WorldWideScience

Sample records for materials surface science

  1. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  2. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  3. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  4. Surface science and model catalysis with ionic liquid-modified materials.

    Science.gov (United States)

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Uma Maheswar Rao. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 587-593 Surface Studies. Investigation of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking under a.c. and d.c. voltages.

  7. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  8. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  9. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  10. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Bajpai. Articles written in Bulletin of Materials Science. Volume 25 Issue 1 February 2002 pp 21-23 Mechanical Properties. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment · R Bajpai V Mishra Pragyesh Agrawal S C Datt · More Details ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Petrič. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4 ... Microwave materials; ceramic dielectric resonators; polytitanates; co-precipitation. ... hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  14. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  15. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  16. Mineral Surface Reactivity in teaching of Science Materials

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Chemical and Materials Engineering, National University of Science and Technology, H/12 Islamabad, Pakistan; Austrian Institute of Technology GmbH, Advanced Materials & Aerospace Technologies, A-2444 Seibersdorf, Austria; Centre of Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria ...

  18. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  19. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  20. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  1. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume ... Preparation and characterization of magnesium–aluminium–silicate glass ceramics ... Preparation and studies of some thermal, mechanical and optical properties of .... Surface degradation behaviour of sodium borophosphate glass in aqueous media: Some studies.

  3. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions. CHOKKALINGAM PRIYA GANESSIN ARAVIND WILSON RICHARD THILAGARAJ. Volume 39 Issue 2 April 2016 ...

  5. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  6. Surface and catalysis science in the Materials and Molecular Research Division

    International Nuclear Information System (INIS)

    1980-01-01

    Surface science studies at Lawrence Berkeley Laboratory are detailed. Subject areas include: structure of surfaces and adsorbed monolayers; reduction and oxidation of surfaces; catalytic chemistry; and structure of interfaces and thin films

  7. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases...... at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  8. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 2 ... Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation .... Influence of pH and bath composition on properties of Ni–Fe alloy films ... Diffuse phase transition, piezoelectric and optical study of Bi0.5Na0.5TiO3 ceramic.

  10. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  11. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Self-assembling behaviour of Pt nanoparticles onto surface of TiO2 and their resulting photocatalytic activity. M Qamar Ashok K Ganguli. Volume 36 Issue 6 November 2013 pp 945-951 ...

  12. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  13. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  14. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  15. Proceedings of the international conference on material science: abstract volume

    International Nuclear Information System (INIS)

    2013-01-01

    Materials Science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. In the recent years, materials science has been propelled to the forefront at many universities and research institutions due to the significant advancement on nanoscience and nanotechnology. ICMS-2013 will cover a wide range of interdisciplinary and current research topics related to material science. Research on advanced materials includes nanomaterials, bio-nanomaterials, zero bandgap materials, composites, surface engineering, tissue engineering and biomaterials etc. These materials have numerous applications in electronics, biotechnology, medicine and energy harvesting. The importance of nano-science and nanotechnology has been well documented by both industrial and academic communities worldwide. It is believed that breakthroughs in nano-science and technology will change all aspects of human life in such diverse areas as, electronic devices, energy, biomedicine, sensing, environment, and security etc. Papers relevant to INIS are indexed separately

  16. Materials science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Materials Science Division is engaged in research on physical properties of materials and the effects of radiation upon them. This involves solid state materials undergoing phase transitions, energy storing materials, and biomaterials. The Division also offers research facilities for M.S. and Ph.D. thesis work in the fields of physics, chemistry, materials, and radiation sciences in cooperation with the various colleges and departments of the UPR Mayaguez Campus. It is anticipated that it will serve as a catalyst in starting energy-related research programs in cooperation with UPR faculty, especially programs involving solar energy. To encourage and promote cooperative efforts, contact is maintained with former graduate students and with visiting scientists from Latin American research institutions

  17. Surface science models of CoMoS hydrodesulfurisation catalysts

    NARCIS (Netherlands)

    Jong, de A.M.; Beer, de V.H.J.; Veen, van J.A.R.; Niemantsverdriet, J.W.; Froment, G.F.; Delmon, B.; Grange, P.

    1997-01-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of

  18. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  19. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  20. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  1. Modern techniques of surface science

    CERN Document Server

    Woodruff, D Phil

    2016-01-01

    This fully revised, updated and reorganised third edition provides a thorough introduction to the characterisation techniques used in surface science and nanoscience today. Each chapter brings together and compares the different techniques used to address a particular research question, including how to determine the surface composition, surface structure, surface electronic structure, surface microstructure at different length scales (down to sub-molecular), and the molecular character of adsorbates and their adsorption or reaction properties. Readers will easily understand the relative strengths and limitations of the techniques available to them and, ultimately, will be able to select the most suitable techniques for their own particular research purposes. This is an essential resource for researchers and practitioners performing materials analysis, and for senior undergraduate students looking to gain a clear understanding of the underlying principles and applications of the different characterisation tec...

  2. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  3. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; Department of Materials Science and Engineering, Luoyang Institute of Science and ...

  5. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  6. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  7. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  8. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  9. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  10. The application of surface science in the solution of aircraft materials problems

    International Nuclear Information System (INIS)

    Arnott, D.R.

    1999-01-01

    Full text: There is now a tendency for both commercial and military aircraft to be maintained and operated for several decades. Indeed some of our front-line defence aircraft have programme withdrawal lives approaching half a century. This places significant demands on the materials used in engines and airframes. The properties and performance of the materials can degrade with time leading to an increase in the importance of repair and maintenance technologies. As most materials problems start at a surface or an interface, it is not surprising that surface sensitive tools are used to resolve many degradation problems. In some cases, the resolution of problems can lead to life-enhancing improvements for the aircraft. This paper will examine some of the practical issues in the use of surface analytical tools for the examination and resolution of practical aircraft problems. Illustrations will be drawn from the application of surface analysis in the areas of corrosion, fracture and adhesive bonding. Copyright (1999) Australian X-ray Analytical Association Inc

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 5 ... The electrical performances of thin film material can be improved largely by dopants. ... Department of Materials Science and Engineering, Jinan University, Jinan 250022, PR China; The State Key Laboratory of Material Composite and Advanced ...

  12. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    International Nuclear Information System (INIS)

    Ismail, R.; Tauviqirrahman, M.; Jamari; Schipper, D. J.

    2009-01-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  13. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  14. Nanofluidics: A New Arena for Materials Science.

    Science.gov (United States)

    Xu, Yan

    2018-01-01

    A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 5 ... Polyester urethane; scaffold; tensile strength; swelling; degradation; cell culture. ... Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SARAVANA KUMAR JAGANATHAN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. ISABEL HERRMANN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR JAGANATHAN A ...

  19. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ming Kang1 2 Xiaoming Liao1 Guangfu Yin1 Xun Sun3 Xing Yin4 Lu Xie4 Jun Liu2. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China; College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Department of ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. BALDEV RAJ. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation. Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research · M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj.

  2. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. DANUTA OLSZEWSKA. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 16. Influence of the conditions of a solid-state synthesis anode material Li 4 Ti 5 O 12 on its electrochemical properties of lithium cells · DANUTA OLSZEWSKA ANNA ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Roy. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 513-515. Improved zinc oxide film for gas sensor applications · S Roy S Basu · More Details Abstract Fulltext PDF. Zinc oxide (ZnO) is a versatile material for different commercial ...

  5. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  6. Solvay Conference on Surface Science

    CERN Document Server

    1988-01-01

    The articles collected in this volume give a broad overview of the current state of surface science. Pioneers in the field and researchers met together at this Solvay Conference to discuss important new developments in surface science, with an emphasis on the common area between solid state physics and physical chemistry. The contributions deal with the following subjects: structure of surfaces, surface science and catalysis, two-dimensional physics and phase transitions, scanning tunneling microscopy, surface scattering and surface dynamics, chemical reactions at surfaces, solid-solid interfaces and superlattices, and surface studies with synchrotron radiation. On each of these subjects an introductory review talk and a number of short research contributions are followed by extensive discussions, which appear in full in the text. This nineteenth Solvay Conference commemorates the 75th anniversary of the Solvay Institutes.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Screen printing; ferroelectricity; piezoelectricity; nonlinear property. .... Luoyang Institute of Science and Technology, Luoyang 471023, China; Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China; Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. U S Sajeev. Articles written in Bulletin of Materials Science. Volume 27 Issue 2 April 2004 pp 155-161 Magnetic Materials. Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin films based on NiFe1-Fe2O4 · V S Abraham S Swapna Nair S Rajesh U S ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S R Dhage. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 43-45 Dielectric Materials. Nonlinear – characteristics study of doped SnO2 · S R Dhage V Ravi S K Date · More Details Abstract Fulltext PDF. When tin oxide is doped with ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D S Prasad. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 79-83 Materials Synthesis. Preparation of high purity tellurium by zone refining · N R Munirathnam D S Prasad Ch Sudheer A J Singh T L Prakash · More Details Abstract Fulltext PDF.

  11. Chemistry and Materials Science progress report, first half FY 1992

    International Nuclear Information System (INIS)

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy

  12. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G P Nayaka. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K C Anjaneya. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  15. Applications of pulsed energy sources and hydrodynamic response to materials science

    International Nuclear Information System (INIS)

    Perry, F.; Nelson, W.

    1993-01-01

    The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Bajpai. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 529-534 Review—Polymers. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. Mickiewicza 30, 30-059 Krakow, Poland; The Pennsylvania State University, Department of Physics and Center for 2-Dimensional and Layered Materials, 104 Davey Laboratory, University Park, PA ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China; Anhui Provincial Laboratory of High Performance Nonferrous Metals Material, Wuhu, Anhui 241000, P.R. China; Department of Materials Science and Engineering, University of Science and Technology of ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. REGINA C SO. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1179-1187. Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads · DOROTHY CAMINOS-PERUELO WEI-CHIEH WANG ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Prasannakumar. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, ...

  1. Application of positron annihilation in materials science

    International Nuclear Information System (INIS)

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions

  2. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SURESH KUMAR. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 787-794. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Neelotpal Sen Sarma. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nitai Debnath. Articles written in Bulletin of Materials Science. Volume 37 Issue 2 April 2014 pp 199-206. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria · Prasun Patra Shouvik Mitra Nitai Debnath Panchanan Pramanik ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Arunkumar Lagashetty. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 491-495 Nanomaterials. Adsorption study of Pb ions on nanosized SnO2, synthesized by self-propagating combustion reaction · Arunkumar Lagashetty A ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MURAT UYGUN. Articles written in Bulletin of Materials Science. Volume 39 Issue 2 April 2016 pp 353-359. Hydrophobic nano-carrier for lysozyme adsorption · CANAN ALTUNBAS FULDEN ZEYNEP URAL MURAT UYGUN NESIBE AVCIBASI UGUR AVCIBASI DENIZ AKTAS ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sandeep Arya. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method ... Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India; Material Science Division, Indira Gandhi Centre for Atomic Research, ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dinesh Kumar. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 549-551. Semiconductor applications of plasma immersion ion implantation technology · Mukesh Kumar Rajkumar Dinesh Kumar P J George · More Details Abstract Fulltext ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Mirza. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 377-382 Glass Ceramics. Preparation and characterization of magnesium–aluminium–silicate glass ceramics · Madhumita Goswami T Mirza A Sarkar Shobha Manikandan Sangeeta ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and ... Author Affiliations. A S Singha1 Anjali Shama1 Vijay Kumar Thakur1. Material Science Laboratory, National Institute of Technology, Hamirpur 177 005, India ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. AGNIESZKA SOBCZAK-KUPIEC. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 755-764. Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid · Agnieszka Sobczak-Kupiec Zbigniew ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Thotapalli P Sastry. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 177-181. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder · Gunasekaran Krithiga Thotapalli P Sastry.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B V Radhakrishna Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 109-117 Composites. Optimization of processing parameters for making alumina–partially stabilized zirconia laminated composites · S Deb B V Radhakrishna Bhat.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SUDHANSHU CHOUDHARY. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 713-718. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube · Sudhanshu Choudhary ...

  17. Reinventing Material Science - Continuum Magazine | NREL

    Science.gov (United States)

    by Sandia National Laboratories Reinventing Material Science It's not often that scientists set out pursuing in the field of material science. The vision of the center is to revolutionize the discovery of new material science. "In the old days, if you wanted somebody to calculate the properties of a

  18. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  19. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis

    International Nuclear Information System (INIS)

    Genzel, Ch.; Denks, I.A.; Gibmeier, J.; Klaus, M.; Wagener, G.

    2007-01-01

    In April 2005 the materials science beamline EDDI (Energy Dispersive DIffraction) at the Berlin synchrotron storage ring BESSY started operation. The beamline is operated in the energy-dispersive mode of diffraction using the high energy white photon beam provided by a superconducting 7 T multipole wiggler. Starting from basic information on the beamline set-up, its measuring facilities and data processing concept, the wide range of applications for energy-dispersive diffraction is demonstrated by a series of examples coming from different fields in materials sciences. It will be shown, that the EDDI beamline is especially suitable for the investigation of structural properties and gradients in the near surface region of polycrystalline materials. In particular, this concerns the analysis of multiaxial residual stress fields in the highly stressed surface zone of technical parts. The high photon flux further facilitates fast in situ experiments at room as well as high temperature to monitor for example the growth kinetics and reaction in thin film growth

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shweta Agrawal. Articles written in Bulletin of Materials Science. Volume 32 Issue 6 December 2009 pp 569-573 Thin Films and Nanomatter. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Komath. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 135-140 Biomaterials. On the development of an apatitic calcium phosphate bone cement · Manoj Komath H K Varma R Sivakumar · More Details Abstract Fulltext PDF.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Md HABIB. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 56. Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach · NARENDRA NATH GHOSH Md HABIB ANUP PRAMANIK PRANAB SARKAR SOUGATA PAL.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. TRAN NGOC TUYEN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 6. Lead ions removal from aqueous solution using modified carbon nanotubes · NGUYEN DUC VU QUYEN TRAN NGOC TUYEN DINH QUANG KHIEU HO VAN MINH ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Murugesan. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Gopalakrishnan. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol · C V Mythili A Malar Retna S Gopalakrishnan · More Details ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. E Subramanian. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. RITWIK SARKAR. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 293-298 Alloys and Steels. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles · Ritwik Sarkar Nar Singh Swapan Kumar Das.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Chandra. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 309-314 Biomaterials. Characteristics of porous zirconia coated with hydroxyapatite as human bones · V V Narulkar S Prakash K Chandra · More Details Abstract Fulltext PDF.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P P PRADYUMNAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 5 September 2017 pp 1007-1011. Structural and magnetic studies on copper succinate dihydrate single crystals · M P BINITHA P P PRADYUMNAN · More Details Abstract Fulltext PDF.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhanshuang Li. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shunxiao Zhang. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SABRI BAYLAV. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 49. Synthesis and characterization of metal ion-imprinted polymers · YASEMIN ISIKVER SABRI BAYLAV · More Details Abstract Fulltext PDF. In this study, ion-imprinted polymeric ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. XIAOWEN ZHANG. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 895-902. Structural evolution, electrical and optical properties of AZO films deposited by sputtering ultra-high density target · Jiwen Xu Zupei Yang Hua Wang Xiaowen Zhang.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LIFANG ZHANG. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 811-816. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture · Lifang Zhang Yanyan Zheng Chengdong Xiong · More Details Abstract ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Austrian Centre of Competence for Tribology, Viktor Kaplan-Straße 2, A 2700 Wiener Neustadt, Austria; Institute of Industrial Electronics and Material Science, Vienna University of Technology, A 1040 Vienna, Austria; Institute of Material Science and Testing, Vienna University of Technology, A 1040 Vienna, Austria; Institute ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dong Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 25-28. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication · Tian-You Zhang Dong Zhang · More Details Abstract Fulltext PDF.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Raji George. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 183-185 Nanomaterials. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles · Arnab Ganguly Raji George · More Details Abstract Fulltext PDF. Nanoparticles of ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Vinmathi. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 625-628. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MONICA KATIYAR. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 653-660. Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate · Saumen Mandal ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Muthulakshmi. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1575-1582. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers · S Muthulakshmi S Iyyapushpam D Pathinettam Padiyan · More Details ...

  1. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Wein-Duo Yang. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Murali Sastry. Articles written in Bulletin of Materials Science. Volume 23 Issue 3 June 2000 pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ch Sudheer. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 545-547. Tellurium purification: various techniques and limitations · D S Prasad Ch Sudheer N R Munirathnam T L Prakash · More Details Abstract Fulltext PDF. Limitations and ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anjum Qureshi. Articles written in Bulletin of Materials Science. Volume 29 Issue 6 November 2006 pp 605-609. Analysis of organometallics dispersed polymer composite irradiated with oxygen ions · N L Singh Anjum Qureshi A K Rakshit D K Avasthi · More Details Abstract ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KADARKARAI MURUGAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YONG J IANG. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1255-1261. Molecular dynamics study on the relaxation properties of bilayered graphene with defects · WEI ZHANG JIU-REN YIN PING ZHANG YAN-HUAI DING YONG J IANG.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KANNAIYAN DINAKARAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jadu Samuel. Articles written in Bulletin of Materials Science. Volume 36 Issue 6 November 2013 pp 981-987. Green chemical incorporation of sulphate into polyoxoanions of molybdenum to nano level · Jadu Samuel S Hari Prasad M K Sreedhar · More Details Abstract Fulltext ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Ganesan. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 609-615 Thin Films. Structural morphology of amorphous conducting carbon film · P N Vishwakarma V Prasad S V Subramanyam V Ganesan · More Details Abstract Fulltext PDF.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amarnath. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 435-439 Biomaterials. Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel · G Ananta Nagu Amarnath T K G Namboodhiri.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sejal Shah. Articles written in Bulletin of Materials Science. Volume 30 Issue 5 October 2007 pp 477-480 Polymers. Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES) · Nilam Shah Dolly Singh Sejal Shah Anjum Qureshi N L Singh K P ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Kharat. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 453-455 Ceramics and Glasses. Characterization and microstructure of porous lead zirconate titanate ceramics · B Praveenkumar H H Kumar D K Kharat · More Details Abstract ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H P Sachin. Articles written in Bulletin of Materials Science. Volume 30 Issue 1 February 2007 pp 57-63 Electrochemistry. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath · H P Sachin Ganesha Achary Y Arthoba Naik T V Venkatesha.

  15. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rajeev Gupta. Articles written in Bulletin of Materials Science. Volume 34 Issue 3 June 2011 pp 447-454. An investigation in InGaO3(ZnO)m pellets as cause of variability in thin film transistor characteristics · Sonachand Adhikari Rajeev Gupta Ashish Garg Deepak.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N J KARALE. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1335-1345. Chemical synthesis and characterization of nano-sized rare-earth ruthenium pyrochlore compounds Ln 2 Ru 2 O 7 (Ln = rare earth) · R A PAWAR A K NIKUMBH ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Mondal. Articles written in Bulletin of Materials Science. Volume 36 Issue 1 February 2013 pp 51-58. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 coating in borate buffer solution · G Gupta A P Moon K Mondal · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jiuxing Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 825-828. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field · Hong Zeng Chunjiang Kuang Jiuxing Zhang Ming Yue · More Details Abstract Fulltext PDF.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Singh. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 11-16 Molecular Magnets. Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets · B P Singh B Singh · More Details Abstract ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Kumar. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 335-341 Glasses. Optical absorption and fluorescent behaviour of titanium ions in silicate glasses · Manoj Kumar Aman Uniyal A P S Chauhan S P Singh · More Details Abstract ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N K PANDEY. Articles written in Bulletin of Materials Science. Volume 40 Issue 2 April 2017 pp 253-262. Electrical and optical properties of ZnO–WO 3 nanocomposite and its application as a solid-state humidity sensor · VANDNA SHAKYA N K PANDEY SUNEET KUMAR ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Y Arthoba Naik. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 495-501 Thin Films. A new condensation product for zinc plating from non-cyanide alkaline bath · Y Arthoba Naik T V Venkatesha · More Details Abstract Fulltext PDF.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Singh. Articles written in Bulletin of Materials Science. Volume 28 Issue 7 December 2005 pp .... Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit Kumar S S Sharma B Tripathi M Singh Y K Vijay.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Pal. Articles written in Bulletin of Materials Science. Volume 24 Issue 4 August 2001 pp 415-420 Biomaterials. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin · G Saraswathy S Pal C Rose T P Sastry · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Annie John. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 141-154 Biomaterials. Bone growth response with porous hydroxyapatite granules in a critical sized lapine tibial-defect model · Annie John S Abiraman H K Varma T V Kumari P R ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R AHMED. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1105-1110. Structural, elastic, optoelectronic and magnetic properties of CdHo 2 S 4 spinel: a first-principle study · I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rani Joseph. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 343-348 Thin Films. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly(vinyl chloride) films · M Ushamani N G Leenadeenja K Sreekumar ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Singha. Articles written in Bulletin of Materials Science. Volume 31 Issue 1 February 2008 pp 7-13 Polymers. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre · A S Singha Anjali Shama ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Hafez. Articles written in Bulletin of Materials Science. Volume 33 Issue 2 April 2010 pp 149-155 Polymers. Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol · A B Elaydy M Hafez · More Details ...

  12. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 6 covers the developments in the study of surface and membrane science. The book discusses the progress in surface and membrane science; the solid state chemistry of the silver halide surface; and the experimental and theoretical aspects of the double layer at the mercury-solution interface. The text also describes contact-angle hysteresis; ion binding and ion transport produced by neutral lipid-soluble molecules; and the biophysical interactions of blood proteins with polymeric and artificial surfaces. Physical chemists, biophysicists, and phys

  13. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China; Department of Physics, Shanghai University, Shanghai 200444, China; State Key Laboratory of Crystal Material, Shandong ...

  15. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S S Samal. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 379-386 Polymers. Carbon nanotube reinforced polymer composites—A state of the art · S Bal S S Samal · More Details Abstract Fulltext PDF. Because of their high mechanical ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Le Minh Duc. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc · More Details ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Veera Brahmam. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 411-414 Single Crystals. Crystal growth and reflectivity studies of Zn1–MnTe crystals · K Veera Brahmam D Raja Reddy B K Reddy · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhang Lei. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 161-167. Characterization on strength and toughness of welded joint for Q550 steel · Jiang Qinglei Li Yajiang Wang Juan Zhang Lei · More Details Abstract Fulltext PDF. Q550 high ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amit Sinha. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 653-657 Bioceramics. Development of calcium phosphate based bioceramics · Amit Sinha A Ingle K R Munim S N Vaidya B P Sharma A N Bhisey · More Details Abstract Fulltext ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. HUA WANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H N Sheikh. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Rajendra Babu. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 249-252 Crystal Growth. Thermal behaviour of strontium tartrate single crystals grown in gel · M H Rahimkutty K Rajendra Babu K Sreedharan Pillai M R Sudarsana Kumar C M K ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B Swarna Latha. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 883-888. Structural, spectroscopic and electrochemical study of V substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries · A Venkateswara Rao V Veeraiah A V Prasada ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 4 August 2000 pp 295-299 Alloys. A test for diffusional coherency strain hypothesis in the discontinuous precipitation in Mg–Al alloy · K T Kashyap C Ramachandra V Bhat B Chatterji · More Details Abstract ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Mandal. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 743-752. Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification · M Mandal D Singh Gouthama B S Murty S Sangal K Mondal · More Details ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B L Kalsotra. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Bhimasankaram. Articles written in Bulletin of Materials Science. Volume 23 Issue 6 December 2000 pp 483-489 Oxide Ceramics. Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics · N V Prasad G Prasad Mahendra Kumar S V ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Biswas. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 251-255 Polymers. Effect of substrate roughness on growth of diamond by hot filament CVD · Awadesh K Mallik S R Binu L N Satapathy Chandrabhas Narayana Md Motin Seikh S A ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Sahu. Articles written in Bulletin of Materials Science. Volume 32 Issue 3 June 2009 pp 285-294. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview · A K Sahu S Pitchumani P Sridhar A K Shukla · More Details Abstract Fulltext PDF.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anhua Wu. Articles written in Bulletin of Materials Science. Volume 27 Issue 4 August 2004 pp 333-336 Crystal Growth. Bridgman growth and defects of Nd : Sr3Ga2Ge4O14 laser crystals · Jiaxuan Ding Anhua Wu Jiayue Xu · More Details Abstract Fulltext PDF.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LING YANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L C GUPTA. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1121-1125. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2 · ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C ...

  14. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    Science.gov (United States)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  15. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  16. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  17. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Parhi. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 143-149. Failure analysis of multiple delaminated composite plates due to bending and impact · P K Parhi S K Bhattacharyya P K Sinha · More Details Abstract Fulltext PDF. The present ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Prakash. Articles written in Bulletin of Materials Science. Volume 29 Issue 4 August 2006 pp 339-345 Ceramics and Glasses. Solution-combustion synthesis of Bi1–LnO1.5 (Ln = Y and La–Yb) oxide ion conductors · Manjunath B Bellakki A S Prakash C Shivakumara M S ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K B R Varma. Articles written in Bulletin of Materials Science. Volume 30 Issue 6 December 2007 pp 567-570 Ceramics and Glasses. Microwave synthesis and sintering characteristics of CaCu3Ti4O12 · P Thomas L N Sathapathy K Dwarakanath K B R Varma · More Details ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Prasad. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 547-553 Glasses and Ceramics. Impedance analysis of Pb2Sb3LaTi5O18 ceramic · C K Suman K Prasad R N P Choudhary · More Details Abstract Fulltext PDF. Polycrystalline ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Avasthi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Shrinet. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect of ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Rakshit. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P M Raole. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 81-88. Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K Avasthi P M Raole · More Details ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LI-XIA YANG. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 233-237. Shape control synthesis of low-dimensional calcium sulfate · Li-Xia Yang Yan-Feng Meng Ping Yin Ying-Xia Yang Ying-Ying Tang Lai-Fen Qin · More Details Abstract ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B N Dev. Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer · J Kamila S Roy K Bhattacharjee B Rout B N Dev R Guico J Wang A W Haberl P Ayyub P V Satyam.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K R Rajesh. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 95-99. High mobility polymer gated organic field effect transistor using zinc phthalocyanine · K R Rajesh V Kannan M R Kim Y S Chae J K Rhee · More Details Abstract Fulltext PDF.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N L Singh. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Hui Shen. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 101-104 Single Crystals. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals · Anhua Wu Jiayue Xu Juan Zhou Hui Shen · More Details Abstract Fulltext PDF. A new piezoelectric ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K V Shah. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 715-720 Glasses and Ceramics. Preparation and studies of some thermal, mechanical and optical properties of Al2O3(1 – )NaPO3 glass system · K V Shah V Sudarsan M ...

  12. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  13. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1972-01-01

    Progress in Surface and Membrane Science, Volume 5 covers the developments in the study of surface and membrane science. The book discusses the Mössbauer effect in surface science; the surface functional groups on carbon and silica; and the wetting phenomena pertaining to adhesion. The text also describes the physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes; the characteristics of heterocoagulation; and the effects of calcium on excitable membranes and neurotransmitter action. Chemists, physiologists, biophysicists, and civil engineers will find the book i

  14. Proceedings of the international symposium for research scholars on metallurgy, materials science and engineering

    International Nuclear Information System (INIS)

    2010-01-01

    Topics covered in this symposium are: steels, functional materials posters, computational materials science, casting and solidification, polymer matrix composites, posters electronic materials, environmental degradation processing of non-metallic materials posters, energy materials, materials forming technology, biomaterials, magnetic materials, mechanical behaviour of materials posters, phase transformations and physical metallurgy, surface engineering, nanostructured materials, ceramics, processing of metals, materials joining technology and optical materials. Papers relevant to INIS are indexed separately

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F Wang. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Singh. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 561-563. Synthesis of SiC from rice husk in a plasma reactor · S K Singh B C Mohanty S Basu · More Details Abstract Fulltext PDF. A new route for production of SiC from rice husk ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T K Bhattacharya. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 703-706 Cements. Solid state sintering of lime in presence of La2O3 and CeO2 · T K Bhattacharya A Ghosh H S Tripathi S K Das · More Details Abstract Fulltext PDF.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. C H Xia. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G Prasad. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 431-437 High T c Superconductors. Studies on electrical properties of SrBi4Ti4–3Fe4O15 · N Venkat Ramulu G Prasad S V Suryanarayana T Bhima Sankaram · More Details ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Department of Physics, Sultan Qaboos University, Muscat, P.O. Box 36, Code 123, Oman; Department of Polymer Science andRubber Technology, Cochin University of Science and Technology, Cochin 682022, India; Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  2. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  3. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M K Rabinal. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract ...

  5. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  6. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    Science.gov (United States)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  7. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  8. A new direction in mathematics for materials science

    CERN Document Server

    Ikeda, Susumu

    2015-01-01

    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for ...

  9. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1977-01-01

    Progress in Surface and Membrane Science, Volume 11 covers the advances in the study of surface and membrane science. The book discusses the quantum theory of surface phenomena; some fundamental aspects of electrocrystallization; and exoelectric emission. The text also describes the surface of titanium dioxide; and the prospects for atomic resolution electron microscopy in membranology. Chemists, physicists, and people involved in the electrochemical power laboratory will find the book useful.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This generated great interest in the development of these heteroatom structured materials through different processing routes. ... of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India; Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama 226, Japan ...

  11. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1980-05-01

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  12. The structural science of functional materials.

    Science.gov (United States)

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  13. Betsy Pugel, Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfaces

    OpenAIRE

    Schriml, Lynn

    2017-01-01

    Betsy Pugel, National Aeronautics and Space Administration Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfacesOn October 10-12th, 2017 the Alfred P. Sloan Foundation and The National Academies of Sciences, Engineering and Medicine co-hosting MoBE 2017 (Microbiology of the Built Environment Research and Applications Symposium) at the National Academy of Sciences Building to present the current state-of-the-science in understanding the formation and ...

  14. Radiological and Nuclear Detection Material Science: Novel Rare-Earth Semiconductors for Solid-State Neutron Detectors and Thin High-k Dielectrics

    Science.gov (United States)

    2017-11-01

    6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-15-82 Radiological and Nuclear Detection Material Science : Novel...P.A. Dowben, “Surface Charging at the (100) Surface of Cu doped and undoped Li2B4O7”, Applied Surface Science 257 (2011) 3399-3403 27. S.R...V.T. Adamiv, Ya.V. Burak, P.A. Dowben, “The local structure of Mn doped Li2B4O7(001)”, in preparation for Materials Science and Engineering B 40. C

  15. Teeth and bones: applications of surface science to dental materials and related biomaterials

    Science.gov (United States)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  16. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  17. Microgravity Materials Science Conference 2000. Volume 1

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  18. Microgravity Materials Science Conference 2000. Volume 3

    Science.gov (United States)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  19. Microgravity Materials Science Conference 2000. Volume 2

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  20. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  1. Density functional theory in materials science.

    Science.gov (United States)

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  2. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1979-01-01

    Progress in Surface and Membrane Science, Volume 12 covers the advances in the study of surface and membrane science. The book discusses the topographical differentiation of the cell surface; the NMR studies of model biological membrane system; and an irreversible thermodynamic approach to energy coupling in mitochondria and chloroplasts. The text also describes water at surfaces; the nature of microemulsions; and the energy principle in the stability of interfaces. Biochemists, physicists, chemical engineers, and people involved in surface and coatings research will find the book invaluable.

  3. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1971-01-01

    Progress in Surface and Membrane Science, Volume 4 covers the developments in the study of surface and membrane science. The book discusses waves at interfaces; recent investigations on the thickness of surface layers; and surface analysis by low-energy electron diffraction and Auger electron spectroscopy. The text also describes the anode electrolyte interface; the interactions of adsorbed proteins and polypeptides at interfaces; and peptide-induced ion transport in synthetic and biological membranes. The monolayer adsorption on crystalline surfaces is also considered. Chemists and metallurgi

  4. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  5. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. U D Lanke1 2. Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Mumbai 400 076, India; School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ...

  7. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    Science.gov (United States)

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.

  8. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  9. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved beyond being a sub-field of chemistry or physics and has now become an underpinning science. The Third Edition of this book incorporates extensive worked solutions, as well as details on how problem solving relevant to surface science should be performed. It contextualizes the exercises and their solutions to further explicate the methods of problem solving, application of scientific principles and to deliver a deeper understanding of the field of surface science. Solutions will be accompanied by figures and/or graphs of data, as appropriate.

  10. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  11. Editorial: Defining materials science: A vision from APL Materials

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2014-07-01

    Full Text Available These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. G KOROTCENKOV1 V BRINZARI2 B K CHO1. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea; Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    MOHAMMOD AMINUZZAMAN1 LIM POH YING1 WEE-SHENOG GOH1 AKIRA WATANABE2. Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Malaysia; Institute of Multidisciplinary Research for Advanced Materials ...

  14. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  15. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved from being a sub-field of chemistry or physics, and has now established itself as an interdisciplinary topic. Knowledge has developed sufficiently that we can now understand catalysis from a surface science perspective. No-where is the underpinning nature of surface science better illustrated than with nanoscience. Now in its third edition, this successful textbook aims to provide students with an understanding of chemical transformations and the formation of structures at surfaces. The chapters build from simple to more advanced principles with each featuring exerc

  16. Surface science and catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1985-02-01

    Modern surface science studies have explored a large number of metal catalyst systems. Three classes of catalytic reactions can be identified: (1) those that occur over the metal surface; (2) reactions that take place on top of a strongly adsorbed overlayer and (3) reactions that occur on co-adsorbate modified surfaces. Case histories for each class are presented. 44 refs., 13 figs., 3 tabs

  17. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  18. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  19. Qi Liu - Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. QI LIU. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 183-189. Study of structural transformations and phases formation upon calcination of Zn–Ni–Al hydrotalcite nanosheets · Zhanshuang Li Yanchao Song Jun Wang Qi Liu Piaoping Yang ...

  20. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  1. Computational techniques in tribology and material science at the atomic level

    Science.gov (United States)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  2. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi, Morocco; LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco; Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex ...

  4. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A; Rosenberg, M D

    1974-01-01

    Progress in Surface and Membrane Science, Volume 8 covers the developments in the study of surface and membrane science. The book discusses the applications of statistical mechanics to physical adsorption; the impact of electron spectroscopy and cognate techniques on the study of solid surfaces; and the ellipsometric studies of thin films. The text also describes the interfacial photochemistry of bilayer lipid membranes; cell junctions and their development; and the composition and function of the inner mitochondrial membrane. The role of the cell surface in contact inhibition of cell division

  5. Surface science techniques

    CERN Document Server

    Walls, JM

    2013-01-01

    This volume provides a comprehensive and up to the minute review of the techniques used to determine the nature and composition of surfaces. Originally published as a special issue of the Pergamon journal Vacuum, it comprises a carefully edited collection of chapters written by specialists in each of the techniques and includes coverage of the electron and ion spectroscopies, as well as the atom-imaging methods such as the atom probe field ion microscope and the scanning tunnelling microscope. Surface science is an important area of study since the outermost surface layers play a crucial role

  6. Auger- and X-ray photoelectron spectroscopy in materials science a user-oriented guide

    CERN Document Server

    Hofmann, Siegfried

    2013-01-01

    To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked e...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiuqiang Li1 Dong Zhang1 Peiying Zhu1 Chao Yang1. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, College of Materials Science and Engineering, Tongji University, 4800 CaoAn Road, Shanghai 200092, China ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Materials Chemistry Laboratory, Department of Materials Science, Gulbarga University, Gulbarga 585 106, India; Veeco-India Nanotechnology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India; R&D Centre Premier Explosives Pvt. Ltd., Hyderabad 500 015, India ...

  10. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  11. New developments in the application of synchrotron radiation to material science

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    Recent developments in the application of synchrotrons radiation to materials science are discussed, using techniques which exploit the high brilliance of the newer synchrotrons sources, such as microbeam techniques and correlation spectroscopy. These include studies of environmental systems, residual stress, slow dynamics of condensed matter systems and studies of liquid surfaces and thin magnetic films

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement ... Author Affiliations. I Janotka1 L' Krajèi1. Institute of Construction and Architecture of the Slovak Academy of Sciences, Bratislava, Slovak Republic ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites. Smrutisikha Bal ... Author Affiliations. Smrutisikha Bal1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769 008, India ...

  14. Surface science an introduction

    CERN Document Server

    Hudson, John

    1991-01-01

    The whole field of surface science is covered in this work. Starting with a description of the structure and thermodynamics of clean surfaces, the book goes on to discuss kinetic theory of gases and molecular beam formation. This is followed by a largesection on gas-surface interactions, and another major section on energetic particle-surface interactions. The final chapter provides the background to crystal nucleation and growth. The approach adopted is interdisciplinary and slanted towards theexperimental side, with practical analytical techniques being used to illustrate general princi

  15. Materials Data Science: Current Status and Future Outlook

    Science.gov (United States)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher ... National Metallurgical Laboratory, Jamshedpur 831 007, India; Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Sanjay Panwar1 D B Goel2 O P Pandey1. School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala 147 004, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 4 ... Permittivity; polarization effects; strontium tartrate; thermal properties; dielectric properties. ... It is explained that crystallographic change due to polymorphic phase transition may be occurring in the material, besides the change due to loss of water ...

  19. Materials science challenges in paintings

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-02-01

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  20. Materials science challenges in paintings.

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-01-23

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1 ... I D S – V b g branches in accordance with the SERS results and humidity responses. ... Ni˘gde University, Graduate School Natural and Applied Sciences, Ni˘gde 51240, ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P.R. China; State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 6 .... modified with 4–12% 3,3′-bis(maleimidophenyl) phenylphosphine oxide and cured ... Study of effect of composition, irradiation and quenching on ionic ... Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials.

  4. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  5. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  6. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Electro-optical properties, decomposition pathways and the hydrostatic pressure-dependent behaviours of a double-cation hydrogen storage material of Al 3 Li 4 (BH 4 ) 13. MEHMET SIMSEK. Volume 40 Issue 5 September 2017 pp 907-915 ...

  8. Report of the surface science workshop

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Yates, J.T. Jr.; Clinton, W.

    1977-03-01

    A three-day workshop was held to review the various areas of energy development and technology in which surface science plays major roles and makes major contributions, and to identify the major surface-science-related problem areas in the fields with ERDA's mission in the fossil, nuclear, fusion, geothermal, and solar energy technologies and in the field of environmental control. The workshop activities are summarized

  9. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1981-01-01

    Progress in Surface and Membrane Science, Volume 14 covers the advances in the study of surface and membrane science. The book discusses statistical thermodynamics of monolayer adsorption from gas and liquid mixtures on homogeneous and heterogeneous solid surfaces; and the structure of the boundary layers of liquids and its influence on the mass transfer in fine pores. The text then describes the coupling of ionic and non-electrolyte fluxes in ion selective membranes; the electrocatalytic properties of matalloporphins at the interface; and the adsorption from binary gas and liquid phases. Phas

  10. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 7 covers the developments in the study of surface and membrane science. The book discusses the theoretical and experimental aspects of the van der Waals forces; the electric double layer on the semiconductor-electrolyte interface; and the long-range and short-range order in adsorbed films. The text also describes the hydrodynamical theory of surface shear viscosity; the structure and properties of monolayers of synthetic polypeptides at the air-water interface; and the structure and molecular dynamics of water. The role of glycoproteins in cell

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 5 ... of CdTe nanoparticles before and after transfer from liquid phase to polystyrene ... Catalytic synthesis of ZnO nanorods on patterned silicon wafer—An optimum material for gas .... Hot-rolled, warm-rolled and heat treated alloys were examined using optical ...

  12. Surface science in hernioplasty: The role of plasma treatments

    Science.gov (United States)

    Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna

    2017-10-01

    The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.

  13. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  14. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    Ondracek, G.; Voehringer, O.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.) [de

  15. Report of the surface science workshop

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Yates, J.T. Jr.; Clinton, W.

    1977-03-01

    A three-day workshop was held to review the various areas of energy development and technology in which surface science plays major roles and makes major contributions, and to identify the major surface-science-related problem areas in the fields with ERDA's mission in the fossil, nuclear, fusion, geothermal, and solar energy technologies and in the field of environmental control. The workshop activities are summarized. (GHT)

  16. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A; Rosenberg, M D

    1975-01-01

    Progress in Surface and Membrane Science, Volume 9 covers the developments in surface and membrane science. The book discusses the physical adsorption of gases and vapors in micropores; the chemisorption theory; and the role of radioisotopes in the studies of chemisorption and catalysis. The text also describes the interaction of ions with monolayers; and the isolation and characterization of mycoplasma membranes. Chemists, physical chemists, and microbiologists will find the book useful.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 27 Issue 5 October 2004 pp 417-420 Nuclear Related Materials. Irradiation of large area Mylar membrane and characterization of ... Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials. Yuan Fang Rijing Wang Guohua Jiang He Jin Yin Wang Xinke Sun Sheng Wang Tao Wang. Volume 35 Issue 4 August 2012 pp 495-499 ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 6. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. M R Anantharaman K A Malini S Sindhu E M Mohammed S K Date S D Kulkarni P A Joy Philip Kurian. Magnetic Materials Volume 24 Issue 6 December 2001 ...

  20. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Preparation of new thermoluminescent material ( 100 − x )B 2 O 3 –xLi 2 O: Cu 2 + for sensing and detection of radiation. Zeid A Alothman Tansir Ahamad Mu Naushad Saad M Alshehri. Volume 39 Issue 1 February 2016 pp 331-336 ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Optimization of growth of InGaAs/InP quantum wells using photoluminescence and secondary ion mass spectrometry. S Bhunia P Banerji T K Chaudhuri A R Haldar D N Bose Y Aparna M B Chettri B R Chakraborty. Semiconducting Materials Volume 23 ...

  3. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  4. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 6 ... by microwave route and nature of anatase–rutile phase transition in nano TiO2 .... properties of AgPb10SbTe12 prepared by high pressure method .... the crystal field strength around Mn(V) such that a blue colour results for materials with small values of .

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 4. Phase analysis and dielectric properties of ceramics in PbO–MgO–ZnO–Nb2O5 system: A comparative study of materials obtained by ceramic and molten salt synthesis routes. M Thirumal A K Ganguli. Ceramics Volume 23 Issue 4 August 2000 pp 255-261 ...

  7. Recent progress in surface science v.2

    CERN Document Server

    Danielli, J F; Riddiford, A C

    1964-01-01

    Recent Progress in Surface Science, Volume 2 is a 10-chapter text that covers the significant advances in some aspects of surface science, including in catalysis, genetic control of cell surface, and cell membrane. The opening chapter deals with the major factors affecting adsorption at the gas-solid interface. The subsequent chapters explore the advances in understanding of heterogeneous catalysis in terms of fundamental surface processes, as well as the concept of dynamic contact angles. These topics are followed by discussions on emulsions, flotation, and the extraordinary complexity of cel

  8. Chemistry and Materials Science Department annual report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  9. Surface science techniques

    CERN Document Server

    Bracco, Gianangelo

    2013-01-01

    The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2 ... films deposited by rf magnetron sputtering using a high quality ceramic target ... Critical shear stress produced by interaction of edge dislocation with nanoscale inhomogeneity ... production cost limiting zircon usage as a raw material at an industrial scale.

  11. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics

    Science.gov (United States)

    Wang, Z. F.; Liu, Feng

    2015-07-01

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  13. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.

    Science.gov (United States)

    Wang, Z F; Liu, Feng

    2015-07-10

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6)  m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Issue front cover thumbnail. Volume 26, Issue 5. August 2003, pages 461-568. pp 461-464 Sensor Materials. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates · P K Bajpai Kuldeep Ratre Mukul Pastor T P ...

  15. 7th International Summer Institute in Surface Science

    CERN Document Server

    Howe, Russell

    1986-01-01

    This volume contains review articles which were written by the invited speak­ ers of the seventh International Summer Institute in Surface Science (ISISS), held at the University of Wisconsin - Milwaukee in July 1985. The form of ISISS is a set of tutorial review lectures presented over a one-week period by internationally recognized experts on various aspects of surface science. Each speaker is asked, in addition, to write a review article on his lecture topic. No single volume in the series Chemistry and Physics of Solid Surfaces can possibly cover the entire field of modern surface science. However, the series as a whole is intended to provide experts and students alike with a comprehensive set of reviews and literature references, particularly empha­ sizing the gas-solid interface. The collected articles from previous Summer Institutes have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci. 4, 125-559 (1974) Chemistry and Physics of ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Romania; 'Alexandru Ioan Cuza' University, Research Center on Advanced Materials and Technologies, Sciences Department, 11 Carol I Blvd., 700506 Iasi, Romania; Photonics Laboratory, Angers University, 2, Bd. Lavoisier, 49045 Angers, ...

  17. Materials Science and the Problem of Garbage

    Science.gov (United States)

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  18. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  19. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  20. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  1. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7 ... pulse electrodeposition with ultrasound agitation from nickelWatts-type bath. ... The results showed that wear resistance increased with increase in duty cycle and frequency.

  3. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Kuriyama, Masao

    1990-01-01

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiaoming Liao1 Hongyang Zhu1 Guangfu Yin1 Zhongbing Huang1 Yadong Yao1 Xianchun Chen1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P.R. of China ...

  5. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    Science.gov (United States)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ankur Jain1 R K Jain1 Shivani Agarwal1 I P Jain1. Material Science Laboratory, Centre for Non-Conventional Energy Resources, 14, Vigyan Bhawan, University of Rajasthan, Jaipur 302 004, India ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4 ... has a dielectric anomaly of ferroelectric to paraelectric type at 198°C, and exhibits ... that the compound has negative temperature coefficient of resistance (NTCR) behaviour.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Bulletin of Materials Science began in the year 1979. ... one of the world's leading interactive databases of high quality STM journals, book series, books, reference works and online archives collection. ... Sadashivanagar, P.B. No. 8005 ...

  9. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  10. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation ... Keywords. Gamma irradiation; graft copolymerization; spectroscopic analysis; XRD; kinetics of thermal decomposition; activation energy.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 4 ... Nacional de Investigaciones Científicas y Técnicas), A4408FVY Salta, Argentina; Fac. Ingeniería, Universidad Nacional de Salta, A4408FVY Salta, Argentina; Fac.

  13. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  14. Bipolar electrochemistry: from materials science to motion and beyond.

    Science.gov (United States)

    Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander

    2013-11-19

    Bipolar electrochemistry, a phenomenon which generates an asymmetric reactivity on the surface of conductive objects in a wireless manner, is an important concept for many purposes, from analysis to materials science as well as for the generation of motion. Chemists have known the basic concept for a long time, but it has recently attracted additional attention, especially in the context of micro- and nanoscience. In this Account, we introduce the fundamentals of bipolar electrochemistry and illustrate its recent applications, with a particular focus on the fields of materials science and dynamic systems. Janus particles, named after the Roman god depicted with two faces, are currently in the heart of many original investigations. These objects exhibit different physicochemical properties on two opposite sides. This makes them a unique class of materials, showing interesting features. They have received increasing attention from the materials science community, since they can be used for a large variety of applications, ranging from sensing to photosplitting of water. So far the great majority of methods developed for the generation of Janus particles breaks the symmetry by using interfaces or surfaces. The consequence is often a low time-space yield, which limits their large scale production. In this context, chemists have successfully used bipolar electrodeposition to break the symmetry. This provides a single-step technique for the bulk production of Janus particles with a high control over the deposit structure and morphology, as well as a significantly improved yield. In this context, researchers have used the bipolar electrodeposition of molecular layers, metals, semiconductors, and insulators at one or both reactive poles of bipolar electrodes to generate a wide range of Janus particles with different size, composition and shape. In using bipolar electrochemistry as a driving force for generating motion, its intrinsic asymmetric reactivity is again the

  15. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  16. Surface science models of CoMoS hydrodesulfurisation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, A.M.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. [Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven (Netherlands)

    1997-07-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of silica and alumina supported CoMoS catalysts have been made by impregnating thin SiO{sub 2} and Al{sub 2}O{sub 3} films with a solution of nitrilotriacetic acid (NTA) complexes of cobalt and molybdenum. X-ray Photoelectron Spectroscopy (XPS) spectra indicate that the order in which cobalt and molybdenum transfer to the sulfided state is reversed with respect to oxidic Co and Mo systems prepared by conventional methods, implying that NTA complexation retards the sulfidation of cobalt to temperatures where MoS{sub 2} is already formed. Catalytic tests show that the CoMoS model catalysts exhibit activities for thiophene desulfurisation and product distributions similar to those of their high surface area counterparts. 25 refs.

  17. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    Science.gov (United States)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... The energy diagram shows the feasibility of La2CuO4 for the H2 evolution under visible light. ... Laboratory of Storage and Valorization of Renewable Energies, Faculty of ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses to probe local environment. GAJANAN V HONNAVAR K P RAMESH ... Keywords. Tellurite glasses; Raman spectroscopy; photoluminscence; Stark level splitting; UV visible spectroscopy.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Medicine and Dentistry, James Cook University, Cairns 4878, Australia; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China; Institute of Dental Materials, Wenzhou Medical University, Wenzhou ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Bulletin of Materials Science; Volume 29; Issue 2. Mechanism of cube grain nucleation during recrystallization of deformed commercial purity aluminium. K T Kashyap R George. Nucleation Studies Volume 29 Issue ... Keywords. Recrystallization; cube texture; commercial purity aluminium; differential stored energy model.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials' science and engineering. In this article, the prominent solar energy technologies, namely solarphotovoltaic and concentrated solar power and other relevant technologies, and aspects ...

  3. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  4. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  6. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K L Sahoo1 Rina Sahu1 M Ghosh1 S Chatterjee2. Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India; Department of Metallurgical and Materials Engineering, Bengal Engineering and Science University, Howrah 711 103, India ...

  8. Tribology. LC Science Tracer Bullet.

    Science.gov (United States)

    Havas, George D., Comp.

    Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…

  9. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  10. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  11. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  12. Materials science education: ion beam modification and analysis of materials

    Science.gov (United States)

    Zimmerman, Robert; Muntele, Claudiu; Ila, Daryush

    2012-08-01

    The Center for Irradiation of Materials (CIM) at Alabama A&M University (http://cim.aamu.edu) was established in 1990 to serve the University in its research, education and services to the need of the local community and industry. CIM irradiation capabilities are oriented around two tandem-type ion accelerators with seven beam lines providing high-resolution Rutherford backscattering spectrometry, MeV focus ion beam, high-energy ion implantation and irradiation damage studies, particle-induced X-ray emission, particle-induced gamma emission and ion-induced nuclear reaction analysis in addition to fully automated ion channeling. One of the two tandem ion accelerators is designed to produce high-flux ion beam for MeV ion implantation and ion irradiation damage studies. The facility is well equipped with a variety of surface analysis systems, such as SEM, ESCA, as well as scanning micro-Raman analysis, UV-VIS Spectrometry, luminescence spectroscopy, thermal conductivity, electrical conductivity, IV/CV systems, mechanical test systems, AFM, FTIR, voltammetry analysis as well as low-energy implanters, ion beam-assisted deposition and MBE systems. In this presentation, we will demonstrate how the facility is used in material science education, as well as providing services to university, government and industry researches.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. K Kumari P P Kundu. Polymers Volume 31 Issue 2 April 2008 pp 159-167 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 4 .... Synthesis and structural studies of Na2O–ZnO–ZnF2–B2O3 oxyfluoride glasses ... processing: A potential technique for preparing NiO–YSZ composite and Ni–YSZ cermet.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Preparation of titanium diboride powders from titanium alkoxide ... The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 2 ... TSDC; PS; naphthalene; thermo-electrets; glass transition temperature (g). Abstract. The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Fereshteh Chekin Samira Bagheri Sharifah Bee Abd Hamid. Volume 38 Issue 7 December 2015 pp 1711-1716 ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 4. Evaluation of solid–liquid interface profile during continuous casting by a spline based formalism. S K Das. Metals and Alloys Volume ... Keywords. Continuous casting; solidification; solid–liquid interface; front tracking algorithm; phase change; heat transfer.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3 ... The morphology and the nature of the protective layer grown under the paint film were also ... en Tecnología de Pinturas, Calle 52e/121 y 122, (B1900AYB), La Plata 1900, ...

  20. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  1. International Materials Research Meeting in the Greater Region: “Current Trends in the Characterisation of Materials and Surface Modification”

    Science.gov (United States)

    2017-10-01

    Preface Dear ladies and gentlemen, On 6th and 7th of April 2017 took place the “International Materials Research Meeting in the Greater Region” at the Saarland University, Saarbrücken, Germany. This meeting corresponded to the 9th EEIGM International Conference on Advanced Materials Research and it was intended as a meeting place for researchers of the Greater Region as well as their partners of the different cooperation activities, like the EEIGM program, the ‘Erasmus Mundus’ Advanced Materials Science and Engineering Master program (AMASE), the ‘Erasmus Mundus’ Doctoral Program in Materials Science and Engineering (DocMASE) and the CREATe-Network. On this meeting, 72 participants from 15 countries and 24 institutions discussed and exchanged ideas on the latest trends in the characterization of materials and surface modifications. Different aspects of the material research of metals, ceramics, polymers and biomaterials were presented. As a conclusion of the meeting, the new astronaut of the European Space Agency Dr. Matthias Maurer, who is an alumni of the Saarland University and the EEIGM, held an exciting presentation about his activities. Following the publication of selected papers of the 2009 meeting in Volume 5 and 2012 meeting in Volume 31 of this journal, it is a great pleasure to present this selection of 9 articles to the readers of the IOP Conference Series: Materials Science and Engineering. The editors are thankful to all of the reviewers for reviewing the papers. Special praise is also given to the sponsors of the conference: European Commission within the program Erasmus Mundus (AMASE and DocMASE), Erasmus+ (AMASE), and Horizon2020 (CREATe-Network, Grant agreement No 644013): the DAAD (Alumni Program), and the German-French University (PhD-Track). List of Author signatures, Conference topics, Organization, Conference impressions and list of the participants are available in this PDF.

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1 .... Na + /B 3 + phosphor has a potential application in white light-emitting diodes based ... College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China ...

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 ... In this study, a modified model for the application of the thermionic and hopping current ... Departments of Mathematics and Physics, Arab American University, Jenin 240, ...

  4. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  5. Ion backscattering techniques applied in materials science research

    International Nuclear Information System (INIS)

    Sood, D.K.

    1978-01-01

    The applications of Ion Backscattering Technique (IBT) to material analysis have expanded rapidly during the last decade. It is now regarded as an analysis tool indispensable for a versatile materials research program. The technique consists of simply shooting a beam of monoenergetic ions (usually 4 He + ions at about 2 MeV) onto a target, and measuring their energy distribution after backscattering at a fixed angle. Simple Rutherford scattering analysis of the backscattered ion spectrum yields information on the mass, the absolute amount and the depth profile of elements present upto a few microns of the target surface. The technique is nondestructive, quick, quantitative and the only known method of analysis which gives quantitative results without recourse to calibration standards. Its major limitations are the inability to separate elements of similar mass and a complete absence of chemical-binding information. A typical experimental set up and spectrum analysis have been described. Examples, some of them based on the work at the Bhabha Atomic Research Centre, Bombay, have been given to illustrate the applications of this technique to semiconductor technology, thin film materials science and nuclear energy materials. Limitations of IBT have been illustrated and a few remedies to partly overcome these limitations are presented. (auth.)

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes. K Pekkan B Karasu. Ceramics and Glasses Volume 33 Issue 2 April 2010 pp 135-144 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film ... amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 27; Issue 6. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals. Namita Rajput S Tiwari B P Chandra. Optical Properties Volume 27 Issue 6 December 2004 pp 505-509 ...

  10. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity

    Science.gov (United States)

    Trinh, E. H.

    1985-01-01

    An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of nitrogen flow ratio on structure and properties of zirconium nitride films on Si(100) prepared by ion beam sputtering. Shahab Norouzian Majid Mojtahedzadeh Larijani Reza Afzalzadeh. Volume 35 Issue 5 October 2012 pp 885-887 ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 3. Effect of composition on the polarization and ohmic resistances of LSM/YSZ composite cathodes in solid oxide fuel cell. B SHRI PRAKASH S SENTHIL KUMAR S T ARUNA. Volume 40 Issue 3 June 2017 pp 441-452 ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 1. Characterization and in vitro and in vivo evaluation of cross-linked chitosan films as implant for controlled release of citalopram. Patit P Kundu Santosh Kumar Jindal Manish Goswami. Volume 36 Issue 1 February 2013 pp 175-182 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer ... optical and secondary electron microscopic experimental methods. Volume 34 Issue 4 July 2011 pp 595-599. Thermal stability of gold-PS nanocomposites thin films.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 2. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique. K K Verma R S Tiwari O N Srivastava. Superconductors Volume 28 Issue 2 April ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Special Issues. Bulletin of Materials Science. pp 199-584 Volume 31 Issue 3 June 2008. Proceedings of the 'National Review and Coordination Meeting on Nanoscience and Nanotechnology', Hyderabad, 2007. Editor: S. B. Krupanidhi Guest Editors: G. Sundararajan and Tata Narasinga Rao. pp 547-651 Volume 29 Issue ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 26 Issue 2 February 2003 pp 247-253 Electrical Properties. Impedance spectroscopy ... the a.c. conductivity data. Volume 26 Issue 7 December 2003 pp 745-747 Electrical Properties. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate.

  18. The impact on materials science of ion beam analysis with electrostatic accelerators

    International Nuclear Information System (INIS)

    Amsel, G.; Battistig, G.

    2005-01-01

    The specific aspects of IBA for near surface and thin film analysis are discussed. In a number of cases IBA is the only analytical tool that may provide the information sought, in other cases it provides the most accessible or practical technique to be applied. While IBA is insensitive to the chemical state of the atoms analysed, it is unique in particular for determining with high accuracy and sensitivity absolute atomic quantities or concentrations, for studying with channeling techniques the atomic structure of crystalline thin films or materials near the surface, for isotopic tracing experiments with stable isotopes using nuclear reactions or resonances. Its advantages and drawbacks with respect to SIMS will be especially outlined. Due to these unique characteristics IBA has a long history of application, in combination with other characterisation methods, to a number of problems encountered in materials science, solid state and surface physics, solid state electrochemistry, thin film deposition or growth studies, trace and contamination determinations, etc. Representative applications will be presented that could not be obtained without IBA

  19. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  20. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 3. Microstructural and optical properties of transparent conductive ZnO : Al : Mo films deposited by template-assisted sol–gel method. H-Y He J-F Huang Z He J Lu Q Shen. Volume 37 Issue 3 May 2014 pp 519-525 ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effect of height to diameter ( h / d ) ratio on the deformation behaviour of Fe–Al 2 O 3 metal matrix nanocomposites. PALLAV GUPTA DEVENDRA KUMAR A K JHA OM PARKASH. Volume 39 Issue 5 September 2016 pp 1245-1258 ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    University of Mohammed V, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.O. Box 1014, Rabat–Agdal 10106, Morocco; Departamento de Ingeniería Química Industrial y del Medio Ambiente, E.T.S.I. Industriales, Universidad Politécnica ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of rolling deformation and solution treatment on ... By the solution treatment, the elongated and broken crystalline grains recrystallize which leads to the formation of finer grains (<10 m) of austenite. X-ray diffraction analysis has corroborated well with ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Magnetic resonance in superparamagnetic zinc ferrite. Jitendra Pal Singh Gagan Dixit R C Srivastava Hemant Kumar H M Agrawal Prem Chand. Volume 36 Issue 4 August 2013 pp 751-754 ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 5. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques. Nishat Arshi Junqing Lu Chan Gyu Lee Jae Hong Yoon Bon Heun Koo Faheem Ahmed. Volume 36 Issue 5 October 2013 pp ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 5. Influence of additives on electrodeposition of bright Zn–Ni alloy on mild steel from acid sulphate bath. S Shivakumara U Manohar Y Arthoba Naik T V Venkatesha. Alloys and Steels Volume 30 Issue 5 October 2007 pp 455-462 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5 .... Influence of different heat treatment programs on properties of sol–gel ... The strong preferred c-axis orientation is lost due to cadmium doping and degree ... Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Theoretical study of built-in-polarization effect on relaxation time and mean free path of phonons in Al x Ga 1 − x N alloy. B K SAHOO A PANSARI. Volume 39 Issue 7 December 2016 pp 1835-1841 ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The light-induced excited spin state trapping (LIESST) is a well known phenomenon in an iron(II) spin-crossover (SCO) material which offers some interesting prospects in data storage. In this work, we present a typical investigation of the photomagnetic properties of a SCO material. At the surface of the sample, the ...

  11. 8th International Summer Institute in Surface Science

    CERN Document Server

    Howe, Russell

    1988-01-01

    This volume contains review articles written by the invited speakers at the eighth International Summer Institute in Surface Science (ISISS 1987), held at the University of Wisconsin-Milwaukee in August of 1987. During the course of ISISS, invited speakers, all internationally recognized experts in the various fields of surface science, present tutorial review lectures. In addition, these experts are asked to write review articles on their lecture topic. Former ISISS speakers serve as advisors concerning the selection of speakers and lecture topics. Em­ phasis is given to those areas which have not been covered in depth by recent Summer Institutes, as well as to areas which have recently gained in significance and in which important progress has been made. Because of space limitations, no individual volume of Chemistry and Physics of Solid Surfaces can possibly cover the whole area of modem surface science, or even give a complete survey of recent pro­ gress in the field. However, an attempt is made to pres...

  12. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  13. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  14. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The stainless steels, in general, are considered to be difficult-to-machine materials. In order to machine these materials the surface of the tool is generally coated with physical vapour deposition (PVD) hard coatings such as titanium nitride (TiN), titanium aluminum nitride (TiAlN), etc. The adhesion is of vital importance for ...

  16. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe 12 − 2 x O 19 nanoparticles synthesized by sol–gel auto-combustion method. S ALAMOLHODA S M MIRKAZEMI Z GHIAMI M NIYAIFAR. Volume 39 Issue 5 ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    K Ramachandran. Articles written in Bulletin of Materials Science. Volume 25 Issue 4 August 2002 pp ... Volume 27 Issue 5 October 2004 pp 403-407 Phase Transitions. Phase transition in L-alaninium oxalate by ... Thermal and structural properties of spray pyrolysed CdS thin film · P Raji C Sanjeeviraja K Ramachandran.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Thermoluminescence dosimetry of rare earth doped calcium aluminate phosphors. K Madhukumar K Rajendra Babu K C Ajith Prasad J James T S Elias V Padmanabhan C M K Nair. Ceramics and Glasses Volume 29 Issue 2 April 2006 pp 119-122 ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... of the nanoporous titania films attached with and without photosensitizer TCPP .... The positive values of free energy indicate the non-spontaneity of the sorption of HNTs ..... Effect of RF power and gas flow ratio on the growth and morphology of the PECVD ...

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. V V Deshpande1 M M Patil1 S C Navale2 V Ravi1. Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by a citric acid assisted ... was investigated by the galvanostatic intermittent titration technique (GITT) ... The State Key Laboratory Base of Novel Functional Materials and Preparation Science; ...

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 .... (EDX) and UV–vis spectroscopy were used to study the chemical composition and optical .... Enhanced microactuation with magnetic field curing of magnetorheological ... Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings.

  5. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2009-09-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  6. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2007-12-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  7. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2008-12-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  8. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  9. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  10. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  11. Materials and surface engineering in tribology

    CERN Document Server

    Takadoum, Jamal

    2010-01-01

    This title is designed to provide a clear and comprehensive overview of tribology. The book introduces the notion of a surface in tribology where a solid surface is described from topographical, structural, mechanical, and energetic perspectives. It also describes the principal techniques used to characterize and analyze surfaces. The title then discusses what may be called the fundamentals of tribology by introducing and describing the concepts of adhesion, friction, wear, and lubrication. The book focuses on the materials used in tribology, introducing the major classes of materials used, ei

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Liu Jinlian Wu Xianming Chen Shang Liu Jianben He Zeqiang. Volume 36 Issue 4 August 2013 pp 687-691 ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Structural investigation of V 2 O 5 –P 2 O 5 –K 2 O glass system with antibacterial potential. N S VEDEANU I B COZAR R STANESCU R STEFAN D VODNAR O COZAR. Volume 39 Issue 3 June 2016 pp 697-702 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. Effect of oxygen vacancies on Li-storage of anatase TiO 2 (001) facets: a first principles study. H CHEN Y H DING X Q TANG W ZHANG J R YIN P ZHANG Y JIANG. Volume 41 Issue 2 April 2018 Article ID 51 ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Acoustic study of nano-crystal embedded PbO–P2O5 glass. Sudip K Batabyal A Paul P Roychoudhury C Basu. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 357-363 ...

  16. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 2. Issue front cover thumbnail. Volume 32, Issue 2. April 2009, pages 117-214. pp 117-123 Thin Films and Nanomatter. Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate.

  18. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  19. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  20. Materials science issues of plasma source ion implantation

    International Nuclear Information System (INIS)

    Nastasi, M.; Faehl, R.J.; Elmoursi, A.A.

    1996-01-01

    Ion beam processing, including ion implantation and ion beam assisted deposition (IBAD), are established surface modification techniques which have been used successfully to synthesize materials for a wide variety of tribological applications. In spite of the flexibility and promise of the technique, ion beam processing has been considered too expensive for mass production applications. However, an emerging technology, Plasma Source Ion Implantation (PSII), has the potential of overcoming these limitations to become an economically viable tool for mass industrial applications. In PSII, targets are placed directly in a plasma and then pulsed-biased to produce a non-line-of-sight process for intricate target geometries without complicated fixturing. If the bias is a relatively high negative potential (20--100 kV) ion implantation will result. At lower voltages (50--1,200 V), deposition occurs. Potential applications for PSII are in low-value-added products such as tools used in manufacturing, orthopedic devices, and the production of wear coatings for hard disk media. This paper will focus on the technology and materials science associated with PSII

  1. Numerical simulation in material science: principles and applications

    International Nuclear Information System (INIS)

    Ruste, Jacky

    2006-06-01

    The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)

  2. Soleil a new powerful tool for materials science

    International Nuclear Information System (INIS)

    Baudelet, F.; Belkhou, R.; Briois, V.; Coati, A.; Dumas, P.; Flank, A.M.; Fontaine, P.; Garreau, Y.; Lyon, O.; Quinkal, I.; Roy, P.; Sauvage, M.; Sirotti, F.; Somogyi, A.; Thiaudiere, D.; Coati, A.; Flank, A.M.; Fontaine, P.; Garreau, Y; Etgens, V.H.; Rochet, F.

    2005-01-01

    The first photons delivered by the third generation synchrotron source SOLEIL will be soon available for the scientific community. In this context, this paper presents an overview of the potentialities offered by this new machine for the study of materials. The outstanding brilliance of the SOLEIL source will enable to reduce by several orders of magnitude the data collection time for most of the synchrotron techniques (X-ray absorption spectroscopy - EXAFS, wide and small angle X-ray scattering - WAXS and SAXS, X-ray diffraction -XRD, photoelectron spectroscopy and microscopy-XPS and PEEM, etc.) thus allowing an operando approach of catalysis processes. The spatial resolution, from a few micrometers to sub micrometer scale, accessible by micro-diffraction and micro-spectroscopy in the wavelength range from the far IR to the hard X-rays, will provide spatial distributions of different elements (atomic and chemical state selectivity) in a material, from the working heterogeneous catalyst to the reservoir rocks. The reactivity of surfaces and nano-particles exposed to controlled gas fluxes will be studied by several in situ techniques. Finally the combination of different synchrotron techniques (diffraction, absorption and fluorescence X) and the access to complementary information obtained through the simultaneous combination of these techniques with those routinely applied in Materials Science, such as UV-Vis or Raman spectroscopy, will offer enlarged capabilities for the operando characterization of materials. (authors)

  3. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 3. Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses. S P Singh Aman Anal Tarafder. Glasses Volume 27 Issue 3 June 2004 pp 281-287 ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    V Renteria. Articles written in Bulletin of Materials Science. Volume 38 Issue 1 February 2015 pp 29-40. Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes · M L Ojeda C Velasquez V Renteria A Campero M A García-Sánchez F Rojas · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 4. Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries. A Venkateswara Rao V Veeraiah A V Prasada Rao B Kishore Babu B Swarna Latha K Rama Rao. Volume 37 Issue 4 June 2014 pp ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 301-308 Biomaterials. Adhesive B-doped DLC films on ... Volume 30 Issue 4 August 2007 pp 407-413 Alloys and Steels. Structural phase transitions and piezoelectric anomalies in ordered Sc0.5Ga0.5N alloys · A M Alsaad A A Ahmad.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Impedance and a.c. conductivity studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route. Syed Mahboob G Prasad G S Kumar. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 347-355 ...

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 4. Issue front cover thumbnail. Volume 27, Issue 4. August 2004, pages 323-394. pp 323-325 Crystal Growth. Growth features of ammonium hydrogen -tartrate single crystals · G Sajeevkumar R Raveendran B S Remadevi Alexander Varghese Vaidyan.

  10. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    Science.gov (United States)

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  11. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    Ondracek, G.; Hofmann, P.

    1983-04-01

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE) [de

  12. Active Surfaces and Interfaces of Soft Materials

    Science.gov (United States)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 4 ... were synthesized by self-propagating high temperature synthesis (SHS) method. ... Structure determination at room temperature and phase transition studies above T c in .... Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn Heusler alloys.

  14. Switchable and responsive surfaces and materials for biomedical applications

    CERN Document Server

    Zhang, Johnathan

    2015-01-01

    Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material ""smart"" and ""intelligent"". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering,  drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of swit

  15. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis and luminescence properties of Tb 3 + − d o p e d L i M g P O _4$ phosphor. C B PALAN N S BAJAJ A SONI S K OMANWAR. Volume 39 Issue 5 September ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Investigation of localization effect in GaN-rich InGaN alloys and modified band-tail model. Chuan-Zhen Zhao Bin Liu De-Yi Fu Hui Chen Ming Li Xiang-Qian Xiu Zi-Li Xie Shu-Lin Gu You-Dou Zheng. Volume 36 Issue 4 August 2013 pp 619-622 ...

  18. Materials and Chemical Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program

  19. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  20. Nature of science in instruction materials of science through the model of educational reconstruction

    Science.gov (United States)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Structural, microstructural and optical properties of Cu 2 ZnSnS 4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing. U CHALAPATHI S UTHANNA V SUNDARA RAJA. Volume 40 Issue 5 September 2017 pp 887-895 ...

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. BOTAN JAWDAT ABDULLAH QING JIANG MUSTAFA SAEED OMAR. Volume 39 Issue 5 September 2016 pp 1295-1302 ...

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Issue front cover thumbnail. Volume 25, Issue 6. November 2002, pages 449-582. pp 449- .... Bi-layer functionally gradient thick film semiconducting methane sensors .... Thermal sensor properties of PANI(EB)–CSA ( = 0.4 ± 0.1 mol) polymer thin films.

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Issue front cover thumbnail. Volume 29, Issue 1. February 2006, pages 1-99. pp 1-5 Nanomaterials. A simple synthesis and characterization of CuS nanocrystals · Ujjal K Gautam Bratindranath Mukherjee · More Details Abstract Fulltext PDF. Water-soluble ...

  6. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    Science.gov (United States)

    2017-01-01

    SEMMAT: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING WRIGHT STATE UNIVERSITY JANUARY 2017 FINAL TECHNICAL...COVERED (From - To) JUL 2013 – JUN 2016 4. TITLE AND SUBTITLE SemMat: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING...models to represent materials data. This provides a data exchange scheme for materials science , which also includes provenance information to promote

  7. Quantifying object and material surface areas in residences

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented for measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.

  8. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    Anderko, K.; Kummerer, K.R.; Ondracek, G.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE) [de

  9. Surface characterization of ceramic materials

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Salmeron, M.

    1976-01-01

    In recent years several techniques have become available to characterize the structure and chemical composition of surfaces of ceramic materials. These techniques utilize electron scattering and scattering of ions from surfaces. Low-energy electron diffraction is used to determine the surface structure, Auger electron spectroscopy and other techniques of electron spectroscopy (ultraviolet and photoelectron spectroscopies) are employed to determine the composition of the surface. In addition the oxidation state of surface atoms may be determined using these techniques. Ion scattering mass spectrometry and secondary ion mass spectrometry are also useful in characterizing surfaces and their reactions. These techniques, their applications and the results of recent studies are discussed. 12 figures, 52 references, 2 tables

  10. Special issue on "Frontiers in Materials Science: Condensed matters"

    Science.gov (United States)

    Hoang, Nam-Nhat; Yamamoto, Tomoyuki; Pham, Duc-Thang

    2018-03-01

    This special issue includes the editor-invited and selected papers from 3rd International Symposium on Frontiers in Materials Science (FMS2016), held in Hanoi, Vietnam, from the 28th to 30th of September 2016, which coincided with the 65th anniversary of the Faculty of Physics, Hanoi University of Education. The FMS2016 is a continuation of a series of meetings starting from 2010. A first event was a bilateral Vietnamese-German meeting in Hanoi, Vietnam, in 2010, and the second one was held in Frankfurt, Germany, in 2011. The idea at that time was to initiate interactions between scientists from both countries and to further develop the field of materials science in Southeast Asia. After these successful bilateral meetings, a next step was taken by advancing the format of the symposium into an international event. In 2013, the 1st International Symposium on Frontiers in Materials Science (FMS2013) was successfully organized in Hanoi, which followed 2nd symposium, FMS2015, in Tokyo, in 2015. The FMS2016 continues this idea of providing an international forum for physicists, material scientists and chemists for discussing their latest results and the recent developments in the important field of materials science.

  11. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  12. Materials and surface aspects in the development of SRF Niobium cavities

    CERN Document Server

    Antoine, C

    2012-01-01

    Foreword from author; When I joined the CEA Saclay SRF group in 1989, my initial background was physical chemistry and surface science, which I completed later on with solid state physics and metallurgy. Most accelerator physicists at that time had training in RF, plasma physics, nuclear or particle physics. We were very few with a background in material science. Working with people with a different background than yours reveals to be both challenging and funny: you can impress them with things you consider basic while they simply do not believe you for other things you consider so well admitted that you do not even remember where it comes from. At the end it obliges you to reconsider your basics and re-question many results, which opens many new and sometimes unexpected paths. Like usual in science, answering one question rises many new ones, and trying to improve cavities performance led to fascinating physics problems. Exploring some of these problems often requires techniques and expertise that are far be...

  13. Materials Science Research Rack Onboard the International Space Station

    Science.gov (United States)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 4. Issue front cover thumbnail. Volume 32, Issue 4. August 2009, pages 369-463. pp 369-373 Thin Films. Mobility activation in thermally deposited CdSe thin films · Kangkan Sarmah Ranjan Sarma · More Details Abstract Fulltext PDF. Effect of illumination on ...

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 5. Issue front cover thumbnail. Volume 23, Issue 5. October 2000, pages 341-452. pp 341-344 Synthesis. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes · B Rajesh K Ravindranathan Thampi J -M Bonard B Viswanathan · More Details ...

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 1. Issue front cover thumbnail. Volume 30, Issue 1. February 2007, pages 1-71. pp 1-3 Single Crystals. Thermoluminescence characteristics of Sm doped NaYF4 crystals · M V Ramana Reddy Ch Gopal Reddy K Narasimha Reddy · More Details Abstract ...

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 1. Issue front cover thumbnail. Volume 24, Issue 1. February 2001, pages 1-94. pp 1-21 Review---Phase Transitions. Kinetics of pressure induced structural phase transitions—A review · N V Chandra Shekar K Govinda Rajan · More Details Abstract Fulltext ...

  18. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Issue front cover thumbnail. Volume 23, Issue 3. June 2000, pages 159-238. pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  19. Novel surface coating strategies for better battery materials

    CSIR Research Space (South Africa)

    Wen, L

    2018-03-01

    Full Text Available . Surface-coated cathodes have been demonstrated to be effective in blocking these surface processes and enhancing the electrochemical performance of the materials. For example, the electron-insulating but ion-conducting lithium carbonate (Li2CO3) has been... noticed that most LIB electrode materials have very poor electrical conductivity (e.g. lithium iron phosphate and lithium titanate are almost insulators).22,23 In this regard, surface coating of the electrode active materials with a conductive layer...

  20. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Impedance spectroscopy studies on (Na0.5Bi0.5)0.94Ba0.06TiO3 + 0.3 wt% Sm2O3 + 0.25 wt% LiF lead-free piezoelectric ceramics. N Zidi A Chaouchi S D'Astorg M Rguiti C Courtois. Volume 38 Issue 3 June 2015 pp 731-737 ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In addition, 0.25Ca0.8Sr0.2 TiO3–0.75Li0.5Nd0.5TiO3 + 4.0 wt% LiF ceramics sintered at 1350°C for 4 h exhibited good microwave dielectric properties of r ... College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China; Department of Information Engineering, Guilin ...

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3. Issue front cover thumbnail. Volume 32, Issue 3. June 2009, pages 215-367. pp 215-215. Foreword · S B Krupanidhi H L Bhat · More Details Fulltext PDF. pp 217-225. Molecule-based magnets · J V Yakhmi · More Details Abstract Fulltext PDF.

  4. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  5. Molecular forensic science of nuclear materials

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  6. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  7. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  9. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  10. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  11. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    Science.gov (United States)

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  12. Materials science, nature and position of the subject

    Energy Technology Data Exchange (ETDEWEB)

    Jongenburger, P.

    1984-01-01

    Materials science origin, history, future developments, and its present significance in particular with regard to energy and environment are discussed. By means of the examples of cadmium and tungsten, attention is paid to exhaustion and recovery of materials.

  13. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  14. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  15. The Materials Science and its impact in the Archaeology. Volume 3

    International Nuclear Information System (INIS)

    Mendoza A, D.; Arenas A, J.A.; Ruvalcaba S, J.L.; Rodriguez L, V.

    2006-01-01

    From the half-filled nineties the 'Archaeological and Art issues in Materials Science' symposium has come carrying out inside the International Congress of Materials Science that annually organizes the Mexican Academy of Materials Science. In this symposium, investigators of different nationalities, including Mexico, they have participated exposing their results in the study, consolidation and conservation of materials of archaeological origin and of works of art. By this way, the symposium has been promoted the exchange of experiences among the scientists, fomenting the collaboration among these. Due to the quality of the presented works and as an effort of the participants of disclosing their studies, the symposium organizing committee decided to capture in this third book series, the works presented in 2005, in such a way that its can be consulted by colleagues, students and public in general and know the investigations that are carried out in the field of the materials science applied to the study of archaeological samples and of works of art. (Author)

  16. Radiation chemistry from basics to applications in material and life sciences

    International Nuclear Information System (INIS)

    Belloni, J.; Mostafavi, M.; Douki, Th.; Spotheim-Maurizot, M.

    2008-01-01

    This book gives a progress report on the many and original contributions of radiation chemistry to the fundamental knowledge of the vast domain of chemical reactions and its applications. Radiation chemistry techniques indeed make it possible to elucidate detailed physicochemical mechanisms in inorganic and organic chemistry (including in space) and in biochemistry. Moreover, this comprehension is applied in materials science to precisely control syntheses by radiation, such as radiopolymerization, radio-grafting, specific treatment of surfaces (textiles, paintings, inks,..), synthesis of complex nano-materials, degradation of environmental pollutants and radioresistance of materials for nuclear reactors. In life sciences, the study of the effects of radiation on bio-macromolecules (DNA, proteins, lipids) not only permits the comprehension of normal or pathological biological mechanisms, but also the improvement of our health. In particular, many advances in cancer radiotherapy, in the radioprotection of nuclear workers and the general population, as well as in the treatment of diseases and the radiosterilization of drugs, could be obtained thanks to this research. Abundantly illustrated and written in English by top international specialists who have taken care to render the subjects accessible, this work will greatly interest those curious about a scientific field that is new to them and students attracted by the original and multidisciplinary aspects of the field. At a time when radiation chemistry research is experiencing spectacular development in numerous countries, this book will attract newcomers to the field. (authors)

  17. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Ancient Indian copper; material characterization; electrochemical behaviour; rust analysis; corrosion rate. Abstract. A chalcolithic (2350–1800 BC) copper chisel from Balathal has been characterized by X-ray diffraction, microstructural and electrochemical methods. The surface patina was composed of sulfates ...

  19. The material co-construction of hard science fiction and physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  20. Application of surface science to the study of the corrosion of PWR primary circuit materials

    International Nuclear Information System (INIS)

    Harris, S.J.

    1989-04-01

    This thesis describes a study of the corrosion and oxidation of PWR primary circuit materials using surface sensitive spectroscopic techniques. An X-ray photoemission spectroscopy (XPS) study of a number of mixed oxides of known composition is described and the information obtained is related to XPS measurements made on the surface of iron and nickel based alloys oxidised under controlled conditions. A secondary ion mass spectroscopy (SIMA) study on these mixed transition metal oxides is also described. The gaseous oxidation of stainless steel 3041 and Inconel-690 is examined. Both alloys were oxidised at 600K in air with the composition of the oxide films formed studied by a range of surface spectroscopic methods. Further experimental work was performed on Inconel-690 to examine the effects of surface pretreatment and the effects of low oxygen partial pressures on the formation of oxide films at 600 K. The incorporation of the radionuclide, cobalt-60, into the oxide films formed on structural components of a PWR, result in the build up of radiation fields. A method of pretreating the surface of the alloy stainless steel 3041, in order to reduce the level of cobalt adsorbed into the oxide film formed under simulated primary coolant conditions is examined and contrasts with treatments which have been developed to release cobalt adsorbed in existing oxide layers under reactor conditions are discussed. (author)

  1. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  3. Removal of PCB from indoor air and surface materials by introduction of additional sorbing materials

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Lyng, Nadja; Kolarik, Barbara

    2017-01-01

    Alleviation of indoor PCB contamination is extremely expensive because PCB from old primary sources has redistributed to most other surfaces over time. This study investigates the introduction of new removable sorbing materials as a method instantly lowering the concentration of PCB in indoor air...... and slowly decontaminating old surface materials. In three bedrooms of a contaminated apartment respectively new painted gypsum boards, sheets of flexible polyurethane foam and activated carbon fabric were introduced. The PCB concentrations in room air were monitored before the intervention and several times...... during the following 10 months. The PCB concentrations in the old surface materials as well as the new materials were also measured. An immediate reduction of PCB concentration in indoor air, a gradual increase of PCB in new material and as well a gradual reduction in old surface materials were...

  4. How old is surface science?

    International Nuclear Information System (INIS)

    Paparazzo, E.

    2004-01-01

    Philosophical and literary testimonies from the Classical World (5th century B.C. to 3rd century A.D.) involving solid surfaces are reviewed. Plato thought the surface to be a real entity, whereas Aristotle considered it to possess an unqualified existence, i.e. not to be a substance, but just an accidental entity. The Old Stoics asserted that surfaces do not possess any physical existence, although the Stoic philosopher Posidonius--apparently the only exception in his school--held them to exist both in thought and reality. While both the Atomists and the Epicureans were very little interested in them, the Sceptic philosopher Sextus Empiricus considered surfaces to be the limits of a body, although he maintained that both the view that they are corporeal or the view that they are incorporeal present unsurmountable difficulties. Among Roman authors, the testimony from Pliny the Elder is mostly concerned with metallic surfaces, chemical change occurring there, and surface treatments used in antiquity. Besides the philosophical motivations, the implications of the testimonies are discussed in the light of surface science. The purely geometrical surface of Plato is found to compare favorably to single-crystal surface, Posidonius' 'corporeal' surface is best likened to an air-oxidized, or otherwise ambient-modified surface, and ancient accounts on mixture are compared to XPS results obtained in adhesion studies of enameled steels. I argue that the long-standing dominance of Aristotle's view from antiquity onwards may have had a part in delaying theoretical speculation into solid surfaces

  5. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  6. Chemistry and Materials Science Directorate 2005 Annual Report

    International Nuclear Information System (INIS)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-01-01

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  7. Chemistry and Materials Science Directorate 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  8. The science of superconductivity and new materials

    International Nuclear Information System (INIS)

    Nakajima, S.

    1989-01-01

    The authors have set as the objective of this symposium the full-scale evaluation of the present state of research and development in the theoretical fields of superconductivity and new materials; two fields which the entire world's attention is focused and which a great number of researchers are presently putting in their maximum efforts. Their symposium consists of two workshops respectively dealing with superconductivity and new materials. It is needless to say that physical science and material development move forward hand in hand. And they see a recent tendency worldwide that inventions and discoveries in both science and technology are touted fashionably as news topics. The search for new materials that have high critical temperature for use in the field of developing superconductivity has become the focus of social attention around the world. Yet they must not forget that the true important lies in the fundamental study of the mechanism of superconductivity and of its applications. The quantum leap of the Industrial Revolution in England brought forth increased productivity through the development of new technology and locomotive power, eventually leading to the establishment of a new production system, and subsequently, an industrial society in which we live now

  9. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Optical materials; crystal growth; platform technique; X-ray diffraction; surface analysis; frequency doubling. ... However, its practical applications are limited by the insufficient reproducibility of the mentioned propertiescaused by the strong influence of the growth conditions, and, in particular, pH of the solution from which α ...

  11. Tribologically modified surfaces on elastomeric materials

    NARCIS (Netherlands)

    Rodriguez, N.V.; Masen, Marc Arthur; Schipper, Dirk J.

    2013-01-01

    As the result of tribological loading, the properties of the surface of elastomeric materials will alter. This effect has been observed using SEM and EDS analysis of the tread of a used car tyre, where differences in structure between the substrate and the area near the surface were found. To study

  12. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    Energy Technology Data Exchange (ETDEWEB)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a

  13. Materials Science and X-ray Techniques

    International Nuclear Information System (INIS)

    Brock, J.; Sutton, M.

    2008-01-01

    Many novel synchrotron-based X-ray techniques directly address the core questions of modern materials science but are not yet at the stage of being easy to use because of the lack of dedicated beamlines optimized for specific measurements. In this article, we highlight a few of these X-ray techniques and discuss why, with ongoing upgrades of existing synchrotrons and with new linear-accelerator-based sources under development, now is the time to ensure that these techniques are readily available to the larger materials research community.

  14. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    Science.gov (United States)

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  15. U.S. Materials Science on the International Space Station: Status and Plans

    Science.gov (United States)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  16. Planetary Science Educational Materials for Out-of-School Time Educators

    Science.gov (United States)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  17. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  18. Comparison of glass surfaces as a countertop material to existing surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  19. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  20. r ben hassine - Bulletin of Materials Science | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R BEN HASSINE. Articles written in Bulletin of Materials Science. Volume 40 Issue 1 February 2017 pp 79-85. Effect of Co substitution on the physicochemical properties of La 0.67 Sr 0.22 Ba 0.11 Mn 1 − x Co x O 3 compounds ( 0 ≤ x ≤ 0.3 ) · W CHERIF R BEN HASSINE J A ...

  1. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  2. Annual review of materials science. Volume 7

    International Nuclear Information System (INIS)

    Huggins, R.A.; Bube, R.H.; Roberts, R.W.

    1977-01-01

    A review is presented of recent materials science research. Topics covered include: point defects and their interaction; defect chemistry in crystalline solids; deep level impurities in semiconductors; structural aspects of one-dimensional conductors; structural transformations during aging of metal alloys; high rate thick film growth; metal forming, the application of limit analysis; kinetics and mechanisms of gas-metal interactions; erosion; reversible temper embrittlement; acoustic emission in brittle materials; capacitance transient spectroscopy; hot corrosion of high-temperature alloys; fundamental optical phenomena in infrared window materials; dental amalgam; and transparent conducting coatings

  3. Impact of indoor surface material on perceived air quality.

    Science.gov (United States)

    Senitkova, I

    2014-03-01

    The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  5. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  6. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Precursor sol for sol–gel silica layer was prepared from the starting material, tetraethylorthosilicate (TEOS). The sol was deposited onto borosilicate ... The physical thicknessand the refractive index of the layer were measured ellipsometrically (Rudolph Auto EL II) at 632.8 nm. About 10 × 10 mm surface area of the silica ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  10. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  11. EV M-experiment in radiation material science

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kislitsin, S.B.; Pyatiletov, Yu.S.; Turkebaev, T.Eh.; Tyupkina, O.G.

    1999-01-01

    To simulate rapid processes in materials, rearrangement at the atomic level, or processes in which the access to the materials is limited or considered to be hazardous, the EV M-experiment is going to be applied more often in the atomic material science (calculating experiment, computer-aided simulation). This paper presents the most important outcomes obtained from the calculating experiment carried out by scientists of the Institute of Nuclear Physics of NNC RK, who are considered to be followers of the scientific school named after Kirsanov V.V. The review consists of the following sections: 1. Simulation of dynamic processes of radiation damage of materials. 2. Simulation of radiation defects in materials. 3. Simulation of radiation defects migration processes in crystals. 4. Simulation of irradiated materials failure and deformation processes

  12. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  13. Knowledge and Technology Transfer in Materials Science and Engineering in Europe

    OpenAIRE

    Bressler, Patrick; Dürig, Urs; González-Elipe, Agustin; Quandt, Eckhard; Ritschkoff, Anne-Christine; Vahlas, Constantin

    2015-01-01

    Advanced Materials is one of the Key Enabling 3 Technologies identified by the European Commission1. Together with Advanced Manufacturing it underpins almost all other Key Enabling and Industrial Technologies. The basic science and engineering research that results in the development of Advanced Materials lies within the field of Materials Science and Engineering (MSE). The transfer of knowledge from basic research into final products and applications in the field of MSE involves certain MSE-...

  14. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    Science.gov (United States)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  15. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  16. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  17. Material Science in Cervical Total Disc Replacement

    Science.gov (United States)

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  18. Material Science in Cervical Total Disc Replacement.

    Science.gov (United States)

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  19. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. I Hubert Joe. Articles written in Journal of Chemical Sciences. Volume 120 Issue 4 July 2008 pp 405-410. Surface enhanced Raman spectra of the organic nonlinear optic material: Methyl 3-(4-methoxy phenyl)prop-2-enoate · D Sajan I Hubert Joe V S Jayakumar Jacek Zaleski.