country recommendations were made concerning security, packaging and worker training's. The regulations for the Transport of radioactive material in Botswana need to be reviewed and updated so that they can relate to international standard. (au)

  7. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  8. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  9. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  10. Some issues on environmental impact report of radioactive material transport

    International Nuclear Information System (INIS)

    Wang Jiaming

    2001-01-01

    The author puts forward some issues which should be paid attention to when compiling a environmental impact report of radioactive material transport. The main issues discussed are as follows: (1) Optimization analysis for transport routes. (2) Source terms under accident conditions in transport. (3) Precautions against accidents and emergency preparedness. (4) Quality assurance of transport, etc

  11. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended).

    International Nuclear Information System (INIS)

    1979-01-01

    On the basis of a comprehensive review carried out by a panel of experts, a revised version of the International Atomic Energy Agency's Regulations for the Safe Transport of Radioactive Materials was approved by the Board of Governors in September 1972 and published in April 1973 as Safety Series No.6 - 1973 Revised Edition. Minor amendments, together with a number of changes of detail were promulgated by the Director General in 1975 and 1977. In October 1978, the Standing Advisory Group on the Safe Transport of Radioactive Materials, established by the Director General in 1977, reviewed and recommended a small number of additional amendments. The recommendations of SAGSTRAM were subsequently accepted by the Director General. All these minor amendments and changes of detail are incorporated in the present text of the Regulations. The purpose of these Regulations is to establish standards of safety which provide an acceptable level of control of the radiation hazards to persons, property and the environment that are associated with the transport of radioactive material. They apply to the transport by land, water or air, including transport on own account, of radioactive material other than that which is an integral part of the means of transport. Transport includes any operation incidental to the whole course of carriage, such as loading, unloading and storage in transit. The term includes both normal transport and that under accident conditions

  12. Structure and transport properties of nanostructured materials.

    Science.gov (United States)

    Sonwane, C G; Li, Q

    2005-03-31

    In the present manuscript, we have presented the simulation of nanoporous aluminum oxide using a molecular-dynamics approach with recently developed dynamic charge transfer potential using serial/parallel programming techniques (Streitz and Mintmire Phys. Rev. B 1994, 50, 11996). The structures resembling recently invented ordered nanoporous crystalline material, MCM-41/SBA-15 (Kresge et al. Nature 1992, 359, 710), and inverted porous solids (hollow nanospheres) with up to 10 000 atoms were fabricated and studied in the present work. These materials have been used for separation of gases and catalysis. On several occasions including the design of the reactor, the knowledge of surface diffusion is necessary. In the present work, a new method for estimating surface transport of gases based on a hybrid Monte Carlo method with unbiased random walk of tracer atom on the pore surface has been introduced. The nonoverlapping packings used in the present work were fabricated using an algorithm of very slowly settling rigid spheres from a dilute suspension into a randomly packed bed. The algorithm was modified to obtain unimodal, homogeneous Gaussian and segregated bimodal porous solids. The porosity of these solids was varied by densification using an arbitrary function or by coarsening from a highly densified pellet. The surface tortuosity for the densified solids indicated an inverted bell shape curve consistent with the fact that at very high porosities there is a reduction in the connectivity while at low porosities the pores become inaccessible or dead-end. The first passage time distribution approach was found to be more efficient in terms of computation time (fewer tracer atoms needed for the linearity of Einstein's plot). Results by hybrid discrete-continuum simulations were close to the discrete simulations for a boundary layer thickness of 5lambda.

  13. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items

  14. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items. (DC)

  15. Regulations related to the transport of radioactive material in Brazil

    International Nuclear Information System (INIS)

    Sahyun, Adelia; Sordi, Gian-Maria A.A.; Sanches, Matias P.

    2001-01-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  16. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  17. Radiation doses from the transport of radioactive materials

    International Nuclear Information System (INIS)

    Shaw, K.B.; Holyoak, B.

    1983-01-01

    A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)

  18. Procedures for the Safe Transport of Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chung, K. K.; Lee, J. I.; Chang, S. Y.; Lee, T. Y

    2007-11-15

    This technical report describes the procedure and work responsibility along with the regulation and standard necessary for the safe transport of radioactive or contaminated materials. This report, therefore, can be effectively used to secure the public safety as well as to prevent the disastrous event which might be resulted from the transport process of radioactive materials by establishing a procedure and method on the safe packing, handling and transport of radioactive materials.

  19. Transportation of hazardous materials (hazmat a literature survey

    Directory of Open Access Journals (Sweden)

    Zafer YILMAZ

    2016-02-01

    Full Text Available ransportation has a great role in logistics. Many researchers have studied on transportation and vehicle routing problems. Transportation of hazardous materials (hazmat is a special subject for logistics. Causalities due to the accidents caused by trucks carrying hazardous materials will be intolerable. Many researchers have studied on risk assessment of hazmat transportation to find ways for reducing hazardous material transportation risks. Some researchers have studied routing of hazmat trucks. The emergency response models and network design problems for hazmat transportation were also studied by some researchers. The transportation of hazmats can also be classified according to the mode of transport. Mainly roads are used for hazmat transportation but some shipments are intermodal. There has been a great amount of effort spent to find convenient ways for hazmat transportation. In this study, a literature survey for the articles about hazmat transportation is prepared. After pointing out the importance of hazmat transportation by the example of US hazmat transportation data, the studies on hazmat transportation since 2005 have been examined. Totally 88 articles are classified as risk, routing, routing and scheduling, emergency response, network design and accident analysis. What can be studied in future researches is pointed out.Keywords: Hazardous materials, Network design, Transportation, Routing, Risk assessment

  20. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  1. Integral management of hazardous materials transport

    International Nuclear Information System (INIS)

    Moran, M.

    2002-01-01

    As a result of outsourcing transport operations and complementary services on the part of the producers and shippers, there is a growing demand for global services that integrate the whole external logistics value chain, the latter being understood to signify the process that includes the storage, transport (monomodal or bi-multi-modal) and delivery to destination. This circumstance has obliged transport firms to undertake a process of internal transformation: from offering an activity purely of transport to becoming logistics operators. Express Truck, S. a. (hereinafter ETSA) could not ignore this market requirement. We will explain the evolutionary process of ETSA in this sense. (Author)

  2. Transport of radioactive materials: the need for radiation protection programmes

    International Nuclear Information System (INIS)

    Masinza, S.A.

    2004-01-01

    The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it

  3. Influence of 3D printing on transport : a theory and experts judgment based conceptual model

    NARCIS (Netherlands)

    Boon, Wouter; Van Wee, Bert

    2017-01-01

    Consumer 3D printing is on the rise and has the potential to significantly change the transport and logistics sector. Current literature on 3D printing and transport studies does not provide a systematic model of the impact of 3D printing on transport and related (policy relevant) areas, such as

  4. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  5. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  6. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  7. Transportation legislative data base : state radioactive materials transportation statute compilation, 1989-1993

    Science.gov (United States)

    1994-04-30

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United...

  8. US perspective of transporting radioactive materials by sea

    International Nuclear Information System (INIS)

    Chitwood, R.B.

    1978-01-01

    The reason for the US interest in transportation of radioactive materials by sea is discussed. The national and international institutional considerations related to this subject are covered. Some economic aspects in transporting these materials, particularly spent fuels, by sea are also presented

  9. Framework for assessing the effects of radioactive materials transportation

    International Nuclear Information System (INIS)

    Zoller, J.N.

    1996-01-01

    Radioactive materials transport may result in environmental effects during both incident-free and accident conditions. These effects may be caused by radiation exposure, pollutants, or physical trauma. Recent environmental impact analyses involving the transportation of radioactive materials are cited to provide examples of the types of activities which may be involved as well as the environmental effects which can be estimated

  10. State summary of radioactive material transport sector in Brazil

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.; Xavier, A.M.

    1991-07-01

    The main aim of this work is the scientific cooperation with the CNEA (Argentina) in the area of safe transport of radioactive materials, intending to find solutions to some rural problems and, also, to standardize the transport of radioactive materials between Brazil and Argentina. (E.O.)

  11. International regulatory control of the transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1979-01-01

    The development of the IAEA regulations on the transport of radioactive materials and the background for the adoption of these regulations by the various international organizations responsible for regulating the different modes of international transport of hazardous materials is briefly discussed

  12. The new context for transport of radioactive and nuclear material

    International Nuclear Information System (INIS)

    Anne, C.; Galtier, J.

    2002-01-01

    The transportation of radioactive and nuclear materials involves all modes of transportation with a predominance for road and for air. It is but a minute fraction dangerous good transportation. Around 10 millions of radioactive packages are shipped annually all over the world of which ninety percent total corresponds to shipments of radioisotopes. In spite of the small volume transported, experience, evolution of transport means and technologies, the trend to constantly improve security and safety and public acceptance have modified the transport environment. During the last few years, new evolutions have applied to the transport of radioactive and nuclear materials in various fields and especially: - Safety - Security - Logistics means - Public acceptance - Quality Assurance. We propose to examine the evolution of these different fields and their impact on transportation methods and means. (authors)

  13. Transport of nuclear material (Part II)

    International Nuclear Information System (INIS)

    Staake, Theo; Schmidt, Thomas

    1983-01-01

    Providing a complete back-end service for MTR reactors is one of the fundamental and traditional tasks of TRANSNUKLEAR GmbH (TN). TN's services in this field cover everything from supplying the ideal transport cask, providing technical assistance during the loading operation, obtaining the necessary package approval and transport licenses, providing the required insurance cover, carrying out the transport, right thru to settling the reprocessing contract. Up until 1976, TN carried out transports of MTR fuel elements to the European reprocessing plants at Mol in Belgium and Marcoule in France. In all, some 1000 fuel elements were transported in this p e ri od. However, following the decision by these plants not to reprocess these elements anymore, subsequent transports had to be made to the US-DOE reprocessing plants. TN pooled together the interests of all her MTR customers and signed a reprocessing contract with the US-DOE, which ensured a complete back-end service for these reactors well into the future. In close cooperation with our associated company, Transnuclear Inc. in New York and Washington, a new transport concept was developed, which proved itself to be both economic and reliable. Up to now, a total of about 2050 MTR fuel elements have been transported by TN-Germany to the USA in 65 separate shipments. The total number of shipments performed by the TN group is 165 shipments. All shipments were carried out routinely without any incident. In March this year, the US-DOE made use of a clause in the contract, in which 90 days' notice was given of a change in reprocessing plant. Whereas previously all elements had been taken to the Savannah River Plant (SRP) in South Carolina, in future all elements have to go to the Idaho Chemical Processing Plant (ICPP) near Idaho Falls. This change presented TN with the not inconsiderable problem of finding a suitable transport route. Due to the large number of influencing factors, the TN-group carried out a special

  14. RADTRAN: a computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1977-04-01

    A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry

  15. Radioactive materials transportation; Pengangkutan bahan radioaktif

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: packaging and it`s procedures and requirements, extra requirement for large sources, rules and guides of packaging and transportation, classification of packages before delivery.

  16. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  17. Transportation accidents/incidents involving radioactive materials (1971--1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions

  18. 78 FR 30393 - Preparations for the 43rd Session of the United Nations Sub-Committee of Experts on the Transport...

    Science.gov (United States)

    2013-05-22

    .... PHMSA-2013-0090; Notice No. 13-04] DEPARTMENT OF LABOR Occupational Safety and Health Administration Preparations for the 43rd Session of the United Nations Sub- Committee of Experts on the Transport of Dangerous Goods (UNSCOE TDG) and the 25th Session of the UN Sub-Committee of Experts on the Globally Harmonized...

  19. Risks in U.S. energy material transportation

    International Nuclear Information System (INIS)

    Franklin, A.L.; Rhoads, R.E.; Andrews, W.B.

    1982-01-01

    For the past five years, the Pacific Northwest Laboratory has been conducting a programme to study the safety of transporting energy materials. The overall objectives of the programme are to develop information on the safety of transporting hazardous materials required to support the major energy cycles in the USA. This information was developed for use in making energy policy decisions; in designing and developing new or improved transportation systems for these materials; to help establish research priorities; and as an aid in developing effective transportation safety regulations. Risk analysis was selected as the methodology for performing these studies. This methodology has been applied to rail and highway shipments of nuclear fuel cycle materials and liquid and gaseous fossil fuels. Studies of the risks of transporting spent nuclear fuel by train and uranium ore concentrates (yellow cake) by truck were expected to be issued early in 1981. Analyses of the risks of transporting reactor waste and transuranic wastes are in progress. The work completed to date for nuclear material transportation makes it possible to estimate the transportation risks for the entire fuel cycle in the USA. Results of the assessment are presented in this paper. Because the risk analysis studies for the transportation of gasoline, propane and chlorine have been performed using a methodology, basic assumptions and data that are consistent with the studies that have been performed for nuclear materials, comparisons between the risks for nuclear materials and these materials can also be made. It should be noted that it is not the intention of these comparisons to judge the safety of one industry in comparison with another. These comparisons can, however, provide some insights into the regulatory philosophy for hazardous materials transportation. The remaining sections of the paper briefly review the risk-analysis methodology used in these studies, provide an overview of the systems

  20. HA and MAVL technical dialogue - Seminar - Transports of radioactive materials

    International Nuclear Information System (INIS)

    Charron, Sylvie; Eckert, Benoit; Lizot, Marie-Therese; Moutarde, Marianne; Mermaz, Frederic; Brisson, Nicolas; Sene, Monique; Demet, Michel; Jacquet, Benoit; Tran-Thien, Vivien; Ferran, Ghislain; Michel, Maurice; Barbey, Pierre; Miquel, Thierry-Paul; Monot, Bernard; Syren, Julien; Quintin, Christophe; Gilbert, Alain; Lhuillier, Daniel; Domeneghetti, Bertrand; LOURTIE, Guy; Manessier, Joffray

    2016-03-01

    This document gathers the content of a debate and Power Point presentations as contributions to this seminar on transports of nuclear materials. After an introduction, the different sessions addressed the actors of the transport of nuclear materials (regulation, parcel design, organisation on the shipper side and on the transporter side), transport safety and radiation protection (returns on experience by different actors and on event follow-up), the follow-up and safety of transports of nuclear materials (protection against malevolent acts, operational follow-up, case of rail transport), and issues related to crisis management (organisation in case of crisis, means of intervention implemented by the IRSN, return on experience for two accidents)

  1. Transportation of nuclear material in France: regulatory and technical aspects

    International Nuclear Information System (INIS)

    Flory, D.; Renard, C.

    1995-01-01

    Legislative and regulatory documentation define responsibilities in the field of security and physical protection for transportation of nuclear material. Any transportation activity has to conform to an advance authorization regime delivered by the Ministry of Industry. Responsibility for physical protection of nuclear material rests with the carrier under control of the public authority. Penalties reinforce this administrative regime. Operational responsibility for management and control of transport operations has been entrusted by the ministry to the operational transport unit (Echelon Operationnel des Transports - EOT) of IPSN (Institute for Nuclear Protection and Safety). To guarantee en efficient protection of transport operations, the various following means are provided for: -specialized transport means; - devices for real time tracking of road vehicles; - administrative authorization and declaration procedures; -intervention capacities in case of sabotage... This set of technical means and administrative measures is completed by the existence of a body of inspectors who may control every step of the operations. (authors). 3 tabs

  2. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  3. Transport of radioactive material in Sudan practice and regulations

    International Nuclear Information System (INIS)

    Abdalla, M. K. E.

    2010-12-01

    In the last couple of decades there has been an impressive increase in applications of radioactive material. Such an extensive and widely spread usage of radioactive materials demands safe transportation of radioactive material from the production site to the application location, as well as quick and effective response in a case of an unexpected transportation event according to Sudan Atomic Energy Commission (SAEC) regulation. The thesis described the local practice for transport of radioactive material as compared to the international standards for radiation protection, and also discussed the emergency procedures that must be follow in case of accident during transport of radioactive material. Furthermore, the objective of this study was also to set proposals for how to cope in the event of a radiological accident. The study methods included survey of current literature on safe transport of radioactive material, survey of national regulations on the subjects in additional to case studies aimed at investigating the practical issues pertinent to transport of radioactive materials in Sudan. A comprehensive review was presented on how to classification of radioactive packages and general requirement for all packaging and packages according to international standard. transport of number of radioactive sources from Khartoum airport to the field was evaluated with regard transport index, category of source, type of package, dose rate around the source, time to destination and means of transport of doses to public, worker are be made. All results were within the limit specified in the national as well as international regulation. The study has addressed for the first time the practice of transport of radioactive material in Sudan. It is anticipated that the results will encourage national organizational and professional bodies to enhance radiation protection and safety of radioactive sources. (Author)

  4. Regulations relevant to the transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1996-01-01

    As is the case in many countries, the transport of radioactive materials in Switzerland is primarily regulated by the national regulations for the transport of dangerous goods. Currently these regulations, in the case of radioactive material, incorporate the 1985 IAEA Safety Series 6 Regulations for the Safe Transport of Radioactive Material (As amended 1990). However, as is also the case in some other countries, consignors, shippers and carriers of radioactive materials must also comply with additional laws when shipping radioactive materials. The most important of these other laws and their accompanying regulations are those concerned with radiation protection (import, export and carriers licences) and nuclear power (import, export, inland transport and transit licences). This paper sets out to describe the collective requirements resulting from all three of these sets of regulations. (Author)

  5. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  6. Radiological environmental impacts from transportation of nuclear materials

    International Nuclear Information System (INIS)

    Shuai Zhengqing

    1994-01-01

    The author describes radiological impacts from transportation of nuclear materials. RADTRAN 4.0 supplied by IAEA was adopted to evaluate radiological consequence of incident-free transportation as well as the radiological risks from vehicular accidents occurring during transportation. The results of calculation show that the collective effective dose equivalent of incident-free transportation to the public and transportation workers is 7.94 x 10 -4 man·Sv. The calculated data suggest that the environmental impacts under normal and assumed accidental conditions are acceptable

  7. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  8. Regulatory requirements for the transport of radioactive materials in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garg, R. [Canadian Nuclear Safety Commission, Ottawa (Canada)

    2004-07-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and

  9. Regulatory requirements for the transport of radioactive materials in Canada

    International Nuclear Information System (INIS)

    Garg, R.

    2004-01-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and efficiency

  10. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  11. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Takani, Michio

    2008-01-01

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  12. Legislative developments in radioactive materials transportation, September 1993--June 1994

    International Nuclear Information System (INIS)

    Worthley, J.A.; Reed, J.B.; Cummins, J.

    1994-07-01

    This is the eighth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the September 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period September 1, 1993--June 30, 1994. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Availability of on-line capability is anticipated by the end of August 1994. Users approved by DOE and NCSL will have access to the data base. This report contains the current status of legislation introduced in the 1993 and 1994 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices and changes in federal regulations pertinent to radioactive waste and hazardous materials transportation

  13. Legislative developments in radioactive materials transportation, April 1993--August 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-09-01

    This is the seventh report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the April 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period April 1, 1993--August 31, 1993. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of 1993. Users approved by DOE and NCSL will have access to the data base. A copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains the current status of legislation introduced in the 1993 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation

  14. Hazardous materials transportation and emergency response programs

    International Nuclear Information System (INIS)

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY)

  15. Quality assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    All activities related to the safe transport of radioactive material should be covered by a quality assurance programme. This publication recognizes that a single transport operation often involves several different organizations, each having specific responsibilities. Hence, it is unlikely that the operation will be covered by a single quality assurance programme. Each quality assurance programme should be tailored to the specific organizational structure for which the programme is prepared, with account taken of the particular transport activities of that organization and the interfaces with other organizations. The aim of this publication is to give a detailed interpretation of what must be done by whom to produce a quality assurance programme for radioactive material transport. This publication provides guidance on methods and practical examples to develop QA programmes for the safe transport of radioactive material. It provides information on how to develop the programme, the standards and the common features of a QA programme

  16. Sea transport of radioactive materials in Egypt (invited paper)

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Gomaa, M.A.

    1998-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the experience gained. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the Canal from 1963 to 1996 and their nationalities are also discussed. The protective measures are mentioned. (author)

  17. Competent authority regulatory control of the transport of radioactive material

    International Nuclear Information System (INIS)

    1987-04-01

    The purpose of this guide is to assist competent authorities in regulating the transport of radioactive materials and to assist users of transport regulations in their interactions with competent authorities. The guide should assist specifically those countries which are establishing their regulatory framework and further assist countries with established procedures to harmonize their application and implementation of the IAEA Regulations. This guide specifically covers various aspects of the competent authority implementation of the IAEA Regulations for the Safe Transport of Radioactive Material. In addition, physical protection and safeguards control of the transport of nuclear materials as well as third party liability aspects are briefly discussed. This is because they have to be taken into account in overall transport regulatory activities, especially when establishing the regulatory framework

  18. Anticipated development in radioactive materials packaging and transport systems

    International Nuclear Information System (INIS)

    Williams, L.D.; Rhoads, R.E.; Hall, R.J.

    1976-07-01

    Closing the light water reactor fuel cycle and the use of mixed oxide fuels will produce materials such as solidified high level waste, cladding hulls and plutonium from Pu recycle fuel that have not been transported extensively in the past. Changes in allowable gaseous emissions from fuel cycle facilities may require the collection and transportation of radioactive noble gases and tritium. Although all of these materials could be transported in existing radioactive material packaging, economic considerations will make it desirable to develop new packaging specifically designed for each material. Conceptual package designs for these materials are reviewed. Special Nuclear Material transportation safeguards are expected to have a significant impact on future fuel cycle transportation. This subject is reviewed briefly. Other factors that could affect fuel cycle transportation are also discussed. Development of new packaging for radioactive materials is not believed to require the development of new technologies. New package designs will be primarily an adaptation of existing technology to fit the changing needs of a growing nuclear power industry. 23 references

  19. Regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1995-01-01

    Regulations and rules for the safe transport of radioactive materials by all kinds of conveyance are offered. Different types of packages and the conditions associated with the methods of safe packaging are given

  20. Furthering the good safety record in materials transport

    International Nuclear Information System (INIS)

    Price, M.

    1983-01-01

    Topics raised by the international symposium on Packaging and Transportation of Radioactive Materials (Patram), held in New Orleans in May 1983, including risk analysis, seals and leakage and the effects of increased traffic are discussed. (U.K.)

  1. Packaging and transportation of radioactive materials: summary program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference. (DC)

  2. Environmental effects associated with the transportation of radioactive material

    International Nuclear Information System (INIS)

    McClure, J.D.; Pope, R.B.; Yoshimura, H.R.

    1979-01-01

    The primary aim of this paper has been to describe some of the background information concerning nuclear materials transportation systems, accident statistics, accident severities, and test information - all of which when combined yield an environmental statement of the risks associated with the transportation of radioactive materials. The results of the ultimate risk analysis are expressed in terms of numbers of fatalities and, in that sense at least, tend to be an absolute measure of risk. When these risks are compared with other accepted societal risks, the relative risks associated with radioactive material transportation can be established. This information can be used to make decisions at the governmental level and to inform an interested public about these risks. It can be concluded that the risks associated with the transportation of radioactive material are low relative to the other risks that society has already accepted

  3. Transport of radioactive materials and equipment. Requirements. (Provisional)

    International Nuclear Information System (INIS)

    1983-01-01

    This standard is aimed at establishing the procedures that must be followed when transporting radioactive materials and equipment in Venezuelan Territory. The ''Consejo Nacional para el Desarrollo de la Industria Nuclear'' is responsible for their fulfillment and control

  4. Quality management in the regulation of radioactive material transport

    International Nuclear Information System (INIS)

    Barenghi, Leonardo; Capadona, Nancy M.; Lopez Vietri, Jorge R.; Panzino, Marina; Ceballos, Jorge

    2006-01-01

    The paper describes the quality management procedure used by the Argentine Nuclear Regulatory Authority to establish the regulations concerning the safe transport of radioactive materials. The quality management system is based on the family of the ISO 9000 norms [es

  5. Packaging requirements and procedures for the transport of radioactive materials

    International Nuclear Information System (INIS)

    White, M.C.

    1980-01-01

    Canadian regulations on the transportation of radioactive materials are based on those formulated by the IAEA. A synopsis of these regulations is presented, and the background to certain key provisions is explained. (LL)

  6. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  7. Handbook for structural analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-04-01

    This paper described structural analysis method of radioactive material transport casks for use of a handbook of safety analysis and evaluation. Safety analysis conditions, computer codes for analyses and stress evaluation method are also involved in the handbook. (author)

  8. Regulations for the safe transport of radioactive material. 1996 ed.

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the revised version of the IAEA's Regulations for the Safe Transport of Radioactive Materials as approved by the Board of Governors in September 1996. It establishes standards of safety which provide an acceptable level of control of the radiation, criticality and thermal hazards to persons, property and the environment that are associated with the transport of radioactive material. After an introductory section, the publication is structured as follows: Section 2 defines the terms that are required for the purposes of the Regulations; Section 3 provides general provisions; Section 4 gives the activity limits and material restrictions used throughout these Regulations; Section 5 provides requirements and controls for transport; Section 6 provides requirements for radioactive materials and for packagings and packages; Section 7 provides requirements for test procedures; Section 8 provides approval and administrative requirements. The requirements for the transport of specified types of consignments are included in an abbreviated form as Schedules. Refs, figs, tabs

  9. Packaging and transportation of radioactive materials: summary program

    International Nuclear Information System (INIS)

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference

  10. Raising students and educators awareness of radioactive materials transport through creative classroom materials and exhibits

    International Nuclear Information System (INIS)

    Holm, J.; Sandoz, C.; Dickenson, J.; Lee, J.C.; Smith, A.M.

    1994-01-01

    The public is concerned about how the shipping and handling of radioactive materials affects them and their environment. Through exhibit showings doing professional education conferences and smaller, focussed workshops, the United States Department of Energy (DOE) has found teachers and students to be an especially interested audience for hazardous and radioactive materials transportation information. DOE recognizes the importance of presenting educational opportunities to students about scientific and societal issues associated with planning for and safely transporting these types of materials. Raising students' and educators' awareness of hazardous and radioactive materials transport through creative classroom materials and exhibits may help them make informed decisions as adults about this often controversial and difficult issue

  11. A demonstration of expert systems applications in transportation engineering : volume II, TRANZ, a prototype expert system for traffic control in highway work zones.

    Science.gov (United States)

    1988-01-01

    The development of a prototype knowledge-based expert system (KBES) for selecting appropriate traffic control strategies and management techniques around highway work zones was initiated. This process was encompassed by the steps that formulate the p...

  12. The new context for transport of radioactive nuclear material

    International Nuclear Information System (INIS)

    Anne, Catherine; Galtier, Jerome

    2001-01-01

    The transportation of radioactive and nuclear materials, involves all modes of transportation (road, air, sea, rail) with predominance for road and for air (air for radioisotopes). In this paper we examine the impact of new evolutions in the fields of safety, security, logistics means, public acceptance and quality assurance

  13. Radioactive materials transport: a story of steady technical improvement

    International Nuclear Information System (INIS)

    Price, M.

    1991-01-01

    The transport of radioactive material is a fundamental part of the nuclear industry and equally vital to the use of radioisotopes in medical diagnosis and therapy. The safety record is impressively good and this aids open discussion of the subject. An independent consultant formerly with Atomic Energy Authority Technology reports on the Second International Conference on Transportation for the Nuclear Industry. (Author)

  14. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  15. New basic safety regulations of radioactive material transport in Russia

    International Nuclear Information System (INIS)

    Ananiev, V.V.; Ershov, V.N.; Shvedov, M.O.

    2004-01-01

    In the paper the system of normative regulation of radioactive material transport in Russia, basic principles and provisions of the new Russian regulations, available deviations from rules IAEA regulations are briefly considered. The problems, connected with putting in force of the new regulations in practice of transport, including problems of usage earlier designed and manufactured packages are considered as well

  16. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  17. 77 FR 21714 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2012-04-11

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... cells and batteries that have been adopted into the 2013-2014 International Civil Aviation Organization...) to address the air transportation risks posed by lithium cells and batteries. Some of the proposals...

  18. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on March 5, 2010, in... will be attending the Lithium Battery Public Meeting and wait to be escorted to the Conference Center...

  19. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2013-01-07

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... lithium cells and batteries that have been adopted into the 2013-2014 International Civil Aviation... edition, when transporting batteries domestically by air. Incorporation by reference of the 2013-2014...

  20. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the ...

  1. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  2. The Transport of Radioactive Materials under special arrangement

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Vietri, J.R.L.

    1993-01-01

    The Agency's Regulations for the Safe Transport of Radioactive Material rule the international transport of these materials and provide the basis of national and regional regulations. The Regulations establish the technical, operational and administrative requirements which shall be accomplished to carry out the transport of radioactive materials (RAM). They also allow the transport in different conditions of those currently applicable and, in such cases, establish that the transport shall be made under special arrangement. To approve a transport under special arrangement the involved Competent Authority shall be satisfied that the alternative provisions are adequate to ensure that the overall level of safety in transport and in-transit storage is at least equivalent to that which would be provided if all the applicable requirements had been met (para. 2ll of the International Atomic Energy Agency Safety Series No. 6). This paper explains some difficulties the Argentine Competent. Authority has experienced trying by comparing the equivalence between the level of safety resulting from the compliance with current requirements and the overall level of safety which is provided by the application of alternative provisions. As most of the experience gained come from the transport of RAM by road, only this mode of transport is considered. (J.P.N.)

  3. Implications for the management of R A materials transport

    International Nuclear Information System (INIS)

    Devine, I.R.

    1997-01-01

    This paper attempts to describe some Exclusions and Exemptions from the current and proposed transport regulations and describes those requirements applicable to low active material. It concludes that Clearance is the dominant issue and that within the UK nuclear sector, the current (1985 as amended 1990) transport regulations have no significant impact on the management of low active materials. Nor will the proposed (1996) Regulations. (author)

  4. Regional risk associated with the transport of hazardous materials

    OpenAIRE

    Nardini, L.; Aparicio, L.; Bandoni, A.; Tonelli, S. M.

    2003-01-01

    An increasing concern over the level of risk associated with hazardous materials transportation has led international efforts to focus on risk assessment at regional level. Following this trend, the aim of this work is to review the latest procedures for analysing the regional risks resulting from hazardous materials transportation by means of road and rail. In particular, two methodologies are reviewed and discussed, a method recently developed at Swiss Federal Institute of Technology [1] an...

  5. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  6. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  7. Battery Materials Synthesis | Transportation Research | NREL

    Science.gov (United States)

    thin-film. NREL's development of inexpensive, high-energy-density electrode materials is challenging introduction of metal oxide and hybrid inorganic-organic surface modification via atomic layer deposition has method for applying conformal thin film coatings to highly textured surfaces. These coatings have been

  8. Transportation of radioactive materials: the legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico

  9. Transportation of radioactive materials: the legislative and regulatory information system

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  10. Legislative developments in radioactive materials transportation, November 1992--March 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-04-01

    This is the sixth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the November 1992 Legislative and Legal Developments in Radioactive Materials Transportation report and describes activities for the period November 1, 1992--March 31, 1993. NCSL is working to bring on-line a data base that contains abstracts of state laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of July 1993. Users approved by DOE and NCSL will have access to the data base. Hard copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains summaries of legislation introduced in the 1993 state legislative sessions. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness and general nuclear waste issues are described. Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation. A recent court decision is also summarized

  11. Security in the transport of radioactive material - interim guidance for comment

    International Nuclear Information System (INIS)

    Legoux, P.; Wangler, M.

    2004-01-01

    While the IAEA has provided specific guidance for physical protection in the transport of nuclear material, its previous publications have only provided some general guidelines for security of non-nuclear radioactive material in transport. Some basic practical advice has been provided in the requirements of the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS) [1]. These guidelines were primarily directed toward such issues as unintentional exposure to radiation, negligence and inadvertent loss. Recently, the IAEA published a document on the security of sources, which included some general guidance on providing security during transport of the sources. However, it is clear that more guidance is needed for security during the transport of radioactive material in addition to those already existing for nuclear material. Member States have requested guidance on the type and nature of security measures that might be put in place for radioactive material in general during its transport and on the methodology to be used in choosing and implementing such measures. The purpose of the TECDOC on Security in the Transport of Radioactive Material being developed by the IAEA is to provide an initial response to that request. This interim guidance is being developed with a view to harmonizing the security guidance - as much as possible - with existing guidance from the IAEA for the transport of radioactive sources and nuclear material. It is also intended to harmonize with model requirements developed in 2002-2003 by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonised System of Classification and Labelling of Chemicals which was issued as general security guidelines for all dangerous goods, including radioactive material, and that will shortly be implemented as binding regulations by the international modal authorities

  12. Security in the transport of radioactive material - interim guidance for comment

    Energy Technology Data Exchange (ETDEWEB)

    Legoux, P.; Wangler, M. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    While the IAEA has provided specific guidance for physical protection in the transport of nuclear material, its previous publications have only provided some general guidelines for security of non-nuclear radioactive material in transport. Some basic practical advice has been provided in the requirements of the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS) [1]. These guidelines were primarily directed toward such issues as unintentional exposure to radiation, negligence and inadvertent loss. Recently, the IAEA published a document on the security of sources, which included some general guidance on providing security during transport of the sources. However, it is clear that more guidance is needed for security during the transport of radioactive material in addition to those already existing for nuclear material. Member States have requested guidance on the type and nature of security measures that might be put in place for radioactive material in general during its transport and on the methodology to be used in choosing and implementing such measures. The purpose of the TECDOC on Security in the Transport of Radioactive Material being developed by the IAEA is to provide an initial response to that request. This interim guidance is being developed with a view to harmonizing the security guidance - as much as possible - with existing guidance from the IAEA for the transport of radioactive sources and nuclear material. It is also intended to harmonize with model requirements developed in 2002-2003 by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonised System of Classification and Labelling of Chemicals which was issued as general security guidelines for all dangerous goods, including radioactive material, and that will shortly be implemented as binding regulations by the international modal

  13. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Science.gov (United States)

    2010-07-01

    ... may also provide contact information, such as a telephone number and/or e-mail address. PHMSA and the.... PHMSA-2010-0130 (Notice No.10-2)] Hazardous Materials: International Regulations for the Safe Transport... (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R-1), which is scheduled for...

  14. Lessons learned by southern states in transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE's Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board's Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns

  15. Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material

    International Nuclear Information System (INIS)

    Nicholson, Lary G.; Purvis, James W.

    1999-01-01

    The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access

  16. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  17. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  18. Transport of hazardous materials in the Amazon area; Transporte de produtos perigosos na regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Wallace de Castro [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Fernandes, Elton; Nassi, Carlos David [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Amongst several exploratory sources of the subject 'hazardous materials transport', it is distinguished: 'the threat to the environment'. This paper presents an exploratory investigation of this subject line in the Amazon region. In view of the diversity of 'existing hazardous materials' and the raised dimension of the oil transport and its derivatives in this context, this paper focused in these products. Regarding to the geographic region, the approach was given to the State of Amazon, considering the amplitude of this State in the Amazon region and the availability of data. Therefore, this work explores and analyzes macro aspects inherent to the State of Amazon pertinent to the oil transport and its derivatives. In the macro context, it is observed the necessity of a higher control in the transport of hazardous materials in the region. The absence of registered data and the unfamiliarity on the risks related to the transport of hazardous materials by authorities and transporters indicate a relative absence of qualification in the region to deal with the monitoring of the transport of hazardous materials. So far, it is not possible up till now to make any evaluation of the environment threats of accidents with transport of hazardous materials in the Amazon region.(author)

  19. Transport of hazardous materials in the Amazon area; Transporte de produtos perigosos na regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Wallace de Castro [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Fernandes, Elton; Nassi, Carlos David [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Amongst several exploratory sources of the subject 'hazardous materials transport', it is distinguished: 'the threat to the environment'. This paper presents an exploratory investigation of this subject line in the Amazon region. In view of the diversity of 'existing hazardous materials' and the raised dimension of the oil transport and its derivatives in this context, this paper focused in these products. Regarding to the geographic region, the approach was given to the State of Amazon, considering the amplitude of this State in the Amazon region and the availability of data. Therefore, this work explores and analyzes macro aspects inherent to the State of Amazon pertinent to the oil transport and its derivatives. In the macro context, it is observed the necessity of a higher control in the transport of hazardous materials in the region. The absence of registered data and the unfamiliarity on the risks related to the transport of hazardous materials by authorities and transporters indicate a relative absence of qualification in the region to deal with the monitoring of the transport of hazardous materials. So far, it is not possible up till now to make any evaluation of the environment threats of accidents with transport of hazardous materials in the Amazon region.(author)

  20. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  1. Education and training in transport of radioactive material

    International Nuclear Information System (INIS)

    Carvalho, Bruno Natanael; Pastura, Valeria da Fonseca e Silva; Mattar, Patricia; Dias, Carlos R.

    2013-01-01

    This paper presents the approach adopted by the Department of Transportation of the Brazilian National Nuclear Energy Commission - CNEN, in the creation of the course of education and training distance for transport companies, as well as for national institutions directly involved with the theme transportation of radioactive materials. The course will consist of 20 modules containing exercises and further assessment of learning, and enable participants to understand the regulatory terminology, assimilating the philosophy of nuclear and radiation safety, prepare the shipment and identify and fill the complete documents required in an operation transport

  2. Liability and insurance aspects of international transport of nuclear materials

    International Nuclear Information System (INIS)

    van Gijn, S.H.

    1985-01-01

    The Paris and Vienna Conventions do not affect the application of any international transport agreement already in force. However, in certain circumstances both the nuclear operator and the carrier may be held liable for nuclear damage which arises during international transports of nuclear materials. The ensuing cumulation of liabilities under the Nuclear and Transport Conventions may cause serious problems in obtaining adequate insurance cover for such transports. The 1971 Brussels Convention seeks to solve this problem by exonerating any person who might be held liable for nuclear damage under an international maritime convention or national law. Similar difficulties are encountered in the case of transports of nuclear materials between states which have and states which have not ratified the Paris and Vienna Conventions. (NEA) [fr

  3. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  4. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  5. INES scale: French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After getting the control of radioactive material transport in June 1997, the French safety Authority (ASN) decided to apply the INES scale to transport events. DGSNR (Directorate General for Nuclear Safety and Radioprotection) requests that radioactive material package consignors declare any event occurring during transportation, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. This paper deals with DGSNR's feedback during the past seven years concerning the french application of the INES scale. Significant events that occurred during transportation are presented. The French experience was used by IAEA to develop a draft guide in 2002 and IAEA asked countries to use a new draft for a trial period in July 2004

  6. Development of hotcell transportation system technology for high radioactive material

    International Nuclear Information System (INIS)

    Seo, K. S.; Seo, C. S.; Lee, J. C.

    2012-04-01

    In the first stage of the research, the transportation and storage characteristics analysis of the pyroprocess materials, the development of horizontal type hot cell transportation system, and the design of interim storage system for the pyroprocess material are conducted. The optimized capacity, transportation frequency and operation period of pyroprocess facility are found using the logistics analysis program developed in this project. A new hot cell transportation system was designed. Through the safety analysis and test for the hot cell transportation system, the design license has been approved. A new type hot cell docking system with superior performance has been developed with a patented rotating lid system. We have reached to a unique concept of interim storage of pyroprocess materials and selected a system through a comparative evaluation of existing ones. In the second stage of the research, transportation/storage/sealing devices for PRIDE recovered material/wastes were developed. And test model for the devices in engineering scale facility were also developed. The design requirements for a vertical docking system were evaluated and the performance assessment using a scaled mock-up was conducted. Integrated storage management technology was evaluated for an efficient management of process materials. A heat transfer simulation and characteristics analysis for the storage system were conducted. The derivation of design requirements, design and fabrication of a canister test model, and preliminary safety assessment were conducted

  7. 30 years of experience in safe transportation of nuclear materials

    International Nuclear Information System (INIS)

    Kaneko, K.

    2004-01-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30 th anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business

  8. 30 years of experience in safe transportation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30{sup th} anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business.

  9. Assessment of Transportation Risk of Radioactive Materials in Uganda

    International Nuclear Information System (INIS)

    Richard, Menya; Kim, Jonghyun

    2014-01-01

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector

  10. Assessment of Transportation Risk of Radioactive Materials in Uganda

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Menya; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector.

  11. Neutron transport in Eulerian coordinates with bulk material motion

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal S., E-mail: rsb@lanl.gov [Los Alamos National Laboratory, Computational Physics Group, Los Alamos, NM (United States); Dahl, Jon A., E-mail: dahl@lanl.gov [Los Alamos National Laboratory, Computational Physics Group, Los Alamos, NM (United States); Fichtl, Erin J., E-mail: efichtl@lanl.gov [Los Alamos National Laboratory, Computational Physics Group, Los Alamos, NM (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX (United States)

    2015-12-15

    A consistent, numerically stable algorithm for the solution of the neutron transport equation in the presence of a moving material background is presented for one-dimensional spherical geometry. Manufactured solutions are used to demonstrate the correctness and stability of our numerical algorithm. The importance of including moving material corrections is shown for the r-process in proto-neutron stars.

  12. Regulation of Transportation of Radioactive Material in Indonesia

    International Nuclear Information System (INIS)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik

    2011-01-01

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  13. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  14. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  15. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  16. Study on tracking system for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, F.; Igarashi, M.; Nomura, T. [Nuclear Emergency Assistance and Training Center, Japan Nuclear Cycle Development Inst., Ibaraki (Japan); Nakagome, Y. [Research Reactor Inst., Kyoto Univ., Osaka (Japan)

    2004-07-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on.

  17. Study on tracking system for radioactive material transport

    International Nuclear Information System (INIS)

    Watanabe, F.; Igarashi, M.; Nomura, T.; Nakagome, Y.

    2004-01-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on

  18. The recent international situation on the transport of radioactive material and IAEA 2003 transport conference

    International Nuclear Information System (INIS)

    Tani, Hiroshi

    2003-01-01

    Since the creation of the United Nations, the international community initiated efforts to harmonize international practices for the safe transport of hazardous goods, including radioactive material. And, IAEA is playing a key role in fostering the establishment of transport regulations on radioactive material. This current worldwide system of regulatory control has achieved an excellent safety record. However, some concerns still remain regarding the transport of radioactive material, as the discussion of this topic at IAEA General Conferences in the last few years. IAEA Transport conference planed as a forum in which to better understand these concerns, and to answer relevant underlying questions. At the same time, outside these technical areas, discussions also covered related issues such as liability resulting from an accident during the transport and communication between concerned governments, and between these governments and the public at large. The International Conference on the Safety of Transport of Radioactive Material took place in Vienna, Austria, from 7 to 11 July 2003. There were 534 nominated participants from 82 States, 9 intergovernmental organizations (IGOs), and 5 non-governmental organizations (NGOs), and there were 132 contributed and invited papers. By this report, I report the recent international situation on the transport of radioactive material and result of the IAEA 2003 Transport Conference. (author)

  19. A contribution to problems of clean transport of bulk materials

    Directory of Open Access Journals (Sweden)

    Fedora Jaroslav

    1996-03-01

    Full Text Available The lecture analyses the problem of development of the pipe conveyor with a rubber belt, the facitities of its application in the practice and environmental aspects resulting from its application. The pipe conveyor is a new perspective transport system. It enables ransporting bulk materials (coal, crushed, rock, coke, plant ash, fertilisers, limestones, time in a specific operations (power plants, heating plants.cellulose, salt, sugar, wheat and other materials with a minimum effect on the environment. The transported material is enclosed in the pipeline so that there is no escape of dust, smell or of the transported material itself. The lecture is aimed at: - the short description of the operating principle and design of the pipe conveyor which was developed in the firm Matador Púchov in cooperation with the firm TEDO, - the analysis of experiencie in working some pipe conveyors which were under operation for a certain

  20. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  1. Risk management of onsite transportation of hazardous materials

    International Nuclear Information System (INIS)

    Wang, O.S.; Field, J.G.

    1992-10-01

    The US Department of Energy's (DOE) Hanford Site has recently undergone a significant change in its mission. The focus of site-wide operations has been shifted from production to environmental restoration. As a result, there is a significant increase in quantities of the radioactive wastes and other hazardous materials to be packaged and transported onsite. In response to the elevated transportation activities, the operations and engineering contractor for the Hanford Site, Westinghouse Hanford Company (Westinghouse Hanford), is proposing an integrated risk assessment methodology and risk management strategy to further enhance the safe operations of the onsite packaging and transportation activities involving radioactive and other hazardous materials. This paper summarizes Westinghouse Hanford's proposed risk assessment and risk management methodology for onsite transportation of hazardous materials. The proposed Westinghouse Hanford risk assessment and management methodology for onsite packaging and transportation has three integral parts: risk assessment, risk acceptance criteria, and risk minimization process. The purposes are to ensure that the risk for each ongoing transportation activity is acceptable, and to further reduce the overall risk for current and future onsite transportation activities

  2. Training of personnel in the field of radioactive materials transport

    International Nuclear Information System (INIS)

    Fasten, Ch.

    1997-01-01

    Training of personnel in the whole nuclear fuel cycle and also in the other fields of the use of radioactivity is one of the essentials with respect to compliance assurance. The transport of radioactive material is the only activity that takes place outside a facility: on roads, on railways, on the sea or in the air. A high level of safety is therefore an absolute requirement for all transport operations. To ensure this high level the training of the personnel involved in these activities plays an important role. Many studies show that most of the incidents in radioactive materials transport are caused by man-made errors: even so there have been no events with serious radiological consequences anywhere worldwide. There are many requirements in the various national and international regulations for the safe transport of radioactive material with regard to training. An overview is given of the special regulations, e.g. for road transport drivers, for safety advisers in the whole field of the transport of dangerous goods, for specially educated personnel in sea and air transports. In addition, the newest developments in the European Community in this field are discussed. An evaluation of the present regulations and proposals for further rules are also given. (Author)

  3. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  4. Technical regulations for road transport of radioactive materials

    International Nuclear Information System (INIS)

    Juul-Jensen, P.; Ulbak, K.

    1990-01-01

    The technical regulations for the transport of radioactive materials in Denmark are set down by the (Danish) National Board of Health in collaboration with the (Danish) National Institute for Radiation Hygiene in accordance with paragraph 3 of the Danish Ministry of Justice's Executive Order no. 2 of 2, January 1985 on the national road transport of dangerous goods by road, as amended by exutive order no. 251 of April 29th 1987 and no. 704 of November 1989. These regulations are presented here. They are almost identical, with only very few exceptions indicated in the publication, with the rules for Class 7 of the European convention on international transport of dangerous goods by road (ADR). In addition to the aforementioned regulations for national road transport of radioactive materials the general rules for the transport of radioactive materials found in the National Board of Health's executive order no. 721 of November 27th 1989 on the transport of radioactive materials are valid. The abovementioned executive orders, with the exception of certain supplements which are not part of the technical regulations, are also contained in this publication. (AB)

  5. The transport of fuel assemblies. New containers for transport the used nuclear material in Juzbado factory

    International Nuclear Information System (INIS)

    2005-01-01

    Juzbado Manufacturing Facility is designed to be versatile and flexible. It is manufactured different kind of fuel assemblies PWR, BWR and VVER, beginning by the uranium oxide coming from the conversion facilities. The transport of these products (radioactive material fissile) requires the availability of different kind of packages; our models variety is similar to the big manufacturers. It is required a depth knowledge of the licensing process, approvals, manufacturing and handling instruction to be confident. Moreover, the recently changes on the Transport Regulations and the demands for the approval by the Competent Authorities have required the renovation of most of the package designs for the transport of radioactive material fissile worldwide. ENUSA assumed time ago this renovation and it is nowadays in the pick moment of this process. If we also consider the complexity on the management of multimodal international transportations, the Logistic task for the transport of nuclear material associated to the Juzbado factory results in a real changeling area. (Author)

  6. Containers for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Bochard, C.

    1975-01-01

    The container for heat evolving radioactive materials has a metallic outer casing formed with outwardly projecting heat dissipating or cooling members, such as pins or fins, while each of its ends is formed with a flat flange which extends radially beyond the outer ends of the cooling members. A perforated wall extends between the flanges to define with same and with the periphery of the outer casing an annular space within which the cooling members are enclosed. This perforated wall is adapted to support a flexible covering sleeve the ends of which are clamped by inflatable seals between the periphery of the flanges and outer rings removably secured to the latter. Spraying means are provided within the aforesaid space to permit of projecting an uncontaminated liquid on the cooling members to cool the container before and/or while the latter is immersed in a loading and unloading pond with the sleeve mounted in position. The lower flange is provided with liquid collecting and evacuating means and compressed air may be injected into the said space to force the collected liquid outwardly. (auth)

  7. Transport of bundles and equipment which contain radioactive material

    International Nuclear Information System (INIS)

    1987-01-01

    This norm settles down: 1) The requirements that should be completed in relation to safety precautions and protection against ionizing radiations during the transport radioactive material and/or equipment containing it, in order to avoid risks to the collective and the environment. 2) The basic information on procedures that will be completed in the event of happening accidents during the transport or the transit storage of radioactive material and/or equipment that contain it. 3) The measures of security and physical protection during the transport of radioactive material and/or equipment containing it. This norm is applied: 1) To all the ways of transport (by air, by ground and by ship, fluvial and marine) of radioactive material and/or equipment that contain it. 2) To all natural or legal, public or private person, devoted to install, produce, trade, market, import or export radioactive materials and/or equipment containing it, and that needs to transport them as main or secondary activity [es

  8. Brittle fracture tests at low temperature for transport cask materials

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ito, Chihiro; Arai, Taku; Saegusa, Toshiari

    1993-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material were revised in 1985, and brittle fracture assessment at low temperature for transport packages are now required. This report discusses the applicability of the actual method for brittle fracture assessment of type-B transport cask materials used in JAPAN. The necessity of brittle fracture assessment at low temperature was estimated for each material of type-B transport casks used in Japan and the applicability was investigated. Dynamic fracture toughness values, K Id (J Id ), and RT NDT values of Low-Mn Carbon Steels, that are SA 350 Gr.LF1 Modify and SA 516 Gr.70 material which used in type-B transport cask body, were also obtained to check whether or not an easier and conventional test method, that prescribed in ASME CODE SECTION III, can be substituted for the dynamic fracture test method. And for bolt materials, which include 1.8Ni-0.8Cr-0.3Mo Carbon Steel and type 630 H Stainless Steel, toughness data were obtained for reference. (J.P.N.)

  9. Application of radiation protection programmes to transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part

  10. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  11. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  12. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  13. Permissible state permit/fee systems for radioactive materials transportation

    International Nuclear Information System (INIS)

    Friel, L.

    1987-01-01

    Many state permit/fee systems for radioactive materials transportation have been ruled inconsistent with federal law invalidated by the courts. As the date for repository operation, and its associated transportation, draws near, more states can be expected to adopt permit/fee systems. Examination of the U.S. Department of Transportation's advisory rulings and federal court cases on previous permit/fee systems gives general guidance on the type of permit/fee systems most likely to withstand challenges. Such a system would: have a simplified permit application with minimal information requirements; address a federally-defined class of hazardous or radioactive materials; allow access to all shipments conducted in compliance with federal law; charge a fee reasonably related to the costs imposed on the state by the transportation; and minimize the potential for re-directing shipments to other jurisdictions

  14. Radiological transport aspects of radioactive materials in Brazil

    International Nuclear Information System (INIS)

    Arrieta, C.M.A.; Guimaraes, C.A.; Meldonian, N.L.

    1986-01-01

    Many different types of radioactive materials are transported annually throughout the country, mainly those related with the nuclear fuel cycle and with the use in medicine, industry, agriculture and research fields. Considering the high number of packages that are transported by air and road a study is presented in order to assess their radiological aspects. For this purpose, data concerning the most significant radioisotopes are pointed out, including their activities and doses incurred by workers. (Author) [pt

  15. UK experience of managing a radioactive materials transport event database

    International Nuclear Information System (INIS)

    Barton, N.J.; Barrett, J.A.

    1999-01-01

    A description is given of the transport event database RAMTED and the related annual accident and incident reports. This database covers accidents and incidents involving the transport of radioactive material in the UK from 1958 to the present day. The paper discusses the history and content of the database, the origin of event data contained in it, the criteria for inclusion and future developments. (author)

  16. Revised legislation affecting the transport of radioactive materials

    International Nuclear Information System (INIS)

    Rowlands, R.P.

    1976-01-01

    The revised edition of the model Regulations for the safe transport of radioactive materials (1973, Vienna, International Atomic Energy Agency Safety Series no.6) has acted as the basis for the conditions of carriage and regulatory requirements in Great Britain. The changes introduced in this revised edition are discussed, and the current Regulations and Codes of Practice covering U.K. and international transport by road, sea, rail and air reviewed. (U.K.)

  17. Public and media acceptance of nuclear materials transport

    International Nuclear Information System (INIS)

    Lindeman, E.

    1999-01-01

    Transport is absolutely essential to the continued existence of a nuclear industry that includes large-scale power generation, sophisticated research, and medicine. Indeed, transport of nuclear materials is hardly a new business. What is new is the public's awareness and distrust of this transport - a distrust fuelled by the well-funded and skilled manipulation of the nuclear industry's detractors. The nuclear industry itself has only recently begun to acknowledge the importance and the implications of transport. This paper looks at the public and media response to the European-Japanese and the US Department of Energy's transport campaigns and quotes from several telling newspaper articles. It emphasizes the need for the nuclear industry to continue to be vigilant in its efforts to reach the public, media and governments with good science, openness and well-communicated facts. (author)

  18. Radiation doses arising from the air transport of radioactive materials

    International Nuclear Information System (INIS)

    Gelder, R.; Shaw, K.B.; Wilson, C.K.

    1989-01-01

    There is a compelling need for the transport of radioactive material by air because of the requirement by hospitals throughout the world for urgent delivery for medical purposes. Many countries have no radionuclide-producing capabilities and depend on imports: a range of such products is supplied from the United Kingdom. Many of these are short lived, which explains the need for urgent delivery. The only satisfactory method of delivery on a particular day to a particular destination is often by the use of scheduled passenger air service. The International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO 1987-1988), prescribe the detailed requirements applicable to the international transport of dangerous goods by air. Radioactive materials are required to be separated from persons and from undeveloped photographic films or plates: minimum distances as a function of the total sum of transport indexes are given in the Instructions. A study, which included the measurement and assessment of the radiation doses resulting from the transport of radioactive materials by air from the UK, has been performed by the National Radiological Protection Board (NRPB) on behalf of the Civil Aviation Authority (CAA) and the Department of Transport (DTp)

  19. Investigation of transport properties of colossal magnetoresistive materials

    International Nuclear Information System (INIS)

    Kaurav, Netram

    2006-01-01

    The transport properties, i.e. resistivity, heat capacity, thermal conductivity and optical conductivity have been theoretically analysed for colossal magnetoresistive materials within the framework of double exchange mechanism. Following an effective interaction potential, we deduce acoustic (optical) phonon modes, coupling strength for electron-phonon and phonon-impurities, the phonon (magnon) scattering rate and constants characterise the scattering of charge and heat carriers with various disorders in the crystal. The theoretical models have been developed to account the anomalies observed in the transport phenomenon. It is noticed that electron-electron, electron-phonon and electron-magnon interactions are essential in discussing the transport behaviour of doped magnetites. (author)

  20. Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges

    Science.gov (United States)

    Marquis, Fernand D. S.

    2012-03-01

    The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.

  1. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  2. Quality assurance in the transport and packaging of radioactive material

    International Nuclear Information System (INIS)

    Hale, J.

    1995-01-01

    Quality Assurance (QA) is a requirement of the International Atomic Energy Agency (IAEA) Safety Series No. 6 ''Regulations for Safe Transport of Radioactive Materials.'' It is also, increasingly, a customer requirement. British Nuclear Fuels plc (BNFL) Transport Division has established an integrated management system (including quality and safety) which is being extended to cover environmental aspects. The management system covers the design, procurement, manufacture, testing, documentation, use, maintenance, inspection and decommissioning of all packages used for the transport of radioactive materials and for interim storage. It also covers planning, programming and transport operations. These arrangements cover all modes of transport by road, rail, sea and air. The QA arrangements developed enable Transport Division to demonstrate to Competent Authorities, customers and the general public that the systems in place meet all regulatory requirements. This paper discusses what quality assurance is, why QA arrangements should be introduced and how they were established within Transport Division. Finally, the further developments in the Division's quality arrangements using the tools and techniques of Total Quality Management (TQM) and the European Foundation for Quality Management Model for Self Assessment are described

  3. The issue of safety in the transports of radioactive materials

    International Nuclear Information System (INIS)

    Pallier, Lucien

    1961-01-01

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel

  4. Multipurpose containers for the transport of nuclear material: The example of transport flask CF6

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Borgia, M.G.

    1989-03-01

    The present paper summarizes the design and licensing activity carried out in the frame work of an ENEA working group which was set up with the aim of developing transport flasks for radioactive and non radioactive dangerous materials. In particular the nuclear design of the multipurpose transport flask CF6 is described. The paper was presented at the seminar on 'Nuclear wastes and transport of radioactive materials' held in Bologna on June 4th and 5th 1987 under the aegis of the Department of Physics of the University of Bologna. (author)

  5. An update on Lab Rover: A hospital material transporter

    Science.gov (United States)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  6. Aspects of safety in the transport of radioactive materials

    International Nuclear Information System (INIS)

    Ruiz C, M.A.

    1991-01-01

    The transport of radioactive materials behaves to the equal that other chemical products, certain risks that its are necessary to know how to evaluate and to minimize, adopting all kinds of measures technician-administrative, with object of being able to guarantee that this risks stay in an acceptable level for the population potentially affected for the workers of the one sector and for the environment. To be able to evaluate the risk acceptable it is a difficult task, for that, national and international organizations have established a commitment to develop standards of radiological protection, to make every day but sure the transport of radioactive materials

  7. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  8. Environmental risk analysis of hazardous material rail transportation

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Werth, Charles J.; Schaeffer, David; Yoon, Hongkyu; Barkan, Christopher P.L.

    2014-01-01

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials

  9. Environmental risk analysis of hazardous material rail transportation

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Werth, Charles J.; Schaeffer, David [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Yoon, Hongkyu [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Barkan, Christopher P.L. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2014-01-15

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.

  10. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  11. Materiality in Public Sector Financial Audit: International Practice and the Opinion of Brazilian Experts

    Directory of Open Access Journals (Sweden)

    Juliane Madeira Leitão

    2016-04-01

    Full Text Available Materiality in private sector financial audit is a topic that has been relatively well developed in the literature. Specific research in this regard in public sector auditing, on the other hand, is scarce at the international level and absent in Brazil. In view of this, the purpose of this study was to identify the parameters used to determine materiality in public sector financial audit. To this end, we sent questionnaires to the 192 Supreme Audit Institutions that are members of INTOSAI and to 36 Brazilian public auditors, specialists in financial audit, who are staff members of the TCU or the CGU seeking information with respect to the Institutions’ guidelines and the auditors’ perceptions about materiality. Results reveal that expenditures, revenues and total assets are the benchmarks most recommended by respondents for defining materiality in the public sector. In addition, they recommended the adoption of percentages of up to 2% for each of these parameters in defining what is material. It was observed, as well, especially with respect to the effectiveness of internal control and to public expectations or interests, that qualitative aspects should be also taken into account in determining materiality, although a lesser degree of importance is attributed to this than to the quantitative aspects,. The study contributes to the accounting literature on the development of audits, particularly with respect to the use of a concept, materiality, that is always emphasized in professional standards, but about which there are few objective guidelines.

  12. Urban risks of truck transport of radioactive material

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1998-01-01

    Truck transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), normally maximizes use of Interstate highways, which are safer and more efficient for truck transport in general. In the estimation of transportation risks, population bordering a route is a direct factor in determining consequences and an indirect factor in determining exposure times, accident probabilities and severities, and other parameters. Proposals to transport RAM may draw intense resistance from stakeholders based on concern for population concentrations along urban segments but the length of a route segment is also a determinative factor in estimating the transport risks. To quantify the relative importance of these two factors, a potential route for transport of SNF (strict use of Interstate highways) was selected and compared with a modified version that bypassed urban areas. The RADTRAN 4 code for transportation risk assessment, which was developed at Sandia National Laboratories, was used in the present study to assess the relative risks of SNF transportation for alternative routes. The results suggest that emphasis on Interstate highways minimizes total route and urban segment risks

  13. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  14. Material Properties and Characteristics for Development of an Expert System for Coal-Tar Sealers

    National Research Council Canada - National Science Library

    Shoenberger, James

    2001-01-01

    .... Several coal-tar mixtures that varied with source of the coal-tar emulsion, amount of aggregate, and amount of polymer used in the mixtures were evaluated for their field performance and material properties...

  15. Material science. For electricians, information experts and electrical engineers; Werkstoffkunde. Fuer Elektrotechniker, Informationstechniker und Elektromaschinenbauer

    Energy Technology Data Exchange (ETDEWEB)

    Siegismund, H.

    1999-10-01

    This book of the series ``Die Meisterpruefung in der Elektrotechnik`` provides information on material science and components. Low redundancy in the subject matter enables efficient learning for examinations as well as fast access for the practician. Each chapter contains questions and answers for checking up on the knowledge gained. Subjects: Fundamentals; Materials and components in electrical engineering; Joints and contacts; Ferrous materials; Lubricants and roller bearings; Materials in electromechanical engineering; Gypsum and cement; Corrosion and corrosion protection. [Deutsch] Dieser vorliegende Band aus der Fachbuchreihe `Die Meisterpruefung in der Elektrotechnik` vermittelt die bei der Anwendung von Werkstoffen und Baulementen noetige Sachkenntnis. Die redundanzarme Stoffvermittlung ermoeglicht eine effiziente Pruefungsvorbereitung, aber auch dem Praktiker den schnellen Zugriff. Mit Fragen und Antworten zu jedem Kapitel kann eine Eigenkontrolle des erworbenen Wissens erfolgen. 1. Grundlagen, 2. Werkstoffe und Bauelemente der Elektrotechnik, 3. Verbindungen und Kontakte, 4. Eisenwerkstoffe, 5. Schmierstoffe und Waelzlager, 6. Werkstoffe im Elektromaschinenbau, 7. Gips und Zement und 8. Korrosion und Korrosionsschutz. (orig.)

  16. Developing and evaluating rare disease educational materials co-created by expert clinicians and patients

    DEFF Research Database (Denmark)

    Badiu, Corin; Bonomi, Marco; Borshchevsky, Ivan

    2017-01-01

    BACKGROUND: Patients with rare diseases face health disparities and are often challenged to find accurate information about their condition. We aimed to use the best available evidence and community partnerships to produce patient education materials for congenital hypogonadotropic hypogonadism...

  17. United States experience in the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Platt, A.M.; Rhoads, R.E.; Hall, R.J.; Williams, L.D.; Brobst, W.A.; Shappert, L.B.; Jefferson, R.M.

    1977-01-01

    The transport of radioactive material forms a vital link in the nuclear fuel cycle in the United States. Actual U.S. experience and practice with such systems for the packaging and transport of uranium ore concentrates, uranium hexafluoride, fresh fuel, irradiated fuel, non-high-level waste, and plutonium with low heat generation rates are described. Specific shipping systems in current use for these services are illustrated. A comparison will be made of shipping requirements for nuclear parks versus dispersed facilities. Shipping systems for other fuel cycle materials (e.g., high-level waste and cladding hulls) have not been developed because there has been no need to transport these materials commercially. However, conceptual designs for packaging and transport of such materials have been developed. Selected systems are reviewed and summarized. Transport safety in the U.S. is regulated by the U.S. Department of Transportation and the Nuclear Regulatory Commission. Key regulations defining packaging requirements, allowable radiation dose rates, and handling procedures are reviewed. Although the radioactive material shipping industry has an outstanding safety record, opposition to nuclear fuel cycle shipments has surfaced in several areas. The U.S. congressional ban on the shipment of plutonium by air, the actions of New York City to prohibit certain shipments within the city limits, and the requirement of U.S. railroads to ship spent fuel casks only in dedicated trains are reviewed. In an attempt to provide information on the safety margins inherent in the design of radioactive materials packages, ERDA has undertaken a series of accident studies and full scale crash tests that stress the packages beyond the levels expected in severe accidents. In addition, the level of total risk associated with radioactive materials shipments is being evaluated. Current ERDA crash test and transportation risk assessment studies are reviewed. Concern about the possibility of

  18. Materiality in Public Sector Financial Audit: International Practice and the Opinion of Brazilian Experts

    OpenAIRE

    Juliane Madeira Leitão; José Alves Dantas

    2016-01-01

    Materiality in private sector financial audit is a topic that has been relatively well developed in the literature. Specific research in this regard in public sector auditing, on the other hand, is scarce at the international level and absent in Brazil. In view of this, the purpose of this study was to identify the parameters used to determine materiality in public sector financial audit. To this end, we sent questionnaires to the 192 Supreme Audit Institutions that are members of INTOSAI and...

  19. Transportation of radioactive materials: legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.; Heiskell, M.M.

    1980-01-01

    The transportation of radioactive materials, as well as hazardous materials in general, has been an issue of ever-increasing concern and an object of numerous regulations and legislative actions worldwide. The Transportation Technology Center of the US Department of Energy's Sandia Laboratories in Albuquerque, New Mexico, is currently involved in developing a national program to assure the safe shipment of radioactive materials. At Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, this overall effort is being supported in a specialized manner. As part of the Logistics Modeling program at ORNL, the Ecological Sciences Information Center has developed comprehensive data bases containing legislative and regulatory actions relevant to the transportation of hazardous materials. The data bases are separated according to status level of the legislation. The Current Legislation Data Base includes all new legislative actions introduced during the present year (1980) or those bills carried over from the previous year's sessions. The second data file, Historical Legislation Data Base, consists of all legislative actions since 1976 that have passed and become public laws, as well as those actions that were unsuccessful and were classified as denied by law. Currently the data bases include state-, local-, and federal, level legislation, with emphasis on the transportation of radioactive materials. Because of their relevance to the transportation issues, actions involving related subject areas such as, disposal and storage of radioactive wastes, moratoriums on power plant construction, and remedial actions studies, special agencies to regulate shipment of radioactive materials, and requirements of advanced notification, permits and escorts are also included in the data bases

  20. Risk analysis methodologies for the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Geffen, C.A.

    1983-05-01

    Different methodologies have evolved for consideration of each of the many steps required in performing a transportation risk analysis. Although there are techniques that attempt to consider the entire scope of the analysis in depth, most applications of risk assessment to the transportation of nuclear fuel cycle materials develop specific methodologies for only one or two parts of the analysis. The remaining steps are simplified for the analyst by narrowing the scope of the effort (such as evaluating risks for only one material, or a particular set of accident scenarios, or movement over a specific route); performing a qualitative rather than a quantitative analysis (probabilities may be simply ranked as high, medium or low, for instance); or assuming some generic, conservative conditions for potential release fractions and consequences. This paper presents a discussion of the history and present state-of-the-art of transportation risk analysis methodologies. Many reports in this area were reviewed as background for this presentation. The literature review, while not exhaustive, did result in a complete representation of the major methods used today in transportation risk analysis. These methodologies primarily include the use of severity categories based on historical accident data, the analysis of specifically assumed accident sequences for the transportation activity of interest, and the use of fault or event tree analysis. Although the focus of this work has generally been on potential impacts to public groups, some effort has been expended in the estimation of risks to occupational groups in transportation activities

  1. Nuclear materials transportation workshops: USDOE outreach to local governments

    International Nuclear Information System (INIS)

    1987-01-01

    To provide direct outreach to local governments, the Transportation Management Division of the United States Department of Energy asked the Urban Consortium and its Energy Task Force to assemble representatives for two workshops focusing on the transport of nuclear materials. The first session, for jurisdictions east of the Mississippi River, was held in New Orleans on May 5--6, 1988; the second was conducted on June 6--7, 1988 in Denver for jurisdictions to the west. Twenty local government professionals with management or operational responsibility for hazardous materials transportation within their jurisdictions were selected to attend each workshop. The discussions identified five major areas of concern to local government professionals; coordination; training; information resources; marking and placarding; and responder resources. Integrated federal, state, and local levels of government emerged as a priority coordination issue along with the need for expanded availability of training and training resources for first-reponders

  2. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  3. Requirements applied in Cuba to the transport of radioactive materials

    International Nuclear Information System (INIS)

    Ouevedo Garcia, J.R.; Lopez Forteza, Y.

    1998-01-01

    The objective of this paper is to comment the supplementary requirements imposed by the Competent Authority to the operations of the main importing/delivering enterprise of unsealed sources for approvals and administration since the establishment, in 1987, of the legal framework on transport of radioactive materials. The paper summarizes the achieved results in this field in over 11 years operation. (author)

  4. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  5. Prediction of Thermal Transport Properties of Materials with Microstructural Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youping

    2017-10-10

    This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such as showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.

  6. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  7. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transportation of lithium cells and batteries, including lithium cells and batteries packed with or contained in equipment. The proposed changes are intended to enhance safety by ensuring that all lithium batteries are...

  8. Regulatory philosophy and intent of radioactive material transport

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.; Chou, C.K.

    1990-01-01

    This book contains papers presented at the 1990 Pressure Vessels and Piping Conference. Included are the following papers: Thermal testing of solid neutron shielding materials, Collapse analysis of toroidal shell, Decision process involved in preparing the Shippingport reactor pressure vessel for transport

  9. Radioactive materials transportation by motorbike in entire Brazil territory

    International Nuclear Information System (INIS)

    2006-09-01

    This Regulation refers to the interpretation of the term vehicle in the Chapter 3 of the CNEN-NE.5.01 'Vehicle: road vehicle (including articulated vehicle, i.e., combination of tractor and semi-trailer), car or railway wagon. Each wagon should be considered a separate vehicle'. This definition does not include the possibility of radioactive material transportation by motorbike

  10. Program strategy document for the Nuclear Materials Transportation Technology Center

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1979-07-01

    A multiyear program plan is presented which describes the program of the Nuclear Materials Transportation Technology Center (TIC) at Sandia Laboratories. The work element plans, along with their corresponding work breakdown structures, are presented for TTC activities in the areas of Technology and Information Center, Systems Development, Technology, and Institutional Issues for the years from 1979 to 1985

  11. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  12. Transportation of fissile materials and the danger of criticity

    International Nuclear Information System (INIS)

    Haon, D.; Leclerc, J.; Maubert, L.

    1981-01-01

    The authors examine the risk of criticity that can arise during the transportation of fissile matter. They then outline the regulations and studies made in the field of criticity-safety and the computation methods used. They discuss the applications that are reflected in the concept and design of fissile material packagings [fr

  13. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  14. Compendium of Material Composition Data for Radiation Transport Modeling

    International Nuclear Information System (INIS)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-01-01

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: (1) to provide a quick reference of material compositions for analysts and (2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  15. Contribution to fissile materials transportation in transit storage

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da

    2005-01-01

    The national and international standards for the transportation of fissile materials establish two indexes: Transport Index (Tl) and Criticality Safety Index (ISC). Besides, in non-exclusive transit, the largest of these indexes cannot overtake the value 50. Considering several groups to be transported, the sum of the transportation indexes cannot overtake 200 and the distance between them should be 6 meters This work aimed, as a primary target, to verify when an index is superior to another, in relation to the fissile materials studied, i.e., uranium oxides UO 2 , U 3 O 8 and uranium silicide U 3 Si 2 , taking into account the different enrichment grades. The result found is that the criticality safety index is always greater. As a second goal, it was tried to verify if there is any alteration in the case of these compounds aging process, i.e., alteration in transport index (Tl) due to gamma radiation of daughters radioisotopes in secular equilibrium. No alteration, was verified as the daughters contribution although considerable related to the transport index is very small concerning the criticality safety index. As a third target, it was tried to justify a distance equal to 6 meters, between each group of fissile material. The result showed that, in air media, the distance of 1 meter is sufficient, except for the UO 2 compound at 100% of enrichment, which reaches 2 meter while in the water means the distance of 40cm is enough for the compounds studied. This fact is of great importance when the cost of the necessary area in the transportation and storage is taken into consideration. (author)

  16. Emergency response arrangements for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Morgan-Warren, E.

    2004-01-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability

  17. Developing and evaluating rare disease educational materials co-created by expert clinicians and patients

    DEFF Research Database (Denmark)

    Badiu, Corin; Bonomi, Marco; Borshchevsky, Ivan

    2017-01-01

    were conducted by clinicians and patients who are native speakers. RESULTS: Co-created patient education materials reached the target 6th grade reading level according to 2/6 (33%) algorithms (range: grade 5.9-9.7). The online survey received 164 hits in 2 months and 63/159 (40%) of eligible patients...... disease patients. Combining dissemination via traditional healthcare professional platforms as well as patient-centric sites can facilitate broad uptake of culturally adapted translations. This process may serve as a roadmap for creating patient education materials for other rare diseases....

  18. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  19. Bioinspired one-dimensional materials for directional liquid transport.

    Science.gov (United States)

    Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-08-19

    One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate

  20. Space Transportation Materials and Structures Technology Workshop. Volume 2: Proceedings

    International Nuclear Information System (INIS)

    Cazier, F.W. Jr.; Gardner, J.E.

    1993-02-01

    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems. Separate abstracts have been prepared for papers in this report

  1. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  2. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    The automated material transport system (AMTS) was conceived for the transport of samples within the material and process control laboratory (MPCL), located in the plutonium processing building of the special isotope separation (SIS) facility. The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing glove boxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with a minimum of waiting periods and nonproductive activities. The AMTS design requirements, design verification mockup plan, and AMTS mockup procurement specification were established prior to cancellation of the SIS project. Due to the AMTS's flexibility, the need for technology development, and applicability to other US Department of Energy facilities, mockup of the AMTS continued. This paper discusses the system design features, capabilities, and results of initial testing

  3. Radioactive materials and nuclear fuel transport requirements in Poland in the light of international regulations

    International Nuclear Information System (INIS)

    Musialowicz, T.

    1977-01-01

    National regulations for the transport of radioactive materials and nuclear fuel in Poland are discussed. Basic transport requirements and regulations, transport experience including transport accidents and emergency service are described. The comparison with international regulations is given

  4. Compendium of federal and state radioactive materials transportation laws and regulations: Transportation Legislative Database (TLDB)

    International Nuclear Information System (INIS)

    1989-10-01

    The Transportation Legislative Database (TLDB) is an on-line information service containing detailed information on legislation and regulations regarding the transportation of radioactive materials in the United States. The system is dedicated to serving the legislative and regulatory information needs of the US Department of Energy and other federal agencies; state, tribal, and local governments; the hazardous materials transportation industry; and interested members of the general public. In addition to the on-line information service, quarterly and annual Legal Developments Reports are produced using information from the TLDB. These reports summarize important changes in federal and state legislation, regulations, administrative agency rulings, and judicial decisions over the reporting period. Information on significant legal developments at the tribal and local levels is also included on an as-available basis. Battelle's Office of Transportation Systems and Planning (OTSP) will also perform customized searches of the TLDB and produce formatted printouts in response to specific information requests

  5. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  6. Route selection for the transport of hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, F A

    1988-12-01

    The factors governing the risk-weighted selection of routes for transport of hazardous materials are analyzed. Starting from a formulation for the total risk of these transports that assumes complete information, approximations for the more realistic case of partial and uncertain information are discussed. These approximations involve well-known risk assessment techniques and mathematical methods; among the latter, Monte Carlo calculations hold the most promise. The actual route selection is based on an index of total societal cost, evaluated for a set of potential routes. (author)

  7. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  8. Transporting radioactive materials: Q ampersand A to your questions

    International Nuclear Information System (INIS)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet

  9. 78 FR 60755 - Hazardous Materials: Enhanced Enforcement Procedures-Resumption of Transportation

    Science.gov (United States)

    2013-10-02

    ... material,'' we envisioned etiological agents, such as biological products, infectious substances, medical... accidents or incidents involving the transportation of hazardous material. In order to achieve a uniform... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part...

  10. Implementation of the 1996 edition of the IAEA regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Rawl, R.R.; Kervella, O.

    1998-01-01

    The International Atomic Energy Agency (IAEA) completed a 10 year and revision of its 'Regulations for the Safe Transport of Radioactive Material' with approval of the amendments by its Board of Governors in September 1996. The revised edition contains some important changes in the regulations, including: type C package requirements; provisions for low dispersible material; uranium hexafluoride packaging; exemption value specifications; operational requirements, including the creation of a criticality safety index and new proper shipping names/UN numbers. The 1996 edition of the IAEA regulations has been published and corresponding revisions now being considered by the international transport safety organizations and Member States. In particular, the United Nations Committee of Experts on the Transport of Dangerous Goods, International Civil Aviation Organization and International Maritime Organization and preparing revisions to take into account the revised Class 7 requirements. An effective date of 1 January 2001 has been recommended so that international and domestic requirements might come into force simultaneously, thereby avoiding disruptive out-of-phase implementation. (authors)

  11. The impact of the new IAEA transport regulations for the safe transport of radioactive materials on package design and transport

    International Nuclear Information System (INIS)

    Schneider, K.

    1989-01-01

    In April 1985 the 1985 Edition of the IAEA Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, was issued. This is a completely revised edition which shall come into force internationally in the late eighties. This edition will supersede the 1973 (As Amended, 1979) edition. A paragraph by paragraph comparison is carried through, followed by a consideration on the impact on general requirements for packaging and transport. A detailed estimate on packaging design and transport is performed for typical products of the nuclear fuel cycle. The major practical consequences likely to be encountered are presented

  12. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  13. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  14. Transport of nuclear used fuel and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J. [World Nuclear Transport Institute, London (United Kingdom)

    2015-07-01

    20 millions consignments of radioactive materials are routinely transported annually on public roads, railways and ships. 5% of these are nuclear fuel cycle related. International Atomic Energy Agency Regulations have been in force since 1961. The sector has an excellent safety record spanning over 50 years. Back end transport covers the operations concerned with spent fuel that leaves reactors and wastes. Since 1971, there have been 70,000 shipments of used fuel (i.e. over 80,000 tonnes) with no damage to property or person. The excellent safety record spanning over 50 years praised every year by the General Conference of the International Atomic Energy Agency. More than 200 sea voyages over a distance of more than 8 million kilometres of transport of used fuel or high-level wastes.

  15. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  16. Plasma Interactions with Mixed Materials and Impurity Transport

    International Nuclear Information System (INIS)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.; Frolov, T.; Magee, E.; Rudd, R.; Umansky, M.

    2016-01-01

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  17. IUTAM Symposium on Lubricated Transport of Viscous Materials

    CERN Document Server

    1998-01-01

    The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...

  18. Advisory material for the IAEA regulations for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    Since the first edition in 1961, the Regulations for the Safe Transport of Radioactive Material of the IAEA (IAEA Regulations) have served as the basis of safety for the transport of radioactive material worldwide. In the discussions leading to the first edition of the IAEA Regulations, it was realized that there was need for a publication to supplement the Regulations which could give information of individual provisions as to their purpose, their scientific background and how to apply them in practice. In response, the Agency published Safety Series No. 7, entitled, in its first edition in 1961, 'Notes on Certain Aspects of the Regulations'. An additional source of information on the Regulations, providing advice on 'how' the user should comply with them which could be augmented from time to time in the light of latest experience, was provided by the Agency, initially in relation to the 1973 edition of the Regulations. This was entitled 'Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material' and designated Safety Series No. 37. This document is the result of combining the two Safety Series in a single publication. Thus the primary purpose of this publication is to provide guidance to users on proven and acceptable ways of complying with the Regulations. This Advisory Material is not a stand-alone text and it only has significance when used as a companion to the IAEA Safety Standards Series No. ST-1, Regulations for the Safe Transport of Radioactive Material (1996 edition)

  19. Trasmar: automated vehicle for transport of radioactive materials

    International Nuclear Information System (INIS)

    Segovia R, J.A.; Martinez J, L.

    2001-01-01

    Traditionally robots have been used for industrial applications, even though area in which these devices had a deep impact is in the nuclear industry. The ININ is an Institute that must to manage and to work with radioactive substances. The ININ is also responsible of the storage and supervision of radioactive wastes in the country, therefore the applications of the automated systems in the Institute have as the main objective to reduce the exposure and the contact of personnel with the radioactive material. Here to, it has been proposed the project called Assisted Transportation of Radioactive Material (TRASMAR). (Author)

  20. Risk assessment for transportation of radioactive materials and nuclear explosives

    International Nuclear Information System (INIS)

    Clauss, D.B.; Wilson, R.K.; Hartman, W.F.

    1991-01-01

    Sandia National Laboratories has the lead technical role for probabilistic risk assessments of transportation of nuclear weapons, components, and special nuclear material in support of the US Department of Energy. The emphasis of the risk assessments is on evaluating the probability of inadvertent disposal of radioactive material and the consequences of such a release. This paper will provide an overview of the methodology being developed for the risk assessment and will discuss the interpretation and use of the results. The advantages and disadvantages of using risk assessment as an alternative to performance-based criteria for packaging will be described. 2 refs., 1 fig

  1. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles, freight containers, and... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General Handling and Stowage § 176.76 Transport... paragraphs (b) through (f) of this section, hazardous materials authorized to be transported by vessel may be...

  2. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  3. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4 (explosive...

  4. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  5. 49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges. (a...

  6. Expert geographical information system for assessing hazardous materials in aquatic environments

    International Nuclear Information System (INIS)

    Regens, J.L.; White, L.; Wright, J.D.; Rene, A.; Mielke, H.; Bakeer, R.; Belkhouche, B.; Barber, M.

    1993-01-01

    Hazardous substances, including radionuclides, heavy metals, chlorinated hydrocarbons, and industrial solvents, pose unique challenges in terms of environmental restoration and waste management, especially in aquatic environments. When stored, used or disposed of improperly, hazardous materials including transuranic wastes, high level wastes, low level wastes, greater than class C wastes, mixed wastes or chemical wastes can contaminate an array of environmental receptors ranging from soils, sediments, groundwater to surface water. Depending on the specific hazardous substance and site attributes, environmental restoration and waste management can be a complex, problematic activity. This is particularly true for the major Defense Programs facilities managed by the Department of Energy (DOE). This research cluster consists of two discrete elements. Project Element No. 1 develops and applies GIS-based approaches to decision support for environmental restoration by delineating potential exposures and health risks at the Rocky Flats Plant and profiling contemporary and historical demographic/land use patterns at Sandia National Laboratories. Project Element No. 2 develops ESS software for surface water and ground water contaminants in the Mississippi River Basin

  7. Management System for Regulating Transport of Radioactive Material

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.; Capadona, N.M.; Barenghi, L.G.

    2011-01-01

    The objective of this paper is to describe the main characteristics of the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN) management system applied to the transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TMR from now on. ARN's management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TMR process was split into five sub processes in order to facilitate the implementation of the system. Such sub processes were defined taking into account of the main functions developed by ARN in the branch of safe transport of radioactive materials. For each of this processes were specified their objectives, inputs, activities and outputs, clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to achieve continuous improving. Simultaneously, some indexes were defined to monitor and measures sub processes as a way to show objective evidence of conformity with objectives. Finally, as conclusions of this paper, they will be showed the main obstacles and troubleshooting found in the design and implementation of management system as well as their solutions and state of advance. (authors)

  8. Regulations for the Safe Transport of Radioactive Materials. 1964 Revised Edition

    International Nuclear Information System (INIS)

    1965-01-01

    In 1961 the International Atomic Energy Agency, within the framework of its statutory functions and in accordance with recommendations made by its Preparatory Commission and by the Economic and Social Council of the United Nations, published safety regulations which could be applied to the national and international transport of radio active materials by all means of transport. At the same time, the Director General of the Agency indicated that these regulations would be revised at appropriate intervals in consultation with Member States and the organizations concerned and invited suggestions for their improvement in the light of experience and increased knowledge. In preparing the revised regulations presented in this document, the Agency has received considerable support from its Member States and the organizations concerned, which have made extensive studies and suggestions in order to assist in its work. The Agency also convened several meetings of experts from its Member States and of representatives of a number of international organizations, and has been represented in several meetings convened by those organizations. In publishing the revised transport regulations which result from that co-ordinated effort, the Agency aims at proposing a lasting framework of principles and rules, complemented by appropriate technical data, acceptable for the safe transport of radio active materials by air, land and water. In particular, the developments which have been introduced concerning the packaging requirements, the nuclear safety criteria for the transport of fissile materials and the methods for testing packages should facilitate the international acceptance of packages by the authorities concerned. The Board of Governors of the Agency approved the revised regulations in June and September 1964. It authorized the Director General to apply them, as appropriate, to Agency operations and Agency assisted operations and to recommend to Member States and to the

  9. Materials with engineered mesoporosity for programmed mass transport

    Science.gov (United States)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  10. Transfer of radioactive materials in the fuel cycle. Transportation systems, transportation volume and radiation protection

    International Nuclear Information System (INIS)

    Schwarz, G.

    1997-01-01

    No other aspect of the carriage of hazardous goods has been provoking such long-lived concern in the general public and in the press during the last few years as the transport of spent nuclear fuels and high-level radioactive wastes to the storage facility at Gorleben. One reason for this controversy, besides clear-cut opposition in principal against such transfer activities, is the fact that there is an information gap, so that large parts of the population are not well informed about the relevant legal safety requirements and obligations governing such transports. The article therefore tries to fill this gap, presenting information on the number and necessity of transports of radioactive materials in the nuclear fuel cycle, the relevant scenarios, the transportation systems and packing and shielding requirements, as well as information on the radiological classification and hazardousness of waste forms. (Orig.) [de

  11. A guide to the suitability of elastomeric seal materials for use in radioactive material transport packages

    International Nuclear Information System (INIS)

    Vince, D.J.

    2004-01-01

    Elastomeric seals are a frequently favoured method of sealing Radioactive Material Transport (RMT) packages. The sealing technology has been proven for many years in a wide range of industrial applications. The requirements of the RMT package applications, however, are significantly different from those commonly found in other industries. This guide outlines the Regulatory performance requirements placed on an RMT package sealing system by TS-R-1, and then summarises the material, environment and geometry characteristics of elastomeric seals relevant to RMT applications. Tables in the guide list typical material properties for a range of elastomeric materials commonly used in RMT packages

  12. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  13. Doses to road transport workers from radioactive materials

    International Nuclear Information System (INIS)

    Lawrence, B.E.; van der Vooren, A.

    1988-12-01

    Each year approximately 750,000 packages of radioactive materials are shipped throughout Canada. Regulatory controls on these shipments are designed to keep radiation doses received by transport workers well within acceptable limits. Since many of these workers are not monitored for radiation exposure, however, little factual information has been available in Canada to support theoretical estimates. A study to document actual radiation doses received by a select group of transport workers that is actively involved in the shipment of radioactive materials, was carried out in 1987 and 1988. This study involved the monitoring of 31 candidates from nine transport companies from across the country that handle medical isotopes, industrial isotopes, uranium fuel cycle materials and associated radioactive wastes. Each of the candidates (consisting of driver, dock workers, sorters, and supervisors) was issued personal thermoluminescent dosimeter (TLD) badges that were worn each day during the six month monitoring period. Some of the candidates were also issued cab or area dosimeters that were left in the cabs of the vehicles or in work areas so that the dose received in these areas could be differentiated from total personal exposure. During the monitoring program, the candidates filled out reporting sheets at the end of each working day to document information such as the quantity of materials handled, handling times and vehicle size. This information and the dosimetry data were used in the development of correlations between materials handled and doses reported so that doses for other handling similar materials could be estimated. Based on the results of the study, it was learned that while most of the transport workers receive doses that are at or near background levels, other (particularly those handling medical isotopes) are exposed to levels of radiation that may result in their receiving doses above the 5 mSv per annum limit set for members of the general public. On

  14. Refuses and delays in the transportation by ship of radioactive material; Recusas e demoras no transporte maritimo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Clarice; Sobreira, Ana Celia [REM Industria e Comercio Ltda., Sao Paulo, SP (Brazil)

    2011-10-26

    Some Class 7 materials can only be transported by ship, making that load and unload activities can be done in a port. In the Brazil, the port of Santos posses the most volume of cargo manipulation, and cargoes which contain radioactive material are always present with all manipulation requisites according to applicable regulations. The transport and manipulation operations of radioactive material are performed in accordance with national and international requisites but, some individuals posses yet a high risk perception according to our experience, involving members of Brazilian port authorities, the Navy and cargoes handlers at the ports. So, exist yet a high quantity of refuses and delays during the transport by ship. Therefore, a communication strategy was developed and applied, to inform the risk perception, supplying information on the very principles of ionizing radiation, legislation and uses of radiation, and so, diminishing the quantity of refuses and delays. From that initial communication strategy on, it becomes evident the necessity of training and conscience making a movement for the problem of refuses and delays be diminished

  15. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  16. Quality assurance requirements for packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    Barker, R.F.; MacDonald, C.E.; Doda, R.J.

    1978-01-01

    This paper discusses the new quality assurance regulations of the Nuclear Regulatory Commission (NRC) for packaging and transportation of radioactive materials. These regulations became effective on October 18, 1977. Background information concerning these regulations and packaging and transportation history is included. The quality assurance program is described with indications of how it is composed of general (administrative) provisions which must meet the 18 quality assurance criteria and be approved by the NRC; specific provisions which appear in the DOT and NRC regulations and in the individual package design approval; and other specific procedures which are not required by regulations but which are necessary for the proper control of quality. The quality assurance program is to be developed using a graded approach for the application of pertinent criteria and optimizing the required degree of safety and control efforts involved in achieving this level of safety. The licensee-user is responsible for all phases of quality assurance for packaging activities including: design, manufacture, test, use, maintenance and repair. The package design phase is considered to be particularly important in producing adequate safety in operational activities concerning packaging and transportation of radioactive materials

  17. Route-specific analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    1986-01-01

    This report addresses a methodology for route-specific analysis, of which route-selection is one aspect. Identification and mitigation of specific hazards along a chosen route is another important facet of route-specific analysis. Route-selection and route-specific mitigation are two tools to be used in minimizing the risk of radioactive materials transportation and promoting public confidence. Other tools exist to improve the safety of transportation under the Nuclear Waste Policy Act. Selection of a transportation mode and other, non-route-specific measures, such as improved driver training and improved cask designs, are additional tools to minimize transportation risk and promote public confidence. This report addresses the route-specific analysis tool and does not attempt to evaluate its relative usefulness as compared to other available tools. This report represents a preliminary attempt to develop a route-specific analysis methodlogy. The Western Interstate Energy Board High-Level Waste Committee has formed a Route-Specific Analysis Task Force which will build upon the methodology proposed in this Staff Report. As western states continue to investigate route-specific analysis issues, it is expected that the methodology will evolve into a more refined product representing the views of a larger group of interested parties in the West

  18. Nonlinear Ballistic Transport in an Atomically Thin Material.

    Science.gov (United States)

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  19. Transport and screen blockage characteristics of reflective metallic insulation materials

    International Nuclear Information System (INIS)

    Brocard, D.N.

    1984-01-01

    In the event of a LOCA within a nuclear power plant, it is possible for insulation debris to be generated by the break jet. Such debris has the potential for PWR sump screen (or BWR RHR suction inlet) blockage and thus can affect the long-term recirculation capability. In addition to the variables of break jet location and orientation, the types and quantities of debris which could be generated are dependent on the insulation materials employed. This experimental investigation was limited to reflective metallic insulation and components thereof. The study was aimed at determining the flow velocities needed to transport the insulation debris to the sump screens and the resulting modes of screen blockage. The tests revealed that thin metallic foils (0.0025 in. and 0.004 in.) could transport at low flow velocities, 0.2 to 0.5 ft/sec. Thicker foils (0.008 in.) transported at higher velocities, 0.4 to 0.8 ft/sec, and as fabricated half cylinder insulation units required velocities in excess of 1.0 ft/sec for transport. The tests also provided information on screen blockage patterns that showed blockage could occur at the lower portion of the screen as foils readily flipped on the screen when reaching it

  20. Emergency response arrangements for the transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgan-Warren, E. [Radioactive Materials Transport Div., Dept. for Transport, London (United Kingdom)

    2004-07-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability.

  1. Finger-gate manipulated quantum transport in Dirac materials

    International Nuclear Information System (INIS)

    Kleftogiannis, Ioannis; Cheng, Shun-Jen; Tang, Chi-Shung

    2015-01-01

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch. (paper)

  2. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  3. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  4. Developing an institutional strategy for transporting defense transuranic waste materials

    International Nuclear Information System (INIS)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations

  5. Workplace characterizations in case of rail transport of radioactive materials

    International Nuclear Information System (INIS)

    Donadille, L.; Itie, C.; Lahaye, T.; Muller, H.; Bottolier-Depois, J.F.

    2005-01-01

    Full text: Radioactive fuel and wastes are frequently transported for storage and/or reprocessing purposes. The main part of this transport is generally done by train. Before, during and after the journey, operators and drivers, who work directly in contact with and in the vicinity of the wagons, are exposed to external irradiations due to the radioactive materials that are confined inside the containers. In order to evaluate the dose that its personnel is liable to receive during such transports, the French National Railway Company (SNCF) has requested to the Institute of Radiological Protection and Nuclear Safety (IRSN) a series of workplaces characterizations for convoys of different types, that are considered to be representative of all types of possible transports. Each one is associated to a given radioactive material (low and medium activity wastes, new and used fuel, MOX, uranium fluoride, etc... ), involving photon or mixed neutron-photon fields. This measurement campaign has started in May 2004 and by the end of 2004 at least four types of radioactive convoys will have been investigated (three have already been measured). By using survey meters and spectrometers, the study consists in measuring the external exposure for different stages of the work that is done beside the wagons (for example coupling / decoupling two wagons, or checking the brakes) and inside the locomotive (driving). For each one of these workplaces, the exposure is estimated in terms of the ambient dose equivalent H*(10) by summing the dose all along the different phases carried out by the operator. In addition, a dosimetric characterization of each convoy is made by performing measurements along the wagons and spectrometric information about the photon and/or neutron fields are collected. This study provides helpful data to predict the dose that the operators are liable to integrate over long periods, typically one year. (author)

  6. Real time laser scanning of aggregate materials in highway construction : a transportation pooled fund study.

    Science.gov (United States)

    2016-12-01

    The quality and service life of the roadways that make up the highway transportation infrastructure are dependent upon : the selection and use of high quality aggregate materials. Five state transportation agencies participated in this Transportation...

  7. Requirements for the transport of surplus fissile materials in the United States

    International Nuclear Information System (INIS)

    Wilson, R.K.

    1995-01-01

    This paper discusses the requirements and issues associated with the transportation of surplus fissile materials in the United States. The paper describes the materials that will be transported, the permissible modes of transport for these materials, and the safety and security requirements for each mode of transport. The paper also identifies transportation issues associated with these requirements, including the differences in requirements corresponding to who owns the material and whether the transport is on-site or off-site. Finally, the paper provides a discussion that suggests that by adopting the spent fuel standard and stored weapon standard proposed by the National Academy of Sciences, the requirements for transportation become straightforward

  8. Appraisal for France of the safety of the transport of radioactive material. Provision for the application of the IAEA safety standards

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA has the specific statutory function within the United Nations system of establishing standards of safety for the protection of health against exposure to ionizing radiation. As part of this mandate, the IAEA has issued Regulations for the Safe Transport of Radioactive Material, and has also established the Transport Safety Appraisal Service (TranSAS) to carry out, at the request of States, appraisals of the implementation of these regulations. The IAEA carried out such an appraisal in France from 27 March to 8 April 2004. The appraisal addressed all relevant transport activities in France, both national and international, for all modes of transport, with special emphasis on the maritime transport and air transport of radioactive material. This report summarizes the findings of the 13 independent experts who participated in the appraisal

  9. Proposal of risk evaluation methodology for hazardous materials transportation

    International Nuclear Information System (INIS)

    Hartman, Luiz Carlos

    2009-01-01

    The increasing concern with the level of risk associated with the transportation of hazardous materials took some international institutions to pledge efforts in the evaluation of risk in regional level. Following this trend, the objective of this work was to analyze the most recent processes of analysis of risks from road transportation of hazardous materials. In the present work 21 methodologies of analysis of risks, developed by some authors and for diverse localities have been evaluated. Two of them, in special, have been reviewed and discussed: a method recently developed by the Swiss Federal Institute of Technology (Nicolet-Monnier and Gheorghe, 1996) and the strategy delineated by the Center for Chemical Process Safety CCPS (1995), taking into consideration the estimate of the individual and social risk. Also, the models of Harwood et al. (1990) and of Ramos (1997), adapted by Hartman (2003) have been applied to the reality of the roads of the state of Sao Paulo. The extension of these methodologies was explored, in order to find its advantages and disadvantages. As a study case the present work considered the ammonia transportation throughout two routes evaluating the reality of the roads of the state of Sao Paulo, including a significant parcel of evaluation in a densely populated area, getting the results using risk, at least, one of the methodologies mentioned above. The innovation proposed by this work was the research, the development and the introduction of two variables to the model considered by Harwood et al. (1990). These variables that influence in the value of the risk are: the age of the driver of truck and the zone of impact that is function type of product, period of the day where the transport was carried and the volume that has been transported. The aim of the proposed modifications is to let the value of the risk more sensible in relation to the type of the product carried and the age of the truck driver. The main related procedural stages

  10. Compliance assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this book is to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions, with competent authorities. In order to increase co-operation between competent authorities and to promote uniform application of international regulations and recommendations it is desirable to adopt a common approach to regulatory activities. This book is intended to assist in accomplishing such uniform application by laying down most of the actions that competent authorities need to provide for in their programmes for ensuring regulatory compliance. 23 refs, figs and tabs

  11. Transportation of radioactive materials routing analysis: The Nevada experience

    International Nuclear Information System (INIS)

    Ardila-Coulson, M.V.

    1991-01-01

    In 1987, the Nevada State Legislature passed a Bill requiring the Nevada Dept. of Transportation to develop and enforce a plan for highway routing of highway route controlled quantity shipments of radioactive materials and high-level radioactive waste. A large network with all the major highways in Nevada was created and used in a computer model developed by Sandia National Labs. Twenty-eight highway parameters that included geometrics, traffic characteristics, environment and special facilities were collected. Alternative routes were identified by minimizing primary parameters (population density and accident rates). An analysis using the US DOT Guidelines were performed to identify a preferred route from the alternative routes

  12. Simulation of perovskite solar cells with inorganic hole transporting materials

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liu, Yiming

    2015-01-01

    Device modeling organolead halide perovskite solar cells with planar architecture based on inorganic hole transporting materials (HTMs) were performed. A thorough understanding of the role of the inorganic HTMs and the effect of band offset between HTM/absorber layers is indispensable for further...... improvement in power conversion efficiency (PCE). Here, we investigated the effect of band offset between inorganic HTM/absorber layers. The solar cell simulation program adopted in this work is named wxAMPS, an updated version of the AMPS tool (Analysis of Microelectronic and Photonic Structure)....

  13. Reciprocal relations of transport coefficients in simple materials

    International Nuclear Information System (INIS)

    Lam, L.

    1977-01-01

    The cross effects of viscosity and heat conduction in anisotropic simple materials (solids or liquids) are given in the linear regime, using our dissipation function theory introduced recently. Depending on whether the temperature gradient or the heat flux is used in the dissipation function, we show that two different but unambiguous reciprocal relations between the transport coefficients follow. These are compared and contrasted with the confusing predictions from the Onsager theory, and to the results of rational thermodynamics. The uncertain experimental situation in regard to these reciprocal relations is discussed. Experimental tests are strongly urged. (orig.) [de

  14. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  15. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  16. 30 CFR 75.1403-2 - Criteria-Hoists transporting materials; brakes.

    Science.gov (United States)

    2010-07-01

    ... Mantrips § 75.1403-2 Criteria—Hoists transporting materials; brakes. Hoists and elevators used to transport materials should be equipped with brakes capable of stopping and holding the fully loaded platform, cage... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Hoists transporting materials; brakes...

  17. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  18. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    Science.gov (United States)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  19. Comparison of differences between ports for radioactive material transport

    International Nuclear Information System (INIS)

    Massey, C.D.; Wheeler, T.A.; Yoshimura, H.R.

    1994-01-01

    Recent controversy and litigation over the import/export of radioactive materials into and out of the United States via United States ports has centered on differences between ports, especially differences in surrounding population densities, and also whether reliance on one or a few ports poses unacceptable risks for these ports and the surrounding populations. This study examines the results of risk analyses from several recent environmental assessments dealing with import/export of various types of radioactive materials ranging from uranium hexafluoride to spent nuclear fuel. Since an intermodal transfer is always involved, the maritime and intermodal transportation is broken down into its component activities and segments; each is determined separately. The results indicate that most of the potential exposure occurs during routine handling of packages during intermodal transfer. Since handling of containerized cargo is highly standardized at ports around the world, differences between ports are of secondary importance. The risks associated with any overland transport from port to inland destination are primarily a function of distance for a given package type

  20. Materials selection for a transport packaging of Mo-99

    International Nuclear Information System (INIS)

    Hara, Debora H.S.; Lucchesi, Raquel F.; Mancini, Victor A.; Rossi, Jesualdo L.; Fiore, Marina

    2015-01-01

    The radiopharmaceuticals are radioactive isotopes used in nuclear medicine for more accurate diagnosis and treatment of diseases or dysfunctions. Currently, the most important radionuclide for the preparation of radiopharmaceuticals for diagnostic purposes is technetium-99m ( 99m Tc), a product of the radioactive decay of molybdenum-99 (Mo-99). The aim of this work was the materials selection that can enable the manufacture of a package for Mo-99 transport with the aid of CES EduPack program and the methodology developed by Ashby. The ESTAR program was used to check the occurrence of Bremsstrahlung and the XCOM program was used to calculate the attenuation coefficient of gamma radiation from some of the selected materials for the shield; after, the thickness required for radiation shielding was calculated. From the results, the materials selected as potential candidates for the manufacture of the shielding were the tungsten alloys. Related to the thermal insulation and the impact protection, woods, plywoods and particle boards stand out. With regard to internal and external coatings, the selected materials focus on groups of steels and nickel alloys. (author)

  1. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  2. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  3. State legislative developments in radioactive materials transportation, July 1, 1994--June 30, 1995

    International Nuclear Information System (INIS)

    Goehring, J.B.; Reed, J.B.

    1995-08-01

    Each year, the National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation. The 1995 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1994 and June 30, 1995. Forty-six bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste storage and emergency responsiveness. Also included are state legislative resolutions and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  4. State legislative developments in radioactive materials transportation, July 1, 1996--June 6, 1997

    International Nuclear Information System (INIS)

    Kim, M.H.; Reed, J.B.

    1997-06-01

    The National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation each year. The 1997 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1996 and June 6, 1997. Fifty bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste, storage and emergency response. Also summarized are state legislative resolutions and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  5. Report of the experts group on the taxation of the access to gas transport and distribution network; Rapport du groupe d'experts sur la tarification de l'acces aux reseaux de transport et de distribution de gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    In the framework of a new french gas industry organization (directive of the 22 june 1998), a concerting mission has been realized on prices taxation for the transport and distribution facilities. The following topics have been debated: the integration and competition of the european gas market, the gas market liberalization consistency and the taxation of transport and distribution network access. (A.L.B.)

  6. Transparency and dialogue: the keys of radioactive material transportation

    International Nuclear Information System (INIS)

    Neau, H.J.; Hartenstein, M.

    2004-01-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy, preservation of the environment, providing

  7. Transparency and dialogue: the keys of radioactive material transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J.; Hartenstein, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy

  8. How planners' use and non-use of expert knowledge in land use and transport planning affect the goal achievement potential of plans? Experiences from three Scandinavian cities

    DEFF Research Database (Denmark)

    Tennøy, Aud; Hansson, Lisa; Lissandrello, Enza

    2016-01-01

    regions. Even if diffusion of research-based knowledge have been investigated, planners' use of expert knowledge when making plans, and the effects on the content of plans, have gained surprisingly little attention in planning research. Over the past few years, interesting discussions concerning...... achievement potential of plans. This knowledge is the main basis for many planners' knowing and acting, and fundamental for land use and transport planning being coordinated and for traffic-reducing measures being included in the plans. The knowledge is used for explaining cause-effect relations......, and as arguments for selecting traffic-reducing measures. All examined plans also include strategies reducing their goal achievement potentials. This happens through a mix of mechanisms. When competing objectives or ideas seemingly call for traffic-increasing measures, the planners do not use the expert knowledge...

  9. Ministerial Order of 22 August 1957 on the transport of dangerous materials by air

    International Nuclear Information System (INIS)

    1957-01-01

    This Order provides for the conditions of transport of dangerous materials by air. Materials regarded as dangerous to handle or transport by aircraft from a safety or health standpoint may possibly not be accepted, or only accepted under certain conditions. These materials include radioactive materials in Class IV(b). (NEA) [fr

  10. Use of an expert system for the data acquisition input of a computer software for materials flux of an irradiated fuel reprocessing plant

    International Nuclear Information System (INIS)

    Ouvrier, N.; Castelli, P.

    1993-01-01

    An irradiated fuel reprocessing plant products purified plutonium and all sorts of wastes. PROBILUS program has been developed to calculate the transfer flux of materials. The data acquisition input being long, an expert system MARCMOD has been realized. PROBILUS was conceived like a standards collection. We wanted to automate the tedious tasks, to decrease the output result delays, and to improve the result quality. That is the reason why an expert system MARCMOD with a graphic interface has been carried out. With this tool the user may describe graphically his process, check the coherence of acquired informations, generate automatically the whole input data of PROBILUS, and change by interaction some predefined data

  11. Expert systems

    International Nuclear Information System (INIS)

    Haldy, P.A.

    1988-01-01

    The definitions of the terms 'artificial intelligence' and 'expert systems', the methodology, areas of employment and limits of expert systems are discussed. The operation of an expert system is described, especially the presentation and organization of knowledge as well as interference and control. Methods and tools for expert system development are presented and their application in nuclear energy are briefly addressed. 7 figs., 2 tabs., 6 refs

  12. Expert Systems

    OpenAIRE

    Lucas, P.J.F.

    2005-01-01

    Expert systems mimic the problem-solving activity of human experts in specialized domains by capturing and representing expert knowledge. Expert systems include a knowledge base, an inference engine that derives conclusions from the knowledge, and a user interface. Knowledge may be stored as if-then rules, orusing other formalisms such as frames and predicate logic. Uncertain knowledge may be represented using certainty factors, Bayesian networks, Dempster-Shafer belief functions, or fuzzy se...

  13. Photothermal heating in metal-embedded microtools for material transport

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2016-01-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer...... as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control...... and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an opticallyfabricated and actuated microtool. As proof of concept, we demonstrate loading...

  14. Technique of stowing packages containing radioactive materials during maritime transportation

    International Nuclear Information System (INIS)

    Ringot, G.; Chevalier, G.; Tomachevsky, E.; Draulans, J.; Lafontaine, I.

    1989-01-01

    The Mont Louis accident (August 25, 1984 - North Sea), in which uraniumhexafluoride packages were involved, alarmed a large number of European competent authorities, including the Commission of European Communities. The latter sponsored in 1986-1987 a bibliographic data collection to obtain a first view on the problem. (C.E.C contracts n degree 86-B-7015-11-004-17 and 86-B-7015-11-005-17). The collected data supply the necessary basis for further work, aiming to increase the safety of transporting radioactive material by ship. The study collected the different deceleration values, used by the transport companies and defined the accident conditions to be considered. This work can serve as a basis for later research to end with the proposal of a code of good practice for stowing. The research-work has been carried out jointly by C.E.A.-France, I.P.S.N. at Fontenay-aux-Roses and by Transnubel S.A. Brussels Belgium. The preliminary research included two main tasks: a statistical analysis, a bibliographic study of ship accidents

  15. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  16. State surveillance of radioactive material transportation. Final report

    International Nuclear Information System (INIS)

    Salomon, S.N.

    1984-02-01

    The main objective of this final report on the state surveillance of the transportation of radioactive material (RAM) is to suggest the most cost-effective inspection areas where enforcement actions might be taken by the states during their participation in the State Hazardous Materials Enforcement Development (SHMED) Program. On the basis of the lessons learned from the surveillance program, these actions are enforcement at low-level radioactive burial sites by means of civil penalties and site use suspension; enforcement at airports and at terminals that forward freight; and enforcement of courier companies. More effective and efficient enforcement can be achieved through instrumented police patrol cars and remote surveillance because they require the least amount of time of enforcement personnel. In addition, there is a strong relationship between effective emergency response and enforcement because the appropriate shipping papers, placarding and knowledge of appropriate emergency response procedures lead to improved emergency response. These lessons originate from a ten-state surveillance program from 1977 through 1981 jointly sponsored by the US Nuclear Regulatory Commission (NRC) and DOT. The states give recommendations in the categories of education, training, expanded surveillance, coordination and enforcement. The topics of special interest covered include low-level radioactive waste disposal sites, airports, cargo terminals, highways, ports, and accidents and incidents. The three most common problems in compliance with RAM transportation regulations reported by the states are incorrect package labeling; improper shipping papers; and incorrect or missing placards. Other common problems reported by the states are summarized. The relationship to other studies, the status of the SHMED Program, a synopsis of state RAM surveillance reports, and NRC/DOT expenditures are given

  17. Staatsblad 343 - Order of 4 June 1987 amending the Order concerning transport of fissile materials, ores and radioactive materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Decree amends the 1969 Decree to take account of developments in international transport regulations, already taken into account in the national regulations for all modes of transport of dangerous materials or goods. Further amendments concern physical protection requirements in compliance which the Convention on the Physical Protection of Nuclear Material which the Netherlands signed as a Member State of the European Communities. In essence, the modifications relate to licensing requirements in particular packaging and transport conditions for the different levels of activity of the materials carried, certificates of approval etc., and surveillance during transport. The Decree entered into force on 23 August 1987 [fr

  18. Report of the experts group on the taxation of the access to gas transport and distribution network

    International Nuclear Information System (INIS)

    2001-04-01

    In the framework of a new french gas industry organization (directive of the 22 june 1998), a concerting mission has been realized on prices taxation for the transport and distribution facilities. The following topics have been debated: the integration and competition of the european gas market, the gas market liberalization consistency and the taxation of transport and distribution network access. (A.L.B.)

  19. Criticality analysis for hazardous materials transportation; Classificacao da criticidade das rotas do transporte rodoviario de produtos perigosos da BRASKEM

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Katia; Brady, Mariana [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Diniz, Americo [BRASKEM S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    The bad conditions of Brazilians roads drive the companies to be more exigent with the transportation of hazardous materials to avoid accidents or materials releases with actions to contain the releases to community and water sources. To minimize this situation, DNV and BRASKEM developed a methodology for risk analysis called Criticality Analysis for Hazardous Materials Transportation. The objective of this methodology is identifying the most critical points of routes to make actions to avoid accidents. (author)

  20. Detection of smuggling of nuclear material covered by a legal transport of radioactive material

    International Nuclear Information System (INIS)

    Safar, J.; Zsigrai, J.; Tam, N.C.; Lakosi, L.

    2001-01-01

    Full text: One of the worst scenarios for detection of illicit trafficking of nuclear material is when a legal transport of radioactive material is used to cover the radiation of the smuggled uranium. Feasibility study was performed in the Institute of Isotopes and Surface Chemistry of the Chemical Research Centre of the Hungarian Academy of Sciences (hereinafter: Institute) in order to study the possible on site measurement techniques and approaches applicable in such cases. As the type A and type B packages always incorporate a feature such as a seal, in a realistic scenario the confiscated nuclear material is expected to be placed outside the package. The passive neutron emission of the uranium is negligible for a reasonable isotopic abundance therefore the feasibility study was concentrating on non-destructive, passive gamma- spectrometric methods. Possible application of Nal (diameter 40x40 mm 3 , large planar (15x15x3 mm 3 ) and a hemispheric CdZnTe (500 mm 3 , and high purity Germanium detectors was investigated. During the on site measurements portable electronics, mini multichannel analyzer, palmtop and/or notebook computer were used. The shielding material of the packages was lead or depleted uranium. The smuggled material was simulated by a package of reactor fuel pellets containing low enriched or natural uranium (materials confiscated in earlier cases) and standards containing low enriched uranium. During the supposed scenario the portal monitor provides an indication of an elevated level of the environmental radioactivity. Then the responsible (e.g. customs) officer investigate the vehicle by a hand-held survey meter in order to search for peaks in dose rates. If a peak was localized, which is different from the position of the legally transported package(s) the officer requests for the expertise of the designated institutes. The following model cases provided the basic conclusion: 1. The legal transport of the radioactive material was simulated by a

  1. Hole-Transporting Materials for Printable Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Paola Vivo

    2017-09-01

    Full Text Available Perovskite solar cells (PSCs represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine-9,9’-spirobifluorene, better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs.

  2. Dose control in road transport of radioactive material

    International Nuclear Information System (INIS)

    Gerulis, Eduardo

    2013-01-01

    The radiation doses to workers in the transport of radioactive material should be as low as reasonably achievable. The average doses of drivers and loaders, sampled in this thesis should be decreased. The demonstration of doses control in a road vehicle with radioactive material required by the current Brazilian regulation, CNEN NE 5.01 should be written in its own printed form with exposure values obtained in normally occupied positions from workers and members of the public, even when the consignment does not need 'exclusive use' (⅀IT ≤50). Through bibliographic research, modeling and field research, this research work shows that this demonstration of the control should be done by writing the registration accumulation of load, limited (⅀IT ≤50), also in the own printed form. It is for a better control method, in order to avoid the use of measuring equipment, to build standardization with foreign regulations, to the current occupational doses of radioprotection technicians, the costs and time, (important for consignment with radiopharmaceuticals short half-life) would be all smaller. Exposure values of the parameters used with this method are smaller than regulatory limits. The segregation distances between loads and the cabins of vehicles shall be showed by Brazilian regulation updated to contribute to these aims. (author)

  3. Inelastic analysis acceptance criteria for radioactive material transportation containers

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Ludwigsen, J.S.

    1993-01-01

    The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria

  4. Transport of nuclear material under the 1971 Brussels Convention

    International Nuclear Information System (INIS)

    Lagorce, M.

    1975-01-01

    The legal regime in force before entry into force of the 1971 Brussels Convention relating to civil liability for the maritime carriage of nuclear material created serious difficulties for maritime carriers, regarding both the financial risks entailed and restrictions on enjoyment of the rights granted by civil liability conventions. The 1971 Convention exonerates from liability any person likely to be held liable for nuclear damage under maritime law, provided another person is liable under the nuclear conventions or an equivalent national law. A problem remaining is that of compensation of nuclear damage to the means of transport for countries not having opted for re-inclusion of such damage in the nuclear law regime; this does not apply however to countries having ratified the Convention to date. A feature of the latter is that it establishes as extensively as possible the priority of nuclear law over maritime law. Furthermore the new regime continues to preserve efficiently the interests of victims of nuclear incidents. It is therefore to be hoped that insurers will no longer hesitate to cover international maritime carriage of nuclear material [fr

  5. Storage and transport containers for radioactive medical materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1989-01-01

    This patent describes a storage and transport container for small-diameter ribbon-like lengths of material including radioactive substances for use in medical treatments, comprising: an exterior shell for radiation shielding metal having top and bottom members of radiation shielding metal integral therewith; radiation shielding metal extending downward from the top of the container and forming a central cavity, the central cavity being separate from the exterior shell material of the container and extending downwardly a distance less than the height of the container; a plurality of small diameter carrier tubes located within the interior of the container and having one end of each tube opening through one side of the container and the other end of such tube opening through the opposite lateral side of the container with the central portion of each tube passing under the central cavity; and a plug of radiation shielding metal removably located in the top the central cavity for shielding the radiation from radiation sources located within the container

  6. Hole-Transporting Materials for Printable Perovskite Solar Cells

    Science.gov (United States)

    Salunke, Jagadish K.; Priimagi, Arri

    2017-01-01

    Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs. PMID:28914823

  7. Relevant documents to IAEA regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Sabek, M.G.; Gomma, M.

    1998-01-01

    IAEA regulations for the safe transport of radioactive materials provide standards for insuring a high level of safety of people, property, and environment against radiation, contamination, and criticality hazards as well as thermal effects associated with the transport of radioactive materials. IAEA routinely publishes technical reports which are relevant to radioactive material transportation such as INTERTRAN, directory of transport packaging test facilities, and others. A case study was performed to assess the impact of transporting radioactive materials through the suez canal using the two computer codes namely INTERTRAN and RADTRAN-4 which are part of IAEA technical documents. A comparison of the results of these two codes is given

  8. Transportation legislative data base: State radioactive materials transportation statute compilation, 1989--1993

    International Nuclear Information System (INIS)

    1994-04-01

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United States. The TLDB has been operated by the National Conference of State Legislatures (NCSL) under cooperative agreement with the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management since 1992. The data base system serves the legislative and regulatory information needs of federal, state, tribal and local governments, the affected private sector and interested members of the general public. Users must be approved by DOE and NCSL. This report is a state statute compilation that updates the 1989 compilation produced by Battelle Memorial Institute, the previous manager of the data base. This compilation includes statutes not included in the prior compilation, as well as newly enacted laws. Statutes not included in the prior compilation show an enactment date prior to 1989. Statutes that deal with low-level radioactive waste transportation are included in the data base as are statutes from the states of Alaska and Hawaii. Over 155 new entries to the data base are summarized in this compilation

  9. Radiation exposure resulting from the transport of radioactive materials within the United Kingdom

    International Nuclear Information System (INIS)

    Shaw, K.B.; Mairs, J.H.; Gelder, R.; Hughes, J.S.; Holyoak, B.

    1983-01-01

    The transport of technetium generators for hospital use accounts for some 50% of the occupational exposure from the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 35% of the occupational exposure and some 15% can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. 5 references, 6 tables

  10. Application of expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Basden, A

    1983-11-01

    This article seeks to bring together a number of issues relevant to the application of expert systems by discussing their advantages and limitations, their roles and benefits, and the influence that real-life applications might have on the design of expert systems software. Part of the expert systems strategy of one major chemical company is outlined. Because it was in constructing one particular expert system that many of these issues became important this system is described briefly at the start of the paper and used to illustrate much of the later discussion. It is of the plausible-inference type and has application in the field of materials engineering. 22 references.

  11. Regulations for the safe transport of radioactive material. 1996 edition (revised)

    International Nuclear Information System (INIS)

    2000-01-01

    Following a comprehensive review by panels of experts convened by the IAEA starting in 1991, a revised version of the IAEA Regulations for the Safe Transport of Radioactive Material (formerly Safety Series No. 6) was approved by the Board of Governors in September 1996. This publication supersedes all editions of the Regulations issued under Safety Series No. 6. By 1969, the Regulations had been adopted by almost all international organizations concerned with transport and used by many Member States for their own regulations. Through the worldwide adoption of the IAEA Regulations for all modes of transport, a very high standard of safety in transport has been achieved. In the revisions since the first edition, attempts have been made to find a balance between the need to take account of technical advances and operational experience, and the desirability of providing a stable framework of regulatory requirements. One of the aims of this approach is to allow packages designed to previous versions of the Regulations to continue to be used for a reasonable period of time. It is recognized that not all regulatory changes can be implemented simultaneously; Member States and international organizations are therefore invited, in adopting this revision, to provide for use of both the 'old' requirements and the 'new' ones during a period of transition that may last for a few years. It is further recommended that adoption of these revised Regulations occur within a period of five years from publication to achieve worldwide harmonization of their application. In implementing the provisions of these Regulations, it may be necessary for Member States to issue complementary national regulations. Except as necessary for solely domestic purposes, such national regulations should not conflict with these Regulations. For convenience, the requirements to be met for the transport of specified types of consignments are included in an abbreviated form as Schedules in this publication

  12. Regulations for the safe transport of radioactive material. 1996 edition (revised)

    International Nuclear Information System (INIS)

    2002-01-01

    Following a comprehensive review by panels of experts convened by the IAEA starting in 1991, a revised version of the IAEA Regulations for the Safe Transport of Radioactive Material (formerly Safety Series No. 6) was approved by the Board of Governors in September 1996. This publication supersedes all editions of the Regulations issued under Safety Series No. 6. By 1969, the Regulations had been adopted by almost all international organizations concerned with transport and used by many Member States for their own regulations. Through the worldwide adoption of the IAEA Regulations for all modes of transport, a very high standard of safety in transport has been achieved. In the revisions since the first edition, attempts have been made to find a balance between the need to take account of technical advances and operational experience, and the desirability of providing a stable framework of regulatory requirements. One of the aims of this approach is to allow packages designed to previous versions of the Regulations to continue to be used for a reasonable period of time. It is recognized that not all regulatory changes can be implemented simultaneously. Member States and international organizations are therefore invited, in adopting this revision, to provide for use of both the 'old' requirements and the 'new' ones during a period of transition that may last for a few years. It is further recommended that adoption of these revised Regulations occur within a period of five years from publication to achieve worldwide harmonization of their application. In implementing the provisions of these Regulations, it may be necessary for Member States to issue complementary national regulations. Except as necessary for solely domestic purposes, such national regulations should not conflict with these Regulations. For convenience, the requirements to be met for the transport of specified types of consignments are included in an abbreviated form as Schedules in this publication

  13. Identifying & Inventorying Legacy Materials for Digitization at the National Transportation Library

    Science.gov (United States)

    2018-01-01

    As an all-digital repository of transportation knowledge, the National Transportation Library (NTL) has undertaken several digitization projects over the years to preserve legacy print materials and make them accessible to stakeholders, researchers, ...

  14. Transportation of Radioactive Material Cobalt-60 is one of the Experience

    International Nuclear Information System (INIS)

    Mohd Derus Ibrahim

    2015-01-01

    During transportation of radioactive material in progress, all the procedure (SOP) must have been followed by legally and the wrappers that have been used must be not contaminated, it ensure that safety and security during transportation. (author)

  15. Advisory material for the IAEA regulations for the safe transport of radioactive material (1985 edition). 3. ed.

    International Nuclear Information System (INIS)

    1990-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material provide standards for ensuring a high level of safety of people, property and the environment against radiation and criticality hazards as well as thermal effects associated with the transport of radioactive material. The basic requirements to be met are: Effective containment of radioactive material; Effective control of radiation emitted from the package; A subcritical condition for any fissile material; and Adequate dissipation of any heat generated within the package. Effective quality assurance and compliance assurance programmes are required, for example: (a) Appropriate and sound packages are used; (b) The activity of radioactive material in each package does not exceed the regulatory activity limit for that material and that package type; (c) The radiation levels external to, and the contamination levels on, surfaces of packages do not exceed the appropriate limits; (d) Packages are properly marked and labelled and transport documents are completed; (e) the number of packages containing radioactive material in a conveyance is within the regulatory limits; (f) Packages of radioactive material are stowed in conveyances and are stored at a safe distance from persons and photosensitive materials; (g) Only those transport and lifting devices which have been tested are used in loading, conveying and unloading packages of radioactive material; and (h) Packages of radioactive material are properly secured for transport. The control of the transport of radioactive materials may be necessary also for other reasons, e.g. safeguards control and physical protection of nuclear materials and control of a property. For radioactive materials having other dangerous properties, the regulations of Member States, modal conventions and agreements, and other relevant documents of international organizations need to be applied. A Member State may require in its national regulations that an additional approval be

  16. Material Exchange Property of Organo Lead Halide Perovskite with Hole-Transporting Materials

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2015-10-01

    Full Text Available Using X-ray diffraction (XRD, it was confirmed that the deposition of hole-transporting materials (HTM on a CH3NH3PbI3 perovskite layer changed the CH3NH3PbI3 perovskite crystal, which was due to the material exchanging phenomena between the CH3NH3PbI3 perovskite and HTM layers. The solvent for HTM also changed the perovskite crystal. In order to suppress the crystal change, doping by chloride ion, bromide ion and 5-aminovaleric acid was attempted. However, the doping was unable to stabilize the perovskite crystal against HTM deposition. It can be concluded that the CH3NH3PbI3 perovskite crystal is too soft and flexible to stabilize against HTM deposition.

  17. Regulations for the Safe Transport of Radioactive Materials. Vietnam Standard (TCVN 4985-89)

    International Nuclear Information System (INIS)

    1989-01-01

    The regulations were prepared in line with the Safety Regulation for Ionizing Radiations 1988 of Vietnam. Its purpose is to provide requirements in transport of radioactive materials. The exposure levels of transport personnel are determined. The package for different types of materials is regulated. The orders and procedures in transport are defined. In addition, specific requirements for each mean of transport are given. (N.H.A)

  18. Present situation and influence of new ICRP recommendations on radioactive material transport regulations

    International Nuclear Information System (INIS)

    Hamard, J.; Ringot, C.

    1991-01-01

    The publication of new ICRP recommendations will involve the revision of IAEA standards and consequently the revision of transport regulations for radioactive materials. Transport regulations are briefly reviewed and application for radiation protection of workers and public is examined. Influence of new recommendations on transport regulations and eventual modifications on classification and transport of materials, packaging design and permissible exposure for workers and public in the prospect of regulation revision forecasted for 1995

  19. EXPERT SYSTEMS

    OpenAIRE

    Georgiana Marin; Mihai Catalin Andrei

    2011-01-01

    In recent decades IT and computer systems have evolved rapidly in economic informatics field. The goal is to create user friendly information systems that respond promptly and accurately to requests. Informatics systems evolved into decision assisted systems, and such systems are converted, based on gained experience, in expert systems for creative problem solving that an organization is facing. Expert systems are aimed at rebuilding human reasoning on the expertise obtained from experts, sto...

  20. Expert System

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas Troels; Cattani, Gian Luca

    2016-01-01

    An expert system is a computer system for inferring knowledge from a knowledge base, typically by using a set of inference rules. When the concept of expert systems was introduced at Stanford University in the early 1970s, the knowledge base was an unstructured set of facts. Today the knowledge b...... for the application of expert systems, but also raises issues regarding privacy and legal liability....

  1. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  2. STM and transport measurements of highly charged ion modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Gillaspy, J.D.

    2007-01-01

    Careful measurements of highly charged ions (HCIs) colliding with gases and surfaces have provided glimpses of intense electronic interactions, but a comprehensive model for the interaction mechanisms, time scales, and resultant nano-features that bridges materials systems is yet to be realized. At the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility, new apparatus is now connected to the HCI beamline to allow preparation of clean, atomically flat surfaces of single crystals, e.g. gold, tungsten and silicon, and deposition and patterning of thin films, e.g. high resistivity oxides, ferromagnetic metals, normal metals and superconductors. Experiments reported here focus on the electronic and morphological structure of HCI induced nano-features. Current activities are focused on using in situ scanning tunneling microscope (STM) on Au(1 1 1) and (separately) ex situ transport measurements to study electronic properties within HCI modified magnetic multilayer systems. Specifically, we are fabricating magnetic multilayers similar to magnetic tunnel junctions (MTJs) (important in advanced magnetic field sensors and superconducting Josephson junction devices) and using HCIs to adjust critical electronic properties. The electrical response of the tunnel junction to HCIs provides a novel approach to performing HCI-induced nanostructure ensemble measurements

  3. FEMA: a Finite Element Model of Material Transport through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above

  4. FEMA: a Finite Element Model of Material Transport through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  5. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations

  6. Discussion of and guidance on the optimization of radiation protection in the transport of radioactive material

    International Nuclear Information System (INIS)

    1986-05-01

    The document provides guidance on one of the components of the system of dose limitation as it applies to the transport of radioactive material, namely the optimization of radiation protection. It focuses on the following parts of the transport system: design, maintenance, preparation for transport, transport, storage-in-transit and handling and it considers occupational and public exposures. The application is intended mainly for those transport situations within the regulatory requirements where potential radiation exposures could be beneficially reduced

  7. Report of 6th research meeting on basic process of fuel cycle for nuclear fusion reactors, Yayoi Research Group; 3rd expert committee on research of nuclear fusion fuel material correlation basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In this report, the lecture materials of Yayoi Research Group, 6th research meeting on basic process of fuel cycle for nuclear fusion reactors which was held at the University of Tokyo on March 25, 1996, are collected. This workshop was held also as 3rd expert committee on research of nuclear fusion fuel material correlation basis of Atomic Energy Society of Japan. This workshop has the character of the preparatory meeting for the session on `Interface effect in nuclear fusion energy system` of the international workshop `Interface effect in quantum energy system`, and 6 lectures and one comment were given. The topics were deuterium transport in Mo under deuterium ion implantation, the change of the stratum structure of graphite by hydrogen ion irradiation, the tritium behavior in opposing materials, the basic studies of the irradiation effects of solid breeding materials, the research on the behavior of hydroxyl group on the surface of solid breeding materials, the sweep gas effect on the surface of solid breeding materials, and the dynamic behavior of ion-implanted deuterium in proton-conductive oxides. (K.I.)

  8. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (2012 Ed.). Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This Safety Guide provides recommendations and guidance on achieving and demonstrating compliance with IAEA Safety Standards Series No. SSR-6, Regulations for the Safe Transport of Radioactive Material (2012 Edition), which establishes the requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material, including the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Standards Series No. TS-G-1.1 Rev. 1, which was issued in 2008.

  9. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide provides recommendations on achieving and demonstrating compliance with IAEA Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, 2005 Edition, establishing safety requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material; these include the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Series No. TS-G-1.1, 2002 Edition

  10. The latent fingerprint in mass transport of polycrystalline materials

    Science.gov (United States)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  11. Expert ease

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    Expert-ease allows the most inexperienced of computer users to build an expert system in a matter of hours. It is nothing more or less than a computer based problem-solving system. It allows the expert to preserve his or her knowledge in the form of rules, which can be applied to problems put to the system by the non-expert. The crucial piece of software at the heart of Expert-Ease extracts rules from data, and is called the analogue concept learning system. It was developed by Intelligent Terminals Ltd. and supplied to Export Software International to be incorporated into a commercially attractive package for business users. The resulting product runs on the Act Sirius and the IBM PC and compatibles. It is a well conceived and polished product with a popular appeal that should ensure widespread acceptance even at a cost of >1500 plus vat.

  12. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  13. Regulations for the safe transport of radioactive material. 1985 ed. Supplement 1988

    International Nuclear Information System (INIS)

    1988-01-01

    A major revision of the Agency's Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6, was undertaken during a period of several years, culminating in the publication of the 1985 Edition. In order to consider minor problems in the new edition, the Agency convened a panel of experts in January 1986. This panel recommended some amendments which were subsequently published as Supplement 1986 to the Regulations. A further review panel meeting took place in June 1987. The amendments which were recommended for early adoption were themselves divided into two kinds. The first of these are designated as minor changes. The second kind of amendment recommended for early adoption comprises actual changes to regulatory provisions. Several changes of this second type were recommended by the panel and are included in this Supplement. The Supplement also contains the amended texts of the supporting documents, Safety Series Nos 7, 37 and 80, which are necessary to correct minor errors as well as to provide complementary information for the changes introduced to the Regulations themselves. In addition, the Supplement embodies the contents of Supplement 1986, which is consequently superseded.

  14. Quantification of risks at the transport of radioactive materials

    International Nuclear Information System (INIS)

    Hienen, J.F.A.; Jansma, R.

    1992-07-01

    Requirement of the risks which are coherent with the transport of hazardous elements are for the time being drawn up in a joint project by the Netherlands Ministries of SZW and VROM. In this project 'Requirements of risk for the transport of hazardous elements' (RNVGS) the transport of radioactive elements is not considered. To reach requirements for such a transport, the Directorate of Elements, Safety and Radiation of VROM has provided an assignment to ECN to make a quantitative analysis on the risks of transport of radioactive elements on the road. At the same time, they requested to examine in this performance study whether there are needed additional criteria specific for transport, along the criteria used for individual risk and group-risks. 55 refs., 1 fig., 16 refs

  15. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  16. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  17. Regulatory Framework and Current Practices of the Radioactive Material Safe and Secure Transport in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Grillo, B.; Telhaj, E.

    2016-01-01

    Attempts for the establishing of a safe and secure radioactive material transport in Albania began a decade ago with formulation of the different regulation in the field of safe and secure handling of the radioactive materials. In 2004 a special regulation for the safe transport of radioactive material was prepared and approved by the National Radiation Protection Commission). This regulation has been based in the IAEA standards for the radioactive material transport and was reviewed periodically. The last regulation of the radioactive material transport was approved by Albanian government through a governmental ordinance. The transport of the radioactive material in Albania is performed by licensed subjects, which fulfill all requirements of the mentioned governmental ordinance. Based in the existing regulation, for each transport of radioactive material, a special permission is issued by NRPC. The issuing of permission allows competent authority to provide necessary information on transport regularity and to have under survey all transports of the radioactive material carried out inside the country. Last year were issued more than 80 permissions for the transport of the different types and categories of the radioactive sources. (author)

  18. Beneficial use of dredged materials in Great Lakes commercial ports for transportation projects.

    Science.gov (United States)

    2014-05-01

    This report describes an effort to facilitate beneficial use of dredged materials (DM) from Great Lakes ports and harbors as an alternative construction : material in transportation-related earthwork applications. The overall objective is to link tog...

  19. Review of the bases for regulations governing the transport of fissile and other radioactive material

    International Nuclear Information System (INIS)

    Smith, D.R.; Thomas, J.T.

    1978-01-01

    The outstanding record of transport of radioactive materials prompted this brief review of the history of the regulations. IAEA as well as DOT regulations are discussed, as are all classes of shipments and materials (Class I, II, III)

  20. Struggle against violations of the rules for radioactive materials storage, utilization, accounting and transport

    International Nuclear Information System (INIS)

    Iojrysh, A.I.

    1986-01-01

    Criminal punishments for violation of the rules of radioactive materials accounting, storage, utilization and transport or those for illegimate sending of these materials presupposed by the RSFSR criminal code are considered

  1. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user's guide for computer program and input data for THERMLIB. (author)

  2. IMPACLIB: a material property data library for impact analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1997-12-01

    The paper describes the structural data library and graphical program for impact and stress analyses of radioactive material transport casks. Four kinds of material data, structure steels, stainless steels, leads and woods are compiled. These materials are main structural elements of casks. Structural data such as, coefficient of thermal expansion, modulus of longitudinal elasticity, modulus of transverse elasticity, Poisson's ratio and stress-strain relationship have been tabulated. Main features of IMPACLIB are as follows: (1) data have been tabulated against temperature or strain rate, (2) thirteen kinds of polynominal fitting for stress-strain curve are available, (3) it is capable of graphical representations for structural data and (4) the IMPACLIB is able to be used on not only main frame computers but also work stations (OS UNIX) and personal computers (OS Windows 3.1). In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides a user's guide for computer program and input data for the IMPACLIB. (author)

  3. IMPACLIB: a material property data library for impact analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-12-01

    The paper describes the structural data library and graphical program for impact and stress analyses of radioactive material transport casks. Four kinds of material data, structure steels, stainless steels, leads and woods are compiled. These materials are main structural elements of casks. Structural data such as, coefficient of thermal expansion, modulus of longitudinal elasticity, modulus of transverse elasticity, Poisson`s ratio and stress-strain relationship have been tabulated. Main features of IMPACLIB are as follows: (1) data have been tabulated against temperature or strain rate, (2) thirteen kinds of polynominal fitting for stress-strain curve are available, (3) it is capable of graphical representations for structural data and (4) the IMPACLIB is able to be used on not only main frame computers but also work stations (OS UNIX) and personal computers (OS Windows 3.1). In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides a user`s guide for computer program and input data for the IMPACLIB. (author)

  4. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user`s guide for computer program and input data for THERMLIB. (author)

  5. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  6. Transport and STM measurements of HCI modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Sosolik, C.E.; Gillaspy, J.D.

    2007-01-01

    While more than a decade of work has provided glimpses into the physics of highly charged ion (HCI) neutralization on surfaces, two prominent objectives remain unfulfilled: (1) a unified, quantitative model for separating the kinetic energy response of a wide range of materials classes from the effects of HCIs' potential energy effects and (2) insertion of HCI technology(s) as a cost-effective processing tool in a high-volume market sector. The National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility has recently incorporated tools for preparing clean, atomically flat surfaces of single crystals from gold to tungsten to silicon and for depositing and patterning thin films that range from high resistivity oxides to transition metals like cobalt and nickel. Current activities are focused on utilizing this unique capability to simultaneously address both of the objectives above by employing technologically important magnetic multi-layer systems to perform transport measurements that provide new insight into the fundamental processes that occur during HCI-surface neutralization. Specifically, we are producing Magnetic Tunnel Junctions (MTJs) critical to both magnetic devices and incorporating HCIs in the processing recipe to adjust critical electronic properties that are currently inhibiting their advancement. In return, the electrical response of the tunnel junction to the HCI processing provides a novel approach to performing ensemble measurements of HCI-surface interactions. By varying the construction of the tunnel junction, critical tests of the role of electron density, densities of states and electronic structure in the HCI-surface charge exchange can be performed

  7. The stochastic nuclide transport model for buffer/backfill materials

    International Nuclear Information System (INIS)

    Ma Liping; Han Yongguo

    2014-01-01

    Currently, study on nuclide migration law in geological disposal repository of high level waste is assumed buffer/backfill layer to be continuous medium, utilized the continuity equation, equation of state, the equations of motion, etc, formed a set of theory and method to estimate nuclide concentration distribution in buffer/backfill layer, and provided an important basis for nuclide migration rules of repository. However, it is necessary to study the buffer/backfill layer microstructure and subtly describe the pore structure and fracture system of the buffer/backfill layer, and reflect the changes in connectivity and in different directions of the buffer/backfill layer. Through using random field theory, the nuclide transport for the buffer/backfill layer in geological disposal repository of nuclear waste is described in the paper. This paper mainly includes that, t represents the time, ξ t ⊂ Z d = d represents the integer lattice, Z represents collectivity integers, d = l, 2, 3, for instance, d = 2, Z d = {(m, n) : m, n ∈ Z} the state point of ξ t is typically considered to be occupied by the nuclide concentration values of the buffer/backfill layer, ξ t also represents random set in the diagram of two dimensional integer lattice, namely, t ∈ [0, T], {ξ t ,0 ≤ t ≤ ⊂ T} Consequently, according to the stochastic process obtained above, the changes of the nuclide concentration values of the buffer/backfill layer or the buffer/backfill laboratory materials in the repository with the time can be known. (authors)

  8. Transportation of energy materials in the United states

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, R. C.

    1978-07-01

    This bibliography lists 459 books, periodical articles, research reports, and conference papers on the transportation of general/multi-fuel, coal, petroleum and gas, nuclear fuel, and electric power. Emphasis is on the various impacts of this transport in the U.S.: environmental, economic, social, safety, policy, etc. Arrangement is by commodity and by mode. An index by type of impact is included.

  9. On the transportation of dangerous materials | Obi | Nigerian Journal ...

    African Journals Online (AJOL)

    ... storage and transportation in compliance with the respective and relevant regulatory bodies. This paper highlights the design criteria and testing of packages for the transportation of various categories of dangerous goods with special reference to the nuclear and petrochemical industries. Nigerian Journal of Physics Vol.

  10. Regulations for the safe transport of radioactive materials. 1973 rev. ed

    International Nuclear Information System (INIS)

    1973-01-01

    The purpose of these Regulations is to establish standards of safety which provide an acceptable level of control of the radiation hazards to persons, property and the environment that are associated with the transport of radioactive material. These Regulations shall apply to the transport by land, water or air, including transport on own account, of radioactive material other than that which is an integral part of the means of transport. Transport shall be deemed to include any operation incidental to the whole course of carriage, such as loading, unloading and storage in transit. The term includes both normal transport and that under accident conditions. These Regulations do not apply within establishments where the radioactive material is produced, used or stored, other than in the course of transport, and in respect of which other appropriate safety regulations are in force. In the transport of radioactive materials, any other hazardous characteristics of these materials such as explosiveness, inflammability, pyrophoricity, chemical toxicity, and corrosiveness must be taken into account in such a manner as to be in compliance with the relevant transport regulations for dangerous goods of each of the countries through or into which the materials will be transported, as well as in compliance with these Regulations.

  11. Technical committee on transport package test standards (for radioactive materials transport). Vienna, 6-10 August 1979

    International Nuclear Information System (INIS)

    White, M.C.

    1979-11-01

    The report of a meeting of the technical committee on transport package test standards is presented. The committee assigned high priority to work on Low Level Solid material and Low Specific Activity material, on the justification for and requirements of a Crush Test and on leakage from packages

  12. 75 FR 63 - Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery...

    Science.gov (United States)

    2010-01-04

    ... contained in equipment, fuel cell systems must not charge batteries during transport; (3) For transportation... 2137-AE54 Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery... batteries and battery-powered devices. This final rule corrects several errors in the January 14, 2009 final...

  13. Structural analysis in support of the waterborne transport of radioactive materials

    International Nuclear Information System (INIS)

    Ammerman, D.J.

    1996-01-01

    The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations

  14. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  15. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Luckas, Jennifer Maria

    2012-01-01

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  16. The amended regulations for the safe transport of radioactive materials in Japan

    International Nuclear Information System (INIS)

    Takemura, Yoshio

    1978-01-01

    To cope with the inadequacies of the laws and regulations including the Law Concerning Prevention of Radiation Injuries Due to Radioisotopes, Etc., the Amended Regulations for the Safe Transport of Radioactive Materials in Japan has been issued. It is based on the Regulations of IAEA for the Safe Transport of Radioactive Materials and the Technical Standards for the Transport of Radioactive Materials decided by the AEC of Japan. In the amended regulations, emphasis is placed on the safety design of transporting goods. They are classified in Types L, A and B according to shock resistance and fire resistance, and the quantities of radioisotopes allowed to be contained in respective types are specified. The following matters are described: basic ideas concerning the types of transporting goods, test standards for the goods, transport standards for the goods, and nondestructive test apparatuses in transport. (Mori, K.)

  17. Risk assessment for the transportation of radioactive materials in the U.S.A

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.; DuCharme, A.R.

    1976-01-01

    The radiological risk of transporting radioactive materials in the United States was evaluated in terms of expected additional latent cancer fatalities (LCF). Two risks were estimated: that resulting from normal (accident-free) transport and that resulting from transportation accidents involving radioactive shipments. A standard shipments model was devised to represent the radioactive material shipping industry. The calculation of the normal transport risk included estimates of exposures to aircraft passengers and crew, truck drivers, cargo handlers, and population along the transport link. The accident risk calculation incorporated accident probabilities and package release fraction estimates. Dispersible materials were assumed to be aerosolized in severe accidents and the aerosol cloud transported downwind according to a Gaussian diffusion model. An annual normal transport risk of 9600 person-rem, or 1.2 LCF, resulted primarily from radiopharmaceutical shipments. The annual risk due to accidents was 5.6 x 10 -4 LCF, resulting almost entirely from PuO 2 shipments

  18. GGVS. Ordinance on road transport of hazardous materials, including the European agreement on international road transport of hazardous materials (ADR), in their wording. Annexes A and B. Ordinances regarding exceptions from GGVS and from the ordinance on rail transport of hazardous materials, GGVE. Reasons. Selected guidelines. List of materials. 6. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Ridder, K.

    1990-01-01

    The brochure contains the following texts: (1) Ordinance on road transport of hazardous materials (GGVS), including the European agreement on international road transport of hazardous materials (ADR), as of 1990: Skeleton ordinance, annexes A and B, reasons given for the first version, and for the first amendment in 1988, execution guidelines - RS 002 (guidelines for executing the ordinance on road transport of hazardous materials, with catalogue of penalties), guidelines for drawing up written instructions for the event of accidents - RS 006, guiding principles for the training of vehicle conductors; (2) ordinance regarding exceptions from the ordinance on road transport of hazardous materials; (3) ordinance regarding exceptions from the ordinance on rail transport of hazardous materials; (4) selected guidelines: Technical guidelines TR IBC K 001, TRS 003, TRS 004, TRS 005, TRS 006; (5) listing of materials and objects governed by the ordinance on hazardous materials transport; (6) catalogue of penalties relative to road transport of hazardous materials. (orig./HP) [de

  19. Influence of hole transport material/metal contact interface on perovskite solar cells

    Science.gov (United States)

    Lei, Lei; Zhang, Shude; Yang, Songwang; Li, Xiaomin; Yu, Yu; Wei, Qingzhu; Ni, Zhichun; Li, Ming

    2018-06-01

    Interfaces have a significant impact on the performance of perovskite solar cells. This work investigated the influence of hole transport material/metal contact interface on photovoltaic behaviours of perovskite solar devices. Different hole material/metal contact interfaces were obtained by depositing the metal under different conditions. High incident kinetic energy metal particles were proved to penetrate and embed into the hole transport material. These isolated metal particles in hole transport materials capture holes and increase the apparent carrier transport resistance of the hole transport layer. Sample temperature was found to be of great significance in metal deposition. Since metal vapour has a high temperature, the deposition process accumulated a large amount of heat. The heat evaporated the additives in the hole transport layer and decreased the hole conductivity. On the other hand, high temperature may cause iodization of the metal contact.

  20. Experience of air transport of nuclear fuel material as type A package

    International Nuclear Information System (INIS)

    Kawasaki, Masashi; Kageyama, Tomio; Suzuki, Toru

    2004-01-01

    Special law on nuclear disaster countermeasures (hereafter called as to nuclear disaster countermeasures low) that is domestic law for dealing with measures for nuclear disaster, was enforced in June, 2000. Therefore, nuclear enterprise was obliged to report accidents as required by nuclear disaster countermeasures law, besides meeting the technical requirement of existent transport regulation. For overseas procurement of plutonium reference materials that are needed for material accountability, A Type package must be transported by air. Therefore, concept of air transport of nuclear fuel materials according to the nuclear disaster countermeasures law was discussed, and the manual including measures against accident in air transport was prepared for the oversea procurement. In this presentation, the concept of air transport of A Type package containing nuclear fuel materials according to the nuclear disaster countermeasures law, and the experience of a transportation of plutonium solution from France are shown. (author)

  1. Regulatory Framework for the Safe and Secure Transport of Nuclear Material in Japan

    International Nuclear Information System (INIS)

    Konnai, A.; Shibasaki, N.; Ikoma, Y.; Kato, M.; Yamauchi, T.; Iwasa, T.

    2016-01-01

    Regulations for nuclear material transport in Japan are based on international regulations. Safety and security regulations, however, have sometime different aspects which have caused a conflict of operations. This paper aims to introduce framework of safety and security regulations for nuclear material transport in Japan, and shows some issues in cooperation of these regulations. (author)

  2. The problems and suggestions on supervision of the radioactive material transport

    International Nuclear Information System (INIS)

    Cao Fangfang; Que Ji; Zhang Min; Pan Yuting

    2012-01-01

    The developing background and importance of the rules on supervision of the radioactive material transport are discussed in the paper. Based on the existing problems found in the process of implementing the rule 'Regulations for the safe transport of Radioactive Material', some countermeasures are proposed. (authors)

  3. Expert Witness

    African Journals Online (AJOL)

    Adele

    formal rules of evidence apply) to help it understand the issues of a case and ... statements on medical expert witness by professional representative bodies in .... determining the size of the financial settlement that may have to be made to the.

  4. State legislative developments in radioactive materials transportation, July 1, 1995--June 30, 1996

    International Nuclear Information System (INIS)

    Goehring, J.B.; Reed, J.B.

    1996-09-01

    The National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation each year. The 1996 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1995, and June 30, 1996. Thirteen bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The report also includes 10 New York bills introduced in 1995 that remained pending during this review period. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste storage and emergency response. Also summarized are a state legislative resolution and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  5. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    Science.gov (United States)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  6. Digital dissemination platform of transportation engineering education materials.

    Science.gov (United States)

    2014-09-01

    National agencies have called for more widespread adoption of best practices in engineering education. To facilitate this sharing of practices we will develop a web-based system that will be used by transportation engineering educators to share curri...

  7. New materials for next-generation commercial transports

    National Research Council Canada - National Science Library

    Committee on New Materials for Advanced Civil Aircraft, Commission on Engineering and Technical Systems, National Research Council

    The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future...

  8. Transport of nuclear materials as an international project

    International Nuclear Information System (INIS)

    Bartejsova, Eva

    2010-01-01

    The following companies are involved in this project: CEZ a.s., ALTA a.s., ALTA 32 s.r.o., DMS s.r.o., TVEL (RF), and NUKLON (RF). Transport containers are TK-S5 (for Temelin) and TK-S55 (for Dukovany) types. Details of fuel supplies for the 2 Czech NPPs are described and the fresh fuel element transport procedure is highlighted. (P.A.)

  9. Enhanced bulk conductivity and bipolar transport in mixtures of MoOx and organic hole transport materials

    International Nuclear Information System (INIS)

    Tian, Baolin; Ban, Dayan; Aziz, Hany

    2013-01-01

    We study the conductivity of thin films of molybdenum oxide (MoO x ) mixed with an organic hole transport material, such as N,N′-bis(naphthalen-1-yl)-N,N′-bis (phenyl)benzidine or 4′,4″-tri(N-carbazolyl)triphenylamine, in lateral test devices. Contrary to previous reports, the conductivity of the mixture is found to exceed that of neat MoO x , exhibiting ∼ 5 orders of magnitude higher conductivity in comparison to the neat films. Studies also show that the mixing enhances both hole and electron transport. The higher conductivity may be attributed to a higher concentration of “free” carriers in the mixture, as a result of the formation of a charge transfer complex between the MoO x and the hole transport material. The findings shed light on the potential of hybrid composites of inorganic and organic materials in realizing enhanced conductivity. - Highlights: • We investigate the conductivity of mixtures of MoO x and hole transport material (HTM). • Materials are studied in lateral devices instead of conventional vertical devices. • Mixing MoO x with HTM brings > 5 orders of magnitude increase in bulk conductivity. • The mixture of MoO x and HTM enhances both hole and electron transport

  10. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Basic concepts and terms are explained, such as: vehicle transport; easy transport; nuclear fuel material load, exclusive loading, employee, accumulative dose and exposure dose. Technical standards of vehicle transport are specified in detail on nucler fuel materials as nuclear fuel load, L,A, EM and BU type of load, nuclear fuel load of fission substances, the second and third type of fission load and materials contaminated by nuclear fuel substances to be carried not as nuclear fuel loads. Special exceptional measures to such transport and technical standards of easy transport are also designated. The application for confirmation of the transport shall be filed to the Director General of Science and Technology Agency according to the form attached with documents explaining nuclear fuel materials to be transferred, the vessel of such materials and construction, material and method of production of such a vessel, safety of nuclear materials contained, etc. Measures in dangerous situations shall be taken to fight a fire or prohibit the entrance of persons other than the staff concerned. Reports shall be presented in 10 days to the Director, when theft, loss or irregular leaking of nuclear fuel materials or personal troubles occur on the way. (Okada, K.)

  11. The contribution of human factors to risks from radioactive material transport

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Ridsdale, E.; Wilkinson, H.L.

    1998-01-01

    The use of probabilistic risk assessment to assess the safety of radioactive material transport operations is well accepted. However, quantitative risk assessment of radioactive material transport operations have generally not explicitly considered human factors in estimating risks. Given the high profile of human factors as the root cause of many serious transport incidents omission of an explicit consideration of human factors in a risk assessment could lead to assessments losing credibility. In addition, scrutiny of radioactive material transport incident databases reveals a large number of operational incidents and minor accidents that would have been avoided if more attention had been paid to human factors aspects, and provides examples of instances where improvements have been achieved. This paper examines the areas of radioactive material transport risk assessments (both qualitative and quantitative) which could be strengthened by further examination of the impact of human errors. It is concluded that a more complete and detailed understanding of the effects of human factors on the risks from radioactive material transport operations has been obtained. Quality assurance has a key part to play in ensuring that packages are correctly manufactured and prepared for transport. Risk assessments of radioactive material transport operations can be strengthened by concentrating on the key human factors effects. (authors)

  12. Hydrogen isotopes transport parameters in fusion reactor materials

    International Nuclear Information System (INIS)

    Serra, E.; Ogorodnikova, O.V.

    1998-01-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.)

  13. The transport of radioactive materials - a BNFL viewpoint

    International Nuclear Information System (INIS)

    Miller, M.L.

    1993-01-01

    Following a brief review of the international regulatory framework and its historical development, the principal priorities for the design and operation of a reliable transport system are defined and commented upon. The paper examines the reasons for the increased pressures upon international nuclear transport. It is argued that a key factor is the gap between 'actual' and 'publicly perceived' safety. BNFL's approach to achieving and demonstrating acceptable safety standards is described and proposals for broader international initiatives, with regard both to internal industry issues and external responses, are presented. (Author)

  14. Transport of radioactive material in Romania -the assessment of the radiological consequences and the environmental impacts

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2008-01-01

    The transport of radioactive materials (RAM) is a very important problem considering the potential risks and radiological consequences in carrying-out this activity. Romania as a Member State of the International Atomic Energy Agency has implemented national regulations for a safe transport of RAM in accordance with the Agency's recommendations as well as other international specialized organizations. Based on the IAEA's Safety Standard-TS-R-1 (ST-1), Romanian National Nuclear Regulatory Body - CNCAN adopted and implemented, by Act no. 357/December 21, 2005, the safety regulations for the transport of radioactive materials in Romania under the title: 'Regulations for the Transport of Radioactive Materials'. The paper will present the main sources of radioactive materials in Romania their transportation routes with a particular interest paid to the radioactive wastes (low level radioactive materials), isotopes and radioactive sources, uranium ore. Starting from the fact that the safety in the transport of radioactive materials is dependent on appropriate packaging for the contents being shipped, rather than operational and/or administrative actions required for the package, the paper presents, briefly the main packages used for transport and storage of such RAM in Romania. There are presented hypothetical scenarios for specific problems related to the identification and evaluation of the risks and potential radiological consequences associated with the transport of radioactive materials in Romania, for all these three situations: routine transport (without incidents), normal transport (with minor incidents) and during possible accidents. As a conclusion, it is ascertained that the evaluated annual collective dose for the population due to RAM transport is less than that received by natural radiation sources. At the same time it is concluded that Romanian made packages are safe and prevent loss of their radioactive contents into the environment. (author)

  15. Aspects of safety in the transport of radioactive materials; Aspectos de seguridad en el transporte de materiales radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz C, M A [ININ, Salazar, Estado de Mexico (Mexico)

    1991-07-01

    The transport of radioactive materials behaves to the equal that other chemical products, certain risks that its are necessary to know how to evaluate and to minimize, adopting all kinds of measures technician-administrative, with object of being able to guarantee that this risks stay in an acceptable level for the population potentially affected for the workers of the one sector and for the environment. To be able to evaluate the risk acceptable it is a difficult task, for that, national and international organizations have established a commitment to develop standards of radiological protection, to make every day but sure the transport of radioactive materials.

  16. Outward transport of high-temperature materials around the midplane of the solar nebula.

    Science.gov (United States)

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  17. A survey of the transport of radioactive materials by air to, from and within the UK

    International Nuclear Information System (INIS)

    Hughes, J.S.; Watson, S.J.

    2004-01-01

    Radioactive materials are frequently transported overseas by air for medical and industrial purposes. Among the advantages of this mode of transport is that urgent delivery is often required because some radionuclides are short lived. There are also a limited number of shipments by air within the UK. Scheduled passenger services or freight only aircraft may be used. Packages of radioactive materials are transported in aircraft holds at recommended segregation distances from areas occupied by passengers and crew. Many workers are involved in air transport and it is necessary to have procedures in place to minimise their exposure to ionising radiation

  18. New organic photorefractive material composed of a charge-transporting dendrimer and a stilbene chromophore

    Science.gov (United States)

    Bai, Jaeil; Ducharme, Stephen; Leonov, Alexei G.; Lu, Liu; Takacs, James M.

    1999-10-01

    In this report, we introduce new organic photorefractive composites consisting of charge transporting den-drimers highly doped with a stilbene nonlinear optic chromophore, The purpose of making these composites is to improve charge transport, by reducing inhomogeneity when compared to ordinary polymer-based systems. Because the structure of this material gives us freedom to control the orientation of charge transport agents synthetically, we can study the charge transport mechanism more systematically than in polymers. We discuss this point and present the characterization results for this material.

  19. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  20. Chapter 7: Transport and load of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    Related to the topic, the chapter 7 presents: 1) import License; 2) transport; 3) loading the irradiator. The information presented in this chapter is based on the Brazilian legislation, but said legislation is based on international guidelines; therefore there will be several common and different points from country to country.

  1. Spatial frequency mixing by nonlinear charge transport in photorefractive materials

    DEFF Research Database (Denmark)

    Limeres, J.; Carrascosa, M.; Arizmendi, L.

    2002-01-01

    in the material. The physical origin of the new gratings is extensively discussed. The formalism is applied to investigate multiple recording in LiNbO3 as a material relevant for applications. The influence of the multiple-recording method (either sequential or simultaneous) on the generation of second...

  2. Forecasting of the radioactive material transport demand for the Brazilian Nuclear Program and the security aspects

    International Nuclear Information System (INIS)

    Meldonian, Nelson Leon

    1979-01-01

    In the nuclear fuel cycle, a lot of radioactive materials are produced. These radioactive materials must be transported in order to promote the integration of the fuel cycle units. Considerations about the transport characteristics of radioactive material were made for each section of the fuel cycle. These considerations were based on the experience of several countries and in accordance with the International Atomic Energy Agency regulations. A prediction of transport demands for the Brazilian Nuclear Program until year 2.010 was made. The prediction refers mainly to the quantity of radioactive material produced in each section of the cycle the quantity of vehicles needed for the transport of these materials. Several safety aspects were considered specially, the accidents predictions for years 2.000 and 2.010. The accident probability in Brazilian railroads and highways was compared with that of the USA. (author)

  3. Physical protection of export/import and transportation of nuclear material in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J

    2002-01-01

    Full text: The paper contains short overview about average amount of nuclear materials transported on the territory of the Slovak Republic in a year, and the physical protection of these nuclear materials. There are several types of transportation and export/import of nuclear materials in the SR: fresh fuel import; import of other unirradiated nuclear materials (e.g. depleted uranium, natural uranium); export of unirradiated nuclear materials (e.g. natural uranium); internal transportation of fresh fuel; internal transportation of other unirradiated nuclear materials; internal transportation of spent fuel. The main objective of the nuclear regulatory authority SR is to supervise observation of the national legislation as follows: the act no. 130 / 1998 on peaceful use of nuclear energy; UJD SR's regulation no. 186/1999 which details the physical protection of the nuclear facilities, nuclear materials, and radioactive waste (following requirements of INFCIRC 225 / Rev. 4); UJD SR's regulation no. 284 / 1999 which details conditions of nuclear material and radioactive wastes transportation. (author)

  4. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  5. SOR/89-426, Transport Packaging of Radioactive Materials Regulations, amendment

    International Nuclear Information System (INIS)

    1989-01-01

    These Regulations of 24 August 1989 amend the Transport Packaging of Radioactive Materials Regulations by clarifying the text and specifying certain requirements. In particular certain definitions have been replaced, namely those of ''Fissile Class III package'' and ''Special form radioactive material''. Also, this latter material may not be carried without a certificate attesting that it meets the requirements of the Regulations. (NEA)

  6. The projected relative index of consequence equivalence of transport of radioactive materials

    International Nuclear Information System (INIS)

    Nandakumar, A.N.

    1999-01-01

    The need exists for defining a unit risk factor to enable analysis to make a proper decision when faced with many options relating to the transport of radioactive materials between sites. A method is discussed for deriving such a factor with reference to the collective dose receivable due to the transport of radioactive material incidental to the production of one GWe.a of nuclear power. This quantity would enable the analyst to determine the projected relative index of consequence equivalence (PRICE) for the transport of various types of radioactive materials. (author)

  7. PATRAM '83: 7th international symposium on packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1983-01-01

    Papers were presented at the following sessions: international regulations; materials, fracture toughness of ferritic steels; risk analysis techniques; storage in packagings; packaging design considerations; monolithic cast iron casks; risk analysis; facility/transportation system interface; research and development programs; UF 6 packagings; national regulations; transportation operations and traffic; containment, seals, and leakage; radiation risk experience; emergency response; structural modeling and testing; transportation system planning; institutional issues and public response; packaging systems; thermal analysis and testing; systems analysis; structural analyses; quality assurance; packaging and transportation systems; physical protection; criticality and shielding; transportation operations and experience; standards; shock absorber technology; and information and training for regulatory compliance. Individual summaries are title listed

  8. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for its execution, and to enforce the law. Basic terms are defined, such as vehicle transport, simplified transport, nuclear fuel transport goods, exclusive loading, worker, cumulative dose and exposure radiation dose. Nuclear fuel transport goods are classified into types of L, A, BM and BU according to their radioactivities. Radiation dose rate shall not exceed 0.5 milli-rem an hour on the surface of the type L, and 200 milli-rem an hour on the surface of the type A. For the type BM, the rate shall not surpass 1,000 milli-rem an hour at the distance of 1 meter from the surface in the special test conditions. The transport goods of fissile materials must not reach criticality on the way, but also shall conform to the stipulated technical standards. The particular things contaminated by nuclear fuel materials can be transported without specifying as nuclear fuel transport goods, and their radiation dose rate shall not go beyond 0.5 milli-rem an hour on the surface. The transport by special measures, the technical standards of simplified transport and measures to be taken in danger in transit are defined, respectively.(Okada, K.)

  9. ASN: regional day of information and exchange on transport of radioactive materials - 4 February 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document gathers Power Point presentations made during a meeting on the transport of radioactive materials. The contributions addressed the following topics: results of a survey based on questionnaires sent to actors of this sector, regulatory framework and radioprotection plan, case of parcels not submitted to the authority concerned, declaration of transport interesting or significant events, ASN inspections, the transport of radioactive products by the IBt Bebig company in France, the activities of the Institut de Soudure Industrie (industry welding institute), the activities of the ISO Life company specialized in health product transportation, the activities of the Securidis company (a consulting company for activities related to hazardous materials transportation, and notably radioactive materials), the activities a the ACE Environnement company (specialized in building diagnosis), the point of view of an academic research unit on radioactive material transportation, the experience of the hospital sector in radioactive source transportation, the experience of the Advanced Accelerator Applications company in radioactive material transportation, and a discussion on regulation application

  10. Establishment and utilization of radiological protection programs for the transport of radioactive material; Establecimiento y utilizacion de programas de proteccion radiologica para el transporte de material radiactivo

    Energy Technology Data Exchange (ETDEWEB)

    Lopez V, J.; Capadona, N. [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250 (1429) Buenos Aires, (Argentina)]. e-mail: jlvietri@sede.arn.gov.ar

    2006-07-01

    The present work has by objective to indicate rules for the establishment and the use of the Radiological Protection Programs (PPR) that are of application to the transport of radioactive materials according to that required by the Transport Regulation of the International Atomic Energy Agency (IAEA). The PPR are established and applied in systematic form for remittent, transport and addressees, to consider the measures of radiological protection and its appropriately control during the transport stages of radioactive material. In particular, in the work it is analyzed the PPR applied to the operative stage, in the one that can be considered as one of the more important documents to use since it summarizes the evaluations and the necessary controls of radiological protection. Also it is analyzed the importance that this document gets ready on the base that it converges in the the analyses, evaluations and data that have been kept in mind during the previous stages of design of bundles and production of packings, the types and quantities of involved bundles, as well as of considering the quantities of expeditions and its frequencies, the ways of transport, etc. It is included a brief description of the parts that the PPR conforms on the base of that suggested in the advanced draft of the TS-G-1.5 Guide 'Radiation Protection Programmes for Transport of Radioactive Material', of October, 2005, of the IAEA: objectives. necessity, scope, basic elements of a PPR in function of the occupational dose. assignment of functions and responsibilities for the establishment of a PPR, evaluation and dose optimization, surface contamination, segregation and other protection measures, responses in emergencies. training and administration systems for baled and transport of radioactive material. Next an example of PPR for the transport of bundles of the A Type by lorry with content of radiopharmaceuticals that are the bundles more used worldwide in the expeditions of

  11. Regulations for the safe transport of radioactive material. 1985 ed. Supplement 1986

    International Nuclear Information System (INIS)

    1986-01-01

    Following a six-year effort, a major revision to the Agency's Regulations for the Safe Transport of Radioactive Material (Safety Series No. 6) was issued in 1985. In order to address minor problems with the 1985 Edition of Safety Series No. 6, a panel of experts convened by the International Atomic Energy Agency met from 13 to 17 January 1986. This panel considered minor inconsistencies, omissions or errors that had occurred in the course of preparing the 1985 Edition of Safety Series No. 6, and recommended that two types of change be made. First, changes which will correct errors in the presentation of the text, translation errors (in the French, Russian and Spanish versions of the 1985 Edition), and drafting which failed to express the intent of the panels which reviewed the previous edition of the Regulations; these minor changes are promulgated herewith by the authority of the Director General. Secondly, changes of detail which can only be introduced in accordance with the procedure approved by the Board of Governors on 22 September 1972, which authorizes the Director General to promulgate such changes after giving Governments not less than ninety days' notice and taking into account any comments that they make. Three changes of this second type were recommended by the panel, and were circulated according to the 'ninety-day rule' amendment procedure on 3 February 1986. Those changes which received unanimous support by Member States are included in this Supplement. Corrected text to the 1985 Edition of Safety Series No. 6 (paragraphs, tables, etc.) is provided in this Supplement, and this corrected text supersedes the corresponding portions of the 1985 Edition of Safety Series No. 6.

  12. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...

  13. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. New safety and security requirements for the transport of nuclear and other radioactive materials in Hungary

    International Nuclear Information System (INIS)

    Katona, T.; Horvath, K.; Safar, J.

    2016-01-01

    In addition to the promulgation of mode-specific regulations of international transport of dangerous goods, some Hungarian governmental and ministerial decrees impose further conditions upon the transport of nuclear and other radioactive materials. One of these ministerial decrees on the transport, carriage and packaging of radioactive materials is under revision and it will require • approval of emergency response plan (including security and safety contingency plan); • report on transport incidents and accidents for classifying them in accordance with the INES scale; • the competent authority to request experts’ support for the approval of package designs, radioactive material designs and shipments. Regarding the security of the transport of nuclear and other radioactive materials a new Hungarian governmental decree and a related guidance are about to be published which will supply additional requirements in the field of the transport security especially concerning radioactive materials, implementing - among others - IAEA recommendations of the NSS No9 and No14. The main and relevant features of the Hungarian nuclear regulatory system and the details of both new decrees regarding the safety and security issues of transport of nuclear and other radioactive materials will be discussed. (author)

  15. Material motion corrections for implicit Monte Carlo radiation transport

    International Nuclear Information System (INIS)

    Gentile, N.A.; Morel, Jim E.

    2011-01-01

    We describe changes to the Implicit Monte Carlo (IMC) algorithm to include the effects of material motion. These changes assume that the problem can be embedded in a global Lorentz frame. We also assume that the material in each zone can be characterized by a single velocity. With this approximation, we show how to make IMC Lorentz invariant, so that the material motion corrections are correct to all orders of v/c. We develop thermal emission and face sources in moving material and discuss the coupling of IMC to the non- relativistic hydrodynamics equations via operator splitting. We discuss the effect of this coupling on the value of the 'Fleck factor' in IMC. (author)

  16. New materials for next-generation commercial transports

    National Research Council Canada - National Science Library

    Committee on New Materials for Advanced Civil Aircraft, Commission on Engineering and Technical Systems, National Research Council

    ... civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions...

  17. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  18. A Meta-Heuristic Applying for the Transportation of Wood Raw Material

    Directory of Open Access Journals (Sweden)

    Erhan Çalışkan

    2009-04-01

    Full Text Available Primary products in Turkish forestry are wood material. Thus, an operational organization is necessary to transport these main products to depots and then to the consumers without quality and volume loss. This organization starts from harvesting area in the stand and continues to roadside depots or ramps and to main depots and even to manufactures from there. The computer-assisted models, which aim to examine the optimum path in transportation, can be utilized in solving this quite complex problem. In this study, an evaluation has been performed in importance and current status of transporting wood material, classification of wood transportation, computer-assisted heuristic and meta-heuristic methods, and possibilities of using these methods in transportation of wood materials.

  19. Comparison between different regulations for transport of radioactive materials; Comparaison de differents reglements de transports des substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Pallier, Lucien

    1961-11-20

    This comparison is based on the study of several regulations and conventions: French regulations for transports (by rail, road, river, sea, air, and mail), international regulations applicable in France for transports (by rail, road, air, sea, and mail), the general regulation for transport of the International Atomic Energy Agency, and the convention on civil responsibility of the European Agency for Nuclear Energy. The author notices that IAEA regulation will probably prevail. He outlines the objectives and the necessity of regulations, identifies the risk factors (nature of radio-elements, physical condition of the material, type of packaging), discusses additional safety measures, outlines that risks must not be overestimated, and the importance of labelling, and then discusses the comparison of the different considered regulations. He addresses the determination of the risk associated with a transport, the issue of responsibility. The content of regulations is presented in several tables.

  20. Uranium-lead shielding for nuclear material transportation systems

    International Nuclear Information System (INIS)

    Lusk, E.C.; Miller, N.E.; Basham, S.J. Jr.

    1978-01-01

    The basis for the selection of shielding materials for spent fuel shipping containers is described with comments concerning the favorable and unfavorable aspects of steel, lead, and depleted uranium. A concept for a new type of material made of depleted uranium and lead is described which capitalizes on the best cask shielding characteristics of both materials. This cask shielding is made by filling the shielding cavity with pieces of depleted uranium and then backfilling the interstitial voids with lead. The lead would be bonded to the uranium and also to the cask shells if desired. Shielding density approaching 80 percent of that of solid uranium could be achieved, while a density of 65 percent is readily obtainable. This material should overcome the problems of the effect of lead melting in the fire accident, high thermal gradients at uranium-stainless steel interfaces and at a major reduction in cost over that of a solid uranium shielded cask. A development program is described to obtain information on the properties of the composite material to aid in design analysis and licensing and to define the fabrication techniques