WorldWideScience

Sample records for materials stiffness determination

  1. Properties and determination of the interface stiffness

    International Nuclear Information System (INIS)

    Du Danxu; Zhang Hao; Srolovitz, David J.

    2007-01-01

    The chemical potential of a curved interface contains a term that is proportional to the product of the interface curvature and the interface stiffness. In crystalline materials, the interface stiffness is a tensor. This paper examines several basic issues related to the properties of the interface stiffness, especially the determination of the interface stiffness in particular directions (i.e. the commonly used scalar form of the interface stiffness). Of the five parameters that describe an arbitrary grain boundary, only those describing the inclination are crucial for the scalar stiffness. We also examine the influence of crystal symmetry on the stiffness tensor for both free surfaces and grain boundaries. This results in substantial simplifications for cases in which interfaces possess mirror or rotational symmetries. An efficient method for determining the interface stiffness tensor using atomistic simulations is proposed

  2. Determination of Dispersion Curves for Composite Materials with the Use of Stiffness Matrix Method

    Directory of Open Access Journals (Sweden)

    Barski Marek

    2017-06-01

    Full Text Available Elastic waves used in Structural Health Monitoring systems have strongly dispersive character. Therefore it is necessary to determine the appropriate dispersion curves in order to proper interpretation of a received dynamic response of an analyzed structure. The shape of dispersion curves as well as number of wave modes depends on mechanical properties of layers and frequency of an excited signal. In the current work, the relatively new approach is utilized, namely stiffness matrix method. In contrast to transfer matrix method or global matrix method, this algorithm is considered as numerically unconditionally stable and as effective as transfer matrix approach. However, it will be demonstrated that in the case of hybrid composites, where mechanical properties of particular layers differ significantly, obtaining results could be difficult. The theoretical relationships are presented for the composite plate of arbitrary stacking sequence and arbitrary direction of elastic waves propagation. As a numerical example, the dispersion curves are estimated for the lamina, which is made of carbon fibers and epoxy resin. It is assumed that elastic waves travel in the parallel, perpendicular and arbitrary direction to the fibers in lamina. Next, the dispersion curves are determined for the following laminate [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°] and hybrid [Al, 90°, 0°, 90°, 0°, 90°, 0°], where Al is the aluminum alloy PA38 and the rest of layers are made of carbon fibers and epoxy resin.

  3. Nanocharacterization of the negative stiffness of ferroelectric materials

    Czech Academy of Sciences Publication Activity Database

    Skandani, A.A.; Čtvrtlík, Radim; Al-Haik, M.

    2014-01-01

    Roč. 105, č. 8 (2014), "082906-1"-"082906-5" ISSN 0003-6951 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : ferroelectric materials * negative stiffness * thermomechanical environments Subject RIV: JJ - Other Materials Impact factor: 3.302, year: 2014

  4. Determination of 6 stiffnesses for a press

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras

    2000-01-01

    The industry is increasingly demanding for better tolerances at cold forged products caused by the tough competition at the market. Near net-shape or net-shape production save resources for machining and reduce therefore also the material costs. During the forming process, the reaction forces from...

  5. Determination of rolling resistance coefficient based on normal tyre stiffness

    Science.gov (United States)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  6. Determining the optimum topology of composites by the flexural stiffness criterion

    Directory of Open Access Journals (Sweden)

    Vasile MOGA

    2012-06-01

    Full Text Available An important stage in designing of pieces made of composite materials consists of establishing the composite topology in such a way that it has certain properties needed in exploitation. The paper presents the mathematical apparatus and the calculation programme for establishing the optimum thickness of the composite groups so that it should have certain imposed (given flexural stiffness. The method is applicable to all types of laminate composites, no matter of the cladding or matrix nature. The direct problem consists in determining the thickness of the groups and composite, minimising the bar mass, for an imposed (given flexural stiffness, knowing the densities and elasticity modules of the groups. The indirect problem consists in determining the maximum stiffness, the thickness of the groups and composite for a given (imposed mass, knowing the densities and elasticity modules of the groups. The presented programmes offer to the producer of this kind of materials the possibility to quickly establish the optimum topology.

  7. Disorder-induced stiffness degradation of highly disordered porous materials

    Science.gov (United States)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  8. General procedure for the determination of foundation stiffness

    International Nuclear Information System (INIS)

    Halbritter, A.L.; Prates, C.L.M.

    1984-01-01

    A general procedure for the determination of the spring constants and damping coeficientes which represent the foundation-structure interaction is presented. According to this procedure it is possible to determine the variation of the stiffness and damping with the frequency for flexible foundation slabs by employing the equivalent rigid slab concept. It is also possible to determine the distribution of the springs along the foundation. The results obtained for the reactor building of a NPP of 1300 MW PWR of KWU type taking into account the flexibility of the foundation slab is presented as an application example of this procedure. (Author) [pt

  9. Meal ingestion markedly increases liver stiffness suggesting the need for liver stiffness determination in fasting conditions.

    Science.gov (United States)

    Alvarez, Daniel; Orozco, Federico; Mella, José María; Anders, Maria; Antinucci, Florencia; Mastai, Ricardo

    2015-01-01

    The introduction of noninvasive liver stiffness (LS) determination has heralded a new stage in the diagnosis and treatment of liver fibrosis. We evaluated the effect of food intake on LS in patients with different degrees of liver disease. We evaluated 24 patients (F≤1, n=11 and F> 1, n=13). LS (Fibroscan®) and portal blood flow (PBF) (Doppler ultrasound) were studied before and 30min after ingestion of a standard liquid meal. Food intake increased PBF (51±10%, p1). Hemodynamic and LS values returned to baseline pre-meal levels within 2hours. LS increases markedly after ingestion of a standard meal, irrespective of the degree of fibrosis. Our results strongly suggest that LS should be measured in fasting conditions. Copyright © 2015 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  10. Experimental Investigation of Stiffness Characteristics and Damping Properties of a Metallic Rubber Material

    Science.gov (United States)

    Lu, Ch. Zh.; Li, Jingyuan; Zhou, Bangyang; Li, Shuang

    2017-09-01

    The static stiffness and dynamic damping properties of a metallic rubber material (MR) were investigated, which exhibited a nonlinear deformation behavior. Its static stiffness is analyzed and discussed. The effects of structural parameters of MR and experimental conditions on its shock absorption capacity were examined by dynamic tests. Results revealed excellent elastic and damping properties of the material. Its stiffness increased with density, but decreased with thickness. The damping property of MR varied with its density, thickness, loading frequency, and amplitude.

  11. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    Science.gov (United States)

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  12. Fitness as a determinant of arterial stiffness in healthy adult men: a cross-sectional study.

    Science.gov (United States)

    Chung, Jinwook; Kim, Milyang; Jin, Youngsoo; Kim, Yonghwan; Hong, Jeeyoung

    2018-01-01

    Fitness is known to influence arterial stiffness. This study aimed to assess differences in cardiorespiratory endurance, muscular strength, and flexibility according to arterial stiffness, based on sex and age. We enrolled 1590 healthy adults (men: 1242, women: 348) who were free of metabolic syndrome. We measured cardiorespiratory endurance in an exercise stress test on a treadmill, muscular strength by a grip test, and flexibility by upper body forward-bends from a standing position. The brachial-ankle pulse wave velocity test was performed to measure arterial stiffness before the fitness test. Cluster analysis was performed to divide the patients into groups with low (Cluster 1) and high (Cluster 2) arterial stiffness. According to the k-cluster analysis results, Cluster 1 included 624 men and 180 women, and Cluster 2 included 618 men and 168 women. Men in the middle-aged group with low arterial stiffness demonstrated higher cardiorespiratory endurance, muscular strength, and flexibility than those with high arterial stiffness. Similarly, among men in the old-aged group, the cardiorespiratory endurance and muscular strength, but not flexibility, differed significantly according to arterial stiffness. Women in both clusters showed similar cardiorespiratory endurance, muscular strength, and flexibility regardless of their arterial stiffness. Among healthy adults, arterial stiffness was inversely associated with fitness in men but not in women. Therefore, fitness seems to be a determinant for arterial stiffness in men. Additionally, regular exercise should be recommended for middle-aged men to prevent arterial stiffness.

  13. Comparative study on stiffness properties of WOODCAST and conventional casting materials.

    Science.gov (United States)

    Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika

    2013-08-01

    Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.

  14. Laboratory study to investigate the development of stiffness in stabilized materials

    CSIR Research Space (South Africa)

    Paige-Green, P

    2010-08-01

    Full Text Available The development of stiffness of stabilized materials with time is critical to the construction process, particularly in the case of recycling, where traffic is often required to return to the recycled road soon after construction. However, little...

  15. A METHOD OF DETERMINING THE COORDINATES OF THE STIFFNESS CENTER AND THE STIFFNESS PRINCIPAL AXIS OF THE VIBRATING SYSTEM WITH DAMPING

    OpenAIRE

    Dang Xuan Truong; Tran Duc Chinh

    2014-01-01

    The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle) of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.

  16. Water Bouncing Balls: how material stiffness affects water entry

    Science.gov (United States)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  17. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    Science.gov (United States)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  18. Effect of materials and manufacturing on the bending stiffness of vaulting poles

    Science.gov (United States)

    Davis, C. L.; Kukureka, S. N.

    2012-09-01

    The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP) composites. The lighter GFRP pole enabled the athletes to have a faster run-up, resulting in a greater take-off speed, giving them more kinetic energy to convert into potential energy and hence height. GFRP poles also have a much higher failure stress than bamboo, so the poles were engineered to bend under the load of the athlete, thereby storing elastic strain energy that can be released as the pole straightens, resulting in greater energy efficiency. The bending also allowed athletes to change their vaulting technique from a style that involved the body remaining almost upright during the vault to one where the athlete goes over the bar with their feet upwards. Modern vaulting poles can be made from GFRP and/or carbon fibre reinforced polymer (CFRP) composites. The addition of carbon fibres maintains the mechanical properties of the pole, but allows a reduction in the weight. The number and arrangement of the fibres determines the mechanical properties, in particular the bending stiffness. Vaulting poles are also designed for an individual athlete to take into account each athlete’s ability and physical characteristics. The poles are rated by ‘weight’ to allow athletes to select an appropriate pole for their ability. This paper will review the development of vaulting poles and the requirements to maximize performance. The properties (bending stiffness and pre-bend) and microstructure (fibre volume fraction and lay-up) of typical vaulting poles will be discussed. Originally published as Davis C L and Kukureka S N (2004) Effect of materials and manufacturing on the bending stiffness of vaulting poles The Engineering of

  19. A METHOD OF DETERMINING THE COORDINATES OF THE STIFFNESS CENTER AND THE STIFFNESS PRINCIPAL AXIS OF THE VIBRATING SYSTEM WITH DAMPING

    Directory of Open Access Journals (Sweden)

    Dang Xuan Truong

    2014-12-01

    Full Text Available The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.

  20. Stiffness Analysis of the Sarafix External Fixator based on Stainless Steel and Composite Material

    Directory of Open Access Journals (Sweden)

    Nedim Pervan

    2015-11-01

    Full Text Available This paper describes a structural analysis of the CAD model three versions fixators Sarafix which is to explore the possibility of introducing composite materials in the construction of the connecting rod fixators comparing values of displacement and stiffness at characteristic structure points. Namely, we have investigated the constructional performance of fixators Sarafix with a connecting rod formed from three different composite materials, the same matrix (epoxy resin with three different types of fibers (E glass, kevlar 49 and carbonM55J. The results of the structural analysis fixators Sarafix with a connecting rod made of composite materials are compared with the results of tubular connecting rod fixators made of stainless steel. After comparing the results, from the aspect of stiffness, we gave the final considerations about composite material which provides an adequate substitution for the existing material.

  1. Optimization strategies for discrete multi-material stiffness optimization

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier; Lund, Erik; Stolpe, Mathias

    2011-01-01

    Design of composite laminated lay-ups are formulated as discrete multi-material selection problems. The design problem can be modeled as a non-convex mixed-integer optimization problem. Such problems are in general only solvable to global optimality for small to moderate sized problems. To attack...... which numerically confirm the sought properties of the new scheme in terms of convergence to a discrete solution....

  2. Free material stiffness design of laminated composite structures using commercial finite element analysis codes

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    In this work optimum stiffness design of laminated composite structures is performed using the commercially available programs ANSYS and MATLAB. Within these programs a Free Material Optimization algorithm is implemented based on an optimality condition and a heuristic update scheme. The heuristic...... update scheme is needed because commercially available finite element analysis software is used. When using a commercial finite element analysis code it is not straight forward to implement a computationally efficient gradient based optimization algorithm. Examples considered in this work are a clamped......, where full access to the finite element analysis core is granted. This comparison displays the possibility of using commercially available programs for stiffness design of laminated composite structures....

  3. Interlocking-induced stiffness in stochastically microcracked materials beyond the transport percolation threshold

    Science.gov (United States)

    Picu, R. C.; Pal, A.; Lupulescu, M. V.

    2016-04-01

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.

  4. Activation time and material stiffness of sequential removable orthodontic appliances. Part 2: Dental improvements.

    Science.gov (United States)

    Clements, Karen Michelle; Bollen, Anne-Marie; Huang, Greg; King, Greg; Hujoel, Philippe; Ma, Tsun

    2003-11-01

    Fifty-one patients were enrolled in this study to explore the treatment effects of material stiffness and frequency of appliance change when using clear, sequential, removable appliances (aligners). Patients were stratified based on pretreatment peer assessment rating (PAR) scores and need for extractions. They were randomized into 4 treatment protocols: 1-week activation with soft material, 1-week activation with hard material, 2-week activation with soft material, and 2-week activation with hard material. Patients continued with their protocols until either the series of aligners was completed, or until it was determined that the aligner was not fitting well (study end point). Weighted PAR score and average incisor irregularity (AII) indexes were used to measure pretreatment and end-point study models, and average improvement was compared among the 4 groups. In addition to the evaluation of the 4 treatment groups, comparisons were made of the individual components of the PAR score to determine which occlusal components experienced the most correction with the aligners. The percentages and absolute extraction space closures were evaluated, and papillary bleeding scores before and during treatment were compared. Although no statistical difference was observed between the 4 treatment groups, a trend was noted with the 2-week frequency having a larger percentage of reduction in weighted PAR and AII scores, and greater extraction space closure. Anterior alignment was the most improved component, and buccal occlusion was the least improved. When analyzed by type of extraction, incisor extraction sites had a significantly greater percentage of closure than either maxillary or mandibular premolar extraction sites. A statistically significant decrease in mean average papillary bleeding score was found during treatment when compared with pretreatment scores, although this difference was not clinically significant.

  5. A proposal for an unusually stiff and moderately ductile hard coating material: Mo2BC

    International Nuclear Information System (INIS)

    Emmerlich, J; Music, D; Braun, M; Fayek, P; Schneider, J M; Munnik, F

    2009-01-01

    The elastic properties of Mo 2 BC were studied using ab initio calculations. The calculated bulk modulus of 324 GPa is 45% larger than that of Ti 0.25 Al 0.75 N and 14% smaller than that of c-BN, indicating a highly stiff material. The bulk modulus (B) to shear modulus (G) ratio is 1.72 at the transition from brittle to ductile behaviour. This, in combination with a positive Cauchy pressure (c 12 - c 44 ), suggests moderate ductility. When compared with a typical hard protective coating such as Ti 0.25 Al 0.75 N (B = 178 GPa; B/G = 1.44; negative Cauchy pressure), Mo 2 BC displays considerable potential as protective coating for metal cutting applications. In order to test this proposal, Mo 2 BC thin films were synthesized using dc magnetron sputtering from three plasma sources on Al 2 O 3 (0 0 0 1) at a substrate temperature of ∼900 0 C. The calculated lattice parameters are in good agreement with values determined from x-ray diffraction. The measured Young's modulus values of ∼460 ± 21 GPa are in excellent agreement with the 470 GPa value obtained by calculations. Scanning probe microscopy imaging of the residual indent revealed no evidence for crack formation as well as significant pile-up, which is consistent with the moderate plasticity predicted. The apparent contradiction between moderate ductility on the one hand and indentation hardness values of 29 GPa can be understood by considering the electronic structure particularly the extreme anisotropy. The presence of stiff Mo-C and Mo-B layers with metallic interlayer bonding enables this intriguing and unexpected property combination.

  6. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  7. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    International Nuclear Information System (INIS)

    Murray, Gabriel; Gandhi, Farhan

    2010-01-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer

  8. Free androgen index as a determinant of arterial stiffness in menopause: a mediation analysis.

    Science.gov (United States)

    Lambrinoudaki, Irene; Georgiopoulos, Georgios A; Athanasouli, Fani; Armeni, Elena; Rizos, Demetrios; Augoulea, Areti; Chatzidou, Sofia; Koutli, Evangelia; Makris, Nikolaos; Kanakakis, Ioannis; Stamatelopoulos, Kimon

    2017-06-01

    Associations of endogenous androgens in menopause with blood pressure (BP) and indices of arterial stiffness are reported, but directional relationships are not clear. Structural equation modeling is a contemporary statistical method, which allows assessment of such relationships and improves pathway understanding. We recruited 411 consecutive apparently healthy postmenopausal women who underwent noninvasive vascular evaluation. This included pulse wave analysis (aortic pressures and arterial wave reflections [augmentation index]), measurement of aortic stiffness by pulse wave velocity (PWV), stiffness index (SI), and flow-mediated dilatation. A cumulative marker combining PWV and SI (combined local and aortic arterial stiffness [CAS]) was also assessed. Free androgen index (FAI) was calculated from circulating total testosterone and sex hormone-binding globulin. FAI was an independent determinant of systolic BP (SBP) (P = 0.032), SI (P = 0.042), and PWV (P = 0.027). Under structural equation modeling analysis, FAI was a direct predictor for PWV (beta = 0.149, P = 0.014), SI (beta = 0.154, P = 0.022), and CAS (beta = 0.193, P = 0.02), whereas SBP was a parallel mediator of androgen's vascular effects on PWV (beta = 0.280, P stiffness via flow-mediated dilatation was not established. FAI was not a determinant of augmentation index. In healthy postmenopausal women, FAI was directly associated with PWV, SI, and CAS. FAI also directly correlated with SBP, which in turn concurrently increased PWV and CAS. The directional correlations found herein, imply that endogenous androgens may be causally associated with indices of arterial stiffness both directly and indirectly. This hypothesis should be confirmed in further studies with causal design.

  9. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    Science.gov (United States)

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  10. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    Science.gov (United States)

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and

  11. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  12. Determination of the relationship between collagen cross-links and the bone-tissue stiffness in the porcine mandibular condyle

    NARCIS (Netherlands)

    Willems, N.M.B.K.; Mulder, L.; Bank, R.A.; Grünheid, T.; Toonder, J.M.J. den; Zentner, A.; Langenbach, G.E.J.

    2011-01-01

    Although bone-tissue stiffness is closely related to the degree to which bone has been mineralized, other determinants are yet to be identified. We, therefore, examined the extent to which the mineralization degree, collagen, and its cross-links are related to bone-tissue stiffness. A total of 50

  13. Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study.

    Directory of Open Access Journals (Sweden)

    Nanna B Johansen

    Full Text Available Aortic stiffness is a strong predictor of cardiovascular disease endpoints. Cross-sectional studies have shown associations of various cardiovascular risk factors with aortic pulse wave velocity, a measure of aortic stiffness, but the long-term impact of these factors on aortic stiffness is unknown.In 3,769 men and women from the Whitehall II cohort, a wide range of traditional and novel cardiovascular risk factors were determined at baseline (1991-1993 and aortic pulse wave velocity was measured at follow-up (2007-2009. The prospective associations between each baseline risk factor and aortic pulse wave velocity at follow-up were assessed through sex stratified linear regression analysis adjusted for relevant confounders. Missing data on baseline determinants were imputed using the Multivariate Imputation by Chained Equations.Among men, the strongest predictors were waist circumference, waist-hip ratio, heart rate and interleukin 1 receptor antagonist, and among women, adiponectin, triglycerides, pulse pressure and waist-hip ratio. The impact of 10 centimeter increase in waist circumference on aortic pulse wave velocity was twice as large for men compared with women (men: 0.40 m/s (95%-CI: 0.24;0.56; women: 0.17 m/s (95%-CI: -0.01;0.35, whereas the opposite was true for the impact of a two-fold increase in adiponectin (men: -0.30 m/s (95%-CI: -0.51;-0.10; women: 0.61 m/s (95%-CI: -0.86;-0.35.In this large prospective study, central obesity was a strong predictor of aortic stiffness. Additionally, heart rate in men and adiponectin in women predicted aortic pulse wave velocity suggesting that strategies to prevent aortic stiffening should be focused differently by sex.

  14. Optimization of space-time material layout for 1D wave propagation with varying mass and stiffness parameters

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2010-01-01

    Results are presented for optimal layout of materials in the spatial and temporal domains for a 1D structure subjected to transient wave propagation. A general optimization procedure is outlined including derivation of design sensitivities for the case when the mass density and stiffness vary...

  15. Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

    Science.gov (United States)

    Ma, Teng

    In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously

  16. Application of force-length curve for determination of leg stiffness during a vertical jump.

    Science.gov (United States)

    Struzik, Artur; Zawadzki, Jerzy

    2016-01-01

    The aim of this study was to present the methodology for estimation of a leg stiffness during a countermovement jump. The question was asked whether leg stiffness in the countermovement and take-off phases are similar to each other as demonstrated in previous reports. It was also examined whether the stiffness in left lower limb is similar to the one in right lower limb. The research was conducted on 35 basketball players. Each participant performed three countermovement jumps with arm swing to the maximum height. Measurements employed a Kistlerforce plate and a BTS SMART system for motion analysis. Leg stiffness (understood as an inclination of the curve of ground reaction forces vs. length) was computed for these parts of countermovement and take-off phases where its value was relatively constant and F(Δl) relationship was similar to linear. Mean value (±SD) of total stiffness of both lower limbs in the countermovement phase was 7.1 ± 2.3 kN/m, whereas this value in the take-off phase was 7.5 ± 1 kN/m. No statistically significant differences were found between the leg stiffness in the countermovement and the take-off phases. No statistically significant differences were found during the comparison of the stiffness in the right and left lower limb. The calculation methodology allows us to estimate the value of leg stiffness based on the actual shape of F(Δl) curve rather than on extreme values of ΔF and Δl. Despite different tasks of the countermovement and the take-off phases, leg stiffness in these phases is very similar. Leg stiffness during a single vertical jump maintains a relatively constant value in the parts with a small value of acceleration.

  17. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Arterial stiffness in 10-year-old children: current and early determinants.

    Science.gov (United States)

    Schack-Nielsen, Lene; Mølgaard, Christian; Larsen, Dorthe; Martyn, Christopher; Michaelsen, Kim Fleischer

    2005-12-01

    It has been suggested that CVD has its origins in early life. An impairment of fetal growth and early postnatal nutrition may have programming effects on cardiovascular physiology. In addition, traditional risk factors for CVD may initiate the atherosclerotic process during childhood. We explored the effect of fat intake, physical activity and lipid profile in childhood, and birth weight, growth during infancy and breast-feeding on arterial stiffness in a cohort study of ninety-three 10-year-old children followed during infancy and re-examined at the age of 10 years. Arterial stiffness in two arterial segments (aorto-radial and aorto-femoral) was measured as pulse wave velocity. Arterial stiffness was inversely associated with physical activity (a regression coefficient in cm/s (95 % CI) of -6.8 (-11.2, -2.4) and -3.9 (-6.9, -0.8) per h of high physical activity/d in the aorto-radial and aorto-femoral segments, respectively). Arterial stiffness was also positively associated with dietary fat energy percentage (3.1 (95 % CI 0.9, 5.2) and 1.8 (95 % CI 0.2, 3.2) per fat energy percentage in the aorto-radial and aorto-femoral segments, respectively) but was not related to body composition, insulin resistance or lipid profile. Arterial stiffness was also positively associated with duration of breast-feeding for the aorto-femoral segment only (2.1 (95 % CI 0.4, 3.7) per month) but was not associated with growth in early life. In conclusion, patterns of physical activity and diet, and history of breast-feeding in infancy, have an influence on the stiffness of the large arteries in children. The long-term effects of this are unknown.

  19. Relationship between Cerebral Microbleeds and Liver Stiffness Determined by Transient Elastography.

    Directory of Open Access Journals (Sweden)

    Young Dae Kim

    Full Text Available Liver fibrosis is a multifactorial disease that can affect the development of cerebral small vessel diseases (SVDs including cerebral microbleeds (CMBs, leukoaraiosis, and silent infarctions. Transient elastography can accurately assess the degree of liver fibrosis by measuring liver stiffness (LS. In the present study, we investigated the association between SVDs and LS values.We recruited 300 participants (mean age 56 years, 170 men who underwent a comprehensive medical health check-up between January 2011 and December 2012. Transient elastography was taken on the right lobe of the liver through intercostal space with patients lying in the dorsal decubitus position with the right arm in maximal abduction. Mild and significant fibrosis were defined as LS values >5.6 and >8.0 kPa, respectively. The presence of each SVD was determined using the FLAIR, GRE MR imaging as well as T1-, T2-weighted MR images. We tested whether the presence and burden of each type of SVD were different by LS values.Of the different types of SVDs, only the presence (p = 0.001 and number of CMBs (p8.0 kPa was an independent predictor of CMBs (odds ratio 6.079, 95% confidence interval 1.489-24.819, p = 0.012. However, leukoaraiosis and silent infarctions were not associated with LS values (all p>0.05.The degree of liver fibrosis, as assessed using transient elastography, was independently associated with the presence and burden of CMBs in healthy, asymptomatic participants. Understanding the link between the brain and liver may advance future research on the pathomechanisms of CMBs.

  20. Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET

    NARCIS (Netherlands)

    Baiocchi, B.; Mantica, P.; Giroud, C.; Johnson, T.; Naulin, V.; Salmi, A.; Tala, T.; Tsalas, M.

    2013-01-01

    Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigating

  1. Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET

    DEFF Research Database (Denmark)

    Baiocchi, B.; Mantica, P.; Giroud, C.

    2013-01-01

    Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigati...

  2. Examples of density, orientation and shape optimal design for stiffness and/or strength with orthotropic materials

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2004-01-01

    The balance between stiffness and strength design is considered in the present paper. For materials with different levels of orthotropy (including isotropy), we optimize the density distribution as well as the orientational distribution for a short cantilever problem, and discuss the tendencies...... in design and response (energy distributions and stress directions). For a hole in a biaxial stress field, the shape design of the boundary hole is also incorporated. The resulting tapered density distributions may be difficult to manufacture, for example, in micro-mechanics production. For such problems...... a penalization approach to obtain "black and white" designs, i.e. uniform material or holes, is often applied in optimal design. A specific example is studied to show the effect of the penalization, but is restricted here to an isotropic material. When the total amount of material is not specified, a conflict...

  3. Formulation of stiffness equation for a three-dimensional isoparametric element with elastic-plastic material and large deformation

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1975-01-01

    The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used

  4. Određivanje krutosti planetarnog prenosnika / Determination of gear mesh stiffness in planetary gearing

    Directory of Open Access Journals (Sweden)

    Vojislav Batinić

    2008-04-01

    Full Text Available Kontaktna krutost zubaca jedan je od glavnih generatora unutrašnjih dinamičkih sila u spregama zupčanika planetarnih prenosnika. Neophodan je pri opisivanju dinamičkog ponašanja planetarnih prenosnika, tj. pri postavljanju jednačina dinamičke ravnoteže. U radu je prikazan metodološki pristup analitičkom i eksperimentalnom određivanju krutosti posmatranog planetarnog prenosnika. / Gear mesh stiffness in planetary gearing is one of the main generators of internal dynamic forces. It is necessary in describing dynamic behavior of planetary trains, i.e. in defining their equations of dynamic balance. This paper presents a methodological approach to experimental and analytical calculation of stiffness in planetary gearing.

  5. Fatigue crack paths under the influence of changes in stiffness

    Directory of Open Access Journals (Sweden)

    G. Kullmer

    2016-02-01

    Full Text Available An important topic of the Collaborative Research Centre TRR 30 of the Deutsche Forschungsgemeinschaft (DFG is the crack growth behaviour in graded materials. In addition, the growth of cracks in the neighbourhood of regions and through regions with different material properties belongs under this topic. Due to the different material properties, regions with differing stiffness compared to the base material may arise. Regions with differing stiffness also arise from ribs, grooves or boreholes. Since secure findings on the propagation behaviour of fatigue cracks are essential for the evaluation of the safety of components and structures, the growth of cracks near changes in stiffness has to be considered, too. Depending on the way a crack penetrates the zone of influence of such a change in stiffness and depending on whether this region is more compliant or stiffer than the surrounding area the crack may grow towards or away from this region. Both cases result in curved crack paths that cannot be explained only by the global loading situation. To evaluate the influence of regions with differing stiffness on the path of fatigue cracks the paths and the stress intensity factors of cracks growing near and through regions with differing stiffness are numerically determined with the program system ADAPCRACK3D. Therefore, arrangements of changes in stiffness modelled as material inclusions with stiffness properties different from the base material or modelled as ribs and grooves are systematically varied to develop basic conclusions about the crack growth behaviour near and through changes in stiffness.

  6. Gallium containing composites as a tunable material to understand neuronal behavior under variable stiffness and radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Nora G.; Pearce, Brady L.; Rohrbaugh, Nathaniel [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Jiang, Lin [Materials Science and Engineering, University of New South Wales, Sydney (Australia); Nolan, Michael W. [Department of Clinical Sciences (College of Veterinary Medicine), Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606 (United States); Ivanisevic, Albena, E-mail: ivanisevic@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-01

    We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite. - Highlights: • A composite containing GaOOH and Matrigel can be used to study neurotypic cell behavior. • The composite material can be used to modulate multiple stimuli. • The neurotypic cell behavior can be altered during radiation based on the amount of GaOOH present.

  7. In vitro evaluation of resonance frequency analysis values to different implant contact ratio and stiffness of surrounding material.

    Science.gov (United States)

    Kwak, Mu-Seung; Kim, Seok-Gyu

    2013-11-01

    The present study was aimed to evaluate the influence of implant contact ratio and stiffness of implant-surrounding materials on the resonance frequency analysis (RFA) values. Seventy resin blocks that had the different amounts (100, 50, 30, 15%) of resin-implant contact (RIC) were fabricated. Ten silicone putty blocks with 100% silicone-implant contact were also made. The implants with Ø5.0 mm × 13.0 mm were placed on eighty specimen blocks. The RFA value was measured on the transducer that was connected to each implant by Osstell Mentor. Kruskal-Wallis and Scheffe's tests (α=.05) were done for statistical analysis. The control resin group with 100% RIC had the highest RFA value of 83.9, which was significantly different only from the resin group with 15% RIC among the resin groups. The silicone putty group with 100% contact had the lowest RFA value of 36.6 and showed statistically significant differences from the resin groups. Within the limitations of this in vitro study, there was no significant difference in the RFA values among the resin groups with different RIC's except when the RIC difference was more than 85%. A significant increase in the RFA value was observed related to the increase in stiffness of material around implant.

  8. Estimating Gear Teeth Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact length is constant....

  9. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography.

    Science.gov (United States)

    Klatt, Dieter; Asbach, Patrick; Rump, Jens; Papazoglou, Sebastian; Somasundaram, Rajan; Modrow, Jens; Braun, Jürgen; Sack, Ingolf

    2006-12-01

    The objective of this study was to introduce an magnetic resonance elastography (MRE) protocol based on fractional motion encoding and planar wave acquisition for rapid measurements of in vivo human liver stiffness. Vibrations of a remote actuator membrane were fed by a rigid rod to the patient's surface beneath the right costal arch resulting in axial shear deflections of the liver. Data acquisition was performed using a balanced steady-state free precession (bSSFP) sequence incorporating oscillating gradients for motion sensitization. Tissue vibrations of frequency fv = 51 Hz were tuned by twice the sequence repetition time (1/fv = 2TR). Twenty axial images acquired by time-resolved through-plane wave encoding were used for planar elasticity reconstruction. The MRE data acquisition was achieved within 4 breathholds of 17 seconds each. The method was applied to 12 healthy volunteers and 2 patients with diffuse liver disease (fibrosis grade 3). MRE data acquisition was successful in all volunteers and patients. The elastic moduli were measured with values between 1.99 +/- 0.16 and 5.77 +/- 0.88 kPa. Follow-up studies demonstrated the reproducibility of the method and revealed a difference of 0.74 +/- 0.47 kPa (P analysis of the strain wave field captured by axial wave images. The measured data indicate individual variations of hepatic stiffness in healthy volunteers.

  10. Determination of the elastic and stiffness characteristics of cross-laminated timber plates from flexural wave velocity measurements

    Science.gov (United States)

    Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio

    2017-07-01

    Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.

  11. Determination of Nonlinear Stiffness Coefficients for Finite Element Models with Application to the Random Vibration Problem

    Science.gov (United States)

    Muravyov, Alexander A.

    1999-01-01

    In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.

  12. Exceptionally strong, stiff and hard hybrid material based on an elastomer and isotropically shaped ceramic nanoparticles.

    Science.gov (United States)

    Georgopanos, Prokopios; Schneider, Gerold A; Dreyer, Axel; Handge, Ulrich A; Filiz, Volkan; Feld, Artur; Yilmaz, Ezgi D; Krekeler, Tobias; Ritter, Martin; Weller, Horst; Abetz, Volker

    2017-08-04

    In this work the fabrication of hard, stiff and strong nanocomposites based on polybutadiene and iron oxide nanoparticles is presented. The nanocomposites are fabricated via a general concept for mechanically superior nanocomposites not based on the brick and mortar structure, thus on globular nanoparticles with nanosized organic shells. For the fabrication of the composites oleic acid functionalized iron oxide nanoparticles are decorated via ligand exchange with an α,ω-polybutadiene dicarboxylic acid. The functionalized particles were processed at 145 °C. Since polybutadiene contains double bonds the nanocomposites obtained a crosslinked structure which was enhanced by the presence of oxygen or sulfur. It was found that the crosslinking and filler percolation yields high elastic moduli of approximately 12-20 GPa and hardness of 15-18 GPa, although the polymer volume fraction is up to 40%. We attribute our results to a catalytically enhanced crosslinking reaction of the polymer chains induced by oxygen or sulfur and to the microstructure of the nanocomposite.

  13. Swelling, stiffness, and stress in gel material - as related to moisture sorption

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    A method is presented by which estimates can be made on swelling, bulk modulus, and internal stresses in gel materials as related to water sorption. Porous gel materials are considered as gel materials made porous by capillary pores large enough not to create capillary condensation and capillary...

  14. Identification of Combined Genetic Determinants of Liver Stiffness within the SREBP1c-PNPLA3 Pathway

    Directory of Open Access Journals (Sweden)

    Frank Lammert

    2013-10-01

    Full Text Available The common PNPLA3 (adiponutrin variant, p.I148M, was identified as a genetic determinant of liver fibrosis. Since the expression of PNPLA3 is induced by sterol regulatory element binding protein 1c (SREBP1c, we investigate two common SREBP1c variants (rs2297508 and rs11868035 for their association with liver stiffness. In 899 individuals (aged 17–83 years, 547 males with chronic liver diseases, hepatic fibrosis was non-invasively phenotyped by transient elastography (TE. The SREBP1c single nucleotide polymorphisms (SNPs were genotyped using PCR-based assays with 5'-nuclease and fluorescence detection. The SREBP1c rs11868035 variant affected liver fibrosis significantly (p = 0.029: median TE levels were 7.2, 6.6 and 6.0 kPa in carriers of (TT (n = 421, (CT (n = 384 and (CC (n = 87 genotypes, respectively. Overall, the SREBP1c SNP was associated with low TE levels (5.0–8.0 kPa. Carriers of both PNPLA3 and SREBP1c risk genotypes displayed significantly (p = 0.005 higher median liver stiffness, as compared to patients carrying none of these variants. The common SREBP1c variant may affect early stages of liver fibrosis. Our study supports a role of the SREBP1c-PNPLA3 pathway as a “disease module” that promotes hepatic fibrogenesis.

  15. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...

  16. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  17. Determinants of the ambulatory arterial stiffness index in 7604 subjects from 6 populations

    DEFF Research Database (Denmark)

    Adiyaman, Ahmet; Dechering, Dirk G; Boggia, José

    2008-01-01

    increased from the lowest to the highest quartile of r(2). These findings were consistent in dippers and nondippers (night:day ratio of systolic pressure >or=0.90), women and men, and in Europeans, Asians, and South Americans. The cumulative z score for the association of AASI with these determinants...

  18. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    Directory of Open Access Journals (Sweden)

    Daniel Gandyra

    2015-01-01

    Full Text Available We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1 determination of the water adhesion force and the elasticity of individual hairs (trichomes of the floating fern Salvinia molesta. (2 The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3 Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

  19. Are Sport-Specific Profiles of Tendon Stiffness and Cross-Sectional Area Determined by Structural or Functional Integrity?

    Directory of Open Access Journals (Sweden)

    Hans-Peter Wiesinger

    Full Text Available The present study aimed to determine whether distinct sets of tendon properties are seen in athletes engaged in sports with contrasting requirements for tendon function and structural integrity. Patellar and Achilles tendon morphology and force-deformation relation were measured by combining ultrasonography, electromyography and dynamometry in elite ski jumpers, distance runners, water polo players and sedentary individuals. Tendon cross-sectional area normalized to body mass2/3 was smaller in water polo players than in other athletes (patellar and Achilles tendon; -28 to -24% or controls (patellar tendon only; -9%. In contrast, the normalized cross-sectional area was larger in runners (patellar tendon only; +26% and ski jumpers (patellar and Achilles tendon; +21% and +13%, respectively than in controls. Tendon stiffness normalized to body mass2/3 only differed in ski jumpers, compared to controls (patellar and Achilles tendon; +11% and +27%, respectively and to water polo players (Achilles tendon only; +23%. Tendon size appears as an adjusting variable to changes in loading volume and/or intensity, possibly to preserve ultimate strength or fatigue resistance. However, uncoupled morphological and mechanical properties indicate that functional requirements may also influence tendon adaptations.

  20. Stiff Hands

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Stiff Hands Email to a friend * required fields ...

  1. The frequency and determinants of liver stiffness measurement failure: a retrospective study of "real-life" 38,464 examinations.

    Directory of Open Access Journals (Sweden)

    Dong Ji

    Full Text Available To investigate the frequency and determinants of liver stiffness measurement (LSM failure by means of FibroScan in "real-life" Chinese patients.A total of 38,464 "real-life" Chinese patients in 302 military hospital of China through the whole year of 2013, including asymptomatic carrier, chronic hepatitis B, chronic hepatitis C, liver cirrhosis (LC, alcoholic liver disease, autoimmune liver disease, hepatocellular carcinoma (HCC and other, were enrolled, their clinical and biological parameters were retrospectively investigated. Liver fibrosis was evaluated by FibroScan detection. S probe (for children with height less than 1.20 m and M probe (for adults were used. LSM failure defined as zero valid shots (unsuccessful LSM, or the ratio of the interquartile range to the median of 10 measurements (IQR/M greater than 0.30 plus median LSM greater or equal to 7.1 kPa (unreliable LSM.LSM failure occurred in 3.34% of all examinations (1286 patients out of 38,464, among them, there were 958 cases (2.49% with unsuccessful LSM, and 328 patients (0.85% with unreliable LSM. Statistical analyses showed that LSM failure was independently associated with body mass index (BMI greater than 30 kg/m(2, female sex, age greater than 50 years, intercostal spaces (IS less than 9 mm, decompensated liver cirrhosis and HCC patients. There were no significant differences among other diseases. By changing another skilled operator, success was achieved on 301 cases out of 1286, which reduced the failure rate to 2.56%, the decrease was significant (P<0.0001.The principal reasons of LSM failure are ascites, obesity and narrow of IS. The failure rates of HCC, decompensated LC, elder or female patients are higher. These results emphasize the need for adequate operator training, technological improvements and optimal criteria for specific patient subpopulations.

  2. Pharmacological modulation of arterial stiffness.

    LENUS (Irish Health Repository)

    Boutouyrie, Pierre

    2011-09-10

    Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\

  3. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  4. A routine chromium determination in biological materials; application to various reference materials and standard reference materials

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Volkers, K.J.

    1979-01-01

    The determination limit under standard working conditions of chromium in biological materials is discussed. Neutron activation analysis and atomic spectrometry have been described for some analytical experiences with NBS SRM 1577 reference material. The chromium determination is a part of a larger multi-element scheme for the determination of 12 elements in biological materials

  5. HIV Infection Is Not Associated With Aortic Stiffness. Traditional Cardiovascular Risk Factors Are the Main Determinants-Cross-sectional Results of INI-ELSA-BRASIL.

    Science.gov (United States)

    Moreira, Rodrigo C; Mill, José G; Grinsztejn, Beatriz; Veloso, Valdilea; Fonseca, Maria de Jesus; Griep, Rosane H; Bensenor, Isabela; Cardoso, Sandra W; Lotufo, Paulo; Chor, Dora; Pacheco, Antonio G

    2018-05-01

    Aortic stiffness measured by carotid-femoral pulse wave velocity (cf-PWV) is a marker of subclinical atherosclerosis. We propose to assess whether HIV infection is associated with arterial stiffness and their determinants in HIV-infected subjects. We compared data from an HIV cohort (644 patients, HIV+) in Rio de Janeiro with 2 groups: 105 HIV-negative (HIV-) individuals and 14,873 participants of the ELSA-Brasil study. We used multivariable linear regression to investigate factors associated with cf-PWV and whether HIV was independently associated with aortic stiffness and propensity score weighting to control for imbalances between groups. From 15,860 participants, cf-PWV was obtained in 15,622 (98.5%). Median age was 51 (interquartile range 45-58), 44.41 (35.73, 54.72), and 43.60 (36.01, 50.79) years (P ELSA-Brasil, HIV- and HIV+, respectively (P ELSA-Brasil [β = -0.05; 95% confidence interval (CI) = -0.23; P = 0.12; P = 0.52] or with the HIV- groups (β = 0.10; 95% CI = -0.10; 0, 31; P = 0.32). Traditional risk factors were associated with higher cf-PWV levels in the HIV+ group, particularly waist-to-hip ratio (β = 0.20; 95% CI = 0.10; 0.30; P < 0.001, result per one SD change). HIV infection was not associated with higher aortic stiffness according to our study. In HIV-infected subjects, the stiffness of large arteries is mainly associated with traditional risk factors and not to the HIV infection per se.

  6. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  7. Determination of mercury in plant material

    Energy Technology Data Exchange (ETDEWEB)

    Pickard, J A; Martin, J T

    1960-07-01

    An analytical procedure used for the determination of traces of mercury in plant material is described. The conditions of combustion of organic matter are controlled to avoid loss of mercury and EDTA is used to reduce the values for apparent mercury on uncontaminated samples. Satisfactory recoveries of mercury added to apples, tomatoes and coffee are obtained. 10 references, 1 table.

  8. Trabecular meshwork stiffness in glaucoma.

    Science.gov (United States)

    Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross

    2017-05-01

    Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β 2 (TGF-β 2 ), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Globalization determinants of raw materials markets development

    Directory of Open Access Journals (Sweden)

    Olga Yatsenko

    2013-02-01

    Full Text Available The determinants of development of raw materials markets and the peculiarities of their formation in the terms of world economy globalization have been researched. The empirical base of research is the agricultural food market as one of the most important bases in the sphere of material production and provision of food security of the country. The important social and economic mission of the agricultural sector has been highlighted, along with the export competitiveness and import dependence of agricultural food products in the international trade. The imperative norms have been substantiated and conclusions have been drawn regarding the establishment of respective conditions for the operation of globally integrated markets in Ukraine.

  10. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  11. Determining the nature of transported material

    International Nuclear Information System (INIS)

    Wykes, J.S.; Surzyn, P.M.; Croke, G.M.; Adsley, I.

    1980-01-01

    An improved method is described of determining the nature of a coal/stone mixture, transported on a conveyor, by measuring the relative transmission of two different energy x-ray beams. Details are given of the collimation, scintillation counters and shielding required to obtain the necessary accuracy to obtain information on the mass and the nature of the material being monitored. Compensation is provided for background radioactivity. (U.K.)

  12. Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes

    International Nuclear Information System (INIS)

    Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian

    2008-01-01

    The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties

  13. Arterial stiffness

    Directory of Open Access Journals (Sweden)

    Ursula Quinn

    2012-09-01

    Full Text Available Measurements of biomechanical properties of arteries have become an important surrogate outcome used in epidemiological and interventional cardiovascular research. Structural and functional differences of vessels in the arterial tree result in a dampening of pulsatility and smoothing of blood flow as it progresses to capillary level. A loss of arterial elastic properties results a range of linked pathophysiological changes within the circulation including increased pulse pressure, left ventricular hypertrophy, subendocardial ischaemia, vessel endothelial dysfunction and cardiac fibrosis. With increased arterial stiffness, the microvasculature of brain and kidneys are exposed to wider pressure fluctuations and may lead to increased risk of stroke and renal failure. Stiffening of the aorta, as measured by the gold-standard technique of aortic Pulse Wave Velocity (aPWV, is independently associated with adverse cardiovascular outcomes across many different patient groups and in the general population. Therefore, use of aPWV has been proposed for early detection of vascular damage and individual cardiovascular risk evaluation and it seems certain that measurement of arterial stiffness will become increasingly important in future clinical care. In this review we will consider some of the pathophysiological processes that result from arterial stiffening, how it is measured and factors that may drive it as well as potential avenues for therapy. In the face of an ageing population where mortality from atheromatous cardiovascular disease is falling, pathology associated with arterial stiffening will assume ever greater importance. Therefore, understanding these concepts for all clinicians involved in care of patients with cardiovascular disease will become vital.

  14. Artificial muscles with adjustable stiffness

    International Nuclear Information System (INIS)

    Mutlu, Rahim; Alici, Gursel

    2010-01-01

    This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20–40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators

  15. The study of stiffness modulus values for AC-WC pavement

    Science.gov (United States)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  16. Residual-strength determination in polymetric materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.M.

    1981-10-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data.

  17. Residual-strength determination in polymetric materials

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1981-01-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data

  18. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  19. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  20. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  1. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  2. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body

    International Nuclear Information System (INIS)

    Bongue Boma, M.

    2007-12-01

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  3. Evaluation of solution procedures for material and/or geometrically nonlinear structural analysis by the direct stiffness method.

    Science.gov (United States)

    Stricklin, J. A.; Haisler, W. E.; Von Riesemann, W. A.

    1972-01-01

    This paper presents an assessment of the solution procedures available for the analysis of inelastic and/or large deflection structural behavior. A literature survey is given which summarized the contribution of other researchers in the analysis of structural problems exhibiting material nonlinearities and combined geometric-material nonlinearities. Attention is focused at evaluating the available computation and solution techniques. Each of the solution techniques is developed from a common equation of equilibrium in terms of pseudo forces. The solution procedures are applied to circular plates and shells of revolution in an attempt to compare and evaluate each with respect to computational accuracy, economy, and efficiency. Based on the numerical studies, observations and comments are made with regard to the accuracy and economy of each solution technique.

  4. Materials with structural hierarchy

    Science.gov (United States)

    Lakes, Roderic

    1993-01-01

    The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.

  5. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    Science.gov (United States)

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  6. Development of an in vivo method for determining material properties of passive myocardium

    Directory of Open Access Journals (Sweden)

    Espen Remme

    2004-10-01

    Full Text Available Calculation of mechanical stresses and strains in the left ventricular (LV myocardium by the finite element (FE method relies on adequate knowledge of the material properties of myocardial tissue. In this paper we present a model-based estimation procedure to characterize the stress-strain relationship in passive LV myocardium. A 3D FE model of the LV myocardium was used, which included morphological fiber and sheet structure and a nonlinear orthotropic constitutive law with different stiffness in the fiber, sheet and sheet-normal directions. The estimation method was based on measured wall strains. We analyzed the method's ability to estimate the material parameters by generating a set of synthetic strain data by simulating the LV inflation phase with known material parameters. In this way we were able to verify the correctness of the solution and to analyze the effects of measurement and model error on the solution accuracy and stability. A sensitivity analysis was performed to investigate the observability of the material parameters and to determine which parameters to estimate. The results showed a high degree of coupling between the parameters governing the stiffness in each direction. Thus, only one parameter in each of the three directions was estimated. For the tested magnitudes of added noise and introduced model errors, the resulting estimated stress-strain characteristics in the fiber and sheet directions converged with good accuracy to the known relationship. The sheet-normal stress-strain relationship had a higher degree of uncertainty as more noise was added and model error was introduced.

  7. Online Identification and Verification of the Elastic Coupling Torsional Stiffness

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

  8. Determination of trace impurities in materials

    International Nuclear Information System (INIS)

    Parashar, D.C.

    1991-01-01

    Research work done at the National Physical Laboratory to develop new methods which are more specific and/or more sensitive has been reviewed. These methods are based on the use of existing facilities viz. atomic absorption spectrophotometry, uv-visible spectrophotometry, gas chromatography and conventional chemical methods. It is possible to determine impurities like boron at 5ppb level, phosphorus at 100 ppb and oxygen non-stoichiometry in 1:2:3 compounds with higher accuracy. Boron is determined spectrophotometrically by forming a complex with curcumin and phosphorus is determined indirectly by atomic absorption spectrophotometry by forming phosphomolybdate complex with antimony or bismuth which have 1:1 ratio with phosphorus in the complex. Gas chromatographic technique has been used to evaluate the oxygen non-stoichiometry in high temperature superconductors (1:2:3 compound) where the HTc sample is dissolved in dilute nitric acid in helium environment and the oxygen released is determined using thermal conductivity detector. (author). 19 refs., 3 figs., 4 tabs

  9. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

    Science.gov (United States)

    Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K

    2014-06-01

    higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.

  10. The pectinate zone is stiff and the arcuate zone determines passive basilar membrane mechanics in the gerbil

    Science.gov (United States)

    Xia, Hongyi; Steele, Charles R.; Puria, Sunil

    2018-05-01

    The gerbil basilar membrane (BM) differs from other mammalian BMs in that the lower collagen-fiber layer of the pectinate zone (PZ) forms an arch, the upper fiber layer is flat, and ground substance separates the two layers. The role of this arch has been unknown, but can be elucidated by models. In the standard simple beam model (SBM), the upper and lower collagen-fiber layers of the BM are represented as a single layer in both the PZ and the arcuate zone (AZ). In our new arch-beam model (ABM), the upper fiber layer is flat, the lower layer forms an arch in the PZ, and the two layers combine to form the flat portion of the BM in the AZ. This design is incorporated into a 3D finite-element tapered-box model of the cochlea with viscous fluid. We find in the model that the PZ rotates as a rigid body, so its specific properties have little influence, while the AZ thickness and collagen volume fraction primarily determine passive BM mechanics.

  11. Determination of carbon-14 in environmental level, solid reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Blowers, Paul, E-mail: paul.blowers@cefas.co.uk [Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT (United Kingdom); Caborn, Jane, E-mail: jane.a.caborn@nnl.co.uk [NNL, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Dell, Tony [Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB (United Kingdom); Gingell, Terry [DSTL, Radiation Protection Services, Crescent Road, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom); Harms, Arvic [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Long, Stephanie [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland (United Kingdom); Sleep, Darren [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Stewart, Charlie [UKAEA (Waste Management Group), Chemical Support Services, D1310/14, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom); Walker, Jill [Radiocarbon Dating, The Old Stables, East Lockinge, Wantage, Oxon OX12 8QY (United Kingdom); Warwick, Phil E. [GAU-Radioanalytical, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH (United Kingdom)

    2011-10-15

    An intercomparison exercise to determine the {sup 14}C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing {sup 14}C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  12. Determination of carbon-14 in environmental level, solid reference materials

    International Nuclear Information System (INIS)

    Blowers, Paul; Caborn, Jane; Dell, Tony; Gingell, Terry; Harms, Arvic; Long, Stephanie; Sleep, Darren; Stewart, Charlie; Walker, Jill; Warwick, Phil E.

    2011-01-01

    An intercomparison exercise to determine the 14 C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing 14 C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  13. Determination of Acidity and Alkalinity of Food Materials

    OpenAIRE

    三浦,芳助; 福永,祐子; 瀧川,裕里子; 津田,真美; 渡辺,陽子; 瀨山,一正

    2006-01-01

    The acidity and alkalinity of food materials in various menus was determined to clarify the influence of food on physiological functions. Menus mainly containing alkaline food materials (alkaline menu) and acid ones (acid menu) were compared. Determination of acidity and alkalinity was performed for each food material in the alkaline menu and acid menu, and acidity and alkalinity of one meal and a day's one were estimated. 1. Most of food materials in acid menu were assessed to be...

  14. Dynamic material behavior determination using single fiber impact

    NARCIS (Netherlands)

    Heru Utomo, B.D.; Broos, J.P.F.

    2007-01-01

    Mechanical properties of fiber materials are used as input data for amongst others impact simulations on fiber based structures to predict their behavior. Accurate predictions for such materials are still not possible, because the mechanical properties are usually determined (quasi-)statically or

  15. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding...... soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients...... for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been...

  16. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  17. A crossover from high stiffness to high hardness. The case of osmium and its borides

    International Nuclear Information System (INIS)

    Bian, Yongming; Li, Anhu; Liu, Xiaomei; Shanghai Univ. of Engineering Science; Liang, Yongcheng

    2016-01-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os_2B_3 and OsB_2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  18. A crossover from high stiffness to high hardness. The case of osmium and its borides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yongming; Li, Anhu [Tongji Univ., Shanghai (China). School of Mechanical Engineering; Liu, Xiaomei [Tongji Univ., Shanghai (China). School of Mechanical Engineering; Shanghai Univ. of Engineering Science (China). College of Mechanical Engineering; Liang, Yongcheng [Shanghai Ocean Univ. (China). College of Engineering Science and Technology

    2016-07-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os{sub 2}B{sub 3} and OsB{sub 2}) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  19. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  20. Posttraumatic stiff elbow

    Directory of Open Access Journals (Sweden)

    Ravi Mittal

    2017-01-01

    Full Text Available Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.

  1. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.

    Science.gov (United States)

    Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J

    2018-04-01

    A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function

  2. Automatic Determination of Fiber-Length Distribution in Composite Material Using 3D CT Data

    Directory of Open Access Journals (Sweden)

    Günther Greiner

    2010-01-01

    Full Text Available Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution is usually determined early in the development process, as conventional methods require a destruction of the sample component. In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the segmentation method is demonstrated by applying it to artificially generated test data and selected real components.

  3. Automatic Determination of Fiber-Length Distribution in Composite Material Using 3D CT Data

    Science.gov (United States)

    Teßmann, Matthias; Mohr, Stephan; Gayetskyy, Svitlana; Haßler, Ulf; Hanke, Randolf; Greiner, Günther

    2010-12-01

    Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution is usually determined early in the development process, as conventional methods require a destruction of the sample component. In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the segmentation method is demonstrated by applying it to artificially generated test data and selected real components.

  4. Determination of crystallinity of ceramic materials from the Ruland Method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Gomes Junior, J.C.; Lima, J.C. de; Riella, H.G.; Kuhnen, N.C.

    2011-01-01

    Some methods found in literature approach the different characteristics between crystalline and amorphous phases by X ray diffraction technique. These methods use the relation between the intensities of the crystalline peaks and background amorphous or the absolute intensity of one of these to determine the relative amount of crystalline and amorphous material. However, a crystalline substance presents shows coherent diffuse scattering and a loss in the intensity of the peaks of diffraction in function of thermal vibrations of atoms and imperfections in the crystalline structure. A correct method for the determination of the crystallinity must take in account these effects. This work has as objective to determine the crystallinity of ceramic materials obtained with the addition of mineral coal bottom ashes, using the X ray diffraction technique and the Ruland Method, that considers the diminution of the intensity of the crystalline peak because of the disorder affects. The Ruland Method shows adequate for the determination of the crystallinity of the ceramic materials. (author)

  5. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  6. Determination of temperature dependency of material parameters for lead-free alkali niobate piezoceramics by the inverse method

    Directory of Open Access Journals (Sweden)

    K. Ogo

    2016-06-01

    Full Text Available Sodium potassium niobate (NKN piezoceramics have been paid much attention as lead-free piezoelectric materials in high temperature devices because of their high Curie temperature. The temperature dependency of their material parameters, however, has not been determined in detail up to now. For this purpose, we exploit the so-called Inverse Method denoting a simulation-based characterization approach. Compared with other characterization methods, the Inverse Method requires only one sample shape of the piezoceramic material and has further decisive advantages. The identification of material parameters showed that NKN is mechanically softer in shear direction compared with lead zirconate titanate (PZT at room temperature. The temperature dependency of the material parameters of NKN was evaluated in the temperature range from 30 °C to 150 °C. As a result, we figured out that dielectric constants and piezoelectric constants show a monotonous and isotropic increment with increasing temperature. On the other hand, elastic stiffness constant c 44 E of NKN significantly decreased in contrast to other elastic stiffness constants. It could be revealed that the decrement of c 44 E is associated with an orthorhombic-tetragonal phase transition. Furthermore, ratio of elastic compliance constants s 44 E / s 33 E exhibited similar temperature dependent behavior to the ratio of piezoelectric constants d15/d33. It is suspected that mechanical softness in shear direction is one origin of the large piezoelectric shear mode of NKN. Our results show that NKN are suitable for high temperature devices, and that the Inverse Method should be a helpful approach to characterize material parameters under their practical operating conditions for NKN.

  7. Determination of ancient ceramics reference material by neutron activation analysis

    International Nuclear Information System (INIS)

    Li Huhou; Sun Jingxin; Wang Yuqi; Lu Liangcai

    1986-01-01

    Contents of trace elements in the reference material of ancient ceramics (KPS-1) were determined by means of activation analysis, using thermal neutron irradiation produced in nuclear reactor. KPS-1 favoured the analysis of ancient ceramics because it had not only many kinds of element but also appropriate contents of composition. The values presented here are reliable within the experimental precision, and have shown that the reference material had a good homogeneity. So KPS-1 can be used as a suitable reference material for the ancient ceramics analysis

  8. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki; Santamarina, Carlos

    2017-01-01

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  9. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki

    2017-08-08

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  10. Radioanalytical method to determine contaminations due to packaging materials

    International Nuclear Information System (INIS)

    Figge, K.

    1976-01-01

    The quantitative determination of the transfer of substances in the system packaging material/foodstuff is essential for the protection of consumer and with respect to food regulations. With the help of the radio tracer techniques described it is possible to determine the migration of an individual component of the packaging material into liquid and solid foodstuffs or their simulants. Parts of the radioactive test films or sheets are brought in one- or two-sided contact with the foodstuffs or their simulants using newly developed extraction and migration cells. The extracted or migrated amounts of the packaging material component are calculated from the radioactivities migrated into the contact media under the test conditions given. As an example for the application of these radio tracer techniques, investigations into the migration behaviour of the organotin stabilizer di-n-octyltin-2-ethyl-hexyl-dithioglycolate in the system rigid PVC/edible fat or test fat respectively are described. For the determination of the total components migrating from a packaging material into foodstuffs, a radio tracer method was developed making use of a 14 C-labelled standard triglyceride mixture - the fat simulant HB 307- 14 C. The efficiency of this method is demonstrated by determinations of the global migrates of polyvinylchloride films containing different amounts of platicizers and the mean error of the single determination on the amount of global migrate is discussed. (T.G.)

  11. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  12. Material and Non-material Determinants of European Youth's Life Quality

    OpenAIRE

    Gawlik, Remigiusz

    2013-01-01

    The paper confronts chosen approaches to quality of life studies with recent changes in post-crisis socio-economic environment. The focus is on European Youth at verge of entry into adult life. Presented research is a preliminary study for “The Application of Artificial Intelligence Methods for Analyzing Material and Non-material Determinants of Life Satisfaction between Young People from Developing Countries” project. Identifying and grouping the determinants of their life satisfaction could...

  13. INAA Application for Trace Element Determination in Biological Reference Material

    Science.gov (United States)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  14. The determination of copper in biological materials by flame spectrophotometry

    Science.gov (United States)

    Newman, G. E.; Ryan, M.

    1962-01-01

    A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334

  15. Halogens determination in vegetable NBS standard reference materials

    International Nuclear Information System (INIS)

    Stella, R.; Genova, N.; Di Casa, M.

    1977-01-01

    Levels of all four halogens in Orchard Leaves, Pine Needles and Tomato Leaves NBS reference standards were determined. For fluorine a spiking isotope dilution method was used followed by HF absorption on glass beads. Instrumental nuclear activation analysis was adopted for chlorine and bromine determination. Radiochemical separation by a distillation procedure was necessary for iodine nuclear activation analysis after irradiation. Activation parameters of Cl, Br and I are reported. Results of five determinations for each halogen in Orchard Leaves, Pine Needles and Tomato Leaves NBS Standard Materials and Standard deviations of the mean are reported. (T.I.)

  16. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  17. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  18. Determination of trace elements in electronic materials by NAA

    International Nuclear Information System (INIS)

    Kobayashi, Kenji

    1986-01-01

    Trace amounts of elements in electronic materials were determined by instrumental neutron activation analysis (INAA), re-activation analysis and substoichiometric radioactivation analysis using gamma-ray spectrometry. Ten elements (Cr, Cu, Fe, Zn, Co, Eu, Ir, Sb, Sc, Tb) in gallium arsenide single crystal were determined by INAA and substoichiometric radioactivation analysis. Trace level of chromium (10 13 atoms/cm 3 ) and zinc (10 14 atoms/cm 3 ) in gallium arsenide single crystal were determined by INAA. The chromium concentrations in horizontal Bridgmangrown semi-insulating gallium arsenide ingot were ranged from 1.2 x 10 16 atoms/cm 3 at seed end to 3.5 x 10 16 atoms/cm 3 at tail end. The trace determinations of iron (10 14 atoms/cm 3 ) and copper (10 14 atoms/cm 3 ) in silicon, gallium arsenide and indium phoshide single crystals were carried out by substoichiometric radioactivation analysis. The reactivation analysis for the multielement determination of indium phosphide single crystal was carried out and nineteen elements were determined simultaneously by gamma-ray spectrometry. Eleven elements (Ag, As, Br, Co, Cr, Fe, K, Mn, Sb, Sc, Zn) in four NIES standard reference materials (Pond Sediment, Chlorella, Mussel and Tea Leaves) and seven elements (Co, Cr, Eu, Fe, Sc, Tb, Yb) in two NBS glasses (SRM-615 and SRM-613) were determined by INAA and substoichiometric radioactivation analysis and the analytical results obtained by the methods were in good agreement with certified values by NIES and NBS. (author)

  19. An improved method for calculating force distributions in moment-stiff timber connections

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Blond, Mette

    2012-01-01

    An improved method for calculating force distributions in moment-stiff metal dowel-type timber connections is presented, a method based on use of three-dimensional finite element simulations of timber connections subjected to moment action. The study that was carried out aimed at determining how...... the slip modulus varies with the angle between the direction of the dowel forces and the fibres in question, as well as how the orthotropic stiffness behaviour of the wood material affects the direction and the size of the forces. It was assumed that the force distribution generated by the moment action...

  20. THE DETERMINATION OF DIFFUSION COEFFICIENT OF INVERT MATERIALS

    International Nuclear Information System (INIS)

    P. Heller and J. Wright

    2000-01-01

    The Engineered Barrier System (EBS) Testing Department is performing tests in the Department of Energy's Atlas Facility to evaluate the performance of various means for increasing the time for breakthrough of radionuclides from the waste package to the base of the invert. This includes testing various barriers in the invert as a means of increasing breakthrough time through the process of diffusion. A diffusion barrier may serve as an invert material for the emplacement drifts. The invert material may consist of crushed tuff from the repository excavation at Yucca Mountain or silica sand. The objective of this report is to determine the diffusion coefficient of the crushed tuff and silica sand invert materials specified by the EBS Testing Department. The laboratory derived information from the testing was used in the Nernst-Einstein equation (Jurinak et al. 1987, p. 626) to determine the diffusion coefficient of the invert material. This report transmits the results and describes the methodology and interpretation. The scope of this report is to determine the diffusion coefficients of the invert materials mentioned above using the centrifuge at UFA Ventures. Standard laboratory procedures, described in Section 2 of this report, were used. The diffusion coefficients are to be determined over a range of moisture contents. The report contains the diffusion coefficients calculated by the Nernst-Einstein equation (Jurinak et al. 1987, p. 626) that become a part of the Technical Database. Raw data is also included in the report, however this data does not become part of the Technical Database as per Section 3.23 of AP-SIII.3Q ''Submittal and Incorporation of Data to the Technical Data Management System''. A sieve analysis of the samples was not conducted as part of this report, but sieve analysis may be accomplished as part of other reports. Two samples of crushed tuff and two samples of silica sand were tested

  1. Apparatus for radiation source depth determination in a material

    International Nuclear Information System (INIS)

    Campbell, P.J.

    1979-01-01

    An apparatus is disclosed for determining the depth of a radiation source within a body of material utilizing a radiation source holder moving the radiation source within the body. A plurality of switches have contacts that are fixed in relation to the movement of the radiation source within the material. Trigger means activates a particular switch at a preselected depth of the radiation source. Means for indicating the activation of a switch would thus produce a signal as a representative of the depth of the radiation source

  2. Routine Determination of Arsenic in Biological Materials. RCN Report

    International Nuclear Information System (INIS)

    Kroon, J.J.; Das, H.A.

    1970-08-01

    This text describes a routine procedure for the determination of arsenic in biological materials by neutron activation analysis. Unlike most methods published in literature the present analysis is not based on chemical separation by destination. After a first purification by anion-exchange the 76 As-activity (T1/2 = 26,4 h) is isolated by precipitation as the metal. The method was tested by analysis of the standard kale powder. This material was prepared and issued by Bowen in 1966, to provide a reliable standard for the intercomparison of various methods. (author)

  3. [Metabolic syndrome and aortic stiffness].

    Science.gov (United States)

    Simková, A; Bulas, J; Murín, J; Kozlíková, K; Janiga, I

    2010-09-01

    The metabolic syndrome (MS) is a cluster of risk factors that move the patient into higher level of risk category of cardiovascular disease and the probability of type 2 diabetes mellitus manifestation. Definition of MS is s based on the presence of selected risk factors as: abdominal obesity (lager waist circumpherence), atherogenic dyslipidemia (low value of HDL-cholesterol and increased level of triglycerides), increased fasting blood glucose (or type 2 DM diagnosis), higher blood pressure or antihypertensive therapy. In 2009 there were created harmonizing criteria for MS definition; the condition for assignment of MS is the presence of any 3 criteria of 5 mentioned above. The underlying disorder of MS is an insulin resistance or prediabetes. The patients with MS more frequently have subclinical (preclinical) target organ disease (TOD) which is the early sings of atherosclerosis. Increased aortic stiffness is one of the preclinical diseases and is defined by pathologically increased carotidofemoral pulse wave velocity in aorta (PWV Ao). With the aim to assess the influence of MS on aortic stiffness we examined the group of women with arterial hypertension and MS and compare them with the group of women without MS. The aortic stiffness was examined by Arteriograph--Tensiomed, the equipment working on the oscillometric principle in detection of pulsations of brachial artery. This method determines the global aortic stiffness based on the analysis of the shape of pulse curve of brachial artery. From the cohort of 49 pts 31 had MS, the subgroups did not differ in age or blood pressure level. The mean number of risk factors per person in MS was 3.7 comparing with 1.7 in those without MS. In the MS group there was more frequently abdominal obesity present (87% vs 44%), increased fasting blood glucose (81% vs 22%) and low HDL-cholesterol level. The pulse wave velocity in aorta, PWV Ao, was significantly higher in patients with MS (mean value 10,19 m/s vs 8,96 m

  4. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  5. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  6. Constitutive Modelling of Resins in the Stiffness Domain

    Science.gov (United States)

    Klasztorny, M.

    2004-09-01

    An analytic method for inverting the constitutive compliance equations of viscoelasticity for resins is developed. These equations describe the HWKK/H rheological model, which makes it possible to simulate, with a good accuracy, short-, medium- and long-term viscoelastic processes in epoxy and polyester resins. These processes are of first-rank reversible isothermal type. The time histories of deviatoric stresses are simulated with three independent strain history functions of fractional and normal exponential types. The stiffness equations are described by two elastic and six viscoelastic constants having a clear physic meaning (three long-term relaxation coefficients and three relaxation times). The time histories of axiatoric stresses are simulated as perfectly elastic. The inversion method utilizes approximate constitutive stiffness equations of viscoelasticity for the HWKK/H model. The constitutive compliance equations for the model are a basis for determining the exact complex shear stiffness, whereas the approximate constitutive stiffness equations are used for determining the approximate complex shear stiffness. The viscoelastic constants in the stiffness domain are derived by equating the exact and approximate complex shear stiffnesses. The viscoelastic constants are obtained for Epidian 53 epoxy and Polimal 109 polyester resins. The accuracy of the approximate constitutive stiffness equations are assessed by comparing the approximate and exact complex shear stiffnesses. The constitutive stiffness equations for the HWKK/H model are presented in uncoupled (shear/bulk) and coupled forms. Formulae for converting the constants of shear viscoelasticity into the constants of coupled viscoelasticity are given as well.

  7. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  8. Interfacial free energy and stiffness of aluminum during rapid solidification

    International Nuclear Information System (INIS)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-01-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculation of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.

  9. Relationship between Static Stiffness and Modal Stiffness of Structures

    Directory of Open Access Journals (Sweden)

    Tianjian Ji Tianjian Ji

    2010-02-01

    Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.

  10. Using nuclear methods for analyzing materials and determining concentration gradients

    International Nuclear Information System (INIS)

    Darras, R.

    After reviewing the various type of nuclear chemical analysis methods, the possibilities of analysis by activation and direct observation of nuclear reactions are specifically described. These methods make it possible to effect analyses of trace-elements or impurities, even as traces, in materials, with selectivity, accuracy and great sensitivity. This latter property makes them advantageous too for determining major elements in small quantities of available matter. Furthermore, they lend themselves to carrying out superficial analyses and the determination of concentration gradients, given the careful choice of the nature and energy of the incident particles. The paper is illustrated with typical examples of analyses on steels, pure iron, refractory metals, etc [fr

  11. Procedures for determining MATMOD-4V material constants

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, T.C.

    1993-11-01

    The MATMOD-4V constitutive relations were developed from the original MATMOD model to extend the range of nonelastic deformation behaviors represented to include transient phenomena such as strain softening. Improvements in MATMOD-4V increased the number of independent material constants and the difficulty in determining their values. Though the constitutive relations are conceptually simple, their form and procedures for obtaining their constants can be complex. This paper reviews in detail the experiments, numerical procedures, and assumptions that have been used to determine a complete set of MATMOD-4V constants for high purity aluminum.

  12. Determination of Radiological, Material and Organizational Measures for Reuse of Conditionally Released Materials from Decommissioning

    International Nuclear Information System (INIS)

    Ondra, F.; Vasko, M.; Necas, V.

    2012-01-01

    An important part of nuclear installation decommissioning is conditional release of materials. The mass of conditionally released materials can significantly influence radioactive waste management and capacity of radioactive waste repository. The influence on a total decommissioning cost is also not negligible. Several scenarios for reuse of conditionally released materials were developed within CONRELMAT project. Each scenario contains preparation phase, construction phase and operation phase. For each above mentioned phase is needed to determine radiological, material, organizational and other constraints for conditionally released materials reuse to not break exposure limits for staff and public. Constraints are determined on the basis of external and internal exposure calculations in created models for selected takes in particular scenarios phases. The paper presents a developed methodology for determination of part of above mentioned constraints concerning external exposure of staff or public. Values of staff external exposure are also presented in paper to ensure that staff or public exposure does not break the limits. The methodology comprises a proposal of following constraints: radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, specific deployment of conditionally released materials eventually shielding materials, staff and public during the scenario's phases, organizational measures concerning time of staff's or public's stay in the vicinity of conditionally released materials for individual performed scenarios and nuclide vectors. The paper further describes VISIPLAN 3D ALARA calculation planning software tool used for calculation of staff's and public's external exposure for individual scenarios. Several other parallel papers proposed for HND2012 are presenting selected details of the project.(author).

  13. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, G

    1964-10-15

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1{mu}g/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 {mu}g/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5{mu}g were determined with an analytical error of less than 5 % and Sr{sub q}uantities greater than 10 {mu}g with an error of less than 3 %.

  14. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    International Nuclear Information System (INIS)

    Joensson, G.

    1964-10-01

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1μg/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 μg/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5μg were determined with an analytical error of less than 5 % and Sr q uantities greater than 10 μg with an error of less than 3 %

  15. EXPERIMENTAL DETERMINATION OF JUNG MODULE FOR POLYMER MATERIALS

    Directory of Open Access Journals (Sweden)

    S. N. Savin

    2016-04-01

    Full Text Available In the article the method of calculation-experimental determination of the Jung module is offered for standards from materials of different types in form plates long from 40 to 200 mm, width from 5 to 50 mm and in thick 0,5 to 20 mm. For measuring the experimental setting, consisting of hard steel frame was used, set of loads to 4 kg and horizontal microscope. Solution of task of calculation of deformations and tensions in the loaded cantilever plate the finite elements method is offered. For verification of exactness of measurings standards were used from pure metals: aluminium, zinc, copper, and, also, polymethylmethacrylate. For all control standards the certain is experimental value of the Jung module at the small and middle loadings exactly corresponds reference data. For the estimation of influence of contents of powder phisico-mechanical properties of polymeric composites the values of the module were certain Jung module for an epoxypolymers and epoxycomposites with a 50% filling with powder of nickel. It is rotined that conduct 50% metallic contents promotes inflexibility of material more than in 2 times. The offered method does not require the strict sizes of standards, that comfortably for determination of the Jung module of experimental materials, above all things oriented polymeric composites.

  16. Fluorine determinations in biological materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Demiralp, R.; Guinn, V.P.; Becker, D.A.

    1992-01-01

    Exploratory studies were carried out at the University of California, Irvine on several freeze-dried human diet materials and on two freeze-dried vegetation materials - all prospective reference materials. The University of California, Irvine equipment includes a 250-kW TRIGA Mark 1 reactor, 2.5 x 10 12 n/cm 2 ·s thermal flux, 3-s sample transfer time, and a typical 18% Ge(Li)/4,096-channel gamma-ray spectrometer with a detector resolution of 3.3 keV at 1,332 keV. In these exploratory studies, it was found that it was not feasible to measure fluorine with adequate precision or accuracy at fluorine concentrations much less than ∼100 ppm. These initial studies, however, defined the magnitudes of the various difficulties. One good outcome of these studies was the demonstration that the otherwise excellent Teflon-mill brittle-fracture method for homogenizing freeze-dried biological samples was not suitable if fluorine was to be determined. Abrasion of the Teflon increased the fluorine content of a human diet sample about sevenfold (compared with similar treatment of the same material in an all-titanium mill)

  17. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  18. Flux and fluence determination using the material scrapings approach

    International Nuclear Information System (INIS)

    Basha, H.S.; Manahan, M.P.

    1992-01-01

    The conventional approach to flux determination is to use high-purity dosimeters to characterize the neutron field. This paper presents an alternative approach called the scraping method. This method consists of taking scraping samples from an in-service component and using this material to measure the specific activity for various reactions. This approach enables the determination of the neutron flux and fluence incident on any component for which small chips of material can be safely obtained. It offers a capability for determining the neutron flux for components such as reactor internals without destructively removing them from service. The scrapings methodology was benchmarked by comparison with the results obtained using conventional dosimetry data from the San Onofre nuclear generation station Unit 2 (SONGS-2). Additionally, since the goal of any reactor physics analysis is to reduce uncertainty to the extent practical, it is important that the best available cross-section library be used. The fast flux calculated-to-experimental (C/E) ratios at the SONGS-297-deg in-vessel surveillance capsule and the REACTOR-X 90-deg ex-vessel dosimetry positions were studied for several cross-section libraries, including BIGLE-80, SAILOR, and ELXSIR. REACTOR-X is a pressurized water reactor power plant currently operating in the US

  19. Determination of sampling constants in NBS geochemical standard reference materials

    International Nuclear Information System (INIS)

    Filby, R.H.; Bragg, A.E.; Grimm, C.A.

    1986-01-01

    Recently Filby et al. showed that, for several elements, National Bureau of Standards (NBS) Fly Ash standard reference material (SRM) 1633a was a suitable reference material for microanalysis (sample weights 2 , and the mean sample weight, W vector, K/sub s/ = (S/sub s/%) 2 W vector, could not be determined from these data because it was not possible to quantitate other sources of error in the experimental variances. K/sub s/ values for certified elements in geochemical SRMs provide important homogeneity information for microanalysis. For mineralogically homogeneous SRMs (i.e., small K/sub s/ values for associated elements) such as the proposed clays, it is necessary to determine K/sub s/ by analysis of very small sample aliquots to maximize the subsampling variance relative to other sources of error. This source of error and the blank correction for the sample container can be eliminated by determining K/sub s/ from radionuclide activities of weighed subsamples of a preirradiated SRM

  20. Rapid quantification and sex determination of forensic evidence materials.

    Science.gov (United States)

    Andréasson, Hanna; Allen, Marie

    2003-11-01

    DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.

  1. Shear stiffness in nanolaminar Ti3SiC2 challenges ab initio calculations

    International Nuclear Information System (INIS)

    Kisi, E H; Zhang, J F; Kirstein, O; Riley, D P; Styles, M J; Paradowska, A M

    2010-01-01

    Nanolaminates such as the M n+1 AX n (MAX) phases are a material class with ab initio derived elasticity tensors published for over 250 compounds. We have for the first time experimentally determined the full elasticity tensor of the archetype MAX phase, Ti 3 SiC 2 , using polycrystalline samples and in situ neutron diffraction. The experimental elastic constants show extreme shear stiffness, with c 44 more than five times greater than expected for an isotropic material. Such shear stiffness is quite rare in hexagonal materials and strongly contradicts the predictions of all published MAX phase elastic constants derived from ab initio calculations. It is concluded that second order properties such as elastic moduli derived from ab initio calculations require careful experimental verification. The diffraction technique used currently provides the only method of verification for the elasticity tensor for the majority of new materials where single crystals are not available. (fast track communication)

  2. Determination of material irradiation parameters. Required accuracies and available methods

    International Nuclear Information System (INIS)

    Cerles, J.M.; Mas, P.

    1978-01-01

    In this paper, the author reports some main methods to determine the nuclear parameters of material irradiation in testing reactor (nuclear power, burn-up, fluxes, fluences, ...). The different methods (theoretical or experimental) are reviewed: neutronics measurements and calculations, gamma scanning, thermal balance, ... The required accuracies are reviewed: they are of 3-5% on flux, fluences, nuclear power, burn-up, conversion factor, ... These required accuracies are compared with the real accuracies available which are at the present time of order of 5-20% on these parameters

  3. Photometric determination of yttrium in zirconium-containing materials

    International Nuclear Information System (INIS)

    Barbina, T.M.; Polezhaev, Yu.M.

    1984-01-01

    Comparative evaluation of the effect of different ways of eliminating the zirconium interfering effect on the results of yttrium photometric determination with arsenazo 2 in artificial mixtures of Y 2 O 3 and ZrO 2 , containing 5 and 10 mol.% Y 2 O 3 , has been carried out. The effect of Zr is eliminated by means of its precipitation by ammonium solution in the form of hydroxide and using camouflaging with 25% sulfosalicylic acid. Both ways do not provide a correct enough result. The use of non-reagent thermohydrolytic Zr precipitation during the analysis of zirconium-containing materials permits to obtain correct and well-reproducible results

  4. Contributions of Hamstring Stiffness to Straight-Leg-Raise and Sit-and-Reach Test Scores.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Kimura, Noriko; Miyamoto-Mikami, Eri

    2018-02-01

    The passive straight-leg-raise (PSLR) and the sit-and-reach (SR) tests have been widely used to assess hamstring extensibility. However, it remains unclear to what extent hamstring stiffness (a measure of material properties) contributes to PSLR and SR test scores. Therefore, we aimed to clarify the relationship between hamstring stiffness and PSLR and SR scores using ultrasound shear wave elastography. Ninety-eight healthy subjects completed the study. Each subject completed PSLR testing, and classic and modified SR testing of the right leg. Muscle shear modulus of the biceps femoris, semitendinosus, and semimembranosus was quantified as an index of muscle stiffness. The relationships between shear modulus of each muscle and PSLR or SR scores were calculated using Pearson's product-moment correlation coefficients. Shear modulus of the semitendinosus and semimembranosus showed negative correlations with the two PSLR and two SR scores (absolute r value≤0.484). Shear modulus of the biceps femoris was significantly correlated with the PSLR score determined by the examiner and the modified SR score (absolute r value≤0.308). The present findings suggest that PSLR and SR test scores are strongly influenced by factors other than hamstring stiffness and therefore might not accurately evaluate hamstring stiffness. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Neutron activation determination of phosphorus in semiconductor materials

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Gil'bert, Eh.N.; Gol'dshtejn, M.M.; Yudelevich, I.G.; Yurchenko, V.K.

    1976-01-01

    The solvent extraction of molybdophosphoric acid (MPA) with benzene and dichloroethane solutions of dioctylsulphoxide has been studied. A neutron-activation method has been worked out of determining phosphorus in semiconductor silicon, high purity gallium, and homoepitaxial films of gallium arsenide. The method is based on separation of radiochemically pure phosphorus in the form of MPA by extraction with 0.2 M solution of dioctylsulphoxide in benzene and measurement of 32 P activity on a liquid scintillation spectrometer. The method makes it possible to determine phosphorus in the materials enumerated with a limit of detection of 1.9x10 -10 g and a relative standard deviation of not more than 0.05

  6. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Stiffness, resilience, compressibility

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Bogdan M. [Argonne National Laboratory, Advanced Photon Source (United States); Sage, J. Timothy, E-mail: jtsage@neu.edu [Northeastern University, Department of Physics and Center for Interdisciplinary Research on Complex Systems (United States)

    2016-12-15

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  8. Diffractometric method for determining the degree of crystallinity of materials

    Energy Technology Data Exchange (ETDEWEB)

    Chukhchin, D. G., E-mail: dimatsch@mail.ru; Malkov, A. V.; Tyshkunova, I. V.; Mayer, L. V.; Novozhilov, E. V. [Lomonosov Northen (Arctic) Federal University (Russian Federation)

    2016-05-15

    A new method for determining the degree of crystallinity of a material from X-ray diffraction data has been developed. The method is based on estimating the rate of change in function I = f(2θ) in the entire range of scattering angles. A calculation is performed using the ratio of the integral modulus of the first derivative of intensity with respect to angle 2θ to the integral area under the diffraction pattern curve. The method was tested on two substances with known amorphous and crystalline components. A linear relationship is revealed between the specified ratio of crystalline and amorphous parts and the calculated crystallinity index. The proposed method allows one to estimate impartially and compare the degree of crystallinity for samples of different nature.

  9. Problems in the determination of chromium in biological materials

    International Nuclear Information System (INIS)

    Behne, D.; Braetter, P.; Gessner, H.; Hube, G.; Mertz, W.; Roesick, U.

    1976-01-01

    The effects of sample preparation on the analysis of chromium in biological matter have been investigated using brewer's yeast as a test material. The apparent chromium content of the yeast as determined by flameless atomic absorption spectrometry was significantly higher after destruction of the organic matter with HNO 3 in a closed pressure vessel than after wet-ashing in open vessels and after direct introduction of the sample into the graphite furnace. The results obtained by neutron activation analysis without any sample preparation, which corresponded to the atomic absorption values after digestion in the pressure vessel, showed that considerable errors arise in the other methods of sample treatment. Chromium analysis of dried and ashed yeast suggest that losses of volatile chromium compounds may occur during heating. (orig.) [de

  10. The determination of technetium-99 in environmental materials

    International Nuclear Information System (INIS)

    Harvey, B.R.; Ibbett, R.D.; Williams, K.J.; Lovett, M.B.

    1991-01-01

    The Aquatic Environment Protection Division of the Directorate of Fisheries Research (DFR), Lowestoft carries out analyses, on a routine basis, for a considerable range of radionuclides in a wide variety of environmental materials. Technetium-99 is included in the list of radionuclides for which analysis is regularly carried out as part of the DFR monitoring programme. Its determination is inevitably somewhat labour-intensive and over the years the procedures used have changed to accommodate increasing demands for information on the environmental behaviour of the nuclide. Reliable analytical procedures for the radiochemical separation and assaying of 99 Tc are thus important. Radiometric and gravimetric analyses described in this publication have been developed over a substantial period of time and have given excellent results in international intercomparison exercises. (author)

  11. Gravimetric determination of carbon in uranium-plutonium carbide materials

    International Nuclear Information System (INIS)

    Kavanaugh, H.J.; Dahlby, J.W.; Lovell, A.P.

    1979-12-01

    A gravimetric method for determining carbon in uranium-plutonium carbide materials was developed to analyze six samples simultaneously. The samples are burned slowly in an oxygen atmosphere at approximately 900 0 C, and the gases generated are passed through Schuetze's oxidizing reagent (iodine pentoxide on silica gel) to assure quantitative oxidation of the CO to CO 2 . The CO 2 is collected on Ascarite and weighed. This method was tested using a tungsten carbide reference material (NBS-SRM-276) and a (U,Pu)C sample. For 42 analyses of the tungsten carbide, which has a certified carbon content of 6.09%, an average value of 6.09% was obtained with a standard deviation of 0.01 7 % or a relative standard deviation of 0.28%. For 17 analyses of the (U,Pu)C sample, an average carbon content of 4.97% was found with a standard deviation of 0.01 2 % or a relative standard deviation of 0.24%

  12. Determination of high-strength materials diamond grinding rational modes

    Science.gov (United States)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  13. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite

    Science.gov (United States)

    2015-04-27

    MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is...Henmi, C. and Kusachi, I. Monoclinic tobermorite from fuka, bitchu-cho, Okoyama Perfecture. Japan J. Min. Petr. Econ . Geol. (1989)84:374-379. [22...31] Liu, Y. et al. First principles study of the stability and mechanical properties of MC (M=Ti, V, Zr, Nb, Hf and Ta) compounds. Journal of Alloys and Compounds. (2014) 582:500-504. 10

  14. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  15. Elastin in large artery stiffness and hypertension

    Science.gov (United States)

    Wagenseil, Jessica E.; Mecham, Robert P.

    2012-01-01

    Large artery stiffness, as measured by pulse wave velocity (PWV), is correlated with high blood pressure and may be a causative factor in essential hypertension. The extracellular matrix components, specifically the mix of elastin and collagen in the vessel wall, determine the passive mechanical properties of the large arteries. Elastin is organized into elastic fibers in the wall during arterial development in a complex process that requires spatial and temporal coordination of numerous proteins. The elastic fibers last the lifetime of the organism, but are subject to proteolytic degradation and chemical alterations that change their mechanical properties. This review discusses how alterations in the amount, assembly, organization or chemical properties of the elastic fibers affect arterial stiffness and blood pressure. Strategies for encouraging or reversing alterations to the elastic fibers are addressed. Methods for determining the efficacy of these strategies, by measuring elastin amounts and arterial stiffness, are summarized. Therapies that have a direct effect on arterial stiffness through alterations to the elastic fibers in the wall may be an effective treatment for essential hypertension. PMID:22290157

  16. Limit cycles and stiffness control with variable stiffness actuators

    NARCIS (Netherlands)

    Carloni, Raffaella; Marconi, L.

    2012-01-01

    Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle

  17. Advanced damper with negative structural stiffness elements

    International Nuclear Information System (INIS)

    Dong, Liang; Lakes, Roderic S

    2012-01-01

    Negative stiffness is understood as the occurrence of a force in the same direction as the imposed deformation. Structures and composites with negative stiffness elements enable a large amplification in damping. It is shown in this work, using an experimental approach, that when a flexible flat-ends column is aligned in a post-buckled condition, a negative structural stiffness and large hysteresis (i.e., high damping) can be achieved provided the ends of the column undergo tilting from flat to edge contact. Stable axial dampers with initial modulus equivalent to that of the parent material and with enhanced damping were designed and built using constrained negative stiffness effects entailed by post-buckled press-fit flat-ends columns. Effective damping of approximately 1 and an effective stiffness–damping product of approximately 1.3 GPa were achieved in such stable axial dampers consisting of PMMA columns. This is a considerable improvement for this figure of merit (i.e., the stiffness–damping product), which generally cannot exceed 0.6 GPa for currently used damping layers. (paper)

  18. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  19. Development of procedures for calculating stiffness and damping properties of elastomers. Part 3: The effects of temperature, dissipation level and geometry

    Science.gov (United States)

    Smalley, A. J.; Tessarzik, J. M.

    1975-01-01

    Effects of temperature, dissipation level and geometry on the dynamic behavior of elastomer elements were investigated. Force displacement relationships in elastomer elements and the effects of frequency, geometry and temperature upon these relationships are reviewed. Based on this review, methods of reducing stiffness and damping data for shear and compression test elements to material properties (storage and loss moduli) and empirical geometric factors are developed and tested using previously generated experimental data. A prediction method which accounts for large amplitudes of deformation is developed on the assumption that their effect is to increase temperature through the elastomers, thereby modifying the local material properties. Various simple methods of predicting the radial stiffness of ring cartridge elements are developed and compared. Material properties were determined from the shear specimen tests as a function of frequency and temperature. Using these material properties, numerical predictions of stiffness and damping for cartridge and compression specimens were made and compared with corresponding measurements at different temperatures, with encouraging results.

  20. Efficient Method for Calculating the Composite Stiffness of Parabolic Leaf Springs with Variable Stiffness for Vehicle Rear Suspension

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi

    2016-01-01

    Full Text Available The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf springs with variable stiffness is built, and a composite stiffness calculation method for the model is derived using displacement superposition and material deformation continuity. The proposed method can be applied on triple-leaf and multileaf springs. The accuracy of the calculation method is verified by the rig test and FEA analysis. Finally, several parameters that should be considered during the design process of springs are discussed. The rig test and FEA analytical results indicate that the calculated results are acceptable. The proposed method can provide guidance for the design and production of parabolic leaf springs with variable stiffness. The composite stiffness of the leaf spring can be calculated quickly and accurately when the basic parameters of the leaf spring are known.

  1. Effects of mechanical properties and geometric conditions on stiffness of Hyperboloid Shallow Shell

    Directory of Open Access Journals (Sweden)

    Zhao Lihong

    2015-01-01

    Full Text Available The experiment models based on the hyperboloid shallow shells that represent automobile panel's surface features are established. The effects of material properties and geometric conditions condition on the stiffness of hyperboloid shallow shell are investigated experimentally. The influences of panel thickness and geometric conditions on stiffness are very obvious. Stiffness increases with increasing of the panel thickness, and stiffness doubled as increasing in thickness with 0.1 mm. The effect of thickness on stiffness is far greater than that of blank holding force. The greater the arc height of punch, the greater the stiffness. And stiffness increases nearly by five times with arc height of punch is from 3mm to 9mm. The effect of arc height of punch on stiffness is far greater than that of materials mechanical properties. The stiffness is varied with different panel material properties by the same forming and stiffness test conditions. The decrease of yield strength is beneficial to the panel stiffness. The appropriate choice of materials and forming process condition is important in meeting necessary requirements for the energy-saving, lightweight and reducing wind resistance design in automotive industry.

  2. Stiff modes in spinvalve simulations with OOMMF

    Energy Technology Data Exchange (ETDEWEB)

    Mitropoulos, Spyridon [Department of Computer and Informatics Engineering, TEI of Eastern Macedonia and Thrace, Kavala (Greece); Tsiantos, Vassilis, E-mail: tsianto@teikav.edu.gr [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Ovaliadis, Kyriakos [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Kechrakos, Dimitris [Department of Education, ASPETE, Heraklion, Athens (Greece); Donahue, Michael [Applied and Computational Mathematics Division, NIST, Gaithersburg, MD (United States)

    2016-04-01

    Micromagnetic simulations are an important tool for the investigation of magnetic materials. Micromagnetic software uses various techniques to solve differential equations, partial or ordinary, involved in the dynamic simulations. Euler, Runge-Kutta, Adams, and BDF (Backward Differentiation Formulae) are some of the methods used for this purpose. In this paper, spinvalve simulations are investigated. Evidence is presented showing that these systems have stiff modes, and that implicit methods such as BDF are more effective than explicit methods in such cases.

  3. Nondestructive NMR technique for moisture determination in radioactive materials

    International Nuclear Information System (INIS)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-01-01

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ( 3 H, 3 He, 239 Pu, 241 Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO 2 and UO 2 systems. The total moisture was quantified by means of 1 H NMR detection of H 2 O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96

  4. Criteria for Determination of Material Control and Accountability System Effectiveness

    International Nuclear Information System (INIS)

    John Wright

    2008-01-01

    The Nevada Test Site (NTS) is a test bed for implementation of the Safeguards First Principles Initiative (SFPI), a risk-based approach to Material Control and Accountability (MC and A) requirements. The Comprehensive Assessment of Safeguards Strategies (COMPASS) model is used to determine the effectiveness of MC and A systems under SFPI. Under this model, MC and A is divided into nine primary elements. Each element is divided into sub-elements. Then each sub-element is assigned two values, effectiveness and contribution, that are used to calculate the rating. Effectiveness is a measure of subelement implementation and how well it meets requirements. Contribution is a relative measure of the importance, and functions as a weighting factor. The COMPASS model provides the methodology for calculation of sub-element and element ratings, but not the actual criteria. Each site must develop its own criteria. For the rating to be meaningful, the effectiveness criteria must be objective and based on explicit, measurable criteria. Contribution (weights) must reflect the importance within the MC and A program. This paper details the NTS approach to system effectiveness and contribution values, and will cover the following: the basis for the ratings, an explanation of the contribution 'weights', and the objective, performance based effectiveness criteria. Finally, the evaluation process will be described

  5. Topology optimization under stochastic stiffness

    Science.gov (United States)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations

  6. From measurements errors to a new strain gauge design for composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Salviato, Marco; Gili, Jacopo

    2015-01-01

    Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff method...

  7. The determinants of materiality disclosure in integrated corporate reporting

    OpenAIRE

    Chiara Mio; Marco Fasan

    2014-01-01

    The aim of this study is to test what drives the way in which companies disclose materiality in their Integrated Reports (IRs). Materiality is one of the main themes (and challenges) in the IR discourse, and it will probably play a central role in the actual success of the International Integrated Reporting Council framework. Companies managing to actually implement the materiality principle, will produce IRs which are concise and able to provide relevant information on the future performance...

  8. Determination Of Work Indexes Of Basic Ceramic Raw Materials

    OpenAIRE

    İPEK, Halil; UÇBAŞ, Yaşar

    2017-01-01

    In this study, the grindability of basic ceramic raw materials have been investigated by using Bond grindability test and the results have been compared. Bond grindability test results show that work indexes of raw materials are dependent on their hardnesses.

  9. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    Science.gov (United States)

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  10. Determination of the fibre orientation distribution of a mineral wool network and prediction of its transverse stiffness using X-ray tomography

    DEFF Research Database (Denmark)

    Chapelle, Lucie; Lyckegaard, Allan; Kusano, Yukihiro

    2018-01-01

    A method to determine the orientation and diameter distributions of mineral wool fibre networks using X-ray tomography and image analysis is presented. The method is applied to two different types of mineral wool: glass wool and stone wool. The orientation information is obtained from...... the computation of the structure tensor, and the diameter is estimated by applying a greyscale granulometry. The results of the image analysis indicate the two types of fibres are distributed in a 2D planar arrangement with the glass wool fibres showing a higher degree of planarity than the stone wool fibres...

  11. Determination of dose rates from natural radionuclides in dental materials

    International Nuclear Information System (INIS)

    Veronese, I.; Guzzi, G.; Giussani, A.; Cantone, M.C.; Ripamonti, D.

    2006-01-01

    Different types of materials used for dental prosthetics restoration, including feldspathic ceramics, glass ceramics, zirconia-based ceramics, alumina-based ceramics, and resin-based materials, were investigated with regard to content of natural radionuclides by means of thermoluminescence beta dosimetry and gamma spectrometry. The gross beta dose rate from feldspathic and glass ceramics was about ten times higher than the background measurement, whereas resin-based materials generated negligible beta dose rate, similarly to natural tooth samples. The specific activity of uranium and thorium was significantly below the levels found in the period when addition of uranium to dental porcelain materials was still permitted. The high-beta dose levels observed in feldspathic porcelains and glass ceramics are thus mainly ascribable to 4 K, naturally present in these specimens. Although the measured values are below the recommended limits, results indicate that patients with prostheses are subject to higher dose levels than other members of the population. Alumina- and zirconia-based ceramics might be a promising alternative, as they have generally lower beta dose rates than the conventional porcelain materials. However, the dosimetry results, which imply the presence of inhomogeneously distributed clusters of radionuclides in the sample matrix, and the still unsuitable structural properties call for further optimization of these materials

  12. Determining the concrete stiffness matrix through ultrasonic testing Determinação da matriz de rigidez do concreto utilizando ultrassom

    Directory of Open Access Journals (Sweden)

    Raquel Gonçalves

    2011-06-01

    Full Text Available The determination of the modulus tangent (Eci and of the modulus secant (Ecs of the concrete can be done using compression test but, to be simpler, it is used relations with characteristic strength (f ck. Relations are also used to determine the transversal modulus (Gc and, in the case of the Poisson's ratio (ν, a fixed value 0.20 is established. The objective of this research was to evaluate the use of the ultrasonic propagation waves to determine these properties. For the tests were used specimens with f ck varying from 10 to 35 MPa. For the ultrasonic tests were used cylindrical and cubic specimens. The modulus of deformation obtained by ultrasound was statistically equivalent to the obtained by compression tests. The results of modules obtained using the relations with f ck was far away from those obtained by ultrasound or by compression tests. The Poisson's ratio obtained by ultrasound was superior to the fixed value. We can conclude that the concrete characterization by ultrasound is consistent and, to this characterization the cylindrical specimen, normally used to determine f ck, can be used.A determinação dos módulos de deformação tangente (Eci e secante (Ecs do concreto pode ser realizada por meio do ensaio de compressão, mas, por facilidade, utilizam-se relações com a resistência característica (f ck. Relações são também utilizadas na determinação do módulo de elasticidade transversal (Gc e, no caso do coeficiente de Poisson (ν, um valor fixo de 0,20 é adotado. O objetivo do trabalho foi avaliar o uso de propagação de ondas de ultrassom na determinação dessas propriedades. Para os ensaios, foram utilizados corpos de prova com f ck variando de 10 a 35 MPa. No caso do ultrassom, os corpos de prova foram cilíndricos e cúbicos. Os valores de módulo de deformação obtidos por ultrassom foram estatisticamente equivalentes aos obtidos por compressão e, no caso do ultrassom, os corpos de prova cúbicos e cil

  13. Dynamic stiffness of suction caissons - torsion, sliding and rocking

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been carried out for different combinations of the skirt length and the Poisson's ratio of the subsoil. Finally, the high-frequency impedance has been determined for future use in lumped-parameter models of wind turbine foundations in aero-elastic codes. (au)

  14. Longitudinal Changes in Segmental Aortic Stiffness Determined by Cardiac Magnetic Resonance in Children and Young Adults With Connective Tissue Disorders (the Marfan, Loeys-Dietz, and Ehlers-Danlos Syndromes, and Nonspecific Connective Tissue Disorders).

    Science.gov (United States)

    Merlocco, Anthony; Lacro, Ronald V; Gauvreau, Kimberlee; Rabideau, Nicole; Singh, Michael N; Prakash, Ashwin

    2017-10-01

    Aortic stiffness measured by cardiac magnetic resonance (CMR) in connective tissue disorder (CTD) patients has been previously shown to be abnormal and to be associated with adverse aortic outcomes. The rate of increase in aortic stiffness with normal aging has been previously described. However, longitudinal changes in aortic stiffness have not been characterized in CTD patients. We examined longitudinal changes in CMR-derived aortic stiffness in children and young adults with CTDs. A retrospective analysis of 50 children and young adults (median age, 20 years; range, 0.2 to 49; 40% age, whereas the β stiffness index increased at all aortic segments. The average rates of decline in distensibility (x10 -3  mm Hg -1 per 10-year increase in age) were 0.7, 1.3, and 1 at the AoR, ascending aorta, and descending aorta, respectively. The rates of decline in distensibility were not associated with the rates of AoR dilation or surgical AoR replacement. In conclusion, on serial CMR measurements in children and young adults with CTDs, aortic stiffness progressively increased with age, with rates of change only slightly higher than those previously reported in healthy adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Electrofracturing test system and method of determining material characteristics of electrofractured material samples

    Science.gov (United States)

    Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom; Su, Jiann-Cherng; Williamson, Kenneth Martin; Broome, Scott Thomas; Gardner, William Payton

    2017-08-01

    A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.

  16. [Determination of glutamic acid in biological material by capillary electrophoresis].

    Science.gov (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  17. MINIMUM BRACING STIFFNESS FOR MULTI-COLUMN SYSTEMS: THEORY

    OpenAIRE

    ARISTIZÁBAL-OCHOA, J. DARÍO

    2011-01-01

    A method that determines the minimum bracing stiffness required by a multi-column elastic system to achieve non-sway buckling conditions is proposed. Equations that evaluate the required minimum stiffness of the lateral and torsional bracings and the corresponding “braced" critical buckling load for each column of the story level are derived using the modified stability functions. The following effects are included: 1) the types of end connections (rigid, semirigid, and simple); 2) the bluepr...

  18. Determination of polybrominated diphenyl ethers in environmental standard reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Heather M.; Schantz, Michele M.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States); Keller, Jennifer M.; Kucklick, John R. [National Institute of Standards and Technology, Analytical Chemistry Division, Hollings Marine Laboratory, Charleston, SC (United States); Leigh, Stefan D. [National Institute of Standards and Technology, Statistical Engineering Division, Gaithersburg, MD (United States)

    2007-04-15

    Standard reference materials (SRMs) are valuable tools in developing and validating analytical methods to improve quality assurance standards. The National Institute of Standards and Technology (NIST) has a long history of providing environmental SRMs with certified concentrations of organic and inorganic contaminants. Here we report on new certified and reference concentrations for 27 polybrominated diphenyl ether (PBDE) congeners in seven different SRMs: cod-liver oil, whale blubber, fish tissue (two materials), mussel tissue and sediment (two materials). PBDEs were measured in these SRMs, with the lowest concentrations measured in mussel tissue (SRM 1974b) and the highest in sediment collected from the New York/New Jersey Waterway (SRM 1944). Comparing the relative PBDE congener concentrations within the samples, we found the biota SRMs contained primarily tetrabrominated and pentabrominated diphenyl ethers, whereas the sediment SRMs contained primarily decabromodiphenyl ether (BDE 209). The cod-liver oil (SRM 1588b) and whale blubber (SRM 1945) materials were also found to contain measurable concentrations of two methoxylated PBDEs (MeO-BDEs). Certified and reference concentrations are reported for 12 PBDE congeners measured in the biota SRMs and reference values are available for two MeO-BDEs. Results from a sediment interlaboratory comparison PBDE exercise are available for the two sediment SRMs (1941b and 1944). (orig.)

  19. Water retention properties of stiff silt

    Directory of Open Access Journals (Sweden)

    Barbara Likar

    2017-06-01

    Full Text Available Recent research into the behaviour of soils has shown that it is in fact much more complex than can be described by the mechanics of saturated soils. Nowadays the trend of investigations has shifted towards the unsaturated state. Despite the signifiant progress that has been made so far, there are still a lot of unanswered questions related to the behaviour of unsaturated soils. For this reason, in the fild of geotechnics some new concepts are developed, which include the study of soil suction. Most research into soil suction has involved clayey and silty material, whereas up until recently no data have been available about measurements in very stiff preconsolidated sandy silt. Very stiff preconsolidated sandy silt is typical of the Krško Basin, where it is planned that some very important geotechnical structures will be built, so that knowledge about the behaviour of such soils at increased or decreased water content is essential. Several different methods can be used for soil suction measurements. In the paper the results of measurements carried out on very stiff preconsolidated sandy silt in a Bishop - Wesley double-walled triaxial cell are presented and compared with the results of soil suction measurements performed by means of a potentiometer (WP4C. All the measurement results were evaluated taking into account already known results given in the literature, using the three most commonly used mathematical models. Until now a lot of papers dealing with suction measurements in normal consolidated and preconsolidated clay have been published. Measurements on very stiff preconsolidated sandy silt, as presented in this paper were not supported before.

  20. Survey of currently available reference materials for use in connection with the determination of trace elements in biological materials

    International Nuclear Information System (INIS)

    Parr, R.M.

    1983-09-01

    Elemental analysis of biological materials is at present the subject of intensive study by many different research groups throughout the world, in view of the importance of these trace elements in health and medical diagnosis. IAEA and other organizations are now making a variety of suitable reference materials available for use in connection with the determination of trace elements in biological materials. To help analysts in making a selection from among these various materials, the present report provides a brief survey of data for all such biological reference materials known to the author. These data are compiled by the author from January 1982 to June 1983

  1. Biomechanical constraints on the feedforward regulation of endpoint stiffness.

    Science.gov (United States)

    Hu, Xiao; Murray, Wendy M; Perreault, Eric J

    2012-10-01

    Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.

  2. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  3. Determination of Natural Radioactivity in Building Materials with Gamma Spectrometry

    International Nuclear Information System (INIS)

    Turki, Faten

    2010-01-01

    In the setting of this work, the natural radioactivity of building materials used in Tunisia has been measured by gamma spectrometry. These products have been ground and dried at 100 degree for 12 h. Then, they have been homogenized, weighed and finally conditioned during 23 days in order to reach the radioactive equilibrium. The measures' results proved that all building materials studied except bauxite and the ESC clay, possess doses lower than the acceptable limit (1 mSv.an-1). However, the possibility of reinforcement of the natural radioactivity in some industry of building can exist. To insure that the cement, the most used in the world, don't present any radiological risk on the workers' health, a survey has been made in the factory - les Ciments de Bizerte - about its manufacture's process. The results of this survey showed that this product can be considered like a healthy product.

  4. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  5. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    , which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... and reliability of the method, and argue for the use of the method in the clinical practice. The device is able to distinguish between passive muscle stiffness and reflex-mediated stiffness in subjects with CP. It shows good high intrarater and interrater reliability in evaluation of passive muscle stiffness...... to measure muscle stiffness, and distinguish between passive muscle stiffness and reflex-mediated stiffness. Furthermore, it is a reliable device to measure changes in passive ROM. Treatment of passive muscle stiffness should be directed towards intense training, comprising many repetitions with a functional...

  6. Thorium determination in water and biological materials by fission track

    International Nuclear Information System (INIS)

    Melo Ferreira, A.C. de.

    1989-01-01

    As a segment of a research programme on the study of bioaccumulation of radionuclides, in animals and vegetables from Morro do Ferro, Pocos de Caldas, MG, a fission track method for the determination of low levels of thorium in environmental samples was developed as an alternative for alpha spectroscopy. The study was carried out in early alpha spectroscopy samples, containing high levels of 228 Th activity, which makes difficult the 232 Th determination. A dry way method for thorium evaluation was developed. Pieces of membrane filters, containing La F 3 (Th), coupled to Makrofol detectors, were irradiated in the core of a research reactor, IEA-R1 (IPEN). (author)

  7. Instrumentation for thermal diffusivity determination of sintered materials

    International Nuclear Information System (INIS)

    Turquetti Filho, R.

    1990-01-01

    A new procedure to measure the sinterized materials thermal diffusivity, using the heat pulse method was developed in this work. The experimental data were performed at room temperature with UO sub(2), ThO sub(2), and Al sub(2)O sub(3) samples with 94%, 95%, and 96% of theoretical densities, respectively. Nondimensional root mean square deviation for theoretical function fitting was found to be on the order, of 10 sup(-3). The total error associated with the measurements for thermal diffusivity was ± 5%. (author)

  8. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog

    2003-01-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species...... of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release...

  9. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    Science.gov (United States)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  10. Finding trap stiffness of optical tweezers using digital filters.

    Science.gov (United States)

    Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G

    2018-02-01

    Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.

  11. Cryotherapy induces an increase in muscle stiffness.

    Science.gov (United States)

    Point, M; Guilhem, G; Hug, F; Nordez, A; Frey, A; Lacourpaille, L

    2018-01-01

    Although cold application (ie, cryotherapy) may be useful to treat sports injuries and to prevent muscle damage, it is unclear whether it has adverse effects on muscle mechanical properties. This study aimed to determine the effect of air-pulsed cryotherapy on muscle stiffness estimated using ultrasound shear wave elastography. Myoelectrical activity, ankle passive torque, shear modulus (an index of stiffness), and muscle temperature of the gastrocnemius medialis were measured before, during an air-pulsed cryotherapy (-30°C) treatment of four sets of 4 minutes with 1-minute recovery in between and during a 40 minutes postcryotherapy period. Muscle temperature significantly decreased after the second set of treatment (10 minutes: 32.3±2.5°C; Pcryotherapy induces an increase in muscle stiffness. This acute change in muscle mechanical properties may lower the amount of stretch that the muscle tissue is able to sustain without subsequent injury. This should be considered when using cryotherapy in athletic practice. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Uranium determination in phosphatized materials by drop electrode polarography

    International Nuclear Information System (INIS)

    Sequeira, F.M.C. de; Abrao, A.

    1987-01-01

    An uranium determination procedure in phosphate rocks and crude phosphoric acid is outlined polarography is used. Uranium is previously separedted by extraction with tri-n-byte phosphate 10%-petroleum ether using aluminium nitrate as salting out agent. (M.L.J.) [pt

  13. RNAA determination of As, Cd and Zn in biological materials

    International Nuclear Information System (INIS)

    Taskaev, E.; Penev, I.; Kinova, L.

    1985-01-01

    In connection with the IAEA project 3739/RB the elements Hg, As, Cd and Zn in human spleen, kidney, heart, liver, SRM Bovine Liver 1577a and Bowen's Kale. The consecutive extraction have been chosen as the most rational approach determining these elements in a single specimen. Aiming at getting reliable results well established systems were used (ditizone to separate Hg, Cu and DEDTC to extract As, Cd and Zn). Special attention was paid to the accuracy of the determination. Monitoring, optimization and cooling time and control of chemical yield were carried out in each case. The samples were irradiated in the vertical channel of the IRT-2000 reactor in Sofia, in thermal neutron flux of about 5.10 12 n.cm -2 .s -1 for 24 h. Iron monitor was used and cooling time varied from 20 h to 30 h

  14. Unified instrumentation for determining fissile and radioactive materials

    International Nuclear Information System (INIS)

    Voronov, V.L.; Gorokhov, V.A.; Drozdov, V.Yu.; Morozov, O.S.; Novikov, V.M.

    1999-01-01

    The instrumentation is aimed to equip various facilities: nuclear facilities (including radioactive plant and nuclear material storages), border check stations at the customs, transport junctions, administrative buildings and other facilities. The monitor under design are based on the gamma-spectrometric method of radiation monitoring which consists in recording and analyzing characteristics of X-ray and gamma-sources power spectra within the range of 40-3000 keV at the background level whose value is measured and taken into account during the signal analysis. The designed universal set of instrumentation based on common technical solutions and metrological support plus its small dimensions allows to install it actually in any check point without any significant changes in the room lay-out to facilitate its maintenance [ru

  15. Determination of radioactivity levels from some Egyptian building materials

    International Nuclear Information System (INIS)

    Abd EL Sattar, M.; Morsy, A.A.

    2007-01-01

    Our world is radioactive and has been, since it was created. Over 60 radionuclides (radioactive elements) can be found in nature. Radon is naturally occurring radioactive gas, that is produced by the radioactive decay of radium. Breathing high concentration of radon can cause lung cancer. A set of experiments were carried out using Cr-39 as solid state nuclear track detectors with the optimum etching conditions, 6.25 N Na OH at 70 o C for 8 hours. The radon-222 activity in this survey was found to be in the range of 0.303 kBq/m 3 to 5.04 KBq/m 3 for different building materials in Egypt

  16. Determining the Radiation Damage Effect on Glovebox Glove Material

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Balkey, J.J.; Andrade, R.M.

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate 239 Pu and 238 Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  17. Determining the Radiation Damage Effect on Glovebox Glove Material.

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, M. E. (Michael E.); Balkey, J. J. (James J.); Andrade, R.M. (Rose M.)

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate {sup 239}Pu and {sup 238}Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  18. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The internationally controlled materials determined according to the law for nuclear source materials, etc. are the following: nuclear source materials, nuclear fuel materials, moderating materials, facilities including reactors, etc. sold, transferred, etc. to Japan according to the agreements for peaceful uses of atomic energy between Japan, and the United States, the United Kingdom, Canada, Australia and France by the respective governments and those organs under them; nuclear fuel materials resulting from usage of the above sold and transferred materials, facilities; nuclear fuel materials sold to Japan according to agreements set by the International Atomic Energy Agency; nuclear fuel materials involved with the safeguards in nuclear weapons non-proliferation treaty with IAEA. (Mori, K.)

  19. Determination of the reduced matrix of the piezoelectric, dielectric, and elastic material constants for a piezoelectric material with C∞ symmetry.

    Science.gov (United States)

    Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K

    2011-09-01

    We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.

  20. Marx, Materialism and the Brain: Determination in the Last Instance?

    Directory of Open Access Journals (Sweden)

    Joss Hands

    2018-05-01

    Full Text Available It is well acknowledged that there is not one but many Marxes, and one area where this has been most evident is in the question of technological and economic determinism. This article traces some key moments in this debate and attempts to locate their most recent iteration in disagreements over the place of the human brain in both historical agency and value creation in so called ‘cognitive’ or ‘post-Fordist’ capitalism. Of significant interest in the current configuration – or rather composition – of capital is the place of the digitisation of the labour process and its relation to, and integration with, human cognition and volition. Arguments over the attention economy and the power of post-Fordist capitalism to distract and direct is a significant variation of the question of ideology and the latest variation of the base/superstructure debate. This article will unpack the aforesaid issues to offer an articulated perspective in order to make the argument that taking a balanced view of determination will allow us to acknowledge that – drawing on the argument of determination in the last instance – we can hold both of these ‘Marxes’ to be simultaneously valid. Here, a revisiting of Marx’s concept of General Intellect will be undertaken, wherein the productive capacity of living labour is employed in both active agency and the capture of value, in which the plasticity of the living brain becomes the pivot point for both exploitation by, and resistance to, capital.

  1. Determination of methylmercury salts in various kinds of biological material

    Energy Technology Data Exchange (ETDEWEB)

    Westoeoe, G

    1968-01-01

    The cysteine acetate modification of the method for determining methylmercury salts in foods, which was useful for analysis of fish, egg white, and meat, was not efficient when applied to egg yolk with low methylmercury content, liver, sediments in aquaria, or sludge. Therefore some modifications of the procedure have been investigated. A combination of the mercuric chloride and cysteine acetate procedures gave good results for sediments in aquaria and sludge and could also be used for, e.g., fish, egg white, bile, kidney, blood, meat, and moss. Precipitation of the proteins with molybdic acid at the first extraction improved the results for liver but not for egg yolk. For egg yolk an increase of the concentration of the cysteine acetate solution from 1 to 10% gave 90% recovery of added methylmercury, repeated extractions 100% recovery. 5 references, 2 tables.

  2. Simplified Qualitative Discrete Numerical Model to Determine Cracking Pattern in Brittle Materials by Means of Finite Element Method

    OpenAIRE

    Ochoa-Avendaño, J.; Garzon-Alvarado, D. A.; Linero, Dorian L.; Cerrolaza, M.

    2017-01-01

    This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending...

  3. Potential Relationship between Passive Plantar Flexor Stiffness and Running Performance.

    Science.gov (United States)

    Ueno, Hiromasa; Suga, Tadashi; Takao, Kenji; Tanaka, Takahiro; Misaki, Jun; Miyake, Yuto; Nagano, Akinori; Isaka, Tadao

    2018-02-01

    The present study aimed to determine the relationship between passive stiffness of the plantar flexors and running performance in endurance runners. Forty-eight well-trained male endurance runners and 24 untrained male control subjects participated in this study. Plantar flexor stiffness during passive dorsiflexion was calculated from the slope of the linear portion of the torque-angle curve. Of the endurance runners included in the present study, running economy in 28 endurance runners was evaluated by measuring energy cost during three 4-min trials (14, 16, and 18 km/h) of submaximal treadmill running. Passive stiffness of the plantar flexors was significantly higher in endurance runners than in untrained subjects. Moreover, passive plantar flexor stiffness in endurance runners was significantly correlated with a personal best 5000-m race time. Furthermore, passive plantar flexor stiffness in endurance runners was significantly correlated with energy cost during submaximal running at 16 km/h and 18 km/h, and a trend towards such significance was observed at 14 km/h. The present findings suggest that stiffer plantar flexors may help achieve better running performance, with greater running economy, in endurance runners. Therefore, in the clinical setting, passive stiffness of the plantar flexors may be a potential parameter for assessing running performance. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Sex Differences in Limb and Joint Stiffness in Recreational Runners

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s-1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m-1 and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad-1 were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes.

  5. Arterial Stiffness and its Correlation with the Extent of Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Hourak Poorzand

    2018-06-01

    Full Text Available Introduction: Coronary artery disease secondary to atherosclerosis is the most common cause of mortality. Coronary angiography is the most precise method for determining the extent of disease in the coronary vascular bed. Arterial stiffness has been proposed as a marker of atherosclerosis in some studies. One of the noninvasive methods for the determination of arterial stiffness is Doppler echocardiography. In this study, we aimed to find the correlation between arterial stiffness as measured by echocardiography and the extent of coronary artery disease as evaluated through angiography. Materials and Methods: Aortic pulse wave velocity (APWV was measured by using the Doppler method in 70 patients, who were candidates for coronary angiography. The extent of coronary artery disease was determined quantitatively in terms of Friesinger index and semi-quantitatively as the number of vessels with stenosis of over 50%. Then, the correlation between arterial stiffness and these factors was evaluated. Results: The mean APWV was 9.1±5 m/s. There was a direct relationship between APWV and Friesinger index, which was not statistically significant (P=0.67. The mean APWV for patients with one-vessel disease was 4.4±1.8 m/s, while it was 9.9±3.6 m/s in patients with two and 7.9±4 m/s in three-vessel disease which did not show statistically significant difference. Conclusion: Doppler echocardiography to measure APWV was not considered as a promising tool to predict the extent of coronary artery disease.

  6. Determination of fluorine in biological materials: reaction paper.

    Science.gov (United States)

    Ophaug, R

    1994-06-01

    Although the fluorine in human tissues may exist in both inorganic and organic (covalently bound) forms, the inorganic fraction is clearly the most relevant for assessing human exposure to, and utilization of, environmental fluoride. There is now general agreement that the inorganic fraction of total tissue fluorine can be accurately determined by a variety of analytical techniques. One of the basic questions considered at this workshop is whether the analysis of a specific tissue or body fluid can provide an estimate of how much of the fluoride to which an individual is exposed actually enters and accumulates in the body. The analysis of hair and nails has been used as an indicator of exposure and utilization for several trace elements, including fluoride. Due to methodological uncertainties regarding sampling and pre-analysis treatment, however, it is presently not possible clearly to distinguish fluoride which is incorporated into hair and nails during formation (endogenous) from that which becomes associated with the tissues following exposure to the environment (exogenous). Consequently, although the fluoride content of hair and nails is clearly increased by environmental exposure to fluoride, the conclusion that these tissues are suitable indicators of fluoride utilization and accumulation in the body is premature.

  7. CONSTRUCTIVE ASPECTS INFLUENCE ON STIFFNESS OF DIAPHRAGM WALLS IN FRAME CONSTRUCTIONS WITH (LIGHT STEEL THIN –WALLED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. V. Savytskyi

    2010-10-01

    Full Text Available The dependences of influence of structural features of diaphragms of lightweight steel framing braced wall structures on their stiffness are determined. On the basis of dependences the procedure for estimation of stiffness of a diaphragm of any configuration that allows making decisions for maintenance of building stiffness is developed.

  8. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  9. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks.

    Science.gov (United States)

    Wan, Haixiao; Shen, Jianxiang; Gao, Naishen; Liu, Jun; Gao, Yangyang; Zhang, Liqun

    2018-03-28

    Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

  10. Summarizing description of the stereological equations to determine the stereometry factors of material microstructures

    International Nuclear Information System (INIS)

    Ondracek, G.

    1975-01-01

    The microstructure of a material can be determined quantitatively with the help of stereometric methods and described by stereometric factors. These are phase concentraction factor, form factor and orientation factor for the multiphase material. The determination of these parameters from stereometric measurements is discussed. (GSCH/LH) [de

  11. Hydration Status Is Associated with Aortic Stiffness, but Not with Peripheral Arterial Stiffness, in Chronically Hemodialysed Patients

    Directory of Open Access Journals (Sweden)

    Daniel Bia

    2015-01-01

    Full Text Available Background. Adequate fluid management could be essential to minimize high arterial stiffness observed in chronically hemodialyzed patients (CHP. Aim. To determine the association between body fluid status and central and peripheral arterial stiffness levels. Methods. Arterial stiffness was assessed in 65 CHP by measuring the pulse wave velocity (PWV in a central arterial pathway (carotid-femoral and in a peripheral pathway (carotid-brachial. A blood pressure-independent regional arterial stiffness index was calculated using PWV. Volume status was assessed by whole-body multiple-frequency bioimpedance. Patients were first observed as an entire group and then divided into three different fluid status-related groups: normal, overhydration, and dehydration groups. Results. Only carotid-femoral stiffness was positively associated (P<0.05 with the hydration status evaluated through extracellular/intracellular fluid, extracellular/Total Body Fluid, and absolute and relative overhydration. Conclusion. Volume status and overload are associated with central, but not peripheral, arterial stiffness levels with independence of the blood pressure level, in CHP.

  12. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  13. System simulation application for determining the size of daily raw material purchases at PT XY

    Science.gov (United States)

    Napitupulu, H. L.

    2018-02-01

    Every manufacturing company needs to implement green production, including PT XY as a marine catchment processing industry in Sumatera Utara Province. The company is engaged in the processing of squid for export purposes. The company’s problem relates to the absence of a decision on the daily purchase amount of the squid. The purchase of daily raw materials in varying quantities has caused companies to face the problem of excess raw materials or otherwise the lack of raw materials. The low purchase of raw materials will result in reduced productivity, while large purchases will lead to increased cooling costs for storage of excess raw materials, as well as possible loss of damage raw material. Therefore it is necessary to determine the optimal amount of raw material purchases every day. This can be determined by applying simulation. Application of system simulations can provide the expected optimal amount of raw material purchases.

  14. Determination of Intrinsic Material Flammability Properties from Material Tests assisted by Numerical Modelling

    OpenAIRE

    Steinhaus, Thomas

    2010-01-01

    Computational Fluid Dynamics (CFD) codes are being increasingly used in the field of fire safety engineering. They provide, amongst other things, velocity, species and heat flux distributions throughout the computational domain. The various sub-models associated with these have been developed sufficiently to reduce the errors below 10%-15%, and work continues on reducing these errors yet further. However, the uncertainties introduced by using material properties as an input for these models a...

  15. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization

    International Nuclear Information System (INIS)

    Ryan, E D; Thompson, B J; Sobolewski, E J; Herda, T J; Costa, P B; Walter, A A; Cramer, J T

    2011-01-01

    Passive stiffness measurements are often used as a clinical tool to examine a muscle's passive lengthening characteristics. The purpose of this study was to examine the relationship between passive stiffness and evoked twitch properties prior to and following normalization of passive stiffness to muscle cross-sectional area (CSA). Ten healthy volunteers (mean ± SD age = 23 ± 3 year) performed passive range of motion, evoked twitch, and muscle CSA assessments of the plantar flexor muscles. Passive stiffness was determined from the slope of the final 5° of the angle–torque curve. Peak twitch torque (PTT) and rate of torque development (RTD) were determined via transcutaneous electrical stimulation, and muscle CSA was assessed using a peripheral quantitative computed tomography scanner. Pearson product moment correlation coefficients (r) were used to assess the relationships between passive stiffness and PTT and RTD and normalized passive stiffness (passive stiffness . muscle CSA −1 ) and PTT and RTD. Significant positive relationships were observed between passive stiffness and PTT (P = 0.003, r = 0.828) and RTD (P = 0.003, r = 0.825). There were no significant relationships between normalized passive stiffness and PTT (P = 0.290, r = 0.372) or RTD (P = 0.353, r = 0.329) demonstrating that stiffness did not account for a significant portion of the variance in twitch properties. Passive stiffness was largely influenced by the amount of muscle tissue in this study. Future studies that examine muscle stiffness and its relationship with performance measures, among different populations, and following various interventions may consider normalizing stiffness measurements to muscle CSA

  16. NBS SRM 1569 Brewer's Yeast: Is it an adequate standard reference material for testing a chromium determination in biological materials tion in biological materials

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Volkers, K.J.; Tjioe, P.S.; Kroon, J.J.

    1978-01-01

    Some analytical experiences with NBS SRM 1569 Brewer's Yeast are presented. Against this background the adequacy of this standard reference material for the determination of chromium in biological materials is discussed. Authors have three main objections. Due to its high content of insoluble chromium-containing particles, SRM 1569 is not typical for biological materials, possibly not even for Brewer's Yeast. The chromium level of SRM 1569 is not typical for the chromium levels normally encountered in pure biological materials. The major fraction (69 +- 3 percent) of the chromium is present in a form which is insoluble under the conditions used in Author's analysis. (T.I.)

  17. Shoulder Stiffness : Current Concepts and Concerns

    NARCIS (Netherlands)

    Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik

    Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be

  18. Development and implementation of methods for determination of the origin of nuclear materials

    International Nuclear Information System (INIS)

    Wallenius, M.; Pajo, L.; Mayer, K.

    2001-01-01

    The determination of the origin of seized nuclear material is important for authorities in the context of the criminal investigation, in order to return the material to its last legal owner and to help preventing any further diversion of material from this source. Origin determination is based on a complex pattern of parameters obtained through analytical measurements. The information required to determine the origin of nuclear materials may be divided into two categories: endogenous information (e.g. age or mode of production of the material) which is self-explanatory; whereas exogenous information (e.g. dimensions, surface roughness, impurities) requires a database to which the parameters can be compared. The Institute for Transuranium Elements has developed methods to determine characteristic parameters like impurities, surface roughness, or microstructural information. Furthermore, a database was set up containing relevant information on reactor fuels. (author)

  19. A method of and apparatus for determining the proportion of at least one material in a moving mixture of materials

    International Nuclear Information System (INIS)

    Wykes, J.S.; Adsley, I.

    1981-01-01

    Apparatus uses scintillation crystals and a photomultiplier tube to determine the constituency of mineral matter transported on a mine conveyer, eg coal/stone mixtures, by measuring the gamma radiation emitted by at least one of the materials. (U.K.)

  20. Determination of the buckling safety of reinforced concrete shells considering the nonlinear material-behavior

    International Nuclear Information System (INIS)

    Zerna, W.; Mungan, I.; Steffen, W.

    1980-01-01

    The equations of the bending and stability theories for the orthotropic shell are solved using the FEM. A biaxial material law for concrete and a nearly bilinear stress-strain diagram for reinforcing steel were considered. Taking a layered ring element the influence of bending moments together with the membrane forces can be followed under increasing load up to failure of concrete or steel. At each level the bucking factor can be calculated considering the stress dependent buckling stiffness. The method of calculation is applied to a cooling tower shell under dead load acting simultaneously with an axi-symmetric loading to compensate for the wind effect. Due to orthotropy and descending tangent modulus at the ultimate load the buckling load factor drops to the half of the value obtained assuming a linear elastic behaviour. Additional parametric studies demonstrate the effect of some hypothetic cracks of different position and depth of the bifurcation results. The variation of the safety factors against buckling and ultimate load is obtained by changing the shell thickness. For the shell investigated it turns out that the buckling safety is influenced much more than the safety against material failure if the wall thickness is varied. It is recommended to split the buckling analysis of reinforced concrete shells in two parts. For shells of parts of a shell under only slightly disturbed membrane stress state the buckling analysis governs, otherwise the ultimate state considering the geometric and material nonlinearities is decisive to obtain not only the wall thickness but also the amount of reinforced necessary. (orig./HP) [de

  1. Evaluating pulp stiffness from fibre bundles by ultrasound

    Science.gov (United States)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  2. Modelling, simulation and experiment of the spherical flexible joint stiffness

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available The spherical flexible joint is extensively used in engineering. It is designed to provide flexibility in rotation while bearing vertical compression load. The linear rotational stiffness of the flexible joint is formulated. The rotational stiffness of the bonded rubber layer is related to inner radius, thickness and two edge angles. FEM is used to verify the analytical solution and analyze the stiffness. The Mooney–Rivlin, Neo Hooke and Yeoh constitutive models are used in the simulation. The experiment is taken to obtain the material coefficient and validate the analytical and FEM results. The Yeoh model can reflect the deformation trend more accurately, but the error in the nearly linear district is bigger than the Mooney–Rivlin model. The Mooney–Rivlin model can fit the test result very well and the analytical solution can also be used when the rubber deformation in the flexible joint is small. The increase of Poisson's ratio of the rubber layers will enhance the vertical compression stiffness but barely have effect on the rotational stiffness.

  3. Impact of matrix stiffness on fibroblast function

    Energy Technology Data Exchange (ETDEWEB)

    El-Mohri, Hichem; Wu, Yang; Mohanty, Swetaparna; Ghosh, Gargi, E-mail: gargi@umich.edu

    2017-05-01

    Chronic non-healing wounds, caused by impaired production of growth factors and reduced vascularization, represent a significant burden to patients, health care professionals, and health care system. While several wound dressing biomaterials have been developed, the impact of the mechanical properties of the dressings on the residing cells and consequently on the healing of the wounds is largely overlooked. The primary focus of this study is to explore whether manipulation of the substrate mechanics can regulate the function of fibroblasts, particularly in the context of their angiogenic activity. A photocrosslinkable hydrogel platform with orthogonal control over gel modulus and cell adhesive sites was developed to explore the quantitative relationship between ECM compliance and fibroblast function. Increase in matrix stiffness resulted in enhanced fibroblast proliferation and stress fiber formation. However, the angiogenic activity of fibroblasts was found to be optimum when the cells were seeded on compliant matrices. Thus, the observations suggest that the stiffness of the wound dressing material may play an important role in the progression of wound healing. - Highlights: • Proliferation and stress fiber formation of fibroblasts increase with increasing matrix mechanics. • Cell area correlates with the growth of fibroblasts. • Angiogenic activity of fibroblasts optimum when cells seeded on compliant gels.

  4. Determination of trace elements in standard reference materials by the ko-standardization method

    International Nuclear Information System (INIS)

    Smodis, B.; Jacimovic, R.; Stegnar, P.; Jovanovic, S.

    1990-01-01

    The k o -standardization method is suitable for routine multielement determinations by reactor neutron activation analysis (NAA). Investigation of NIST standard reference materials SRM 1571 Orchard Leaves, SRM 1572 Citrus leaves, and SRM 1573 Tomato Leaves showed the systematic error of 12 certified elements determined to be less than 8%. Thirty-four elements were determined in NIST proposed SRM 1515 Apple Leaves

  5. Derivation of elastic stiffness formula for leaf type HDS and conceptual design of leaf type HDS of SMART FA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Suh, Jung Min; Lee, Jin Seok

    1997-12-01

    Based on the strain energy method and Euler beam theory, an elastic stiffness formula for the leaf type HDS, now widely used as the holddown spring for the FA of Westinghouse type PWRs, has been derived. Through comparisons with the characteristic test results of the test produced HDSs, it has been found that the derived formula is useful to reliably estimate an elastic stiffness with material properties and the geometric data of an HDS. Through sensitivity analysis of HDS`s elastic stiffness, the elastic stiffness sensitivity with respect to different design variables was identified, as well as the design variables having remarkable sensitivity. In addition, finite element analysis using surface-to-surface contact elements on the contact surface between the leaves shows that the analysis results are in good agreement with the elastic stiffness determined from the derived formula. It is therefore expected that the finite element model and the analysis method will be useful in the analysis of the elasto-plastic behavior of the leaf type HDS in the future. To both reduce the cobalt content, which is considered to be the source of radioactive contamination in the reactor core, and to design the HDS to meet the holddown requirements of the SMART FA, a conceptual design for the HDS of the SMART FA has been performed through two analyses of the elastic characteristics of the HDS : the possibility of substitution of the leaf spring`s material from Inconel 718 to Zircaloy and the effects on the HDS`s elastic characteristics according to the variation of leaf thickness and the number of leaves composing the HDS. (author). 34 refs., 33 tabs., 37 figs.

  6. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  7. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T. [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F. [Nanomechanical Properties Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  8. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-01-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included

  9. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  10. THE EFFECT OF GOLIMUMAB ON ARTERIAL STIFFNESS IN PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    L. A. Knyazeva

    2018-01-01

    Full Text Available Objective: to evaluate the effect of golimumab (GLM on arterial stiffness in patients with different clinical and immunological subtypes of rheumatoid arthritis (RA.Material and methods. Examinations were made in 48 patients with RA meeting the 1987 ACR/2010 EULAR classification criteria. The investigators visualized carotid arteries with determination of local vessel wall stiffness and studied regional arterial stiffness with assessment of contour pulse wave analysis before and 52 weeks after initiation of therapy.Results and discussion. Young and middle-aged RA patients without any concomitant cardiovascular diseases were found to have subclinical great artery involvement that was characterized by increases in intima-media thickness (IMT and stiffness index β of the common carotid artery (CCA; by rises in peripheral augmentation index (AIp, stiffness index (SI, and reflection index (RI, the intensity of a change in which was associated with high DAS28 and seropositivity for rheumatoid factor (RF and/or anti-cyclic citrullinated peptide (antiCCP antibodies. GLM treatment in patients with RA was accompanied by a statistically significant decrease in DAS28 and a reduction in CCA IMT and local (carotid stiffness of the vascular bed. More significant correction of the investigated parameters was achieved in patients with the seronegative subtype of the disease; in this group of patients, CCA IMT decreased by 29% by the end of observation (p=0.01, CCA SI β reduced by an average of 28.7% (p=0.0001. At 52 weeks after GLM therapy initiation, contour pulse wave analysis indicated that this subgroup of patients was observed to have decreases in AIp, SI, and RI to the control level; in RA seropositive for RF and/or anti-CCP, they reduced by an average of 1.8 (p=0.0001, 1.2 (p=0.005 and 1.6 (p=0.001 times, respectively.Conclusion. Along with high anti-inflammatory activity, GLM therapy in patients with RA has a vasoprotective effect on the walls of large

  11. Muscle contributions to elbow joint rotational stiffness in preparation for sudden external arm perturbations.

    Science.gov (United States)

    Holmes, Michael W R; Keir, Peter J

    2014-04-01

    Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (Psafety.

  12. Strong, tough and stiff bioinspired ceramics from brittle constituents

    Science.gov (United States)

    Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain

    2014-05-01

    High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.

  13. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    Directory of Open Access Journals (Sweden)

    Ji-Won Kim

    2018-03-01

    Full Text Available Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5 and mid-strain (10−5 to 10−3 ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1 grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2 the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3 the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4 increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  14. Comparison of cervical spine stiffness in individuals with chronic nonspecific neck pain and asymptomatic individuals.

    Science.gov (United States)

    Ingram, Lewis A; Snodgrass, Suzanne J; Rivett, Darren A

    2015-03-01

    Clinical measurement, cross-sectional. To determine if spinal joint stiffness is different in individuals with nonspecific neck pain, and whether stiffness magnitude is associated with pain intensity and disability. Manual therapists commonly evaluate spinal joint stiffness in patients presenting with nonspecific neck pain. However, a relationship between stiffness and neck pain has not yet been demonstrated. Spinal stiffness at C7 was objectively measured in participants with chronic nonspecific neck pain whose symptomatic spinal level was identified as C7 (n = 12) and in age- and sex-matched asymptomatic controls (n = 12). Stiffness (slope of the linear region of the force-displacement curve) was quantified using a device that applied 5 standardized mechanical force cycles to the C7 spinous process, while concurrently measuring displacement and resistance to movement. Stiffness was compared between groups using an independent t test. Spearman rho and Pearson r were used to determine the extent to which stiffness magnitude was associated with pain intensity (visual analog scale) and level of disability (Neck Disability Index), respectively, in the group with neck pain. Participants with nonspecific neck pain had greater spinal joint stiffness at C7 compared with asymptomatic individuals (mean difference, 1.78 N/mm; 95% confidence interval: 0.28, 3.27; P = .022). However, stiffness magnitude in the group with neck pain was not associated (P>.05) with pain intensity or level of disability. These preliminary results suggest that cervical spine stiffness may be greater in the presence of nonspecific neck pain. However, judgments regarding pain intensity and level of disability should not be inferred from examinations of spinal joint stiffness.

  15. Relationship of daily arterial blood pressure monitoring readings and arterial stiffness profile in male patients with chronic obstructive pulmonary disease combined with arterial hypertension

    Directory of Open Access Journals (Sweden)

    Karoli N.A.

    2013-06-01

    Full Text Available The aim of the study was to determine correlation between arterial blood pressure daily rhythm and daily profile of arterial stiffness in male patients with chronic obstructive pulmonary disease (COPD and arterial hypertension. Materials et methods: Prospective investigation comprised 45 male patients with COPD and arterial hypertension. Individuals of 40 years younger and 80 years elder, patients with diabetes, stroke, angina pectoris, or heart infarction, vascular diseases, and exacerbation of chronic disease, bronchial and pulmonary diseases of other etiology were excluded from the analyses. Comparison group included 47 patients with essential arterial hypertension and without chronic respiratory diseases closely similar on general parameters with patients from main clinical series. Twenty-four-hour arterial blood pressure monitoring (ABPM and daily arterial stiffness monitoring were performed using BPLab® MnSDP-2 apparatus (Petr Telegin, Russian Federation. Results: Patients with COPD combined with arterial hypertension with raised arterial stiffness measures prevail over individuals in essential hypertension group. There is pathological alteration of the ABPM circadian rhythm and raised «Pressure load» values in raised arterial stiffness group. Conclusion: We found ABPM raised parameters in patients with COPD and arterial hypertension. It confirms necessity of ABPM in daily arterial stiffness assessment in patients with COPD.

  16. Determination of trimethyllead reference material using high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lu Hai; Wei Chao; Wang Jun; Chao Jingbo; Zhou Tao; Chen Dazhou

    2005-01-01

    A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method. (authors)

  17. A simplified procedure for mass and stiffness estimation of existing structures

    Science.gov (United States)

    Nigro, Antonella; Ditommaso, Rocco; Carlo Ponzo, Felice; Salvatore Nigro, Domenico

    2016-04-01

    This work focuses the attention on a parametric method for mass and stiffness identification of framed structures, based on frequencies evaluation. The assessment of real structures is greatly affected by the consistency of information retrieved on materials and on the influence of both non-structural components and soil. One of the most important matter is the correct definition of the distribution, both in plan and in elevation, of mass and stiffness: depending on concentrated and distributed loads, the presence of infill panels and the distribution of structural elements. In this study modal identification is performed under several mass-modified conditions and structural parameters consistent with the identified modal parameters are determined. Modal parameter identification of a structure before and after the introduction of additional masses is conducted. By considering the relationship between the additional masses and modal properties before and after the mass modification, structural parameters of a damped system, i.e. mass, stiffness and damping coefficient are inversely estimated from these modal parameters variations. The accuracy of the method can be improved by using various mass-modified conditions. The proposed simplified procedure has been tested on both numerical and experimental models by means linear numerical analyses and shaking table tests performed on scaled structures at the Seismic Laboratory of the University of Basilicata (SISLAB). Results confirm the effectiveness of the proposed procedure to estimate masses and stiffness of existing real structures with a maximum error equal to 10%, under the worst conditions. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2015 - RS4 ''Seismic observatory of structures and health monitoring''.

  18. Device for determining the content of bulk materials on conveyor belts

    International Nuclear Information System (INIS)

    Fritsche, D.

    1983-01-01

    On the basis of the forward scattering of photon radiation the invention is aimed at determining the content of bulk material, in particular the ash content of lignite, independently of the height of the material conveyed by belts. This could be achieved by making the radiation source support movable, so that the distance between source and conveyor belt is variable and adaptable to the mean height of the bulk material

  19. Methods and apparatus for determining the spatial distribution of a radioactive material

    International Nuclear Information System (INIS)

    Todd, R.W.

    1975-01-01

    The spatial distribution of a radioactive material is determined by locating the positions of and energy losses resulting from Compton interactions which occur in a detector as a result of gamma photons emitted by the radioactive material, which may, for example, have been administered to a patient for medical diagnostic investigation. (auth)

  20. Determination of trace elements in biological material by neutron activation analysis

    International Nuclear Information System (INIS)

    Tran Van, L.; Teherani, D.K.

    1989-01-01

    Eighteen trace elements in biological materials [grass (Imperata cylindrica), mimosa plant (Mimosa pudica), rice] by neutron activation method were determined. In the comparative analysis the content of the same element was different in each material, although they were collected at the same place and the same sampling method was applied. (author) 4 refs.; 1 fig.; 1 tab

  1. Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy

    International Nuclear Information System (INIS)

    Li, Wenqi; Coulson, Jethro; Smith, Richard J; Clark, Matt; Somekh, Michael G; Sharples, Steve D; Aveson, John W

    2014-01-01

    Material characteristics in metals such as strength, stiffness and fracture resistance are strongly related to the underlying microstructure. The crystallographic structure and orientation are related to the ultrasonic properties through the stiffness matrix. In individual grains it is possible to analytically determine the ultrasonic velocity from the orientation and stiffness, or determine the stiffness from the known orientation and measured velocity. In this paper we present a technique for imaging the crystallographic orientation of grains in metals using spatially resolved acoustic spectroscopy (SRAS) and a novel inverse solver that can determine the crystallographic orientation from the known stiffness matrix for the material and the SRAS velocity measurement. Previously we have shown the ability of this technique to determine the orientation on single crystal nickel samples; we extended the technique to multigrain industrial metals, such as aluminium, nickel and Inconel. The comparison between SRAS and electron backscatter diffraction (EBSD) on the nickel sample is presented. SRAS is a fast, accurate, quantitative and robust technique for imaging material microstructure and orientation over a wide range of scales and industrial materials

  2. Abortion and sex determination: conflicting messages in information materials in a District of Rajasthan, India.

    Science.gov (United States)

    Nidadavolu, Vijaya; Bracken, Hillary

    2006-05-01

    Public information campaigns are an integral component of reproductive health programmes, including on abortion. In India, where sex selective abortion is increasing, public information is being disseminated on the illegality of sex determination. This paper presents findings from a study undertaken in 2003 in one district in Rajasthan to analyse the content of information materials on abortion and sex determination and people's perceptions of them. Most of the informational material about abortion was produced by one abortion service provider, but none by the public or private sector. The public sector had produced materials on the illegality of sex determination, some of which failed to distinguish between sex selection and other reasons for abortion. In the absence of knowledge of the legal status of abortion, the negative messages and strong language of these materials may have contributed to the perception that abortion is illegal in India. Future materials should address abortion and sex determination, including the legal status of abortion, availability of providers and social norms that shape decision-making. Married and unmarried women should be addressed and the participation of family members acknowledged, while supporting independent decisions by women. Sex determination should also be addressed, and the conditions under which a woman can and cannot seek an abortion clarified, using media and materials accessible to low-literate audiences. Based on what we learned in this research, a pictorial booklet and educator's manual were produced, covering both abortion and sex determination, and are being distributed in India.

  3. Determination of material and its thickness for Cs-137 gamma source shielding

    International Nuclear Information System (INIS)

    Tukiman

    2008-01-01

    Its has been determined the shielding material and its thickness necessarily conducted due to every material will have different half-thickness characteristics, and by the selection a suitable material and its thickness will be obtained. Half-thickness of any material is the ability of the material at a certain thickness to absorb any radiation intensity so that the intensity becomes half of its source. Sample materials to be used are concrete, wood, and lead with their thickness varied. From experiment data and theoretical computation can be concluded that lead is the suitable material for shielding with the value of HVT for gamma radiation 0,732 cm. For wood and concrete will give half-thickness of 11,0 cm and 3,164 cm respectively. (author)

  4. Inverse axial mounting stiffness design for lithographic projection lenses.

    Science.gov (United States)

    Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang

    2014-09-01

    In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.

  5. The physical economy of the European Union. Cross-country comparison and determinants of material consumption

    International Nuclear Information System (INIS)

    Weisz, Helga; Krausmann, Fridolin; Amann, Christof; Eisenmenger, Nina; Erb, Karl-Heinz; Fischer-Kowalski, Marina; Hubacek, Klaus

    2006-01-01

    In this paper we investigate what determines observed differences in economy-wide material use among the EU-15 member states. The empirical basis for our analysis is an extended and revised material flow data set for each of the EU-15 countries in time series from 1970 to 2001. This data set comprises consistent data for domestic extraction, imports and exports as well as for derived material flow indicators, broken down by 12 types of materials. We compare the level and composition of domestic material consumption (DMC) in the EU-15 member states and identify determinants of the observed differences. Across the European Union member states overall DMC per capita varies by a factor of three ranging between 12 tonnes per capita in Italy and the United Kingdom and 37 tonnes per capita in Finland. This variability of DMC in the EU-15 is in a similar order of magnitude as the variability of GDP per capita or total primary energy supply per capita. Linear correlation analysis reveals that national income and final energy consumption relate to material use but cannot fully account for the observed differences in material consumption. By breaking down overall material flow indicators into 12 categories of materials and analysing their use patterns in detail, we identified a number of factors, socio-economic and natural, that influence the level and composition of economy-wide material use. Many of these factors are specific for certain types of materials, others are more general, and quite some driving factors counteract each other regarding the direction of their influence. Concluding we summarize the most important driving factors for domestic material consumption stressing population density as largely neglected but important explanatory variable for material use patterns, discuss issues of environmental significance, aggregation and the use of different denominators in material flow accounting and suggest a re-interpretation of DMC. (author)

  6. Stiffness of the ligaments of the human wrist joint

    NARCIS (Netherlands)

    Savelberg, H.H.C.M.; Kooloos, J.G.M.; Huiskes, H.W.J.; Kauer, J.M.G.

    1992-01-01

    The stiffnesses of the superficial ligaments of 14 human cadaver wrist joints have been determined. In these experiments the tested, fresh-frozen carpal joints are divided into a number of bone-ligament-bone complexes, which are loaded in a tensile testing machine at a rate of 66% of the ligaments'

  7. Strength and stiffness capacity utilisation of timber members in roof ...

    African Journals Online (AJOL)

    C Brand Wessels, Nils-Olaf Petersen. Abstract. The main objective of this study was to determine which property, of the six strength and stiffness properties used in structural timber design, was the most influential in the design of nail-plated roof trusses. Thirty recently completed nail-plated roof truss designs were randomly ...

  8. Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators

    Directory of Open Access Journals (Sweden)

    Amir Jafari

    2014-08-01

    Full Text Available The fundamental objective in developing variable stiffness actuators is to enable the actuator to deliberately tune its stiffness. This is done through controlling the energy flow extracted from internal power units, i.e., the motors of a variable stiffness actuator (VSA. However, the stiffness may also be unintentionally affected by the external environment, over which, there is no control. This paper analysis the correlation between the external loads, applied to different variable stiffness actuators, and their resultant output stiffness. Different types of variable stiffness actuators have been studied considering springs with different types of nonlinearity. The results provide some insights into how to design the actuator mechanism and nonlinearity of the springs in order to increase the decoupling between the load and stiffness in these actuators. This would significantly widen the application range of a variable stiffness actuator.

  9. Alternative methods for determination of composition and porosity in abradable materials

    International Nuclear Information System (INIS)

    Matejicek, Jiri; Kolman, Blahoslav; Dubsky, Jiri; Neufuss, Karel; Hopkins, Noel; Zwick, Jochen

    2006-01-01

    Materials properties and performance are governed by their composition and structure. These are commonly characterized using materialography and image analysis. However, in abradable materials, obtaining a reliable and representative sample (polished section) for this widespread technique is complicated by their abradable nature and heterogeneity. Therefore, alternative methods are also considered in this paper. They are namely X-ray diffraction and electron probe microanalysis to determine the composition, and mercury intrusion porosimetry, Archimedean porosimetry and helium pycnometry to determine the porosity. These methods, including materialography, were applied on representative abradable materials produced by plasma spraying; their results are compared and the advantages and drawbacks of each method are discussed

  10. The Effect of Shoe Insole Stiffness on Leg Stiffness during Stance Phase of Running in Two Different Speeds ‎among Active Men

    Directory of Open Access Journals (Sweden)

    Zeinab Tazike-Lemeski

    2016-08-01

    Full Text Available Introduction: The effect of shoe insoles with different characteristics and in different running speeds on lower-limb stiffness is still ‎controversial. The aim of this study was to investigate the effect of two types of insoles (soft and semi-rigid in two ‎different running speeds on leg stiffness during stance phase of running among active men.‎ Materials and Methods: ‎15 male students without any background of lower extremity injury were selected. Subjects were asked to run with ‎two controlled velocities of 3.0 ± 0.2 and 5.0 ± 0.1 m/s in control and insole conditions (soft and semi-rigid on a ‎force plate, placed on the middle of 15-meter runway. The cinematics and cinetics of motion were measured and ‎calculated using 5 video cameras and one force plate. The leg stiffness was achieved via dividing the vertical ‎ground reaction force by leg compression. Two-factor repeated measures ANOVA was used to test the hypothesis at ‎the significance level of P £ 0.050.‎ Results: There was a significant difference between the two types of insoles on leg stiffness. In fact, semi-rigid insole significantly increased leg stiffness (P < 0.001. However, this discrepancy was not related to the running speed (P = 0.999. In addition, there was no significant difference between the two different speeds on leg stiffness (P = 0.632. Conclusion: It seems that the increase in shoe insole stiffness may increase the leg stiffness. Furthermore, the effect of insole ‎stiffness is not related to the running speed, and leg stiffness will remains constant in low to medium running speeds.‎

  11. Evaluation of Botanical Reference Materials for the Determination of Vanadium in Biological Samples

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemic....... A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration....

  12. Determination of material parameters by comparison of 3D simulations and 3D experiments

    DEFF Research Database (Denmark)

    Zhang, Jin

    microstructure and the measured microstructure in a global manner. The proposed method is demonstrated on a simple case to fit two material parameters: the liquid diffusion coefficient and the capillary length of a hypoeutectic Al-Cu alloy, and a complicated case to fit hundreds of material parameters......: the reduced grain boundary mobilities of pure iron. Results show that the proposed method is capable of providing reliable measurements of material parameters that are difficult to measure in traditional ways and can determine many - possibly all relevant - values of material parameters simultaneously...

  13. Determination of multielement in optical waveguide and standard reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Kobayashi, K.; Kudo, K.

    1979-01-01

    Trace amounts of transition elements (Co, Cr, Cu, Fe, Mn and V) and other seven elements in optical waveguide samples were determined by INAA. The contents of impurities in ultre-pure materials are less than those of high-purity materials and of G.R. grade. The increase of contamination of trace transition elements and iridium from furnace or crucible are observed in the production of optical glass fibers. Up to seventeen elements were determined in five NBS biological standard reference materials: Oyster Tissue: SRM-1566, Brewers Yeast: SRM-1569, Spinach: SRM-1570, Orchard Leaves: SRM-1571 and Tuna Fish, and in four Japanese biological standard reference materials: Tea Leaves B and C, Pepperbush and Shark Meat. The analytical results in NBS and Japanese standard reference materials are in good agreement with published values and certified values by NBS. (author)

  14. IAEA programme of natural matrix reference materials for the determination of radionuclides

    International Nuclear Information System (INIS)

    Strachnov, V.; Valkovic, V.; LaRosa, J.; Dekner, R.; Zeisler, R.

    1993-01-01

    The International Atomic Energy Agency has been providing analytical quality control services (AQCS) to its Member States since the 1960's. The AQCS programme distributes reference materials (RMs), organizes intercomparison runs, and provides training courses for quality assurance in chemical analysis and radioactivity measurements of food, biological, environmental and marine materials. This paper focusses on those aspects of the subject dealing with reference materials and intercomparison runs for the determination of radionuclides. Nineteen natural matrix reference materials are available for the determination of radionuclides. Twelve new intercomparison and reference materials are in preparation or under consideration. The radionuclides of interest include: K-40, Mn-54, Co-60, Sr-90, Tc-99, Ru-106, Ba-133, Cs-134, Cs-137, Pb-210, Ra-226, Th-228, Th-232, Pu-238, Pu-239 + 240. (orig.)

  15. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  16. Stiffness Customization and Patterning for Property Modulation of Silicone-Based Soft Pneumatic Actuators.

    Science.gov (United States)

    Sun, Yi; Yap, Hong Kai; Liang, Xinquan; Guo, Jin; Qi, Peng; Ang, Marcelo H; Yeow, Chen-Hua

    2017-09-01

    Soft pneumatic actuators (SPAs), as novel types of motion drivers for robotic devices, excel in many applications, such as rehabilitation and biomimicry, which demand compliance and softness. To further expand their scope of utilization, the SPAs should be customizable to meet the distinctive requirements of different applications. This article proposes a novel perspective on the SPA working mechanism based on stiffness distribution and then presents a versatile method called stiffness customization and patterning (SCP) for SPA body stiffness layout as a novel attempt to customize SPAs with distinctive properties. We fabricated a hybrid type of material combining unstretchable material and silicone with customizable aggregated elasticity. The tensile results showed that embedding unstretchable material directly increases the stiffness of the hybrid material sample, and our stress-strain model for SCP is able to adequately predict the elasticity of hybrid samples with specific material ratios. By applying this approach to bending-type SPAs, we are able to mitigate SPA buckling, a main failure mode of SPAs, and improve the SPA tip force by using hybrid material with globally increased stiffness. We also diversify bending modalities with different stiffness configurations in the hybrid material. SCP offers numerous ways to engineer SPAs for more applications.

  17. Critical appraisal of the differential effects of antihypertensive agents on arterial stiffness

    Directory of Open Access Journals (Sweden)

    Francesca Kum

    2010-06-01

    Full Text Available Francesca Kum, Janaka KarallieddeUnit for Metabolic Medicine, Cardiovascular Division, Kings College-Waterloo Campus, King’s College London, United KingdomAbstract: Increased central arterial stiffness, involving accelerated vascular ageing of the aorta, is a powerful and independent risk factor for early mortality and provides prognostic information above and beyond traditional risk factors for cardiovascular disease (CVD. Central arterial stiffness is an important determinant of pulse pressure; therefore, any pathological increase may result in left ventricular hypertrophy and impaired coronary perfusion. Central artery stiffness can be assessed noninvasively by measurement of aortic pulse wave velocity, which is the gold standard for measurement of arterial stiffness. Earlier, it was believed that changes in arterial stiffness, which are primarily influenced by long-term pressure-dependent structural changes, may be slowed but not reversed by pharmacotherapy. Recent studies with drugs that inhibit the renin–angiotensin–aldosterone system, advanced glycation end products crosslink breakers, and endothelin antagonists suggest that blood pressure (BP-independent reduction and reversal of arterial stiffness are feasible. We review the recent literature on the differential effect of antihypertensive agents either as monotherapy or combination therapy on arterial stiffness. Arterial stiffness is an emerging therapeutic target for CVD risk reduction; however, further clinical trials are required to confirm whether BP-independent changes in arterial stiffness directly translate to a reduction in CVD events.Keywords: aortic pulse wave velocity, augmentation index, blood pressure, renin–angiotensin–aldosterone system

  18. Custom 3D Printable Silicones with Tunable Stiffness.

    Science.gov (United States)

    Durban, Matthew M; Lenhardt, Jeremy M; Wu, Amanda S; Small, Ward; Bryson, Taylor M; Perez-Perez, Lemuel; Nguyen, Du T; Gammon, Stuart; Smay, James E; Duoss, Eric B; Lewicki, James P; Wilson, Thomas S

    2018-02-01

    Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The determination of Sr-90 in environmental material using an improved rapid method

    International Nuclear Information System (INIS)

    Ghods, A.; Veselsky, J.C.; Zhu, S.; Mirna, A.; Schelenz, R.

    1989-01-01

    A short report on strontium 90, its occurrence in the biosphere and its rapid determination methods is given. Classification of determination methods suitable for various environmental and biological materials is established. Interference due to Y-91 and a method to eliminate the activity of Y-90 and Y-91 is discussed. Tabs

  20. An independent accurate reference method for the determination of chromium in biological materials

    NARCIS (Netherlands)

    Lagerwaard, A.; Woittiez, J.R.W.; de Goeij, J.J.M.

    1994-01-01

    A method for the determination of Cr in biological materials with high accuracy is reported for use as an independent reference method. It is based on radiochemical neutron activation analysis (RNAA) in combination with an individual yield determination based on the online yield principle. A

  1. The use of material balanced equation to determine the oil water ...

    African Journals Online (AJOL)

    The oil water contact of an oil reservoir can be determined using some geophysical well logs. However, some of the methods might not be accurate. Therefore the material balanced equation which is an accurate means of formation evaluation is critically analysed in this study and then used to determine the oil water contact ...

  2. Use of nuclear methods for the analysis of materials and the determination of concentration profiles

    International Nuclear Information System (INIS)

    Darras, R.

    1976-01-01

    The possibilities of the activation analysis and nuclear reaction analysis are presented. These methods allow the oligo-elements and impurities (in trace amounts) to be determined in materials with accuracy and a high sensitivity. They can also be applied to the determination of major elements in a small amount of materials. Surface analysis and concentration profile determination are possible when the nature and energy of the incident particles are judiciously selected. Exemples of analysis of steels, pure iron and refractories are given [fr

  3. Determination of equilibration kinetics of oxide electrode materials using a manometric method

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Jiang, S.P.; Love, J.; Nowotny, J.; Rekas, M.

    1998-01-01

    The gas/solid equilibration kinetics for electrode oxide materials, such as (La 0.8 Sr 0.2 )MnO 3 , using a manometric method, was determined. The reaction kinetics between oxygen and the oxide material was monitored using the measurements of the P(O 2 ) changes during isothermic experiments of oxidation and reduction. The procedure of the determination will be described and relevant kinetic equations was derived. The equilibration kinetic data obtained can be used to determine the chemical diffusion coefficient. Copyright (1998) Australasian Ceramic Society

  4. Stiffness Coefficients of Mortise and Tenon Joints used on Wooden Window Profiles

    Directory of Open Access Journals (Sweden)

    Milan Podlena

    2016-04-01

    Full Text Available Samples of corner joints of wooden rectangular windows, with widths of 78 and 92 mm, were used to determine the stiffness of tenon and mortise joints. Two series of samples were loaded statically in the angular plane of compression and tension, so that the bending moment could be derived. The objective of the experiment was to determine the existing correlations between the stiffness in maximum strength and the stiffness in the elastic area for both types of tests. After strength tests were carried out, the annual ring width of the samples was measured to determine whether this factor affects the stiffness of the joints. The results showed that there was a relatively strong correlation between the stiffness in the elastic area and the maximum load. A two-factor analysis of variance confirmed that the type of load did not affect the stiffness of the joint, but the type of joint (width does significantly affect the stiffness. Therefore, the width of annual rings was positively correlated with the stiffness of the joints.

  5. Measurement of lower leg compression in vivo: recommendations for the performance of measurements of interface pressure and stiffness: consensus statement.

    Science.gov (United States)

    Partsch, Hugo; Clark, Michael; Bassez, Sophie; Benigni, Jean-Patrick; Becker, Francis; Blazek, Vladimir; Caprini, Joseph; Cornu-Thénard, André; Hafner, Jürg; Flour, Mieke; Jünger, Michael; Moffatt, Christine; Neumann, Martino

    2006-02-01

    Interface pressure and stiffness characterizing the elastic properties of the material are the parameters determining the dosage of compression treatment and should therefore be measured in future clinical trials. To provide some recommendations regarding the use of suitable methods for this indication. This article was formulated based on the results of an international consensus meeting between a group of medical experts and representatives from the industry held in January 2005 in Vienna, Austria. Proposals are made concerning methods for measuring the interface pressure and for assessing the stiffness of a compression device in an individual patient. In vivo measurement of interface pressure is encouraged when clinical and experimental outcomes of compression treatment are to be evaluated.

  6. Betel nut chewing associated with increased risk of arterial stiffness.

    Science.gov (United States)

    Wei, Yu-Ting; Chou, Yu-Tsung; Yang, Yi-Ching; Chou, Chieh-Ying; Lu, Feng-Hwa; Chang, Chih-Jen; Wu, Jin-Shang

    2017-11-01

    Betel nut chewing is associated with certain cardiovascular outcomes. Subclinical atherosclerosis may be one link between betel nut chewing and cardiovascular risk. Few studies have examined the association between chewing betel nut and arterial stiffness. The aim of this study was thus to determine the relationship between betel nut chewing and arterial stiffness in a Taiwanese population. We enrolled 7540 eligible subjects in National Cheng Kung University Hospital from October 2006 to August 2009. The exclusion criteria included history of cerebrovascular events, coronary artery disease, and taking lipid-lowering drugs, antihypertensives, and hypoglycemic agents. Increased arterial stiffness was defined as brachial-ankle pulse wave velocity (baPWV) ≥1400cm/s. According to their habit of betel nut use, the subjects were categorized into non-, ex-, and current chewers. The prevalence of increased arterial stiffness was 32.7, 43.3, and 43.2% in non-, ex- and current chewers, respectively (p=0.011). Multiple logistic regression analysis revealed that ex-chewers (odds ratio [OR] 1.69, 95% confidence interval (CI)=1.08-2.65) and current chewers (OR 2.29, 95% CI=1.05-4.99) had elevated risks of increased arterial stiffness after adjustment for co-variables. Both ex- and current betel nut chewing were associated with a higher risk of increased arterial stiffness. Stopping betel nut chewing may thus potentially be beneficial to reduce cardiovascular risk, based on the principals of preventive medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Hizem, N.; Fredj, A. B.; Ghedira, L.

    2005-01-01

    The radioisotopic content of 17 samples of natural and manufactured building materials collected in Tunisia have been analysed by using gamma spectrometry. From the measured gamma ray spectra, activity concentrations are determined for 232 Th, 226 Ra, 235 U and 40 K. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials. The results of 226 Ra, 232 Th and 40 K found in Tunisian building materials indicate that radium and thorium concentrations do not exceed 40 Bq kg -1 , but potassium concentration varies between 50 and 1215 Bq kg -1 . The total effective dose rates per person indoors are determined to be between 0.07 and 0.86 mSv y -1 . Only two materials exceed the reference level of 0.3 mSv y -1 . The activity concentration index is <1. (authors)

  8. Extension of elastic stiffness formula for leaf type holddown spring assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    Based on the Euler beam theory and the strain energy method, an elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. The formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly only with the geometric data and the material properties of the leaf. Recently, it was reported that the elastic stiffness from the formula deviated much from the test results as the number of leaves was increased. In this study, in order to resolve such an increasing deviation as the increasing number of leaves, the formula has been extended to be able to consider normal forces and friction forces acting on interfaces between the leaves. The elastic stiffness analysis on specimens of leaf type holddown springs has been carried out using the extended formula and the analysis results are compared with the test results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within an error range of 10%, irrespective of the number of leaves. In addition, it is found that the effect of shear forces and axial forces on the elastic stiffness of the holddown spring assembly is only below 0.2% of the elastic stiffness, and therefore the greatest portion of the elastic stiffness of the holddown spring assembly is attributed to the bending moment. (author). 13 refs., 10 figs., 12 tabs.

  9. Spleen Stiffness Correlates with the Presence of Ascites but Not Esophageal Varices in Chronic Hepatitis C Patients

    Directory of Open Access Journals (Sweden)

    Kazuyo Mori

    2013-01-01

    Full Text Available Although spleen stiffness has recently been identified as potential surrogate marker for portal hypertension, the relationship between spleen stiffness and portal hypertension has not been fully elucidated. We attempted to determine the relationship between the liver or spleen stiffness and the presence of ascites or esophageal varices by acoustic radiation force impulse (ARFI imaging. A total of 33 chronic hepatitis C (CHC patients (median age 68; range 51–84 were enrolled. We evaluated the relationship between the liver or spleen stiffness and indicators of portal hypertension as well as clinical and biochemical parameters. Fourteen healthy volunteers were used for validating the accuracy of AFRI imaging. The liver and spleen stiffness increased significantly with progression of liver disease. A significant positive correlation was observed between the liver and spleen stiffness. However, spleen stiffness, but not liver stiffness, was significantly associated with the presence of ascites (, while there was no significant association between the spleen stiffness and spleen index/presence of esophageal varices in CHC patients. The area under the receiver operating characteristic curve based on the spleen stiffness was 0.80. In conclusion, spleen stiffness significantly correlates with the presence of ascites but not esophageal varices in CHC patients.

  10. Sorption properties of new composite materials suitable for radioanalytical determination of 59-Ni and 63-Ni

    International Nuclear Information System (INIS)

    Fisera, O.; Sebesta, F.

    2006-01-01

    New composite materials for separation and radioanalytical determination of radionickel ( 59, 63 Ni) were prepared and their sorption properties were examined. Chelating agents dimethylglyoxime (DMG) and diphenylglyoxime (DFG) as active components were immobilized in porous matrix of binding polymer polyacrylonitrile (PAN). Sorption properties of these materials were compared with commercial Ni Resin (Eichrom Technologies, USA). Weight distribution ratios, sorption kinetics and operating capacities were investigated during experiments performed. The highest weight distribution ratios were found for the material DFG-PAN. The sorbent DMG-PAN has the highest operating capacity. The fastest kinetics of nickel sorption was determined for the commercial Ni Resin. Elution of nickel with nitric acid solution allows subsequent and direct determination of radionickel by liquid scintillation counting. (author)

  11. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    Science.gov (United States)

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  12. Material property determination of the lining layers of a versatile helmet

    Directory of Open Access Journals (Sweden)

    Kottner Radek

    2018-01-01

    Full Text Available This paper deals with material property identification of a helmet lining consisting of an outer layer of an expanded polystyrene (EPS and inner layer of an open-closed cell foam (OCCF. A combined numerical simulation and experimental testing was used for the material property identification. Compression and drop tests were performed. The ABAQUS finite element commercial code was used for numerical simulations in which the OOCF was modelled as a rate dependent viscoelastic material, while the EPS as a crushable foam. The reaction force time histories coming from the numerical simulation and the experiment have been used as a criterion for material parameter determination. After the identification of the material properties, numerical drop-tests were used to study the behaviour of a plate and a conical composite OOCF and EPS liners to decide which of them suits more for the helmet.

  13. Thallium determination in reference materials by isotope dilution mass spectrometry (IDMS) using thermal ionization

    International Nuclear Information System (INIS)

    Waidmann, E.; Hilpert, K.; Stoeppler, M.

    1990-01-01

    Using Isotope Dilution Mass Spectrometry (IDMS) with thermal ionization, thallium concentrations were determined in reference materials from NIST and BCR, from other sources, and reference materials from the German Environmental Specimen Bank 203 Tl spike solution is applied for the isotope dilution technique. Thallium concentrations in the investigated materials range from 2.67 μg Tl.kg -1 to 963 μg Tl.kg -1 with a relative standard deviation from 0.14 to 10%. The detection limit was 0.1 ng thallium for this work. (orig.)

  14. Determination of dynamic fracture initiation toughness of elastic-plastic materials at intermediate strain rates

    International Nuclear Information System (INIS)

    Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.

    2001-01-01

    An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs

  15. New method and installation for rapid determination of radon diffusion coefficient in various materials

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-01-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10 −12 to 5·10 −5 m 2 /s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). - Highlights: • The new method and installation for determination of radon diffusion coefficient D are developed. • The measured D-values vary in an extremely wide range, from 5×10 -5 to 1×10 -12 m 2 /s. • The materials include water, air, soil, building materials and radon-proof membranes. • The duration of the single test does not exceed 18 hours. • The measurement uncertainty varies from 5% (in permeable materials) to 40% (in radon gas barriers)

  16. Determination of 3D magnetic reluctivity tensor of soft magnetic composite material

    International Nuclear Information System (INIS)

    Guo Youguang; Zhu Jianguo; Lin Zhiwei; Zhong Jinjiang; Lu Haiyan; Wang Shuhong

    2007-01-01

    Soft magnetic composite (SMC) materials are especially suitable for construction of electrical machines with complex structures and three-dimensional (3D) magnetic fluxes. In the design and optimization of such 3D flux machines, the 3D vector magnetic properties of magnetic materials should be properly determined, modeled, and applied for accurate calculation of the magnetic field distribution, parameters, and performance. This paper presents the measurement of 3D vector magnetic properties and determination of 3D reluctivity tensor of SMC. The reluctivity tensor is a key factor for accurate numerical analysis of magnetic field in a 3D flux SMC motor

  17. A variable stiffness joint with electrospun P(VDF-TrFE-CTFE) variable stiffness springs

    NARCIS (Netherlands)

    Carloni, Raffaella; Lapp, Valerie I.; Cremonese, Andrea; Belcari, Juri; Zucchelli, Andrea

    This letter presents a novel rotational variable stiffness joint that relies on one motor and a set of variable stiffness springs. The variable stiffness springs are leaf springs with a layered design, i.e., an electro-active layer of electrospun aligned nanofibers of poly(vinylidene

  18. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  19. Load to Failure and Stiffness

    Science.gov (United States)

    Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.

    2015-01-01

    Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053

  20. Updating Stiffness and Hysteretic Damping Matrices Using Measured Modal Data

    Directory of Open Access Journals (Sweden)

    Jiashang Jiang

    2018-01-01

    Full Text Available A new direct method for the finite element (FE matrix updating problem in a hysteretic (or material damping model based on measured incomplete vibration modal data is presented. With this method, the optimally approximated stiffness and hysteretic damping matrices can be easily constructed. The physical connectivity of the original model is preserved and the measured modal data are embedded in the updated model. The numerical results show that the proposed method works well.

  1. Updating Stiffness and Hysteretic Damping Matrices Using Measured Modal Data

    OpenAIRE

    Jiashang Jiang; Yongxin Yuan

    2018-01-01

    A new direct method for the finite element (FE) matrix updating problem in a hysteretic (or material) damping model based on measured incomplete vibration modal data is presented. With this method, the optimally approximated stiffness and hysteretic damping matrices can be easily constructed. The physical connectivity of the original model is preserved and the measured modal data are embedded in the updated model. The numerical results show that the proposed method works well.

  2. A FEM-based method to determine the complex material properties of piezoelectric disks.

    Science.gov (United States)

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is

  3. Determination of arsenic in biological materials using ammonium molybdate labelled with 99Mo

    International Nuclear Information System (INIS)

    Maruyama, Y.; Nagaoka, Y.

    1983-01-01

    A new radiometric method for the determination of arsenic in biological materials has been developed. An excess of ammonium molybdate labelled with 99 Mo was added to the sample solution and the arsenomolybdic acid formed was extracted into n-butyl alcohol and ethyl acetate mixture. The activity of the organic phase was directly proportional to the amount of arsenic. The method was applied for the determination of arsenic in Orchard Leaves obtained from the National Bureau of Standards. (author)

  4. Sabot Front Borerider Stiffness vs. Dispersion: Finding the Knee in the Curve

    Directory of Open Access Journals (Sweden)

    Alan F. Hathaway

    2001-01-01

    Full Text Available In the design of armor piercing, fin-stabilized, discarding sabot projectiles, the radial stiffness of the sabot front borerider has a significant impact on the projectile's dispersion and is, therefore, an important design consideration. Whether designing a new projectile or trying to improve an existing design, projectile designers can achieve front borerider stiffness without understanding its affect on dispersion characteristics. There is a knee in the stiffness vs. dispersion curve at which a change in the sabot front borerider stiffness will have a significant impact on dispersion or no impact at all depending on whether the stiffness is increased or decreased. The subject of this paper is an analytical approach to quantitatively determine the knee in the curve. Results from using this approach on the M865 APFSDS projectile are also presented.

  5. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I

    1999-01-01

    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  6. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  7. Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living.

    Science.gov (United States)

    Argunsah Bayram, Hande; Bayram, Mehmed B

    2018-03-30

    Exploring ankle joint physiologic functional stiffness is crucial for improving the design of prosthetic feet that aim to mimic normal gait. We hypothesized that ankle joint stiffness would vary among the different activities of daily living and that the magnitude of the stiffness would indicate the degree of energy storage element sufficiency in terms of harvesting and returning energy. We examined sagittal plane ankle moment versus flexion angle curves from 12 healthy subjects during the daily activities. The slopes of these curves were assessed to find the calculated stiffness during the peak energy return and harvest phases. For the energy return and harvest phases, stiffness varied from 0.016 to 0.283 Nm/kg° and 0.025 and 0.858 Nm/kg°, respectively. The optimum stiffness during the energy return phase was 0.111 ± 0.117 Nm/kg° and during the energy harvest phase was 0.234 ± 0.327 Nm/kg°. Ankle joint stiffness varied significantly during the activities of daily living, indicating that an energy storage unit with a constant stiffness would not be sufficient in providing energy regenerative gait during all activities. The present study was directed toward the development of a complete data set to determine the torque-angle properties of the ankle joint to facilitate a better design process. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  9. Arterial Stiffness in Nonhypertensive Type 2 Diabetes Patients in Ghana

    Directory of Open Access Journals (Sweden)

    Kwame Yeboah

    2016-01-01

    Full Text Available Background. Increased arterial stiffness is an independent cardiovascular risk factor in diabetes patients and general population. However, the contribution of diabetes to arterial stiffness is often masked by coexistent obesity and hypertension. In this study, we assessed arterial stiffness in nonhypertensive, nonobese type 2 diabetes (T2DM patients in Ghana. Methods. In case-control design, 166 nonhypertensive, nonobese participants, comprising 96 T2DM patients and 70 nondiabetes controls, were recruited. Peripheral and central blood pressure (BP indices were measured, and arterial stiffness was assessed as aortic pulse wave velocity (PWVao, augmentation index (AIx, cardioankle vascular index (CAVI, and heart-ankle pulse wave velocity (haPWV. Results. With similar peripheral and central BP indices, T2DM patients had higher PWVao (8.3 ± 1 versus 7.8 ± 1.3, p=0.044 and CAVI (7.9 ± 1.2 versus 6.9 ± 0.7, p=0.021 than nondiabetic control. AIx and haPWV were similar between T2DM and nondiabetic controls. Multiple regression models showed that, in the entire study participants, the major determinants of PWVao were diabetes status, age, gender, systolic BP, and previous smoking status (β = 0.22, 0.36, 0.48, 0.21, and 0.25, resp.; all p<0.05; the determinants of CAVI were diabetes status, age, BMI, heart rate, HbA1c, total cholesterol, HDL cholesterol, and previous smoking status (β = 0.21, 0.38, 0.2, 0.18, 0.24. 0.2, −0.19, and 0.2, resp.; all p<0.05. Conclusion. Our findings suggest that nonhypertensive, nonobese T2DM patients have increased arterial stiffness without appreciable increase in peripheral and central pressure indices.

  10. Review of fracture properties of nuclear materials determined by Hertzian indentation

    International Nuclear Information System (INIS)

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters

  11. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  12. Determining the Supply of Material Resources for High-Rise Construction: Scenario Approach

    Science.gov (United States)

    Minnullina, Anna; Vasiliev, Vladimir

    2018-03-01

    This article presents a multi-criteria approach to determining the supply of material resources for high-rise construction under certain and uncertain conditions, which enables integrating a number of existing models into a fairly compact generalised economic and mathematical model developed for two extreme scenarios.

  13. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  14. EXAFS, Determination of Short Range Order and Local Structures in Materials

    NARCIS (Netherlands)

    Koningsberger, D.C.; Prins, R.

    1981-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable

  15. Determining the Accessibility of K-12 Digital Materials: Tools for Educators

    Science.gov (United States)

    Smith, Sean J.; Stahl, William

    2016-01-01

    This article explores the manner in which teachers and district leaders can further determine whether or not the digital materials they are considering are accessible for all learners--particularly those with disabilities--and appropriate to the accommodations and modifications provided in the brick-and-mortar school environment. The article…

  16. Determination of optical properties of tissue and other bio-materials

    CSIR Research Space (South Africa)

    Singh, A

    2008-11-01

    Full Text Available appears less diffusively scattered. Determination of optical properties of tissue and other bio-materials A SINGH, AE KARSTEN, JS DAM CSIR National Laser Centre, Biophotonics Group PO Box 395, Pretoria, 0001, South Africa Email: ASingh1@csir.co.za K...

  17. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  18. Procedure and apparatus for the determination of the gold content in a material containing gold

    International Nuclear Information System (INIS)

    1980-01-01

    This patent describes a method and apparatus for determining the gold content of materials, and in particular, of rock and stone samples. The procedure is based upon the irradiation of the material with neutrons and the determination of the intensity of the gamma radiation (279 keV) produced in the reaction 197 Au(n,n')sup(197m)Au. The neutron source used produces the neutrons by the deuteron-deuteron or deuteron-beryllium reaction. The energy of these neutrons is not high enough for producing fast neutron reactions in the other elements of the material. The apparatus described separates the samples with a gold content above a certain value by means of the procedure described above. (Th.P.)

  19. Probing the stiffness of isolated nucleoli by atomic force microscopy.

    Science.gov (United States)

    Louvet, Emilie; Yoshida, Aiko; Kumeta, Masahiro; Takeyasu, Kunio

    2014-04-01

    In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.

  20. New method and installation for rapid determination of radon diffusion coefficient in various materials.

    Science.gov (United States)

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-04-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10(-12) to 5·10(-5) m(2)/s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). Copyright © 2014. Published by Elsevier Ltd.

  1. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Trevizan, Lilian Cristina [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)], E-mail: lilian@conectcor.com.br; Santos, Dario [Universidade Federal de Sao Paulo - UNIFESP, Rua Prof. Artur Riedel 275, 09972-270, Diadema-SP (Brazil); Elgul Samad, Ricardo; Dias Vieira, Nilson [Centro de Lasers e Aplicacoes, IPEN/CNEN-SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil); Seimi Nomura, Cassiana [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre-SP (Brazil); Nunes, Lidiane Cristina [Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905, Sao Carlos-SP (Brazil); Rufini, Iolanda Aparecida; Krug, Francisco Jose [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)

    2008-10-15

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition.

  2. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Seimi Nomura, Cassiana; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Krug, Francisco Jose

    2008-01-01

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition

  3. Evaluation of botanical reference materials for the determination of vanadium in biological samples

    International Nuclear Information System (INIS)

    Heydorn, K.; Damsgaard, E.

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemical or radiochemical separations, and results for vanadium were compared with those found by purely instrumental neutron activation analysis. Significantly lower results indicate losses or incomplete dissolution, which makes SRM 1575 Pine Needles and SRM 1573 Tomato Leaves less satisfactory than SRM 1570 Spinach. A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration. (author)

  4. Method and device for the determination of material loss due to corrosion and/or erosion

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1990-01-01

    The invention relates to a method and an apparatus for gauging material loss due to corrosion and/or erosion during a certain period of time from a given piece of material which previously has been made radioactive. The material loss is determined by measuring the intensity of the radiactive radiation from the material by means of a radiation intensity meter disposed at a measuring site a fixed distance from said piece of material for the measurement of the radioactive radiation from the piece both at the beginning and at the end of said period of time. Each of the measurements is calibrated by means of an additional radiation source disposed for controllably adopting either a most radiation screened position or alternatively a least screened position with respect to a radiation screen, and thereby providing a known radiation intensity at the measuring site in both positions. The least radiation screened position provides full unscreened radiation intensity at the measuring site, whereas the most screened position provides negligible radiation intensity at said site. The measurement results in the two positions are subsequently compared in order to deduce the contribution of said piece of material to the combined radiation intensity in proporsion to the known contribution of the radiation source. The additional radiation source is preferable made from a calibration body composed of the same material as the piece of material exposed to corrosion and/or erosion, the calibration body body being activated at the same time and by the same activation process as said piece. The calibration body is preferably dimensioned to provide at all time the same radiation intensity at the measuring site as a predetermined material loss from the piece of material, e.g. a prefixed thickness reduction of the same. 4 figs

  5. Determination of radioisotopic contents of high-active materials in non-standard conditions

    International Nuclear Information System (INIS)

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Vins, M.

    2014-01-01

    The light-water research reactor LVR-15, operated by Research |Centre Rez, serves as a source of neutrons for applied and basic research. One of the main areas of applied research is the influence of neutron radiation field on the physical and mechanical properties of construction materials used in reactor technology. The presented contribution deals with the determination of a radioisotopic composition and the estimate of its activity.The determination is based on gamma spectrometry measurements. The purpose of the measurements was the determination of the main sources of radiation and the result was used to prepare a procedure for the handling, transport and testing of samples in the rigs. (authors)

  6. Neutron activation determination of oxygen in ceramic materials on the basis of yttrium, barium and copper

    International Nuclear Information System (INIS)

    Goldshtein, M.M.; Yudelevich, I.G.

    1991-01-01

    A procedure of determining oxygen in superconducting materials on the basis of yttrium, barium and copper oxides with the application of 14 MeV-neutron activation was developed. The method is based on determining the relation between oxygen and yttrium in the compounds investigated. In order to minimize systematic errors, expressions accounting for spectrometer dead time under conditions of varying component activity are proposed. The procedure ensures determination of the relation between oxygen and yttrium with a relative error of 0.4% with NAA using a neutron generator. (author) 4 refs.; 1 fig

  7. Determination of optimum mixing time for raw materials with the tracer method in the glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Gallyas, M; Gemesi, J; Kurinka, J

    1983-02-01

    The authors explain how the optimum mixing time for the raw materials for glass manufacture can be determined with the aid of the radioactive tracer method. Basing themselves on measurements, they indicate the change in the degree of mixing of the individual components (soda (Na-24), sodium sulphate, coke (La-140) and bone meal (P-32) as a function of mixing time. The optimum degree of mixing and mixing time for dry and for wet mixing are determined. Finally, data for determining the permissible storage time of the mixture are given.

  8. Determination of B and Li in nuclear materials by secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    Eby, R.E.; Christie, W.H.

    1981-01-01

    Secondary ion mass spectrometry (SIMS) was used to perform mass and isotopic analysis for B and Li in samples that are not readily amenable to more conventional mass spectrometric techniques (e.g., surface ionization, electron impact, etc.). In this paper three specific applications of SIMS analysis to nuclear materials are discussed: first, the quantitative determination of B and its isotopic composition in borosilicate glasses; second, the determination of the isotopic composition of B and Li in irradiated nuclear-grade aluminum oxide/boron carbide composite pellets, and, lastly, the quantitative and isotopic determination of B and Li in highly radioactive solutions of unknown composition

  9. Mortality risk in hemodialysis patients with increased arterial stiffness is reduced by attainment of classical clinical performance measures

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Thies, Christina; Cheikhalfraj, Mohamed

    2009-01-01

    We determined whether attainment of classical clinical performance measures for hemodialysis care improves survival in hemodialysis patients with increased arterial stiffness.......We determined whether attainment of classical clinical performance measures for hemodialysis care improves survival in hemodialysis patients with increased arterial stiffness....

  10. Simplified Qualitative Discrete Numerical Model to Determine Cracking Pattern in Brittle Materials by Means of Finite Element Method

    Directory of Open Access Journals (Sweden)

    J. Ochoa-Avendaño

    2017-01-01

    Full Text Available This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending beams are simulated, where the cracking pattern calculated with the proposed numerical model is similar to experimental result. The advantages of the proposed model compared to discrete crack approaches with interface elements can be the implementation simplicity, the numerical stability, and the very low computational cost. The simulation with greater values of the initial stiffness of the link elements does not affect the discontinuity path and the stability of the numerical solution. The exploded mesh procedure presented in this model avoids a complex nonlinear analysis and regenerative or adaptive meshes.

  11. Determination of mercury and selenium in biological materials by neutron activation analysis method

    International Nuclear Information System (INIS)

    Catharino, Marilia G.M.; Vasconcellos, Marina B.A.; Moreira, Edson G.; Cipriano, Roseli; Saiki, Mitiko

    2000-01-01

    Mercury presents a great number of applications, however, many mercury compounds are highly toxic and may cause diseases or even death. Other element of interest is selenium, as some studies have shown that it may reduce the toxic effects of mercury and other toxic elements, due to its ability to bind to these elements. In this work the mercury concentration in the 'Spiked Human Hair' IAEA-085 and 'Unspiked Human Hair' IAEA-086 certified reference materials, in hair samples of children under dental treatment and in hair samples of an Amazon Region population, subject to mercurial contamination was determined. Selenium determination was done using 77m Se and 75 Se radioisotopes. The selenium concentration was determined also in the (IAEA-085, IAEA-086, 'Dogfish Liver' DOLT-1 and 'Dogfish Muscle' DORM-1) certified reference materials, vitamin supplement and nail clipping samples. (author)

  12. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies

    OpenAIRE

    Yin, Jun; Zhang, Zhaoyan

    2013-01-01

    The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero stra...

  13. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  14. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis

    OpenAIRE

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-01-01

    AIM To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. METHODS Liver stiffness was measured in sixty-eight rabbits with CCl4-induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points...

  15. The determination of the rare earth elements in naturally-occurring materials zy flame spectroscopy

    International Nuclear Information System (INIS)

    Watts, J.C.

    1975-01-01

    Because the quantitative collection of the rare-earth elements retains natural abundance ratios, adequate analytical methodology incorporates their individual sensitivities, and tolerates their mutual contamination. To achieve these ends, the sensitivities of 15 rare-earths in flame emission were determined in the unseparated nitrous oxide/acetylene flame, their mutual interference ascertained at practical concentrations, and useful emission lines selected for their determination in natural materials. Sources of atomic emission interference were extraneous in origin. Fe in the determination of Dy and Zr in the determination of Nd. Inter-element interferences of the rare-earth elements were minimal after wavelength selection and reduction of the spectral band width. For comparison, five rare earths were determined by flame AAS. (author)

  16. Determination of material distribution in heading process of small bimetallic bar

    Science.gov (United States)

    Presz, Wojciech; Cacko, Robert

    2018-05-01

    The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.

  17. Certified reference materials for the determination of mineral oil hydrocarbons in water, soil and waste

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Liebich, A.; Win, T.; Nehls, I.

    2005-07-01

    The international research project HYCREF, funded by the European Commission in the 5{sup th} Framework programme, aimed to develop methods to prepare homogeneous and stable water-, soil- and waste reference materials contaminated with mineral oil hydrocarbons and to test certify the mineral oil content by gas chromatographic methods. As mineral oil products are important sources for environmental contaminations a high need exists for certified reference materials for their determination using the new gas chromatographic methods (soil: ISO/FDIS 16703, waste: ENpr 14039, water: ISO 9377-2). The experimental conditions and results for preparation and characterisation of a total of nine reference materials (3 water, 3 soil- and 3 waste materials) are described and discussed. Target values for the reference materials were defined at the beginning of the project in order to have clear quality criteria, which could be compared with the achieved results at the end of the project. These target specifications were related to the maximum uncertainty from test certification exercises (<5% for soil/waste and <10% for water), the maximum inhomogeneity between bottles (<3%) and minimum requirements for stability (>5 years for soil/waste and >2 years for water). The feasibility studies showed that solid materials (soil, waste) could be prepared sufficiently homogeneous and stable. The test certified values of the 6 solid materials comprise a wide range of mineral oil content from about 200-9000 mg/kg with expanded uncertainties between 5.7-13.1% using a coverage factor k (k=2). The development of new water reference materials - the so-called ''spiking pills'' for an offshore- and a land-based discharge water represents one of the most innovative aspects of the project. The spiking pill technology facilitates the application and storage and improves the material stability compared with aqueous materials. Additional to the preparation and test certification of

  18. Determination of rheological properties of fresh concrete and similar materials in a vibration rheometer

    Directory of Open Access Journals (Sweden)

    Sandra Juradin

    2012-02-01

    Full Text Available A vibration rheometer has been developed for the purpose of determining the viscosity coefficient and the yield value of fresh concrete under vibration. The main parts of the apparatus, a test specimen and a vibration source form a unitary oscillatory system whose parameters can be measured with sufficient precision. Two types of fine grained reference material have been prepared and examined; one with a high coefficient of viscosity and the other with a high yield value. The rheological properties of reference materials have been determined in a capillary tube viscometer. Since there is no analytical solution to the flow in the vibration rheometer, the constants of the vibration rheometer have been determined by experiment, for each position of the apparatus piston within the measuring range. The parameters of the flow depend on the maximum acceleration of the vibration source. An increase in acceleration causes an increase in the yield value as well as a reduction in the plastic viscosity coefficient of the material specimen. A testing of fresh mortar has been carried out as well. The obtained results have been compared with the impact on reference materials, which makes the results of our research applicable to fresh vibrated concrete.

  19. Observer-Based Human Knee Stiffness Estimation.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Riener, Robert; Leonhardt, Steffen

    2017-05-01

    We consider the problem of stiffness estimation for the human knee joint during motion in the sagittal plane. The new stiffness estimator uses a nonlinear reduced-order biomechanical model and a body sensor network (BSN). The developed model is based on a two-dimensional knee kinematics approach to calculate the angle-dependent lever arms and the torques of the muscle-tendon-complex. To minimize errors in the knee stiffness estimation procedure that result from model uncertainties, a nonlinear observer is developed. The observer uses the electromyogram (EMG) of involved muscles as input signals and the segmental orientation as the output signal to correct the observer-internal states. Because of dominating model nonlinearities and nonsmoothness of the corresponding nonlinear functions, an unscented Kalman filter is designed to compute and update the observer feedback (Kalman) gain matrix. The observer-based stiffness estimation algorithm is subsequently evaluated in simulations and in a test bench, specifically designed to provide robotic movement support for the human knee joint. In silico and experimental validation underline the good performance of the knee stiffness estimation even in the cases of a knee stiffening due to antagonistic coactivation. We have shown the principle function of an observer-based approach to knee stiffness estimation that employs EMG signals and segmental orientation provided by our own IPANEMA BSN. The presented approach makes realtime, model-based estimation of knee stiffness with minimal instrumentation possible.

  20. Big bang nucleosynthesis with a stiff fluid

    International Nuclear Information System (INIS)

    Dutta, Sourish; Scherrer, Robert J.

    2010-01-01

    Models that lead to a cosmological stiff fluid component, with a density ρ S that scales as a -6 , where a is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking ρ S10 and ρ R10 to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at T=10 MeV, we find that the change in the primordial helium abundance is well-fit by ΔY p =0.00024(ρ S10 /ρ R10 ). The changes in the helium-4 abundance produced by additional radiation or by a stiff fluid are identical when these two components have equal density at a 'pivot temperature', T * , where we find T * =0.55 MeV. Current estimates of the primordial 4 He abundance give the constraint on a stiff fluid energy density of ρ S10 /ρ R10 <30.

  1. A method to determine site-specific, anisotropic fracture toughness in biological materials

    International Nuclear Information System (INIS)

    Bechtle, Sabine; Özcoban, Hüseyin; Yilmaz, Ezgi D.; Fett, Theo; Rizzi, Gabriele; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Many biological materials are hierarchically structured, with highly anisotropic structures and properties on several length scales. To characterize the mechanical properties of such materials, detailed testing methods are required that allow precise and site-specific measurements on several length scales. We propose a fracture toughness measurement technique based on notched focused ion beam prepared cantilevers of lower and medium micron size scales. Using this approach, site-specific fracture toughness values in dental enamel were determined. The usefulness and challenges of the method are discussed.

  2. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  3. Analysis of optical thickness determination of materials by THz-TDS

    International Nuclear Information System (INIS)

    Sushko, O; Dubrovka, R; Donnan, R S

    2013-01-01

    Terahertz time-domain spectrometry (THz TDS) is a sensitive probe of the complex dielectric response of materials. Methods vary for converting time-domain response into final material optical parameters together with estimation of associated uncertainties. Here we point out the importance of using an accurate extraction procedure with particular emphasis on the error introduced by associated inaccuracy in thickness determination of a sample. The Total Variation (TV) method is used to estimate sample thickness to sub-micron accuracy, by constructively using the phenomena of multiple internal reflections ('ringing') within a sample. The applicability and performance of the TV methodology is discussed

  4. Colorimetric determination of a paracetamole in raw material and in pharmaceutical dosage forms

    International Nuclear Information System (INIS)

    Usifoh, C.O; Adelusi, S.A.; Adebambo, R.F.

    2002-01-01

    A rapid, accurate and simple method is proposed for the determination of p-acetaminophen (paracetamole) in raw material, tablets and syrups. The method is based on measuring the intensity of the yellow color that developed when acute acetaminophen is allowed to react with p-dimethylaminobenzaldehyde in 2M HCl after heating. The color which absorbs in the visible region of gamma 450 nm is stable for several hours and the intensity is directly proportional to the concentration of the drug, that is, Beer lambert law is obeyed. The method can be used to analyse paracetamole in raw material and in pharmaceutical dosage forms. (author)

  5. A cost effective method for the determination of 210Po and 210Pb in environmental materials

    International Nuclear Information System (INIS)

    Clayton, R.F.; Bradley, E.J.

    1995-01-01

    The majority of the methods for the determination of 210 Pb and 210 Po in environmental materials were developed in the 1960s. However, with the advances in technology since that time, particularly in the areas of ion-exchange chromatography and instrumentation, new methods may be more appropriate to measure these radionuclides in environmental media such as foodstuffs. A review was conducted of potentially suitable methods. Four methods were selected for detailed evaluation on the basis of cost and sensitivity. A cheap, sensitive and simple method is recommended for the analysis of 210 Pb and 210 Po in environmental materials

  6. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials

    International Nuclear Information System (INIS)

    Qin Xudong; Chen Yonghai; Liu Yu; Zhu Laipan; Li Yuan; Wu Qing; Huang Wei

    2016-01-01

    We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS 2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials. (paper)

  7. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    Science.gov (United States)

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a

  8. Stiffness management of sheet metal parts using laser metal deposition

    Science.gov (United States)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  9. The determination of plutonium alpha activity in urine, faeces and biological materials

    International Nuclear Information System (INIS)

    Bains, M.E.D.

    1963-07-01

    Methods have been developed for the determination of plutonium alpha activity in urine, faeces and biological materials. The chemical stages involved give practically complete separation of all extraneous material from the plutonium, which is electrodeposited on to a 0.5 inch stainless steel disc to produce a thin high resolution source. The limit of detection is 0.025 μμc/sample (sixteen-hour count) when the sources are counted in a small scintillator counter, but is lowest when counted in a counter which counts particles of energy 5.05-5.25 MeV only, and which therefore discriminates against small quantities of α-active materials introduced with the reagents in the final electrodeposition stage of the process. (Any such alpha activity may readily be identified by alpha pulse height analysis). (author)

  10. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Determination of rubidium and strontium in geological materials by X-Ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Roca, M.

    1979-01-01

    In order to determine whole-rock ages by the Rb/Sr procedure, an X-ray fluorescence spectrometry method for the determination of both elements has been developed. The samples are pressed into boric acid backed and ringed pellets with this material as a binding agent. Matrix corrections are made following the determination od the mass absorption coefficients, based on the intensity of the Compton-scattered peak of MoKα. or MoKβ 1 .3. The U. S. Geological Survey granodiorite GSP-1 is used as a reference standard. Spectral-line interferences have been carefully studied and the empirical correction factors determined. A BASIC language program for calculating the Rb and Sr concentrations and the Rb/Sr ratios has been written. (Author) 7 refs

  13. Vanadium determination in raw materials and products of aluminium production using pulse polarography

    International Nuclear Information System (INIS)

    Grigor'eva, M.F.; Bal'de, I.; Markovich, I.A.

    1992-01-01

    Possibility of using differential pulse polarography (DPP) for determination of vanadium in raw materials and products of aluminium production was studied. Ammonium-cheoride buffer solution with pH 9-10, aqueous solution of mixture of sodium carbonate and borax (1:3) and rhodanide-acefic acid solutions (1:1) were tested as a background. Current-voltage curves of vanadium reduction were plotted and peak potentials on DPP were determined against the background of chosen electrolytes. Effect of parameters, providing the maximal height of DPP peak, on the height of measured signal, was studied. Rhodanide background was chosen for polarographic determination of vanadium, because the detection limit of vanadium was the lowest against this background. Pulse polarography enafles to determine vanadium in products of aluminium production in amounts from 1x10 -4 to 0.01 % and more

  14. A proposed test for the determination of the grindability of fine materials

    International Nuclear Information System (INIS)

    Levin, J.

    1984-01-01

    The grindability of ores is generally determined by the Bond standard grindability test. However, this test is not applicable to fine matetials such as sands; the grindability of fine materials must therefore be determined by a comparative grinding method, for which a reference material of known grindability is required. Suitable reference materials are not easily obtained, and a grindability test that does not depend on reference materials is needed. This report proposes such a test and records the results of some tests on the validity of the proposed method. The proposed grindability test uses the Bond standard test mill and a quantity called the 'equivalent energy per minute', which is the energy per minute that would be used by the mill if it were scaled up to a wet-grinding industrial mill of 2,44m (8 ft) diameter. The value of this quantity, denoted by E, was calculated from the results of Bond standard grindability test on various materials, and an average value of 1425X10- 6 kW.h/min was determined. It is suggested that values far removed from this figure indicate that the ores concerned do not conform to the Bond Law of Comminution. The proposed grindability test was applied to seven samples of ore from industrial secondary grinding mills and to one sample of sand, and good agreement was found between the energy consumption calculated in the laboratory tests and those reported for the operating plants. The energy consumption calculated from the results of the Bond standard grindability test agreed fairly well with the plant data for the secondary grinding circuits, but the correlation for the primary grinding circuit was erratic

  15. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body; Modelisation de la fissuration pour l'evaluation de la perte d'etancheite des structures en beton arme sous chargements mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Bongue Boma, M

    2007-12-15

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  16. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body; Modelisation de la fissuration pour l'evaluation de la perte d'etancheite des structures en beton arme sous chargements mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Bongue Boma, M

    2007-12-15

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  17. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Noyori, Amanda; Saiki, Mitiko, E-mail: anoyori@gmail.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring {sup 28}Al and the contribution of P and Si due to {sup 28}Al formed in {sup 31}P(n,α){sup 28}Al and {sup 28}Si(n,p){sup 28}Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring {sup 32}P (pure beta emitter) formed in reaction {sup 31}P(n,γ){sup 32}P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring {sup 29}Al radionuclide formed in {sup 29}Si(n,p){sup 29}Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  18. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Noyori, Amanda; Saiki, Mitiko

    2017-01-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring "2"8Al and the contribution of P and Si due to "2"8Al formed in "3"1P(n,α)"2"8Al and "2"8Si(n,p)"2"8Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring "3"2P (pure beta emitter) formed in reaction "3"1P(n,γ)"3"2P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring "2"9Al radionuclide formed in "2"9Si(n,p)"2"9Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  19. Hydrogen determination using secondary processes of recoil proton interaction with sample material

    International Nuclear Information System (INIS)

    Muminov, V.A.; Khajdarov, R.A.; Navalikhin, L.V.; Pardaev, Eh.

    1980-01-01

    Possibilities of hydrogen content determination in different materials according to secondary processes of interaction of recoil protons(irradiation in the field of fast neutrons) with sample material resulting in the appearance of characteristic X-ray irradiation are studied. Excitated irradiation is recorded with a detector placed in the protective screen and located at a certain distance from the object analyzed and neutron source. The method is tested taking as an example analysis of bromine-containing samples (30% Br, 0.5% H) and tungsten dioxide. The determination limit of hydrogen content constitutes 0.05% at confidence coefficient of 0.9. Neutron flux constituted 10 3 neutrons/cm 2 xs, the time of measurement being 15-20 minutes, the distance from the sample to the detector being 12-15 cm [ru

  20. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  1. Fluorimetric determination of uranium in certain refractory minerals, environmental samples and industrial waste materials

    International Nuclear Information System (INIS)

    Premadas, A.; Saravanakumar, G.

    2005-01-01

    A simple sample decomposition and laser fluorimetric determination of uranium at trace level is reported in certain refractory minerals, like ilmenite, rutile, zircon and monazite; environmental samples viz. soil and sediments; industrial waste materials, such as, coal fly ash and red mud. Ilmenite sample is decomposed by heating with ammonium fluoride. Rutile, zircon and monazite minerals are decomposed by fusion using a mixture of potassium bifluoride and sodium fluoride. Environmental and industrial waste materials are brought into solution by treating with a mixture of hydrofluoric and nitric acids. The laser induced fluorimetric determination of uranium is carried out directly in rutile, zircon and in monazite minerals and after separation in other samples. The determination limit was 1 μg x g -1 for ilmenite, soil, sediment, coal fly ash and red mud samples, and it is 5 μg x g -1 for rutile, zircon and monazite. The method is also developed for the optical fluorimetric determination of uranium (determination limit 10 μg x g -1 ) in ilmenite, rutile, zircon and monazite minerals. The methods are simple, accurate, and precise and they require small quantity of sample and can be applied for the routine analysis. (author)

  2. [Determination of photoinitiators in printing inks used in food contact materials].

    Science.gov (United States)

    Han, Wei; Yu, Yanjun; Li, Ningtao; Wang, Libing

    2011-05-01

    A new analytical method based on gas chromatography-mass spectrometry (GC-MS) techniques was developed for the determination of five photoinitiators (PIs), benzophenone (BP), 4-methylbenzophenone (MBP), ethyl-4-dimethylaminobenzoate (EDAB), 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), in the printing inks used in food contact materials. The test solutions were extracted from selected food contact materials using Soxhlet extractor with ethyl acetate as the extraction solvent. By adding 50 and 200 microg/L of a standard mixture of photoinitiators into the extracts of the blank packaging materials, the recoveries obtained were in the range of 66.7%-89.4%. The repeatability of the method was assessed by determining the contents of the photoinitiators in five types of food contact materials, and the results were lower than 10%. The instrumental detection limits (IDLs) and method quantification limits (MQLs) were in the range of 2.9-6.0 microg/L and 0.0017-0.0036 mg/dm2, respectively. The method was applied in the analysis of about twenty real samples (yogurt carton, milk carton, fruit juice carton and plastic bags samples). The most significant pollutants were BP and MBP. The concentrations of Irgacure 184, EDAB and EHDAB found in three individual samples were 0.84 mg/dm2, 0.2 mg/dm2 and 1.2 mg/dm2, respectively. The work proposed a new method to analyze the migration level of initiators from the inks.

  3. Determination of boron in Jabroc wood used as a shielding material in nuclear reactors

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Jabroc are non-impregnated, densified wood laminates developed commercially for a wide range of industrial applications. Jabroc can be used with other neutron shielding materials such as Lead to form complex shielding structures. Its relative light weight and cleanliness in handling are additional features that make it a suitable candidate for the standard design of neutron shielding equipment. Jabroc can also be impregnated with Boron up to a maximum of 4% to be used in areas where Gamma radiation produced on Neutron capture reaches unacceptable dose rates. Boron impregnated Jabroc wood finds application in TAPS 3 and 4 as a shielding material for the Ion Chambers and the Horizontal Flux Units (HFU). The shielding property of this material is optimized by incorporating requisite amount of boron in wood. Boron content in this material has to be determined accurately prior to its use in the nuclear reactors. In this work a method was standardized to determine boron in Jabroc wood samples to check for conformance to specifications. The wood sample flakes were wetted with saturated barium hydroxide solution and dries under IR. The sample was ashed in a muffle furnace at 600℃ for 2 h

  4. Spectrophotometric determination of Fe(II) in Geological Materials by Using Ferrozine as Cromogenic Reagent

    International Nuclear Information System (INIS)

    Sanchez, D. M.; Martin, R.; Marin, J.; Morante, R.; Gutierrez, L.; Bayon, A.

    1999-12-01

    A rapid and sensitive spectrophotometric method for the determination of labile ferrous iron in geological materials is described. Samples are treated by boiling with hydrochloric acid for 60 min. in an atmosphere of carbon dioxide. Systematic erroneous results due to high concentrations of ferric iron are resolved. The limit of detection for the method was 0.02% of FeO. International standard granites analysed by the proposed method showed recoveries ranged from 81-102%. (Author) 9 refs

  5. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Veronika Petráňová

    2016-02-01

    Full Text Available Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture.

  6. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    OpenAIRE

    Veronika Petráňová; Jaroslav Valach; Alberto Viani; Marta Peréz Estébanez

    2016-01-01

    Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i....

  7. Determination of characteristics of feromagnetic material using modern data acquisition system

    Directory of Open Access Journals (Sweden)

    Koprivica Branko

    2009-01-01

    Full Text Available This paper describes the use of modern measuring and data acquisition system for determining characteristics of feromagnetic material. For this purpose data acquisition card NI USB-6009, PC with data acquisition software and fluxmeter Electrical Steel Measuring System MPG 100 D were used. Based on the results obtained by measurements the modeling of hysteresis loop is performed by using appropriate mathematical model.

  8. Determination of noble metals in geological materials by radiochemical neutron-activation analysis

    International Nuclear Information System (INIS)

    Ahmad, I.; Ahmad, S.; Morris, D.F.C.

    1977-01-01

    A method for the determination of platinum, palladium, gold and iridium in geological materials following activation with thermal neutrons is described. Radionuclides formed from the elements are separated by a scheme based largely on liquid-liquid extractions. The procedure has been applied to the analysis of US Geological Survey standard rocks and to studies of the distribution of the noble metals in lateritic nickel ores. (author)

  9. Determination of soil mechanics of salt rock as a potential backfilling material in an underground repository

    International Nuclear Information System (INIS)

    Kappei, G.

    1987-09-01

    Within the framework of the research and development project 'Backfilling and sealing of boreholes, chambers and roadways in a final dump', the Institute for Underground Dumping chose - from the broad range of possible stowing materials - the material 'salt spoil' and investigated its soil-mechanical properties in detail. Besides the implementation of soil-mechanical standard analyses (determination of the grain size distribution, bulk density, limits of storage density, proctor density, permeabilities, and shear strength) of two selected salt spoils (heap salt and rock salt spoil), the studies concentrated on the determination of the compression behaviour of salt spoil. In order to obtain data on the compaction behaviour of this material in the case of increasing stress, compression tests with obstructed lateral expansion were carried out on a series of spoil samples differing mainly in the composition of grain sizes. In addition to this, for a small number of samples of rock salt spoil, the creep behaviour at constant stress was determined after the compaction phase. (orig./RB) [de

  10. Conservative method for determination of material thickness used in shielding of veterinary facilities

    International Nuclear Information System (INIS)

    Lava, Deise D.; Borges, Diogo da S.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    For determination of an effective method for shielding of veterinary rooms, was provided shielding methods generally used in rooms which works with X-ray production and radiotherapy. Every calculation procedure is based in traditional variables used to transmission calculation. The thickness of the materials used for primary and secondary shieldings are obtained to respect the limits set by the Brazilian National Nuclear Energy Commission (CNEN). This work presents the development of a computer code in order to serve as a practical tool for determining rapid and effective materials and their thicknesses to shield veterinary facilities. The code determines transmission values of the shieldings and compares them with data from transmission 'maps' provided by NCRP-148 report. These 'maps' were added to the algorithm through interpolation techniques of curves of materials used for shielding. Each interpolation generates about 1,000,000 points that are used to generate a new curve. The new curve is subjected to regression techniques, which makes possible to obtain nine degree polynomial, and exponential equations. These equations whose variables consist of transmission of values, enable trace all the points of this curve with high precision. The data obtained from the algorithm were satisfactory with official data presented by the National Council of Radiation Protection and Measurements (NCRP) and can contribute as a practical tool for verification of shielding of veterinary facilities that require using Radiotherapy techniques and X-ray production

  11. Determination of natural radionuclides content in some building materials in Nigeria by gamma-ray spectrometry.

    Science.gov (United States)

    Ademola, J A

    2008-01-01

    This paper presents the findings of a study undertaken to determine the natural radioactivity present in some building materials in Nigeria using a gamma-ray spectrometer with a hyper pure germanium detector. A total of 118 samples of commonly used building materials were collected from manufacturers and suppliers of these materials. The mean radioactivity concentrations measured in the different building materials varied from 9.4 to 62.9, 1.3 to 88.4, and 21.5 to 762.4 Bq kg(-1), respectively, for 226Ra, 232Th, and 40K. The average contents of 226Ra, 232Th, and 40K for all the samples were 36.3, 46.5, and 320.9 Bq kg(-1), respectively, lower than the world average for building materials (50, 50, and 500 Bq kg(-1)). The calculated mean radium equivalent activity and external and internal hazard indices for the entire sample were lower than United Nation Scientific Committee on the Effects of Atomic Radiation recommended limits and comparable with results of similar studies undertaken in other countries. The mean annual gonadal equivalent doses of some of the samples were higher than the world average value for soil.

  12. Observed variations of monopile foundation stiffness

    DEFF Research Database (Denmark)

    Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya

    2015-01-01

    full-scale measurements obtained from one offshore wind turbine structure located within Horns Reef II offshore wind farm. Data are presented for a 2.5 years period and covers normal operating conditions and one larger storm event. A reduction of the pile-soil stiffness was observed during the storm...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits.......The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss...

  13. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  14. Determination of cadmium, lead and zinc in a candidate reference materials using isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Munoz, Luis; Gras, Nuri; Quejido, Alberto; Fernandez, Marta

    2001-01-01

    The growing demands placed on analytical laboratories to ensure the reliability of their results, due to the introduction of systems of quality and to the increasing use of metrology in chemical measurements has led most laboratories to validate their methodologies and to control them statistically. One of the techniques used most often for these purposes is based on the use of reference materials. The proper use of these materials means that laboratory results may be traced to the International System of Units, analytical methodologies can be validated, instruments calibrated and chemical measurements harmonized. One of the biggest challenges in developing reference materials is that of certifying their properties, a process that has been defined as assigning a concentration value that is as close as possible to the true value together with its uncertainty. Organizations that produce reference materials use several options for their certification process, and among these is the use of a primary method. Among the primary methods recognized by the International Office of Weights and Measures is the Isotope Dilution Mass Spectrometry technique. The Chilean Nuclear Energy Commission, through its Reference Materials Program, has prepared a reference material of clam tissue, which has been chemically defined by different analytical methodologies applied in different national and international laboratories. This work describes the methodology developed with the CIEMAT for determining the elements lead, cadmium and zinc in the clam tissue reference material using the primary technique of Isotope Dilution Mass Spectrometry. The calculation is described for obtaining the spike amounts to be added to the sample and the procedure is explained for carrying out the isotopic exchange. The isotopic relationships 204 Pb/ 205 Pb, 111 Cd/ 114 Cd and 66 Zn/ 67 Zn were determined in an atomic emission spectrometer with a plasma source with the following characteristics: plasma

  15. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  16. Magnetic resonance elastography: Feasibility of liver stiffness measurements in healthy volunteers at 3 T

    International Nuclear Information System (INIS)

    Mannelli, L.; Godfrey, E.; Graves, M.J.; Patterson, A.J.; Beddy, P.; Bowden, D.; Joubert, I.; Priest, A.N.; Lomas, D.J.

    2012-01-01

    Aim: To demonstrate the feasibility of obtaining liver stiffness measurements with magnetic resonance elastography (MRE) at 3 T in normal healthy volunteers using the same technique that has been successfully applied at 1.5 T. Methods and materials: The study was approved by the local ethics committee and written informed consent was obtained from all volunteers. Eleven volunteers (mean age 35 ± 9 years) with no history of gastrointestinal, hepatobiliary, or cardiovascular disease were recruited. The magnetic resonance imaging (MRI) protocol included a gradient echo-based MRE sequence using a 60 Hz pneumatic excitation. The MRE images were processed using a local frequency estimation inversion algorithm to provide quantitative stiffness maps. Adequate image quality was assessed subjectively by demonstrating the presence of visible propagating waves within the liver parenchyma underlying the driver location. Liver stiffness values were obtained using manually placed regions of interest (ROI) outlining the liver margins on the gradient echo wave images, which were then mapped onto the corresponding stiffness image. The mean stiffness values from two adjacent sections were recorded. Results: Eleven volunteers underwent MRE. The quality of the MRE images was adequate in all the volunteers. The mean liver stiffness for the group was 2.3 ± 0.38 kPa (ranging from 1.7–2.8 kPa). Conclusions: This preliminary work using MRE at 3 T in healthy volunteers demonstrates the feasibility of liver stiffness evaluation at 3 T without modification of the approach used at 1.5 T. Adequate image quality and normal MRE values were obtained in all volunteers. The obtained stiffness values were in the range of those reported for healthy volunteers in previous studies at 1.5 T. There was good interobserver reproducibility in the stiffness measurements.

  17. Magnetic resonance elastography: Feasibility of liver stiffness measurements in healthy volunteers at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, L., E-mail: mannellilorenzo@yahoo.it [Department of Radiology, Addenbrooke' s Hospital and University of Cambridge, Cambridge (United Kingdom); Department of Radiology, University of Washington, Seattle, WA (United States); Godfrey, E.; Graves, M.J.; Patterson, A.J.; Beddy, P.; Bowden, D.; Joubert, I.; Priest, A.N.; Lomas, D.J. [Department of Radiology, Addenbrooke' s Hospital and University of Cambridge, Cambridge (United Kingdom)

    2012-03-15

    Aim: To demonstrate the feasibility of obtaining liver stiffness measurements with magnetic resonance elastography (MRE) at 3 T in normal healthy volunteers using the same technique that has been successfully applied at 1.5 T. Methods and materials: The study was approved by the local ethics committee and written informed consent was obtained from all volunteers. Eleven volunteers (mean age 35 {+-} 9 years) with no history of gastrointestinal, hepatobiliary, or cardiovascular disease were recruited. The magnetic resonance imaging (MRI) protocol included a gradient echo-based MRE sequence using a 60 Hz pneumatic excitation. The MRE images were processed using a local frequency estimation inversion algorithm to provide quantitative stiffness maps. Adequate image quality was assessed subjectively by demonstrating the presence of visible propagating waves within the liver parenchyma underlying the driver location. Liver stiffness values were obtained using manually placed regions of interest (ROI) outlining the liver margins on the gradient echo wave images, which were then mapped onto the corresponding stiffness image. The mean stiffness values from two adjacent sections were recorded. Results: Eleven volunteers underwent MRE. The quality of the MRE images was adequate in all the volunteers. The mean liver stiffness for the group was 2.3 {+-} 0.38 kPa (ranging from 1.7-2.8 kPa). Conclusions: This preliminary work using MRE at 3 T in healthy volunteers demonstrates the feasibility of liver stiffness evaluation at 3 T without modification of the approach used at 1.5 T. Adequate image quality and normal MRE values were obtained in all volunteers. The obtained stiffness values were in the range of those reported for healthy volunteers in previous studies at 1.5 T. There was good interobserver reproducibility in the stiffness measurements.

  18. Damper modules with adapted stiffness ratio

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenburg, R.; Stretz, A. [ZF Sachs AG, Entwicklungszentrum, Schweinfurt (Germany)

    2011-07-15

    A mechanism for the excitation of piston rod vibrations in automotive damper modules is discussed by a simple model. An improved nonlinear model based on elasticity effects leads to good simulation results. It is shown theoretically and experimentally that the adaptation of the stiffness of the piston rod bushing to the ''stiffness'' of the damper force characteristic can eliminate the piston rod oscillations completely. (orig.)

  19. OroSTIFF: Face-referenced measurement of perioral stiffness in health and disease.

    Science.gov (United States)

    Chu, Shin-Ying; Barlow, Steven M; Kieweg, Douglas; Lee, Jaehoon

    2010-05-28

    A new device and automated measurement technology known as OroSTIFF is described to characterize non-participatory perioral stiffness in healthy adults for eventual application to patients with orofacial movement disorders associated with neuromotor disease, traumatic injury, or congenital clefts of the upper lip. Previous studies of perioral biomechanics required head stabilization for extended periods of time during measurement, which precluded sampling patients with involuntary body/head movements (dyskinesias), or pediatric subjects. The OroSTIFF device is face-referenced and avoids the complications associated with head-restraint. Supporting data of non-participatory perioral tissue stiffness using OroSTIFF are included from 10 male and 10 female healthy subjects. The OroSTIFF device incorporates a pneumatic glass air cylinder actuator instrumented for pressure, and an integrated subminiature displacement sensor to encode lip aperture. Perioral electromyograms were simultaneously sampled to confirm passive muscle state for the superior and inferior divisions of the orbicularis oris muscles. Perioral stiffness, derived as a quotient from resultant force (DeltaF) and interangle span (DeltaX), was modeled with multilevel regression techniques. Real-time calculation of the perioral stiffness function demonstrated a significant quadratic relation between imposed interangle stretch and resultant force. This stiffness growth function also differed significantly between males and females. This study demonstrates the OroSTIFF 'proof-of-concept' for cost-effective non-invasive stimulus generation and derivation of perioral stiffness in a group of healthy unrestrained adults, and a case study to illustrate the dose-dependent effects of Levodopa on perioral stiffness in an individual with advanced Parkinson's disease who exhibited marked dyskinesia and rigidity. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Negative stiffness honeycombs as tunable elastic metamaterials

    Science.gov (United States)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  1. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  2. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  3. Surgeons' performance determining the amount of graft material for sinus floor augmentation using tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Adriana Dibo; Peixoto, Guilherme Alvares; Aguiar, Marcelo Freitas; Camargo, Gabriela Alessandra Cruz Galhardo; Homs, Nicolas, E-mail: adrianadibo@gmail.com [Universidade Federal Fluminense (UFF), Nova Friburgo, RJ, (Brazil)

    2017-05-15

    This study aimed to assess the performance of surgeons in determining the amount of graft material required for maxillary sinus floor augmentation in a preoperative analysis using cone-beam computed tomography images. A convenience sample of 10 retrospective CBCT exams (i-CAT®) was selected. Scans of the posterior maxilla area with an absence of at least one tooth and residual alveolar bone with an up to 5 mm height were used. Templates (n=20) contained images of representative cross-sections in multiplanar view. Ten expert surgeons voluntarily participated as appraisers of the templates for grafting surgical planning of a 10 mm long implant. Appraisers could choose a better amount of graft material using scores: 0) when considered grafting unnecessary, 1) for 0.25 g in graft material, 2) for 0.50 g, 3) for 1.00 g and 4) for 1.50 g or more. Reliability of the response pattern was analyzed using Cronbach's α. Wilcoxon and Mann-Whitney tests were performed to compare scores. Regression analysis was performed to evaluate whether the volume of sinuses (mm{sup 3}) influenced the choose of scores. In the reliability analysis, all values were low and the score distribution was independent of the volume of the maxillary sinuses (p>0.05), which did not influence choosing the amount of graft material. Surgeons were unreliable to determine the best amount of graft material for the maxillary sinus floor augmentation using only CBCT images. Surgeons require auxiliary diagnostic tools to measure the volume associated to CBCT exams in order to perform better. (author)

  4. Surgeons' performance determining the amount of graft material for sinus floor augmentation using tomography

    International Nuclear Information System (INIS)

    Cruz, Adriana Dibo; Peixoto, Guilherme Alvares; Aguiar, Marcelo Freitas; Camargo, Gabriela Alessandra Cruz Galhardo; Homs, Nicolas

    2017-01-01

    This study aimed to assess the performance of surgeons in determining the amount of graft material required for maxillary sinus floor augmentation in a preoperative analysis using cone-beam computed tomography images. A convenience sample of 10 retrospective CBCT exams (i-CAT®) was selected. Scans of the posterior maxilla area with an absence of at least one tooth and residual alveolar bone with an up to 5 mm height were used. Templates (n=20) contained images of representative cross-sections in multiplanar view. Ten expert surgeons voluntarily participated as appraisers of the templates for grafting surgical planning of a 10 mm long implant. Appraisers could choose a better amount of graft material using scores: 0) when considered grafting unnecessary, 1) for 0.25 g in graft material, 2) for 0.50 g, 3) for 1.00 g and 4) for 1.50 g or more. Reliability of the response pattern was analyzed using Cronbach's α. Wilcoxon and Mann-Whitney tests were performed to compare scores. Regression analysis was performed to evaluate whether the volume of sinuses (mm"3) influenced the choose of scores. In the reliability analysis, all values were low and the score distribution was independent of the volume of the maxillary sinuses (p>0.05), which did not influence choosing the amount of graft material. Surgeons were unreliable to determine the best amount of graft material for the maxillary sinus floor augmentation using only CBCT images. Surgeons require auxiliary diagnostic tools to measure the volume associated to CBCT exams in order to perform better. (author)

  5. Low liver stiffness among cirrhotic patients with hepatitis B after prolonged treatment with nucleoside analogs

    DEFF Research Database (Denmark)

    Andersen, Ellen Sloth; Weiland, Ola; Leutscher, Peter

    2011-01-01

    Abstract Objective. Case reports and short-term clinical trials have suggested that treatment for chronic hepatitis B (CHB) may lead to improvement of cirrhosis. The aim of the present study was to measure liver stiffness in patients diagnosed with advanced fibrosis or cirrhosis prior to prolonged...... treatment with nucleoside or nucleotide analogs (NUCs) for CHB. Materials and methods. Patients with CHB and advanced fibrosis or cirrhosis prior to treatment with NUCs for at least 1 year were offered inclusion in the study. We measured liver stiffness using transient elastography (TE) at follow-up. TE cut...... duration was 50.5 months. Among patients with cirrhosis prior to treatment, 26 (49%) had liver stiffness below 11.0 kPa at follow-up, suggesting regression of cirrhosis. Among patients with advanced fibrosis (F3) prior to treatment, 10 (77%) had liver stiffness below 8.1 kPa after treatment, suggesting...

  6. Dynamic Bending and Torsion Stiffness Derivation from Modal Curvatures and Torsion Rates

    Science.gov (United States)

    MAECK, J.; DE ROECK, G.

    1999-08-01

    In order to maintain the reliability of civil engineering structures, considerable effort is currently spent on developing a non-destructive vibration testing method for monitoring the structural integrity of constructions. The technique must be able to observe damage, secondly to localize the damage; and finally to give an idea of the severity of the damage. Within the framework of relating changes of measured modal parameters to changes in the integrity of the structure, it is important to be able to determine the dynamic stiffness in each section of the structure from measured modal characteristics.A damaged structure results in a dynamic stiffness reduction of the cracked sections. The dynamic stiffnesses provide directly an indication of the extension of the cracked zones in the structure. The dynamic stiffness reduction can also be associated with a degree of cracking in a particular zone.In an experimental programme, a concrete beam of 6 m length is subjected to an increasing static load to produce cracks. After each static perload, the beam is tested dynamically in a free-free set-up. The change in modal parameters is then related to damage in the beam.The technique that will be presented in the paper to predict the damage location and intensity is a direct stiffness derivation from measured modal displacement derivatives. Using the bending modes, the dynamic bending stiffness can be derived from modal curvatures. Using the torsional modes, the dynamic torsion stiffness can be derived from modal torsion rates.

  7. Possibilities of nondestructive determination of fluorine in coal and biological materials by IPAA

    International Nuclear Information System (INIS)

    Randa, Zdenek; Mizera, Jiri; Chvatil, David

    2009-01-01

    The possibilities of nondestructive determination of fluorine in coal and biological materials by instrumental photon activation analysis (IPAA) were studied. The determination was based on counting the non-specific 511 keV annihilation gamma rays of 18 F, a pure positron emitter which is the product of the photonuclear reaction 19 F(γ, n) 18 F. The simultaneous formation of some additional positron emitters, particularly 45 Ti and 34m Cl, is an interfering factor. When using correction standards for Ti and Cl and optimization of the beam energy and irradiation-decay-counting times, fluorine could be determined by IPAA in selected coal and biological samples at the ten ppm level. The feasibility of additional optimization for further improvements of the proposed IPAA procedure are discussed

  8. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material.

    Science.gov (United States)

    He, Yunhua; Lu, Jiuru; Liu, Mei; Du, Jianxiu

    2005-07-01

    A new molecular imprinting-chemiluminescence method for the determination of trimethoprim was developed, in which trimethoprim-imprinted polymer was used as the molecular recognition material and the CL reaction of trimethoprim with potassium permanganate in acidic medium was used as the detection system. The CL intensity responds linearly to the concentration of trimethoprim within the 5.0 x 10(-8)-5.0 x 10(-6) g mL(-1) range (r= 0.9983) with a detection limit of 2 x 10(-8) g mL(-1). The relative standard deviation for the determination of 1.0 x 10(-7) g mL(-1) trimethoprim solutions is 4.8% (n= 9). The method has been applied to the determination of trimethoprim in pharmaceutical preparations and body fluids, and satisfactory results were obtained.

  9. Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

    International Nuclear Information System (INIS)

    Hoang Duc Tam; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong; Tran Thien Thanh; Vo Hoang Nguyen; Hoang Thi Kieu Trang; Chau Van Tao

    2015-01-01

    In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness. (author)

  10. Thickness determination in textile material design: dynamic modeling and numerical algorithms

    International Nuclear Information System (INIS)

    Xu, Dinghua; Ge, Meibao

    2012-01-01

    Textile material design is of paramount importance in the study of functional clothing design. It is therefore important to determine the dynamic heat and moisture transfer characteristics in the human body–clothing–environment system, which directly determine the heat–moisture comfort level of the human body. Based on a model of dynamic heat and moisture transfer with condensation in porous fabric at low temperature, this paper presents a new inverse problem of textile thickness determination (IPTTD). Adopting the idea of the least-squares method, we formulate the IPTTD into a function minimization problem. By means of the finite-difference method, quasi-solution method and direct search method for one-dimensional minimization problems, we construct iterative algorithms of the approximated solution for the IPTTD. Numerical simulation results validate the formulation of the IPTTD and demonstrate the effectiveness of the proposed numerical algorithms. (paper)

  11. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    According to the provisions of The Law, those stipulated as internationally controlled materials are nuclear source materials, nuclear fuel materials, moderating materials, reactors and facilities, transferred from such as the U.S.A., the U.K. and Canada on the agreements of peaceful uses of atomic energy, and nuclear fuel materials accruing therefrom. (Mori, K.)

  12. Analytic determination of the activation of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    Schelenz, R.

    1980-01-01

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO 3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 0 0 C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG) [de

  13. Evaluation of Blue Value in different plant materials as a tool for rapid starch determination

    Directory of Open Access Journals (Sweden)

    Bogusław Samotus

    2014-01-01

    Full Text Available In order to determine the concentration of starch in plant materials from the intensity of the blue iodine complex, it is necessary to know the Blue Value (B.V., which is defined in this paper as the absorbancy of 100 mg of a starch-iodine complex in 100 ml of aqueous solution. An adequate amount of plant material is treated with a hot CaCl2 solution for 1/2 hour and the solute is diluted to 25 ml with CaCl2. This basic solution serves to measure absorbancy, as well as for starch determination. The first measurement is done by the dilution of a proper amount of basic solution with water and after adding a diluted iodine-iodide solution the reading of B.V. is taken off. The second measurement is done by the precipitation of a starch iodine complex from a proper amount of the basic solution, which is then purified, destroyed by Na2SO3 solution, and starch is determined by the anthrone method. These two readings serve for the establishing of B.V. for the starch. Once established, B.V. can be used for starch determination in the proper plant material. A high degree of variation of the B.V. was found. The highest B.V. was obtained for wrinkled pea seeds (17.4; walnut, potato, smooth pea and pear gave values from 12.6 to 11.0, common bean and broad bean - 10.3 and 9.7, Triticale, carrot, rye, wheat and garden parsley from 8.7 to 8.0 and maize, oat, normal rice from 7.6 to 6.2. The B.V. for amylose was 25.3, for potato starch 12.4, soluble starch 11.9, wheat starch 8.8 and for Triticale and rye starches, 8.7.

  14. Determination of plutonium in nuclear fuel materials by controlled potential coulometry

    International Nuclear Information System (INIS)

    Ambolikar, A.S.; Pillai, Jisha S.; Sharma, M.K.; Kamat, J.V.; Aggarwal, S.K.

    2011-01-01

    Accurate knowledge of Pu content in nuclear fuel materials is an important requirement for the purpose of chemical quality control, nuclear material accounting and process control. Biamperometry and potentiometry techniques are widely employed for the determination of Pu. These redox electroanalytical based methods are capable of meeting the requirements of high accuracy and precision using milligram amounts of the analyte. However, use of chemical reagents to carry out redox reactions in these methodologies generates radioactive liquid waste which needs to be processed to recover plutonium. In coulometric technique, change in the oxidation state of an electro active species is carried out by charge transfer on an electrode surface, hence chemical reagents as well as chemical standards required for the redox titration based methods are eliminated and analytical waste generated is free from metallic impurities. Therefore the determination of Pu in nuclear fuel materials by coulometry is an attractive option. In view of this, controlled potential coulometric methods have been developed in our laboratory for variety of applications at different stages of nuclear fuel cycle. In the early stage of coulometry developments in our laboratory, coulometers procured from EG and G Princeton Applied Research Corporation were employed. After prolong use, these instruments were showing ageing and hence indigenously built controlled potential coulometer was procured. Performance evaluation studies of these coulometers were reported from our laboratory for the determination of uranium and plutonium in working chemical assay standards. In this paper, we present studies carried out on the determination of plutonium in Pu-alloy and (U, Pu) C samples employing the same indigenous coulometer

  15. Experimental Analysis of Stiffness of the Riveted Steel Railway Bridge Deck Members’ Joints

    Directory of Open Access Journals (Sweden)

    Gocál Jozef

    2014-12-01

    Full Text Available The paper deals with the real behaviour of the riveted steel railway bridge deck members’ connections with respect to their bending stiffness. Attention is paid to the stringer-to-cross beam connection as well as the cross beam-to-main girder connection. The stiffness of the two connections is investigated on the basis of evaluation of the experimentally determined stress response of the observed structural members to the actual traffic load on an existing railway bridge.

  16. Visual and colorimetric methods for rapid determination of total tannins in vegetable raw materials

    Directory of Open Access Journals (Sweden)

    S. P. Kalinkina

    2016-01-01

    Full Text Available The article is dedicated to the development of rapid colorimetric method for determining the amount of tannins in aqueous extracts of vegetable raw materials. The sorption-based colorimetric test is determining sorption tannins polyurethane foam, impregnated of FeCl3, receiving on its surface painted in black and green color of the reaction products and the determination of their in sorbent matrix. Selectivity is achieved by determining the tannins specific interaction of polyphenols with iron ions (III. The conditions of sorption-colorimetric method: the concentration of ferric chloride (III, impregnated in the polyurethane foam; sorbent mass in the analytical cartridge; degree of loading his agent; the contact time of the phases. color scales have been developed for the visual determination of the amount of tannins in terms of gallic acid. Spend a digitized image obtained scales using computer program “Sorbfil TLC”, excluding a subjective assessment of the intensity of the color scale of the test. The results obtained determine the amount of tannins in aqueous extracts of vegetable raw rapid method using tablets and analytical cartridges. The results of the test determination of tannins with visual and densitometric analytical signal registration are compared to known methods. Spend a metrological evaluation of the results of determining the amount of tannins sorption rapid colorimetric methods. Time visual and densitometric rapid determination of tannins, taking into account the sample preparation is 25–30 minutes, the relative error does not exceed 28 %. The developed test methods for quantifying the content of tannins allow to exclude the use of sophisticated analytical equipment, carry out the analysis in non-laboratory conditions do not require highly skilled personnel.

  17. Influence of disinfectant solutions on test materials used for the determination of masticatory performance

    Directory of Open Access Journals (Sweden)

    Simone Silvério Campos

    2013-06-01

    Full Text Available Masticatory function can be evaluated objectively as the capacity of an individual to fragment solid food after a fixed number of chewing cycles, the so-called masticatory performance (MP. The objective of this study was to evaluate the reliability of four different test materials (Optosil, Optocal, Zetapuls, and Perfil and five disinfection protocols by aspersion and immersion (no disinfection, 2% glutaraldehyde, 2% chlorhexidine, 5.25% sodium hypochlorite, and 70% alcohol on the MP, determined at three moments (24 hours, 15 and 60 days after storing the fragmented blocks. MP was evaluated by calculating X50 through the sieving technique and the Rosim-Ramler equation. The weight and microbiologic count (colony forming units, CFUs of chewed blocks were measured to identify any variations that would make MP determination unfeasible. Differences in MP were observed among the materials (p 0.05. The time and disinfection type had no influence on MP (p > 0.05. The number of CFUs differed between the nondisinfected group and all other disinfection groups at all time points (p < 0.01. No other significant difference in CFU count between disinfection groups was observed. In conclusion, disinfection did not alter the reliability of the test materials for the MP calculation for up to 60 days.

  18. Chemical preparation of biological materials for accurate chromium determination by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Dunstan, L.P.; Garner, E.L.

    1977-01-01

    The current interest in trace elements in biological materials has created a need for accurate methods of analysis. The source of discrepancies and variations in chromium concentration determinations is often traceable to inadequate methods of sample preparation. Any method of Cr analysis that requires acid digestion of a biological matrix must take into consideration the existence or formation of a volatile Cr component. In addition, because Cr is often present at concentrations less than 1 μg/g, the analytical blank becomes a potential source of error. Chemical procedures have been developed for the digestion of the biological matrix and the separation of Cr without either large analytical blanks or significant losses by volatilization. These procedures have been used for the analysis of NBS Standard Reference Material (SRM) 1569 Brewers Yeast; SRM 1577 Bovine Liver; SRM 1570 Spinach and other biological materials including human hair and nails. At this time, samples containing 1 μg of Cr can be determined with an estimated accuracy of 2 percent

  19. Simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Damsgaard, E.; Heydorn, K.

    1976-08-01

    A method for the simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological material was developed by the incorporation of separation procedures for copper and zinc into an existing procedure. Investigation of the performance characteristics of the method was carried out with reference to copper and zinc. For certain materials characterized by a high Cu/Zn ratio, or a high zinc content, or both, such as liver, copper ihterferes in the determination of zinc thus requiring a small correction by an iterative procedure. Blank values for copper depend on the rinsing of the irradiation container, and a single rinsing with redistilled water was found superior to other rinsing procedures. Nuclear interference was negligible. The accuracy of the method was checked by analysis of Standard Reference Materials and the precision verified by analysis of Intercomparison Samples. Results are presented for 5 male foetuses of 3-5 months' gestational age. The distribution of arsenic, manganese and selenium is similar to that previously reported for adults. With the exception of liver, concentrations of copper in foetal organs were lower than values in the literature indicate. (author)

  20. Determination of material constants of vertically aligned carbon nanotube structures in compressions

    International Nuclear Information System (INIS)

    Li, Yupeng; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-01-01

    Different chemical vapour deposition (CVD) fabrication conditions lead to a wide range of variation in the microstructure and morphologies of carbon nanotubes (CNTs), which actually determine the compressive mechanical properties of CNTs. However, the underlying relationship between the structure/morphology and mechanical properties of CNTs is not fully understood. In this study, we characterized and compared the structural and morphological properties of three kinds of vertically aligned carbon nanotube (VACNT) arrays from different CVD fabrication methods and performed monotonic compressive tests for each VACNT array. The compressive stress–strain responses and plastic deformation were first compared and analyzed with nanotube buckling behaviours. To quantify the compressive properties of the VACNT arrays, a strain density energy function was used to determine their intrinsic material constants. Then, the structural and morphological effects on the quantified material constants of the VACNTs were statistically investigated and analogized to cellular materials with an open-cell model. The statistical analysis shows that density, defect degree, and the moment of inertia of the CNTs are key factors in the improvement of the compressive mechanical properties of VACNT arrays. This approach could allow a model-driven CNT synthesis for engineering their mechanical behaviours. (paper)

  1. Development of new reference materials for the determination of cadmium, chromium, mercury and lead in polycarbonate

    International Nuclear Information System (INIS)

    Lee, Kil Jae; Lee, Yeo Jin; Choi, Young Rak; Kim, Jeong Sook; Kim, Youn Sung; Heo, Soo Bong

    2013-01-01

    Highlights: ► RMs for the determination of Cd, Cr, Hg and Pb in polycarbonate were developed. ► Double ID-ICP-MS technique was used for characterization of candidate RMs. ► The certified values for the elements ranged from 51.7 to 1133 mg kg −1 . ► The relative expanded uncertainties were shown to be less than 5.4%. ► New RMs were found to be suitable for the RoHS compliant tests. - Abstract: Reference materials for quantitative determination of Cd, Cr, Hg and Pb in polycarbonate were developed. Reference materials with two concentration level of elements were prepared by adding appropriate amounts of chemicals to a blank polycarbonate base material. It was shown that ten bottles with triplicate analysis are enough to demonstrate the homogeneity of these candidate reference materials. The statistical results also showed no significant trends in both short-term stability test for four weeks and long-term stability test for twelve months. The certification of the four elements was carried out by isotope-dilution-inductively coupled plasma mass spectrometry (ID-ICP-MS) with microwave-assisted digestion. Certification of candidate reference materials in a single laboratory was confirmed with interlaboratory comparison participated by a certain number of well-recognized testing laboratories in Korea. The certified values and expanded uncertainties (k = 2) for the candidate reference material with low level and the one with high level were (51.7 ± 2.1) mg kg −1 Cd, (103.8 ± 2.9) mg kg −1 Cd, (98.8 ± 4.5) mg kg −1 Cr, (1004 ± 49.8) mg kg −1 Cr, (107.4 ± 4.6) mg kg −1 Hg, (1133 ± 50.7) mg kg −1 Hg, (94.8 ± 3.7) mg kg −1 Pb and (988.4 ± 53.6) mg kg −1 Pb, respectively. The reference materials developed in this study demonstrated their suitability for the quality assurance in Cd, Cr, Hg and Pb analysis for the implementation of RoHS Directive.

  2. Determination of the probability for radioactive materials on properties in Monticello, Utah

    International Nuclear Information System (INIS)

    Wilson, M.J.; Crutcher, J.W.; Halford, D.K.

    1991-01-01

    The former uranium mill site at Monticello, Utah, is a surplus facility subject to clean-up under the Surplus Facilities Management Program (SFMP). Surrounding properties contaminated with mill site material are also subject to cleanup, and are referred to as Monticello Vicinity Properties (MVP). The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory (ORNL), Grand Junction, Colorado (GJ), was directed by the US Department of Energy (DOE) in July 1988 to assess the radiological condition of properties in Monticello, Utah. Since the Monticello activities are on the National Priority List, extra measures to identify potentially contaminated properties were undertaken. Thus, the likelihood that a random property could contain radioactive materials became a concern to the DOE. The objective of this study was to determine the probability that a vicinity property not addressed under the MVP project could contain Monticello mill-related residual radioactive material in excess of the DOE guidelines. Results suggest approximately 20% of the properties in the Monticello area contain Monticello mill-related residual radioactive material in excess of the DOE guidelines. This suggested that further designation measures be taken prior to the close of the designation phase. A public relations effort that included a property-owner mailing effort, public posting, and newspaper advertisement was one measure taken to ensure that most properties were assessed. As a consequence of this study, DOE directed that radiological screening surveys be conducted on the entirety of the Monticello area

  3. Determination Plastic Properties of a Material by Spherical Indentation Base on the Representative Stress Approach

    Science.gov (United States)

    Budiarsa, I. N.; Gde Antara, I. N.; Dharma, Agus; Karnata, I. N.

    2018-04-01

    Under an indentation, the material undergoes a complex deformation. One of the most effective ways to analyse indentation has been the representative method. The concept coupled with finite element (FE) modelling has been used successfully in analysing sharp indenters. It is of great importance to extend this method to spherical indentation and associated hardness system. One particular case is the Rockwell B test, where the hardness is determined by two points on the P-h curve of a spherical indenter. In this case, an established link between materials parameters and P-h curves can naturally lead to direct hardness estimation from the materials parameters (e.g. yield stress (y) and work hardening coefficients (n)). This could provide a useful tool for both research and industrial applications. Two method to predict p-h curve in spherical indentation has been established. One is use method using C1-C2 polynomial equation approach and another one by depth approach. Both approach has been successfully. An effective method in representing the P-h curves using a normalized representative stress concept was established. The concept and methodology developed is used to predict hardness (HRB) values of materials through direct analysis and validated with experimental data on selected samples of steel.

  4. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Nunes, Lidiane Cristina; Aparecida Rufini, Iolanda; Krug, Francisco Jose

    2009-01-01

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm -2 . An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg -1 B, 3.0 mg kg -1 Cu, 3.6 mg kg -1 Fe, 1.8 mg kg -1 Mn and 1.2 mg kg -1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  5. Factors influencing the stiffness of fibroadenomas at shear wave elastography

    International Nuclear Information System (INIS)

    Elseedawy, M.; Whelehan, P.; Vinnicombe, S.; Thomson, K.; Evans, A.

    2016-01-01

    Aim: To identify which features of fibroadenomas are associated with false-positive findings at shear wave elastography (SWE). Materials and methods: A total of 151 patients with histologically confirmed fibroadenomata were identified from a prospective database, from a single breast unit. The following features were assessed by two observers who were unaware of the SWE findings: patient age, grey-scale ultrasound lesion diameter (<15 or ≥15 mm), distance from the lesion to skin, composition of surrounding tissue (fatty, mixed or dense), and source of referral (screening or symptomatic). Statistical analysis was carried out using the chi-square test. Results: A statistically significant positive association was found between grey-scale ultrasound lesion size and lesion stiffness. Twenty-nine of 70 (41%) lesions ≥15 mm were stiff, versus 10 of 81 (12%) <15 mm (p=0.001). Patient age, distance from the lesion to skin, make-up of surrounding tissue, and source were not significantly associated with stiffness. Conclusion: Fibroadenomas giving false-positive SWE results tend to be larger in size than those that do not. More compression of adjacent normal tissue is assumed to be the cause of the present findings. As previous studies have shown that large cancers tend to be stiffer than smaller cancers, it may be appropriate to vary the quantitative cut-off value used for benign/malignant differentiation in SWE according to lesion size. - Highlights: • Fibroadenomas giving false positive SWE results tend to be larger in size. • More compression of adjacent normal tissue is assumed to be the cause of our findings. • The age of the patient is not related to fibroadenoma stiffness.

  6. Analysis of results of surgical treatment of posttraumatic stiff elbow

    Directory of Open Access Journals (Sweden)

    Rex Chandrabose

    2008-01-01

    Full Text Available Background: Surgical management of posttraumatic elbow stiffness has been reported with poor outcome following treatment. Sequential release in earlier stages of stiffness yielded much better results. The goal of our study was to assess the outcome in improvement of the range of motion of the elbow after surgical release and to analyze a tailor-made approach according to individual needs to yield good result. Materials and Methods: A prospective study was conducted in 47 cases of elbow stiffness due to various types of injuries. All the cases were treated with sequential release if there was no progress after adequate supervised conservative management except in unreduced dislocations. All the cases were followed up for a minimum period of 24 months. Overall outcome was rated with the functional scoring system by Mayo Clinic Performance Index. Results: Twenty-five (44.68% out of 47 patients had excellent results with a mean preoperative range of motion of 33.9° and postoperative range of motion of 105° with net gain in range of motion of 71.1° (′ t ′ test value is 19.27, P < 0.01. None of the patients had elbow instability. Patients not having heterotopic ossification, who underwent surgery from three to six months post injury had a mean gain of 73.5°. In patients who waited for more than six months had mean gain of 66.8°. However, the results in cases having heterotopic ossification followed a slightly different pattern. In cases where release was performed from three months to six months had mean gain of 77.5°. Cases in which release was performed after six months had gain of 57.1°. Conclusions: In cases of posttraumatic elbow stiffness after a failed initial conservative treatment, early arthrolysis with sequential surgical soft tissue release yields good result than delayed surgery.

  7. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  8. Smoothly varying in-plane stiffness heterogeneity evaluated under uniaxial tensile stress

    Science.gov (United States)

    J.M. Considine; F. Pierron; K.T. Turner; P. Lava; X. Tang

    2017-01-01

    Identification of spatially varying stiffness is a challenging, but important, research topic in the mechanics of materials and can provide the necessary information for material suitability, damage, and process control, especially for high‐value applications. One homogeneous and 3 heterogeneous virtual field method (VFM) formulations were used to create a methodology...

  9. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    Science.gov (United States)

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m -1 , 123.4700 GPa, 0.3000 and 0.0693 V·m·N -1 , respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m -1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  10. Determination of kinetic parameters during the thermal decomposition of epoxy/carbon fiber composite material

    International Nuclear Information System (INIS)

    Lee, Jae Hun; Kim, Kwang Seok; Kim, Hyo

    2013-01-01

    An in-depth study to determine the thermal decomposition kinetics parameters such as the activation energy E_a, the reaction order n, and the pre-exponential factor A of epoxy/carbon fiber composite material has been conducted. We employ not only the modified peak property method that is proposed here, but also the conventional method in analyzing the experimental data, and compare the results to show the performance of the proposed model. The pyrolysis tests for the epoxy/carbon fiber composite materials are conducted by using thermogravimetric analyser at various heating rates. As a result, the best prediction to the experimental data can be obtained by the modified peak property method. Besides, among the methods applied here, the modified peak property method provides most convenient way to recover the parameters: it does not require a curve fitting of the data nor a long iterative computation

  11. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  12. Determination of the dynamical behaviour of biological materials during impact using a pendulum device

    Science.gov (United States)

    Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.

    2003-09-01

    A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.

  13. Preparation of an estuarine sediment quality control material for the determination of trace metals

    Directory of Open Access Journals (Sweden)

    Hatje Vanessa

    2006-01-01

    Full Text Available Quality Control Materials (QCM have being used routinely in daily laboratory work as a tool to fill the gap between need and availability of Certified Reference Materials (CRM. The QCM are a low-cost alternative to CRMs, and they are in high demand, especially, for the implementation of quality control systems in laboratories of several areas. This paper describes the preparation of a QCM for the determination of trace metals in estuarine sediments and the results of an interlaboratory exercise. Homogeneity and stability studies were performed and analysis of variance was carried out with the results. No statistical significant differences were observed in the concentrations of Co, Cr, Cu, Mn, Pb and Zn between- or within bottle results. Neither the storage nor temperature affected the results. Therefore, the QCM produced is considered homogeneous and stable and can be used for statistical control charts, evaluation of reproducibility and interlaboratory exercises.

  14. Determination techniques of characteristics of brittle fracture for materials on the CMEA 1-35 problem

    International Nuclear Information System (INIS)

    Makhutov, N.A.; Tananov, A.I.; Koshelev, P.F.; Zatsarinnyj, V.V.

    1981-01-01

    The problems concerning the development and improvement of the investigation techniques and the evaluation of the resistance to brittle fracture of a wide class of materials (the reactor ones, in particular) under different conditions of loading using modern test means are considered in the review. It is reflected in the plan of works on the theme 1-35.3 ''Development of the methods of determination of resistance to brittle fracture of the materials and elements of construct Specialists from CMEA member-countries took an active part in its implementation. The development of the 1-35.3 theme presupposes the creation of scientific bases of calculation methods of the details of machines and elements of constructions according to the criteria of resistance to brittle fracture. The results obtained when using the methods of fracture mechanics are of significant importance in the substantiation of strength and admissible defectiveness of large-size constructions operating under the extremum conditions [ru

  15. A model for absorption determination of radioactive materials: application in the radio dosimetry and nutrition study

    International Nuclear Information System (INIS)

    Mesquita, C.H. de.

    1991-01-01

    A three-parameter model of the sigmoidal relationship is proposed to explain the food passage by intestinal tube. These parameters are: U = intestinal non-absorbed radioactivity; d parameter related to intestinal food dispersion; and t 50 = time to maximal appearance of material from the intestinal lumen. In order to illustrate the applications of this model and its validity, the absorption of 65 Zn from casein semi-purified diet was evaluated in rats. There was a good agreement between the predicted values and the experimental data when the sigmoidal component was added to the conventional multicompartimental equations. With this kind of model the time to maximal appearance (hours), the true absorption level, the fecal concentration and the intestinal dispersion of the ingested radioactivity material may be determined. (author)

  16. Determinants of compulsive buying behavior among young adults: The mediating role of materialism.

    Science.gov (United States)

    Islam, Tahir; Wei, Jiuchang; Sheikh, Zaryab; Hameed, Zahid; Azam, Rauf I

    2017-12-01

    This research seeks to determine what makes young adults materialistic. The study examines the mediating role of materialism between the contextual factors and compulsive buying. Data was gathered from 219 Pakistani undergraduate university students. Partial Least Square (PLS) technique was used to analyze the data. The study confirms the intuition that more materialistic young adults are more likely to be involved in compulsive buying than are less materialistic young adults. The results were similar with the previous literature conducted in the western culture, indicating that also applies in a modern Islamic society. The findings of the study reveal that materialism mediated the relationship between certain sociological factors (i.e., group, media Celebrity endorsement, and TV advertisement) and compulsive buying. The study highlights the importance of understanding young adults' materialistic attitudes and consumption decisions and provides key knowledge for researchers, policymakers, and managers of leading brands. Copyright © 2017. Published by Elsevier Ltd.

  17. Determination and interpretation of the optical constants for solar cell materials

    Science.gov (United States)

    Fujiwara, Hiroyuki; Fujimoto, Shohei; Tamakoshi, Masato; Kato, Masato; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Tampo, Hitoshi; Chikamatsu, Masayuki; Shibata, Hajime

    2017-11-01

    Solar cell materials in thin film form often exhibit quite rough surface, which makes the accurate determination of the optical constants using spectroscopic ellipsometry (SE) quite difficult. In this study, we investigate the effect of the rough surface on the SE analysis and establish an analysis procedure, which is quite helpful for the correction of the underestimated roughness contribution. As examples, the roughness analyses for CuInSe2 and CH3NH3PbI3 hybrid-perovskite thin films are presented. Moreover, to interpret the dielectric functions of emerging solar cell materials, such as CH3NH3PbI3 and Cu2ZnSnSe4, the optical transition analyses are performed based on density functional theory (DFT). The excellent agreement observed between the experimental and DFT results allows the detailed assignment of the transition peaks, confirming the importance of DFT for revealing fundamental optical characteristics.

  18. The cianimetalatos as model materials for studying the adsorption of H2 and interactions that determine

    International Nuclear Information System (INIS)

    Reguera, E.; Reguera, L.; Rodríguez, C.

    2015-01-01

    An overview of the work done in recent years in the IMRE and the Faculties of Chemistry and Physics at the University of Havana, in collaboration with the Applied Research Center for Advanced Science and Technology at the National Polytechnic Institute of Mexico is presented; on the synthesis, physico-chemical characterization, assessment and modeling of potentially usable as nanoporous materials cianometalatos model to study the adsorption of H2 at high densities, and interactions that determine it. The mechanisms of interaction of the hydrogen molecule with the crystal lattice and its consequences for the adsorption and diffusion of hydrogen in these materials are discussed. The results have been reported in dozens of articles, published in international journals, they were presented at numerous scientific events and contributed to the preparation of several thesis, master's and Ph.D. (full text)

  19. Effect of long-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  20. Effect of upper body position on arterial stiffness: influence of hydrostatic pressure and autonomic function.

    Science.gov (United States)

    Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo

    2017-12-01

    To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.

  1. Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials

    Science.gov (United States)

    Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.

    2017-12-01

    This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.

  2. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    Science.gov (United States)

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function

    Directory of Open Access Journals (Sweden)

    Frederick Sebastian

    2017-12-01

    Full Text Available The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using

  4. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    Science.gov (United States)

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  5. Determination of cadmium in environmental materials by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Esprit, M.; Vandecasteele, C.; Hoste, J.

    1986-01-01

    Cadmium is determined by activation analysis with fast neutrons, obtained by irradiation of a thick beryllium target with 14.5-MeV deuterons. Cadmium-111m is separated by liquid-liquid extraction with zinc diethyldithiocarbamate in chloroform and measured with a Ge(Li) γ-spectrometer. For low concentrations, cadmium is precipitated as cadmium ammonium phosphate after the extraction. NBS and BCR reference materials were analyzed: for concentrations between 3 and 500 μg g -1 , the relative standard deviation ranges from 5 to 3%. The results obtained for sewage sludge are compared with those obtained by reactor neutron activation analysis. (Auth.)

  6. Determination of molybdenum in plant reference material by thermal-ionization isotope-dilution mass spectrometry

    International Nuclear Information System (INIS)

    Saumer, M.; Gantner, E.; Reinhardt, J.; Ache, H.J.

    1992-01-01

    An analytical method is described for the determination of the concentration and the isotopic composition of molybdenum in plant samples using thermal ionization mass spectrometry. After microwave acid digestion and liquid-liquid extractive separation with Amberlite LA-2, the molybdenum isotopes are measured as MoO 3 - -ions in a quadrupole mass spectrometer. In all cases, the relative standard deviation of the measurements of both natural and spike molybdenum was better than 3% for all ratios measured. The concentration of molybdenum found in three different plant reference materials agreed well with the certified values. (orig.)

  7. A novel method for the determination of migration of contaminants from food contact materials

    International Nuclear Information System (INIS)

    Thompson, D.; Parry, S.J.; Benzing, R.

    1996-01-01

    A neutron activation method has been developed for the analysis of high density polyethylene, low density polyethylene, polypropylene, polyethylene terephthalate and polystyrene food contact plastics. The method provides determination of over 50 elements at concentrations below 1 mg kg -1 . This technique has now been extended to study migration from food contact materials into standard food simulants (olive oil, acetic acid, ethanol and water). Samples of plastic are irradiated in a thermal neutron flux to procedure radionuclides of the elements present in the plastic. (author). 5 refs., 7 tabs

  8. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  9. Ionometric determination of boron in natural, waste waters and biological materials

    International Nuclear Information System (INIS)

    Yakimov, V.P.; Markova, O.L.

    1992-01-01

    Method have been developed for the determination of boron in natural, waste waters and biological materials using direct potentiometry with a BF 4 - selective electrode. In order to estimate the matrix effects in plotting the calibration graphs, it is recommended to and the test water or solution of biomaterial mineralizates, containing boron in electrode-inactive form, to the calibration solutions before e.m.f. measurements version of boron into tetrafluoroborate in solid phase on heating the mineralized samples with ammonium bifluoride at 150-180 deg C

  10. Rapid photometric determination of phosphorus in iron ores and related materials as phosphomolybdenum-blue.

    Science.gov (United States)

    Bhargava, O P; Gmitro, M

    1984-04-01

    A rapid, simple and accurate method for determining phosphorus photometrically in iron ores and related materials, obviating the use of perchloric acid, is described. The sample is fused with sodium peroxide in a zirconium crucible and the melt dissolved in hydrochloric acid. The molybdenum-blue complex is developed by the addition of ammonium molybdate and hydrazine sulphate and the absorbance is measured at 725 nm. The range of the method is from 0.005 to 1.0% P. A batch of 6 samples can be analysed in about 2 hr.

  11. Radiochemical techniques for determining some naturally occurring radionuclides in marine environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C W [Ministry of Agriculture, Fisheries and Food, Lowestoft (UK). Fisheries Lab.

    1984-06-15

    The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.

  12. Determination of Unit Pressure Force in Material Volume in the Course of Refractory Stamping Press Moulding

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2016-06-01

    Full Text Available The paper presents results of assessment of the unit pressure force within the refractory material volume in the course press-moulding of stampings for refractory precast shapes. The force was evaluated with the use of physical simulation of deformation undergone by lead balls placed in the raw refractory mass subjected to pressing in a metal die. To determine the value of unit pressure force applied to the aggregate grains in the course of stamping press-moulding, physical model of deformation of a sphere induced by the uniaxial stress state was used.

  13. Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression

    International Nuclear Information System (INIS)

    Landsberger, S.; Peshev, S.; Becker, D.A.

    1994-01-01

    Silicon determination in sixteen botanical and biological standard reference materials is described using the 29 Si(n, p) 29 Al reaction through instrumental epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. By simultaneous utilization of both cadmium and boron epithermal filters along with anticoincidence gamma-counting, detection limits as low as 12 ppm were obtained for certain matrices, much lower than previously reported values for this type of analysis. The method is applicable to many botanical and biological matrices and is attractive with its interference free, purely instrumental nature, compared with methods using the 28 Si(n, p) 28 Al reaction or chemical separation techniques. ((orig.))

  14. Single motor–variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control

    NARCIS (Netherlands)

    Groothuis, Stefan; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In

  15. A Method to Extract the Intrinsic Mechanical Properties of Soft Metallic Thin Films Based on Nanoindentation Continuous Stiffness Measurement Technique

    International Nuclear Information System (INIS)

    Zhou, X Y; Jiang, Z D; Wang, H R; Zhu, Q

    2006-01-01

    In order to determine accurately the intrinsic hardness of the soft metallic thin film on a hard substrate using nanoindentation, a proper methodology irrespective of several important effects the Oliver-Pharr method concerns is described. First, the original analysis data such as the load, P, and contact stiffness, S, as a function of the indentation depth, h, are acquired by means of the continuous stiffness measurement (CSM) technique. By CSM, the complicating effects including indentation creep behaviour of metal materials as well as thermal drift on the measured results are avoided effectively. Then, the hardness of film-only is calculated via a material characteristic parameter, P/S 2 , which is independent of the contact area, A, based on the constant modulus assumption method. In this way, the influences of the substrate contribution and material pile-up behaviour needn't be accounted for. Guided by above ideas, moreover, a 504 nm Au film on the glass substrate system was chosen to study. The results show that the hardness of Au thin film is 1.6±1 GPa, which agree well with the literature. While the composite hardness measured by Oliver-Pharr method is between 2∼3GPa, obviously, which is overestimated. This implies the present methodology is a more accurate and simple way for extracting the true hardness of the soft metallic thin films

  16. Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution

    International Nuclear Information System (INIS)

    DeRose, Paul C.; Kramer, Gary W.

    2005-01-01

    The absorption coefficient of standard reference material[registered] (SRM[registered]) 1932, fluorescein in a borate buffer solution (pH=9.5) has been determined at λ=488.0, 490.0, 490.5 and 491.0 nm using the US national reference UV/visible spectrophotometer. The purity of the fluorescein was determined to be 97.6% as part of the certification of SRM 1932. The solution measured was prepared gravimetrically by diluting SRM 1932 with additional borate buffer. The value of the absorption coefficient was corrected for bias due to fluorescence that reaches the detector and for dye purity. Bias due to fluorescence was found to be on the order of -1% for both monochromatic and polychromatic (e.g., diode-array based) spectrophotometers

  17. A case study on determining air monitoring requirements in a radioactive materials handling area

    International Nuclear Information System (INIS)

    Newton, G.J.; Bechtold, W.E.; Hoover, M.D.; Ghanbari, F.; Herring, P.S.; Jow, Hong-Nian

    1993-01-01

    A technical, defensible basis for the number and placement of air sampling instruments in a radioactive materials handling facility was developed. Historical air sampling data, process and physicochemical knowledge, qualitative smoke dispersion studies with video documentation, and quantitative trace gas dispersion studies were used to develop a strategy for number and placement of air samplers. These approaches can be used in other facilities to provide a basis for operational decisions. The requirements for retrospective sampling, personal sampling, and real-time monitoring are included. Other relevant operational decisions include selecting the numbers, placement, and appropriate sampling rates for instruments, identifying areas of stagnation or recirculation, and determining the adequacy and efficiency of any sampling transport lines. Justification is presented for using a graded approach to characterizing the workplace and determining air sampling and monitoring needs

  18. Spectrographic determination of impurities in ceramic materials for nuclear fusion reactors III. Analysis of magnesium oxide

    International Nuclear Information System (INIS)

    Melon, A. M.; Roca, M.; Rucandio, M. I.

    1992-01-01

    The determination of minor and trace elements in the magnesium oxide, considered as possible ceramic material in thermonuclear fusion reactors, has been studied. The concentration ranges are 0.1 - 0.3% for Ca, Si and Y, and at the ppm level for Al, Co, Cr, Fe, Hf, K, Li, Mn, Na, Ni, Se, Ti, V and Zr. Atomic emission spectroscopy with direct current are excitation and photographic detection has been employed. In order to eliminate the effect due to the differences in density between standards and samples, which are a source of errors, a chemical treatment of both is carried out. Likewise, for attaining conditions more suitable for the volatilization of certain impurities, these are determined with the sample in fluoride form. (Author) 11 refs

  19. Spectrographic determination of impurities in ceramic materials for nuclear fusion reactors III. Analysis of magnesium oxide

    International Nuclear Information System (INIS)

    Melon, A.M.; Roca, M.; Rucandio, M.I.

    1992-01-01

    The determination of minor and trace elements in the magnesium oxide, considered as possible ceramic material in thermonuclear fusion reactors, has been studied. The concentration ranges are 0.1 - 0.3 % for Ca, Si and Y, and at the ppm level for Al, Co, Cr, Fe, Hf, K, Li, Mn, Na, Ni, Sc, Ti, V and Zr. Atomic emission spectroscopy with direct current arc excitation and photographic detection has been employed. In order to eliminated the effect due to the differences in density between standards and samples, which are a source of errors, a chemical treatment of both is carried out. Likewise, for attaining conditions more suitable for the volatilization of certain impurities, these are determined with the sample in fluoride form. (author)

  20. Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation

    International Nuclear Information System (INIS)

    Zeisler, R.; Greenberg, R.R.

    1982-01-01

    A neutron activation analysis scheme based upon a radiochemical separation of the activation products has been developed. The method utilizes the inherent sensitivity of the activation reaction 198 Pt(n,ν) 199 Pt and counting of the daughter nuclide 199 Au. This nuclide is radiochemically separated from interfering activities by homogeneous precipitation as elemental gold. The remaining interference of the secondary reaction 197 Au(n,ν) 198 Au(n,ν) 199 Au from gold in the samples is quantitatively assessed and corrected. During this process accurate gold concentrations in the samples are obtained at ultratrace levels. The analysis scheme is applied to gold and platinum determinations in biological Standard Reference Materials and human liver specimens. Gold and platinum are determined at concentrations of 5x10 - 11 g/g, and at higher levels. (author)

  1. Activation analytical determination of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    Schelenz, R.

    1980-01-01

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10 -9 to 10 -8 g, of Cu in the range of 10 -12 to 10 -10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB) [de

  2. Determination of radioactive scales in oil industry using naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Al-Masri, M. S.

    2006-06-01

    In the present study, naturally occurring radioactive materials (Radium isotopes) present in produced water and radiation measurements have been used to study the formation of scales, evaluate their age, determination of geological formations and between wells interactions. Produced water samples were collected and analyzed monthly for 5 months from 11 oil wells in three Syrian oil fields. Analysis includes radium isotopes and anions and cations concentrations in addition to radiation measurements at the well heads. The highest mean values of radium 226, Radium 228 and Radium 224 concentration in produced were 41 Bq/1, 57.1 Bq/1 and 1.1 Bq/1, respectively. The values obtained for Radium 226, Radium 228 and the activity ratio were statistically evaluated and the results were presented using the box plot method. The mean value of the activity ration of Radium 226 and Radium 228 was used to determine the age of scales accumulated inside tubulars. (author)

  3. Development of a stiffness-angle law for simplifying the measurement of human hair stiffness.

    Science.gov (United States)

    Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M

    2018-04-01

    This research examines the benefits of caffeine absorption on hair stiffness. To test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤500 g mol -1 ) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier-transform infrared spectroscopy (FTIR) with a focal plane array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then, the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle Law using three variables: angle, weight of hair and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle Law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle Law agree with the visual examinations of hair exposed to caffeine and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. © 2018

  4. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  5. Identification of factors that influence the stiffness of high-damping elastomer seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1994-01-01

    During the past decade, high-damping elastomer, steel-laminated seismic isolation bearings have gained acceptance as a device for isolating large buildings and structures from earthquake damage. In the United States, architectural engineering firms custom design isolators for each project and ten have the isolators manufactured by one of less than a hand-full of manufactures. The stiffness of the bearing is the single most important design parameter that the molded bearing must meet because it determines the fundamental frequency of the isolation system. This paper reports on recent research that examined several factors that cause real and potential variations to the stiffness of the bearing. The resulting changes to the fundamental frequency of the isolated structure are quantified for each factor. The following were examined: (1) dimensional tolerances, (2) frequency effects, (3) temperature effects, (4) cyclical effects, and (5) aging effects. It was found that geometric variations barely affect the stiffness whereas temperature variations greatly affect the stiffness

  6. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    DEFF Research Database (Denmark)

    Moreno, Angel J; Bacova, Petra; Lo Verso, Federica

    2018-01-01

    of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness...... or 'crumpled' globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour...... can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs. ....

  7. On the influence of the foundation stiffness in the structural dynamic response

    International Nuclear Information System (INIS)

    Halbritter, A.L.; Koishi, N.; Stukart, R.N.L.

    1984-01-01

    To consider the influence of the foundation on the structural dynamic analysis, it is usual to represent the foundation stiffness by springs and the damping by snubbers, in the structural model. The stiffness and the damping values of the foundation can be determined by approximate methods based on simplifying assumptions, using, for example, the formula derived from the half space theory or numerical methods. The foundation stiffness has a great influence on the dynamic characteristics of the structure (eigenvalues and eigenvectors), and together with the damping influence the structural dynamic response. In this paper the influence of the foundation stiffness on the floor response spectra of the reactor building of a NPP of 1300 MW PWR of KWU type is studied. (Author) [pt

  8. The Effect of Stiffness Parameter on Mass Distribution in Heavy-Ion Induced Fission

    Science.gov (United States)

    Soheyli, Saeed; Khalil Khalili, Morteza; Ashrafi, Ghazaaleh

    2018-06-01

    The stiffness parameter of the composite system has been studied for several heavy-ion induced fission reactions without the contribution of non-compound nucleus fission events. In this research, determination of the stiffness parameter is based on the comparison between the experimental data on the mass widths of fission fragments and those predicted by the statistical model treatments at the saddle and scission points. Analysis of the results shows that for the induced fission reactions of different targets by the same projectile, the stiffness parameter of the composite system decreases with increasing the fissility parameter, as well as with increasing the mass number of the compound nucleus. This parameter also exhibits a similar behavior for the reactions of a given target induced by different projectiles. As expected, nearly same stiffness values are obtained for different reactions leading to the same compound nucleus.

  9. Inverse relationship between physical activity and arterial stiffness in adults with hypertension.

    Science.gov (United States)

    O'Donovan, Cuisle; Lithander, Fiona E; Raftery, Tara; Gormley, John; Mahmud, Azra; Hussey, Juliette

    2014-02-01

    Physical activity has beneficial effects on arterial stiffness among healthy adults. There is a lack of data on this relationship in adults with hypertension. The majority of studies which have examined physical activity and arterial stiffness have used subjective measures of activity. The aim of this study was to investigate the relationship between objectively measured habitual physical activity and arterial stiffness in individuals with newly diagnosed essential hypertension. Adults attending an outpatient hypertension clinic were recruited into this cross sectional study. Physical activity was measured using a triaxial accelerometer. Pulse wave velocity (PWV) and augmentation index (AIx) were measured using applanation tonometry. Participant's full lipid profile and glucose were determined through the collection of a fasting blood sample. Fifty-three adults [51(14) years, 26 male] participated, 16 of whom had the metabolic syndrome. Inactivity was positively correlated with PWV (r = .53, P arterial stiffness among adults with hypertension.

  10. The role of cable stiffness in the dynamic behaviours of submerged floating tunnel

    Directory of Open Access Journals (Sweden)

    Muhammad Naik

    2017-01-01

    Full Text Available Submerged floating tunnel (SFT is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters and can be a good alternative to long span suspension bridges and immersed tunnels. The mooring cables/anchors are main structural components to provide restoring capacity to the SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic analysis of SFT subjected to hydrodynamic and seismic excitations is performed. As the cable stiffness determines the deformation ability of SFT, therefore it becomes crucial to evaluate the effect of mooring cable stiffness on the response of SFT. The displacements and internal forces of SFT clearly specify that the vertical/tension leg mooring cables provide very small stiffness as compared to inclined mooring cables. In order to keep the SFT displacements within an acceptable limit, the effect of cable stiffness should be properly evaluated for practical design of SFT.

  11. Assessment of clay stiffness and strength parameters using index properties

    Directory of Open Access Journals (Sweden)

    Sayed M. Ahmed

    2018-06-01

    Full Text Available A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameters. The at-rest earth pressure coefficient, as well as bearing capacity factor and rigidity index related to the cone penetration test, is also acquired from the analyses. Comparisons are presented between the measured clay parameters and the results of corresponding analyses in five different case studies. It is demonstrated that the presented approach can provide acceptable estimates of saturated clay stiffness and strength parameters. One of the main privileges of the presented methodology is the site-specific procedure developed based on the relationships between clay strength and stiffness parameters, rather than adopting direct correlations. Despite of the utilized iterative processes, the presented approach can be easily implemented using a simple spreadsheet, benefiting both geotechnical researchers and practitioners. Keywords: Soft to firm clays, Atterberg limits, Shear wave velocity, Small-strain shear modulus, Constrained modulus, Undrained shear strength, Effective friction angle, Cone penetration test

  12. VARIABLE STIFFNESS HAND PROSTHESIS: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    S. Cecilia Tapia-Siles

    2017-06-01

    Full Text Available Prosthetics is an important field in engineering due to the large number of amputees worldwide and the associated problems such as limited functionality of the state of the art. An important functionality of the human hand is its capability of adjusting the stiffness of the joints depending on the currently performed task. For the development of new technology it is important to understand the limitations of existing resources. As part of our efforts to develop a variable stiffness grasper for developing countries a systematic review was performed covering technology of body powered and myoelectric hand prosthesis. Focus of the review is readiness of prosthetic hands regarding their capability of controlling the stiffness of the end effector. Publications sourced through three different digital libraries were systematically reviewed on the basis of the PRISMA standard. We present a search strategy as well as the PRISMA assessment of the resulting records which covered 321 publications. The records were assessed and the results are presented for the ability of devices to control their joint stiffness. The review indicates that body powered prosthesis are preferred to myoelectric hands due to the reduced cost, the simplicity of use and because of their inherent ability to provide feedback to the user. Stiffness control was identified but has not been fully covered in the current state of the art. In addition we summarise the identified requirements on prosthetic hands as well as related information which can support the development of new prosthetics.

  13. A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion

    Directory of Open Access Journals (Sweden)

    Stefan Groothuis

    2014-06-01

    Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.

  14. Experimental exposure to diesel exhaust increases arterial stiffness in man

    Directory of Open Access Journals (Sweden)

    Newby David E

    2009-03-01

    Full Text Available Abstract Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3 or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA, as well as at the femoral and carotid arteries for pulse wave velocity (PWV. PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP, augmentation index (AIx and time to wave reflection (Tr were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02 and in AIx of 7.8% (p = 0.01, along with a 16 ms reduction in Tr (p = 0.03, 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

  15. Experimental challenges to stiffness as a transport paradigm

    Science.gov (United States)

    Luce, T. C.; Burrell, K. H.; Holland, C.; Marinoni, A.; Petty, C. C.; Smith, S. P.; Austin, M. E.; Grierson, B. A.; Zeng, L.

    2018-02-01

    Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans is presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the case of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that E  ×  B shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating E  ×  B shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.

  16. Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.

    Science.gov (United States)

    Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P

    2018-05-29

    It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.

  17. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...... a solution based on Green-Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node...

  18. Determination of the probability for radioactive materials on properties in Monticello, Utah

    International Nuclear Information System (INIS)

    Wilson, M.J.; Crutcher, J.W.

    1991-02-01

    In 1978, under the authority of the Atomic Energy Act, the US Department of Energy (DOE) established the Surplus Facilities Management Program (SFMP) to manage the maintenance and surveillance of numerous DOE-owned, radioactively contaminated facilities that have been declared surplus and to conduct a program leading to the ultimate disposition of those facilities. The primary responsibility of SFMP is to protect public health and the environment from potentially harmful radioactive contamination contained within or derived from DOE-owned facilities. Management of SFMP is directed by the DOE Office of Environmental Restoration and Waste Management, Washington, DC. Prior to mill site remediation, Monticello properties surrounding the site and designated privately owned are being assessed for inclusion in the SFMP. Oak Ridge National Laboratory (ORNL) was directed by DOE in July 1988 to assess the radiological condition of privately owned properties in Monticello that have been identified as possibly containing Monticello mill-related materials. Properties containing Monticello mill-related materials and with associated radiation levels that exceed US Environmental Protection Agency (EPA) and DOE standards are eligible for cleanup under SFMP. The objective of this study was to determine the probability that a property which contained Monticello mill-related residual radioactive material in excess of the guidelines would not be assessed under the current protocol. 3 refs., 3 figs., 2 tabs

  19. Determination of the Radiation Cancer Risk for Workers in Some Factories of Building Materials

    International Nuclear Information System (INIS)

    Madbouly, A.M.; Ibrahim, M.S.E.; Diab, A.M.

    2012-01-01

    The main aim of this work is to estimate the concentrations of natural radionuclides: 228 U-series, 232 Th-series and 40 k in raw materials of ceramic (zirconium silicate and glaze sample), ceramic tiles, tile, lime stone, granite, marble, gypsum and cement, in order to determine the dose received and health risk of the workers in building materials industries, the specific activities of those radionuclides, in all samples collected were measured. High resolution γ-ray spectroscopy measurements were done using hyper pure germanium (Hp Ge) detector. The measured activity concentrations for these radionuclides were compared with the data of other countries. As a measure of radiation hazard to the workers, the radium equivalent activities, the external hazard index (H e x), internal hazard index (H i n) representative level index (Iγ) and total annual effective dose associated with the radionuclides were estimated. The calculated total annual effective dose and the activity concentration index of all types of building materials were -I and 1 mSv y -I , respectively

  20. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    Science.gov (United States)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  1. Parametric instability of spinning elastic rings excited by fluctuating space-fixed stiffnesses

    Science.gov (United States)

    Liu, Chunguang; Cooley, Christopher G.; Parker, Robert G.

    2017-07-01

    This study investigates the vibration of rotating elastic rings that are dynamically excited by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and tangential deformations. Primary and combination instability regions are determined in closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to average discrete stiffness is used as the perturbation parameter, so the resulting perturbation analysis is not limited to small mean values of discrete stiffnesses. The natural frequencies and vibration modes are determined by discretizing the governing equations using Galerkin's method. Results are demonstrated for compliant gear applications. The perturbation results are validated by direct numerical integration of the equations of motion and Floquet theory. The bandwidths of the instability regions correlate with the fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete stiffnesses, the phase differences between them can eliminate large amplitude response under certain conditions.

  2. Computational Text Analysis: A More Comprehensive Approach to Determine Readability of Reading Materials

    Science.gov (United States)

    Aziz, Anealka; Fook, Chan Yuen; Alsree, Zubaida

    2010-01-01

    Reading materials are considered having high readability if readers are interested to read the materials, understand the content of the materials and able to read the materials fluently. In contrast, reading materials with low readability discourage readers from reading the materials, create difficulties for readers to understand the content of…

  3. Nuclear techniques for the determination of protein content in plant material

    International Nuclear Information System (INIS)

    Niemann, E.G.

    1980-01-01

    Elemental analysis for nitrogen has gained in importance over the last decade, as protein improvement and protein control in food and feed has come to be recognized as one of the most promising ways of overcoming deficiencies in food production and distribution. The need for fast and reliable screening methods has stimulated the improvement and automation of classic chemical methods for protein and nitrogen determination and, on the other hand, the development and adaptation of physical and nuclear analysis procedures. After about ten years of work this process has come to a stage where a critical evaluation of the existing methods seems necessary and justified. The present review describes and compares nuclear techniques for nitrogen determination in plant material. These include activation analysis techniques, based on various nuclear reactions, initiated by fast and thermal neutrons, energetic photons, protons, deuterons and α-particles. Other nuclear methods have been applied for nitrogen or protein determination, like ESCA, PIXE, NMR, NQR and Moessbauer spectroscopy, some of which possess good potential as screening methods. Depending on the needs, such as sample size, analysis rate and postulated accuracy, different nuclear techniques may be selected today for nitrogen screening. Some of the techniques discussed have additional potential for carbon or oxygen determination, for measuring depth or lateral N distribution, or for the recognition of the type of chemical N binding. Though most if not all techniques need further development for routine application, they are able to compete with chemical techniques in cost, rate and accuracy. (author)

  4. Determination of enthalpy–temperature–composition relations in incongruent-melting phase change materials

    International Nuclear Information System (INIS)

    Desgrosseilliers, Louis; Allred, Paul; Groulx, Dominic; White, Mary Anne

    2013-01-01

    This paper demonstrates that liquidus line (T-x) data can be obtained from calorimetric determinations of phase transition enthalpy profiles (H-T) for incongruent-melting phase change materials (PCMs) more efficiently than using traditional cooling curves. An accurate and reliable equilibrium mixture enthalpy model bridges the H-T and T-x gap to provide a full suite of high density H-T-x data to assist latent heat energy storage researchers to evaluate composition-dependent two-phase equilibrium processes. The proposed method is validated for T-history method H-T determinations of 1:1 diluted sodium acetate trihydrate in water, and can also be used with other laboratory calorimetric techniques used to determine the phase transition enthalpy profiles of incongruent-melting compounds. -- Highlights: • H-T data can also be used to obtain valuable liquidus region T-x data. • Applies to all incongruent-melting compounds with known thermodynamic properties. • Reduces the effort and cost of assessing full suite H-T-x data for PCMs. • Uses existing T-x or H-T data of incongruent-melting PCMs to determine the other

  5. Validation of methodology and uncertainty assessment of antimony determination in environmental materials using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Matsubara, Tassiane C.M.; Saiki, Mitiko; Zahn, Guilherme S.; Moreira, Edson G.

    2013-01-01

    Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest because of the knowledge of its toxicity and increasing application. Neutron activation analysis (NAA) is a suitable method for the determination of several elements in different types, but in case of Sb, the analysis presents some difficulties due to spectral interferences. The objective of this research was to validate the method of NAA and uncertainty assessment for Sb determination in environmental samples. The experimental procedure consisted of irradiating twelve certified reference samples of different kind of matrices. The samples were irradiated in the nuclear research reactor IEA R1 IPEN/CNEN/SP followed by measurement of induced radioactivity, using a hyperpure germanium detector coupled to a gamma ray spectrometry. The radioisotopes 122 Sb and 124 Sb were measured and the Sb concentrations with their respective uncertainties were obtained by the comparative method. Relative errors and values of Z scores were calculated to evaluate the accuracy of the results for Sb determination in certified reference materials. The evaluation of the components that contribute to uncertainty measurement of the Sb concentration, showed that the major uncertainty contribution is due to statistical counting. The results also indicated that the uncertainty value of the combined standard uncertainty depends on the radioisotope measured and the decay time used for counting. (author)

  6. Determination of the radioactive material and plutonium holdup in ducts and piping in the 325 Building

    International Nuclear Information System (INIS)

    Haggard, D.L.; Tanner, J.E.; Tomeraasen, P.L.

    1996-08-01

    This report describes the measurements performed to determine the radionuclide content and mass of Pu in exposed ducts, filters, and piping in the 325 Building at the Hanford Site. This information is needed to characterize facility radiation levels, to verify compliance with criticality safety specifications, and to allow more accurate nuclear material control using nondestructive assay. Gamma assay was used to determine the gamma-emitting isotopes in ducts, filters, and piping. Passive neutron counting was used to estimate the Pu content. A high-purity Ge detector and a neutron slab detector containing 5 3 He proportional counters were used. Almost all the gamma activity is from 137 Cs and 60 Co. Estimated Pu mass gram equivalents in the basement ductwork and filters are 31 g; the radioactive liquid waste system (RLWS) line has 12 g; the laboratory vacuum system has 2 g equiv. Pu; the retention process sewer has 3 g. Total Pu mass holdup for basement areas range from 48 to 27 g. Estimated Pu mass gram equivalents for all laboratories range from 385 to 581 g. Individual laboratory estimates are tabulated. Total estimated Pu gram equivalent holdup and material in process for the facility is 410 g. In summary, results indicate that no significant Pu levels, from a criticality safety perspective, reside in the ductwork, laboratory vacuum system lines, RLWS pipes, or any one laboratory in the 325 Building

  7. A new method for determining uranium and thorium contents in mineral mining materials

    International Nuclear Information System (INIS)

    Khalil, A.; Membry, A.; Chambaudet, A.; Fromm, M.

    1994-01-01

    The method is based on the quantitative analysis of solid state nuclear track detectors (SSNTD). A mathematical model taking into account the variability of the critical angle of registration for the etching of the tracks generated by the incoming alpha projectiles is described. Complementarity of laboratory experiments and theoretical track etching model enables the relationship between critical angle and alpha particles energy to be determined. The formalism of the dosimetric method is based on the calculation of the probability P sub i for an alpha particle emitted in the phosphate to generate an observable etched track in the CR39 SSNTD. The determination of these probabilities cannot be achieved without a good knowledge of the relation expressing the critical angle as a function of particle energy. Supposing a secular equilibrium, we first propose a bulk relation giving the number of parent nuclides of a given family per unit volume of material. By taking the probabilities as P sub i into account, the content of uranium and thorium in the material (phosphates) can be estimated. The results obtained are compared to those cited in the literature. 1 tab., 6 refs. (author)

  8. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  9. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 1: Procedural overview

    International Nuclear Information System (INIS)

    2007-01-01

    Accurate determinations of volume are a fundamental component of any measurement-based system of control and accountability in a facility that processes or stores nuclear materials in liquid form. Volume determinations are typically made with the aid of a calibration or volume measurement equation that relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. The steps carried out to acquire data for estimating the tank's calibration or volume measurement equation are collectively described as the process of tank calibration. This part of ISO 18213 describes procedures for tank calibration and volume determination for nuclear process tanks equipped with pressure-measurement systems for determining liquid content. Specifically, overall guidance is provided for planning a calibration exercise undertaken to obtain the data required for the measurement equation to estimate a tank's volume. The key steps in the procedure are also presented for subsequently using the estimated volume-measurement equation to determine tank liquid volumes. The procedures presented apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. Moreover, these procedures produce reliable results only for clear (i.e. without suspended solids), homogeneous liquids that are at both thermal and static equilibrium. The paper elaborates on scope, physical principles involved, the calibration model, equipment required, a typical tank calibration procedure, calibration planning and pre-calibration activities, and volume determination. A bibliography is provided

  10. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    Science.gov (United States)

    Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela

    2014-01-01

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168

  11. New technique for the determination of trace noble metal content in geological and process materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitkin, V.N. E-mail: mit@che.nsk.su; Zayakina, S.B.; Anoshin, G.N

    2003-02-03

    A new two-step sample preparation technique is proposed for the instrumental determination of trace quantities of noble metals (NM) in refractory geological and process materials. The decomposition procedure is based on the oxidizing fluorination of samples with subsequent sulfatization (OFS) of the sample melt or cake. Fluorination of samples is accomplished using a mixture of KHF{sub 2}+KBrF{sub 4} or KHF{sub 2}+BrF{sub 3} depending on the ratio of sample mass to oxidizing mixture. Both cakes and melts can result using this procedure. Sulfatization of resulting fluorides is completed using concentrated sulfuric acid heated to 550 deg. C. Validation studies using certified geostandard reference materials (GSO VP-2, ZH-3, Matte RTP, HO-1, SARM-7) have shown that the proposed method is fast, convenient and most often produces non-hygroscopic homogeneous residues suitable for analysis by atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). Results obtained for NM concentrations in reference materials agreed with certified concentration ranges and results obtained using other methods of analysis. The OFS procedure combined with direct current plasma d.c. plasma AES achieved the following limits of detection (LOD) for the noble metals: Ag, Au, Pd, 1-2x10{sup -6}; Pt, 5x10{sup -6}; and Ru, Rh, Ir, Os, 1-3x10{sup -7} wt.%. Using graphite furnace AAS (GFAAS) combined extraction pre-concentration the following LODs for NMs were achieved: Pt, Ru, 1x10{sup -6}; Pd, Rh, 1x10{sup -7}; and Au, Ag, 1-2x10{sup -8} wt.%. The relative standard deviation for NM determinations (S{sub r}) was dependent on NM concentration and sample type, but commonly was in the range of 3-15% for d.c. plasma AES and 5-30% for GFAAS.

  12. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  13. Abnormal pulmonary artery stiffness in pulmonary arterial hypertension: in vivo study with intravascular ultrasound.

    Directory of Open Access Journals (Sweden)

    Edmund M T Lau

    Full Text Available BACKGROUND: There is increasing recognition that pulmonary artery stiffness is an important determinant of right ventricular (RV afterload in pulmonary arterial hypertension (PAH. We used intravascular ultrasound (IVUS to evaluate the mechanical properties of the elastic pulmonary arteries (PA in subjects with PAH, and assessed the effects of PAH-specific therapy on indices of arterial stiffness. METHOD: Using IVUS and simultaneous right heart catheterisation, 20 pulmonary segments in 8 PAH subjects and 12 pulmonary segments in 8 controls were studied to determine their compliance, distensibility, elastic modulus and stiffness index β. PAH subjects underwent repeat IVUS examinations after 6-months of bosentan therapy. RESULTS: AT BASELINE, PAH SUBJECTS DEMONSTRATED GREATER STIFFNESS IN ALL MEASURED INDICES COMPARED TO CONTROLS: compliance (1.50±0.11×10(-2 mm(2/mmHg vs 4.49±0.43×10(-2 mm(2/mmHg, p<0.0001, distensibility (0.32±0.03%/mmHg vs 1.18±0.13%/mmHg, p<0.0001, elastic modulus (720±64 mmHg vs 198±19 mmHg, p<0.0001, and stiffness index β (15.0±1.4 vs 11.0±0.7, p = 0.046. Strong inverse exponential associations existed between mean pulmonary artery pressure and compliance (r(2 = 0.82, p<0.0001, and also between mean PAP and distensibility (r(2 = 0.79, p = 0.002. Bosentan therapy, for 6-months, was not associated with any significant changes in all indices of PA stiffness. CONCLUSION: Increased stiffness occurs in the proximal elastic PA in patients with PAH and contributes to the pathogenesis RV failure. Bosentan therapy may not be effective at improving PA stiffness.

  14. Arterial stiffness in normotensive and hypertensive subjects: Frequency in community pharmacies.

    Science.gov (United States)

    Rodilla Sala, Enrique; Adell Alegre, Manuel; Giner Galvañ, Vicente; Perseguer Torregrosa, Zeneida; Pascual Izuel, Jose Maria; Climent Catalá, María Teresa

    2017-12-07

    Arterial stiffness (AS) is a well-recognized target organ lesion. This study aims to determine: 1) the frequency of AS in community pharmacies; 2) if stiffened subjects identified by brachial oscillometry have more CV risk factors than normal subjects, and 3) the dependence of stiffness on using either age-adjusted values or a fixed threshold. Observational, cross-sectional study in 32 community pharmacies of the Valencia Community, between November/2015 and April/2016. Stiffness was as pulse wave velocity (PWV) measured with a semi-automatic, validated device (Mobil-O-Graph ® , IEM), followed by a 10-item questionnaire. Mean age of the 1,427 consecutive recruited patients was 56.6 years. Overall proportion of patients with AS was 17.4% with age-adjusted PWV (9.4% in normotensives, 28.3% in hypertensives). Multivariate logistic regression showed independent association of stiffness in normotensives with male gender, obesity, higher pulse pressure and heart rate, in hypertensives, with higher pulse pressure and lower age. AS was globally found in 20.5% of subjects, defining stiffness by PWV>10m/s (6.2% in normotensives, 40.2% in hypertensives). It was associated with higher age and pulse pressure in both groups. Concordance in classifying stiffness was 74.6%. Frequency of AS varied between 17.4-20.5%. Age-adjusted stiffness is associated in normotensives with male gender, pulse pressure, obesity and heart rate, in hypertensives with pulse pressure and inversely to age. Stiffness by 10m/s is determined by higher pulse pressure and higher age. Both definitions of PWV are not interchangeable. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  15. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  16. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Souza, Paulino Florêncio de; Santos, Dário; Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina; Silva Gomes, Marcos da; Guerra, Marcelo Braga Bueno; Krug, Francisco José

    2013-01-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg −1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm −2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and micronutrients

  17. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1980-03-01

    Work continues on the development of dissolution techniques for difficult-to-dissolve nuclear materials, the development of methods and automated instruments for plutonium, uranium, and thorium determinations, and the preparation of plutonium materials for the Safeguards Analytical Laboratory Evaluation (SALE) program and distribution by the National Bureau of Standards (NBS) as standard reference materials (SRMs). We are measuring the loner plutonium isotope half-lives, evaluating the isotope correlation techniques and the chemistry involved in the mass-spectrometric ion-bead techniques, and analyzing the SALE uranium materials. Completed subtasks include evaluations of various Teflon materials to recommend those acceptable for the dissolution apparatus developed at LASL, investigations of laser-enhanced dissolution of refractory materials, determinations of diverse ion effects on the microgram-sensitive method for determining uranium, fabrication of the first automated controlled-potential coulometric analyzer for determining plutonium, preparation of a 244 Pu material for distribution by NBS as a SRM, and determination of the half-life of 239 Pu. Work has been started on a spectrophotometric method for determining microgram quantities of plutonium, a microcomplexometric titration method for determining uranium, the use of new reagents for separations of plutonium, the preparation and packaging of a new lot of high-purity plutonium metal for distribution by NBS as a plutonium chemical SRM, and determination of half-lives of other plutonium isotopes

  18. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1980-03-01

    Work continues on the development of dissolution techniques for difficult-to-dissolve nuclear materials, the development of methods and automated instruments for plutonium, uranium, and thorium determinations, and the preparation of plutonium materials for the Safeguards Analytical Laboratory Evaluation (SALE) program and distribution by the National Bureau of Standards (NBS) as standard reference materials (SRMs). We are measuring the loner plutonium isotope half-lives, evaluating the isotope correlation techniques and the chemistry involved in the mass-spectrometric ion-bead techniques, and analyzing the SALE uranium materials. Completed subtasks include evaluations of various Teflon materials to recommend those acceptable for the dissolution apparatus developed at LASL, investigations of laser-enhanced dissolution of refractory materials, determinations of diverse ion effects on the microgram-sensitive method for determining uranium, fabrication of the first automated controlled-potential coulometric analyzer for determining plutonium, preparation of a /sup 244/Pu material for distribution by NBS as a SRM, and determination of the half-life of /sup 239/Pu. Work has been started on a spectrophotometric method for determining microgram quantities of plutonium, a microcomplexometric titration method for determining uranium, the use of new reagents for separations of plutonium, the preparation and packaging of a new lot of high-purity plutonium metal for distribution by NBS as a plutonium chemical SRM, and determination of half-lives of other plutonium isotopes.

  19. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  20. Variable stiffness and damping MR isolator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au

    2009-02-01

    This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.

  1. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  2. Determination of 25 elements in biological standard reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Guzzi, G.; Pietra, R.; Sabbioni, E.

    1974-12-01

    Standard and Certified Reference Materials programme of the JRC includes the determination of trace elements in complex biological samples delivered by the U.S. National Bureau of Standards: Bovine liver (NBS SRM 1577), Orchard Leaves (NBS SRM 1571) and Tomato Leaves. The study has been performed by the use of neutron activation analysis. Due to the very low concentration of some elements, radiochemical groups or elemental separation procedures were necessary. The paper describes the techniques used to analyse 25 elements. Computer assisted instrumental neutron activation analysis with high resolution Ge(Li) spectrometry was considerably advantageous in the determination of Na, K, Cl, Mn, Fe, Rb and Co and in some cases of Ca, Zn, Cs, Sc, and Cr. For low contents of Ca, Mg, Ni and Si special chemical separation schemes, followed by Cerenkov counting have been developped. Two other separation procedures allowing the determination of As, Cd, Ga, Hg, Mo, Cu, Sr Se, Ba and P have been set up. The first, the simplified one involves the use of high resolution Ge(Li) detectors, the second, the more complete one involves a larger number of shorter measurements performed by simpler and more sensitive techniques, such as NaI(Tl) scintillation spectrometry and Cerenkov counting. The results obtained are presented and discussed

  3. Stability-indicating spectrofluorimetric method for determination of itopride hydrochloride in raw material and pharmaceutical formulations.

    Science.gov (United States)

    Walash, Mohamed I; Ibrahim, Fawzia; Eid, Manal I; El Abass, Samah Abo

    2013-11-01

    A simple, sensitive and rapid spectrofluorimetric method for determination of itopride hydrochloride in raw material and tablets has been developed. The proposed method is based on the measurement of the native fluorescence of the drug in water at 363 nm after excitation at 255 nm. The relative fluorescence intensity-concentration plot was rectilinear over the range of 0.1-2 μg/mL (2.5 × 10(-7)-5.06 × 10(-6) mole/L), with good correlation (r = 0.9999), limit of detection of 0.015 μg/mL and a lower limit of quantification of 0.045 μg/mL. The described method was successfully applied for the determination of itopride hydrochloride in its commercial tablets with average percentage recovery of 100.11 ± 0.32 without interference from common excipients. Additionally, the proposed method can be applied for determination of itopride in combined tablets with rabeprazole or pantoprazole without prior separation. The method was extended to stability study of itopride. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and oxidative degradation of the drug. A proposal for the degradation pathways was postulated.

  4. Determination of some trace elements in biological materials using the short living isotopes

    International Nuclear Information System (INIS)

    Taskaev, E.

    1985-01-01

    A method for determination of V, Cu, Rb, Mo and K in breast cancer tumors is described. Samples were irradiated with ICIS pneumatic irradiation system of University of London Reactor Centre for 5 min. with mixed neutron flux: 1,7.10 1 2 thermal neutrons.cm -2 .s -1 and 9.10 11 fast neutrons.cm -2 .s -1 . Wet ashing procedure of Byrne and Kosta was used for the dissolution. Consecutive separation procedures of V and Mo, Cu, Mn, K and Rb, followed by counting and activity measuring were carried out. In order to study the chemical yields for all the elements both animal and plant matrixes were used. The error of 3% ( 0.05 confidence level) for single determination of chemical yield was chosen as the highest value acceptable. The possibility of using 137-Cs tracer for K and Rb chemical yield determination was also checked. To check the whole procedure the standard reference materials SRM-1577 Bovine Liver, SRM-1571 Orchard Leaves and Bowen's Kale were analysed

  5. Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kowalczyk, Ewelina; Kwiatek, Krzysztof

    2017-05-01

    1,2-Dehydropyrrolizidine alkaloids are known to be toxic to many animals and humans. To provide safety of feeds a method based on gas chromatography-mass spectrometry enabling the determination of a content of 1,2-unsaturated PAs in feed materials was developed. After extraction with aqueous solution of HCl and purification of the extract, 1,2-unsaturated alkaloids are reduced to their common backbone structures and subsequently derivatised with heptafluorobutyric anhydride (HFBA). The method was validated according to SANTE/11945/2015. All received parameters are consistent with the document requirements as recovery of a final compound retronecine derivative was from 81.8% to 94.4% when retrosine was used for spiking and from 72.7% to 85.5% when retrorsine N-oxide was spiked. The repeatability was calculated as relative standards deviation and ranged from 7.5% to 14.4%, for N-oxide was from 7.9% to 15.4%. The reproducibility was in the range from 14.2% to 16.3% and from 17.0% to 18.1% for free base and N-oxide respectively. The limit of quantification was determined as 10 µg kg - 1 . Good linearity of the method was obtained with coefficient of determination R 2  > 0.99. The method was applied to 35 silage and two hay samples analysis.

  6. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors, and the former notification No. 26, 1961, is hereby abolished. Internationally regulated goods under the law are as follows: nuclear raw materials, nuclear fuel materials and moderator materials transferred by sale or other means from the governments of the U.S., U.K., Canada, Australia and France or the persons under their jurisdictions according to the agreements concluded between the governments of Japan and these countries, respectively, the nuclear fuel materials recovered from these materials or produced by their usage, nuclear reactors, the facilities and heavy water transferred by sale or other means from these governments or the persons under their jurisdictions, the nuclear fuel materials produced by the usage of such reactors, facilities and heavy water, the nuclear fuel materials sold by the International Atomic Energy Agency under the contract between the Japanese government and the IAEA, the nuclear fuel materials recovered from these materials or produced by their usage, the heavy water produced by the facilities themselves transferred from the Canadian government, Canadian governmental enterprises or the persons under the jurisdiction of the Canadian government or produced by the usage of these facilities, etc. (Okada, K.)

  7. LSODE, 1. Order Stiff or Non-Stiff Ordinary Differential Equations System Initial Value Problems

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    1 - Description of program or function: LSODE (Livermore Solver for Ordinary Differential Equations) solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as either user-supplied or internally approximated by difference quotients. It uses Adams methods (predictor-corrector) in the non-stiff case, and Backward Differentiation Formula (BDF) methods (the Gear methods) in the stiff case. The linear systems that arise are solved by direct methods (LU factor/solve). The LSODE source is commented extensively to facilitate modification. Both a single-precision version and a double-precision version are available. 2 - Methods: It is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. LSODE contains two variable-order, variable- step (with interpolatory step-changing) integration methods. The first is the implicit Adams or non-stiff method, of orders one through twelve. The second is the backward differentiation or stiff method (or BDF method, or Gear's method), of orders one through five. 3 - Restrictions on the complexity of the problem: The differential equations must be given in explicit form, i.e., dy/dt = f(y,t). Problems with intermittent high-speed transients may cause inefficient or unstable performance

  8. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells.

    Science.gov (United States)

    Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami

    2012-05-01

    To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.

  9. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.

    Science.gov (United States)

    Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A

    2018-03-01

    The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 20 CFR 404.1535 - How we will determine whether your drug addiction or alcoholism is a contributing factor material...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false How we will determine whether your drug addiction or alcoholism is a contributing factor material to the determination of disability. 404.1535 Section 404.1535 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability...

  11. 20 CFR 416.935 - How we will determine whether your drug addiction or alcoholism is a contributing factor material...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false How we will determine whether your drug addiction or alcoholism is a contributing factor material to the determination of disability. 416.935 Section 416.935 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability...

  12. Two new methods to determine the adhesion by means of internal friction in materials covered with films

    International Nuclear Information System (INIS)

    Colorado, H. A.; Ghilarducci, A. A.; Salva, H. R.

    2006-01-01

    Two new models are proposed to determine the adhesion energy be means of the internal friction technique (IF) in thin films layered materials. for the first method is necessary to determine enthalpy by means of the IF technique, for which the adhesion work has been determined with experimental data. In the second method are necessary to perform IF tests at constant temperature. (Author)

  13. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.

    Science.gov (United States)

    Shim, Bong Sup; Zhu, Jian; Jan, Edward; Critchley, Kevin; Ho, Szushen; Podsiadlo, Paul; Sun, Kai; Kotov, Nicholas A

    2009-07-28

    Efficient coupling of mechanical properties of SWNTs with the matrix leading to the transfer of unique mechanical properties of SWNTs to the macroscopic composites is a tremendous challenge of today's materials science. The typical mechanical properties of known SWNT composites, such as strength, stiffness, and toughness, are assessed in an introductory survey where we focused on concrete numerical parameters characterizing mechanical properties. Obtaining ideal stress transfer will require fine optimization of nanotube-polymer interface. SWNT nanocomposites were made here by layer-by-layer (LBL) assembly with poly(vinyl alcohol) (PVA), and the first example of optimization in respect to key parameters determining the connectivity at the graphene-polymer interface, namely, degree of SWNT oxidation and cross-linking chemistry, was demonstrated. The resulting SWNT-PVA composites demonstrated tensile strength (σ(ult)) = 504.5 ± 67.3 MPa, stiffness (E) = 15.6 ± 3.8 GPa, and toughness (K) = 121.2 ± 19.2 J/g with maximum values recorded at σ(ult) = 600.1 MPa, E = 20.6 GPa, and K = 152.1 J/g. This represents the strongest and stiffest nonfibrous SWNT composites made to date outperforming other bulk composites by 2-10 times. Its high performance is attributed to both high nanotube content and efficient stress transfer. The resulting LBL composite is also one of the toughest in this category of materials and exceeding the toughness of Kevlar by 3-fold. Our observation suggests that the strengthening and toughening mechanism originates from the synergistic combination of high degree of SWNT exfoliation, efficient SWNT-PVA binding, crack surface roughening, and fairly efficient distribution of local stress over the SWNT network. The need for a multiscale approach in designing SWNT composites is advocated.

  14. Spectrographic determination of impurities in ceramic materials for nuclear fusion reactors. 1. Analysis of alumina

    International Nuclear Information System (INIS)

    Rucandio, M.I.; Roca, M.; Melon, A.

    1990-01-01

    The determination of minor and trace elements in the aluminium oxide considered as possible ceramic material in thermonuclear fusion reactors has been studied. The concentration ranges are 0.1-0.3 % for Ca, Si and Y, and at the ppm level for Co, Cr, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Ta, Ti, V and Zr. Atomic emission spectroscopy with direct current arc excitation and photographic detection has been employed. For Hf, Mg, Ta, Ti, V and Zr the use of 40% of copper fluoride as a carrier and of Nb as internal standard provide suitable sensitivities and precissions, while for the rest of elements the best results are obtained with graphite powder in different proportions and Rb or Sn as internal standard. (Author). 7 refs

  15. Spectrographic Determination of Impurities in Ceramic Materials for Nuclear fusion Reactors. II. Analysis of Magnesium Aluminate

    International Nuclear Information System (INIS)

    Rucandio, M. I.; Roca, M.; Melon, A.

    1990-01-01

    The determination of minor and trace elements in the magnesium aluminate, considered as possible material in thermonuclear fusion reactors, has been studied. The concentration ranges are 0.1 - 0.3 % for Ca, SI and Y, and at the ppm level for Co, Cr, Fe, Hf, K, Li, Mn, Na, Ni, Se, Ta, Ti, V and Zr. Atomic emission spectroscopy with direct current are excitation and photographic detection has been employed. For Hf, Ta and Zr the use of 40% of copper fluoride as a carrier and of Nb as internal standard provide suitable sensitivities and precessions, while for the rest of elements the best results are obtained with graphite powder in different proportions and Rb or Sn as internal standard. (Author)4 refs

  16. Optimal determination of the elastic constants of composite materials from ultrasonic wave-speed measurements

    Science.gov (United States)

    Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane

    1990-03-01

    A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.

  17. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  18. Experimental study of a laboratory concrete material representative of containment buildings: desorption isotherms and permeability determination

    International Nuclear Information System (INIS)

    Semete, P.; Fevrier, B.; Delorme, J.; Sanahuja, J.; Desgree, P.; Le Pape, Y.

    2015-01-01

    The isotherm sorption curve is a first order parameter for the calculations of concrete drying and/or creep using Finite Element Analysis. An experimental campaign was undertaken by EDF MMC in order to characterize the first desorption isotherm at room temperature of a laboratory material representative of concrete containment buildings. Long term drying tests were carried out on cement paste and on three samples geometries on concrete (with radial and axial one-dimensional drying on thin disks and multi-dimensional drying on Representative Elementary Volumes). The measurements results (porosity, densities and mass loss curves) are provided and the isotherms obtained for the four different configurations are compared. Several analyses of the results are proposed including the assessment of a criterion for the determination of the moisture content final balance (estimation of the asymptotic mass loss) and the back-analysis of equivalent permeability. (authors)

  19. Spectrographic Determination of Impurities in Ceramic Materials for Nuclear Fusion Reactors. I. Analysis of Alumina

    International Nuclear Information System (INIS)

    Rucandio, M. I.; Roca, M.; Melon, A.

    1990-01-01

    The determination of minor and trace elements in the aluminium oxide considered as possible ceramic material in thermonuclear fusion reactors has been studied. The concentration ranges are 0.1 - 0.3 * for Ca, Si and Y, and at the ppm level for Co, Cr, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Se, Ta, Ti, V and Zr. Atomic emission spectroscopy with direct current ore excitation and photographic detection has been employed. For Hf, Mg, Ta, Ti, V and Zr the use of 40% of copper fluoride as a carrier and of Nb as lnternal standard provide suitable sensitivities and precessions, while for the rest of elements the bent results are obtained with graphite powder in different proportions and Rb or Sn as internal standard. (Author) 7 refs

  20. Determination of selenium in biological material by instrumental neutron activation analysis using 77m Se radioisotope

    International Nuclear Information System (INIS)

    Vasconcellos, Marina B.A.; Moreira, Edson G.; Catharino, Marilia G.M.; Tokura, Alexandra M.; Saiki, Mitiko

    1999-01-01

    Selenium is an essential element in human diet due to its relation to the protection against carcinogenic substances, heart disease, hypertension, sexual performance enhancement, and others. In this work Se concentration in samples of the biological certificate reference materials Human Hair BCR-CRM 397, Spiked Human Hair IAEA-085, Unspiked Human Hair IAEA-086; Dogfish Liver DOLT-1 and Dogfish Muscle DORM-1 were determined in order to improve the instrumental neutron activation analysis, INAA, method using 77m Se radioisotope. The application of this method allows the analysis of a large number of samples of samples with reduced time of experimental and cost. the best results were obtained with the reactor operating at 5 MW and time of irradiation between 10 and 20 s. In these experimental conditions the relative standard deviation and error were generally lower than 10%. (author)

  1. Method for determination of radioactive iodine isotopes in environmental objects and biologic materials

    International Nuclear Information System (INIS)

    Dubynin, O.D.; Pogodin, R.I.

    1981-01-01

    The method proposed for determination of radioactive iodine isotopes content in environmental objects and biologic materials is based on the extraction of iodine with carbon tetrachloride and subsequent precipitation of bismuthyl iodine (BiOI) in perchloric medium. Sample preparation for analysis is carried out using conventional alkaline ashing methods. Quantitative iodine separation is hampered if macroquantities of Cl - , Br - , SO 4 2 - , SO 8 2 - , Cr 2 O 7 2 - and other ions are present in the solution. Iodine extraction is carried out before its precipitation. Separated iodine preparation activity is measured using scintillation (NaI) Tl gamma spectrometer. The method's sensitivity when measuring iodine-131 preparations makes up 0.07 Bq per 1 sample with the error +-25 %

  2. On the determination of the magnetic entropy change in materials with first-order transitions

    International Nuclear Information System (INIS)

    Caron, L.; Ou, Z.Q.; Nguyen, T.T.; Cam Thanh, D.T.; Tegus, O.; Brueck, E.

    2009-01-01

    An accurate method to determine the magnetic entropy change in materials with hysteretic first-order transitions is presented, which is needed to estimate their potential for applications. We have investigated the effect of the maximal entropy change derived from magnetization measurements performed in different measurement processes. The results show that the isothermal entropy change can be derived from the Maxwell relations even for samples with large thermal hysteresis. In the temperature region with hysteresis, overestimating the entropy change can be avoided by measuring the isothermal magnetization of the sample after it is cooled from the paramagnetic state to the measurement temperature. In this way the so-called peak effect is not observed as shown here for a few compounds.

  3. Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness

    Science.gov (United States)

    Goli-Malekabadi, Zahra; Tafazzoli-shadpour, Mohammad; Tamayol, Ali; Seyedjafari, Ehsan

    2017-01-01

    Introduction: Substrate stiffness regulates cellular behavior as cells experience different stiffness values of tissues in the body. For example, endothelial cells (ECs) covering the inner layer of blood vessels are exposed to different stiffness values due to various pathologic and physiologic conditions. Despite numerous studies, cells by time span sense mechanical properties of the substrate, but the response is not well understood. We hypothesized that time is a major determinant influencing the behavior of cells seeded on substrates of varying stiffness. Methods: We monitored cell spreading, internal structure, 3D topography, and the viability of ECs over 24 hours of culture on polydimethylsiloxane (PDMS) substrates with two different degrees of elastic modulus. Results: Despite significant differences in cell spreading after cell seeding, cells showed a similar shape and internal structure after 24 hours of culture on both soft and stiff substrates. However, 3D topographical images confirmed existence of rich lamellipodia and filopodia around the cells cultured on stiffer PDMS substrates. Conclusion: It was concluded that the response of ECs to the substrate stiffness was time dependent with initial enhanced cellular spreading and viability on stiffer substrates. Results can provide a better comprehension of cell mechanotransduction for tissue engineering applications. PMID:28546952

  4. Is passive stiffness in human muscles related to the elasticity of tendon structures?

    Science.gov (United States)

    Kubo, K; Kanehisa, H; Fukunaga, T

    2001-08-01

    The purpose of this study was to examine in vivo whether passive stiffness in human muscles was related to the elasticity of tendon structures and to performance during stretch-shortening cycle exercise. Passive torque of plantar flexor muscles was measured during passive stretch from 90 degrees (anatomical position) to 65 degrees of dorsiflexion at a constant velocity of 5 degrees.s-1. The slope of the linear portion of the passive torque-angle curve during stretching was defined as the passive stiffness of the muscle. The elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured using ultrasonography during ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force of MG and tendon elongation was fitted to a linear regression, the slope of which was defined as the stiffness of the tendon. In addition, the dynamic torques during maximal voluntary concentric plantar flexion with and without prior eccentric contraction were determined at a constant velocity of 120 degrees.s-1. There were no significant correlations between passive stiffness and either the tendon stiffness (r = 0.19, P > 0.05) or the relative increase in torque with prior eccentric contraction (r = -0.19, P > 0.05). However, tendon stiffness was negatively correlated to the relative increase in torque output (r = -0.42, P tendon structures, and had no favourable effect on the muscle performance during stretch-shortening cycle exercise.

  5. A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle.

    Science.gov (United States)

    De Falco, Iris; Culmone, Costanza; Menciassi, Arianna; Dankelman, Jenny; van den Dobbelsteen, John J

    2018-06-04

    Needles are advanced tools commonly used in minimally invasive medical procedures. The accurate manoeuvrability of flexible needles through soft tissues is strongly determined by variations in tissue stiffness, which affects the needle-tissue interaction and thus causes needle deflection. This work presents a variable stiffness mechanism for percutaneous needles capable of compensating for variations in tissue stiffness and undesirable trajectory changes. It is composed of compliant segments and rigid plates alternately connected in series and longitudinally crossed by four cables. The tensioning of the cables allows the omnidirectional steering of the tip and the stiffness tuning of the needle. The mechanism was tested separately under different working conditions, demonstrating a capability to exert up to 3.6 N. Afterwards, the mechanism was integrated into a needle, and the overall device was tested in gelatine phantoms simulating the stiffness of biological tissues. The needle demonstrated the capability to vary deflection (from 11.6 to 4.4 mm) and adapt to the inhomogeneity of the phantoms (from 21 to 80 kPa) depending on the activation of the variable stiffness mechanism. Graphical abstract ᅟ.

  6. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    Science.gov (United States)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  7. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    Science.gov (United States)

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  8. Determination of Natural Levels of Radionuclides in Proposed Mushroom Reference Material (A Proficiency Test Exercise)

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, A.; Siddique, N.; Ahmad, S.; Zaidi, J.H.

    2006-08-01

    A proficiency test (PT) was organized within the framework of international Atomic Energy Agency (IAEA) project INT/1/054, entitled 'Preparation' of Reference Materials and Organization of Proficiency Test Rounds'. This exercise served to estimate the proficiency of the analytical laboratories from participating countries. This report presents the results of the proficiency test exercise on the proposed Mushroom Reference Material for the determination of natural levels of radionuclides. Laboratories from 6 different countries submitted data on the following three radionuclides: /sup 134/Cs, /sup 137/Cs, /sup 40/K. Results for /sup 134/Cs, 137/sup 137/Cs, and /sup 40/K in the mushroom reference material were reported by three or more participating laboratories and could be subjected to statistical evaluation. The original data of these raionuclides was subjected to a computer program 'Histo Vession 2.1' provided by IAEA. The four outlier tests i.e. Dixon, Grubbs, Skewness and Kurtosis were applied to the data sets. All values for these three radionuclides were accepted by the software. Consensus (overall) mean value, absolute standard deviation, relative standard deviation, standard error, median and range of values for these three radionuclides have been are obtained (at significance level 0.05). the consensus mean values and confidence intervals are given./sup 134/Cs: 4.4 Bq/kg (3.4-5.3 Bq/kg) /sup 137/Cs: 2899 Bq/kg (2740-3058 Bq/kg) /sup 40/K: 1136 Bq/kg (1046-1226 Bq/kg). (author)

  9. Value determination of ZrO2 in-house reference material (RM) candidate

    International Nuclear Information System (INIS)

    Susanna Tuning Sunanti; Samin; Supriyanto C

    2013-01-01

    The value determination of zirconium oxide in-house reference materials (RM) candidate has been done by referring to ISO:35-2006 standard. The raw material of RM was 4 kg of ZrO 2 , Merck, that was dried at 90°C for 2×6 hours in a closed room. The samples were crushed with stainless steel (SS) pestle to pass ≤ 200 mesh sieve, homogenized in a homogenizer for 3×6 hours to obtain the powdered, dried and homogenous samples. The gravimetric method was performed to test the moisture content, while XRF and AAS methods were used to test the homogeneity and stability of samples candidates. Reference material (RM) candidates of ZrO 2 powder were put into polyethylene bottles, each weighing 100 g. Samples were distributed to 10 testing laboratories that have been accredited for testing the composition of the oxide contents and loss of ignition (LOI) using variety of analytical methods that have been validated such as AAS, XRF, NAA, and UV-Vis. The testing results of oxide content and loss of ignition parameters from various laboratories were analyzed using statistical methods. The testing data of oxide concentration in zirconium oxide RM candidates obtained from various laboratories were ZrO 2 : 97.7334 ± 0.0016%, HfO 2 : 1.7329 ± 0.0024%, SiO 2 : 30.1224 ± 0.0053%, Al 2 O 3 : 0.0245 ± 0.0015%, TiO 2 : 0.0153 ± 0.0006%, Fe 2 O 3 : 0.0068 ± 0.0005%, CdO: 3.1798 ± 0.00006 ppm, and the LOI results was = 0.0217 ± 0.00022%. (author)

  10. Determination of Bacterial Pathogen in Foods for Export and their Raw Material

    Energy Technology Data Exchange (ETDEWEB)

    Marambio, E.; Cordano, A. M.; Insunza, M.; Fernández, M.; Astorga, J. [Sección Microbiología de Alimentos, Instituto de Salud Pública de Chile (Chile)

    2005-01-15

    Chile is a South American country with an important fish and shellfish production. These products are some of the most important items for the economy of the country. From 1998 to 2001, Chile exported $1 137 625 788 of fish and shellfish. Statistics also show that frozen vegetables are fast becoming high on the food export list. During recent years (1998 to 2001) $223 312 248 worth of frozen vegetables were exported to different countries. This study was performed to trace the presence of pathogens in some of these Chilean foods to be exported: 97 samples of salmon and 84 samples of different frozen vegetables (asparagus, peas and corn) were analyzed in order to determine their levels of microbial contamination. Total bacteria counts (mesophilic aerobes bacteria), Escherichia coli, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Salmonella spp. and Listeria monocytogenes were tested. Vibrio cholerae was tested only in salmon samples. The analysis of salmon samples showed that the raw material presented a very good quality. However, during the filleting process the fish was contaminated, presenting higher total bacteria counts. Only one of the 48 final product samples presented contamination with a pathogenic bacteria (Listeria monocytogenes (<100 cfu/g)). Frozen vegetable samples (raw material and final products) did not present any of the pathogen bacteria studied. The mesophilic aerobes bacteria counts were reduced during processing due to the effectiveness of the good manufacturing practices and the technological process used. (author)

  11. Determination of copper in biological materials by neutron activation analysis using short-lived 66Cu

    International Nuclear Information System (INIS)

    Dybczynski, R.; Danko, B.; Kaczorowski, J.

    1989-01-01

    A method for determination of copper traces in biological materials based on neutron activation employing 65 Cu(n, γ) 66 Cu reaction and preconcentration by extraction chromatography has been devised. The 200-500 mg samples after wet digestion and evaporation were dissolved in glycine solution and after pH adjusting to ca. 4.4 were passed through the column with Lix 64N on Bio Beads SM-1 for isolation of copper traces from the matrix elements. Other cations were selectively eluted with 0.1 mol x 1 -1 (glycine-HNO 3 ) buffer, 1 mol x 1 -1 in NH 4 NO 3 (pH = 3.6). The resin bed with quantitatively retained copper was sealed in the PE bag and irradiated together with Cu standards in EWA reactor using pneumatic tube facility. The activity of the short-lived 66 Cu was measured in samples and standard by gamma-ray spectrometry with Ge(Li) detector. Good accuracy of the method was confirmed by analysis of the following certified reference materials: NBS 1571 Orchad leaves, IAEA H-4 Animal muscle, IAEA V-8 Rye flour, IAEA A-11 milk powder. The detection limit amounted to 0.34 mg/kg, for the sample weight of 500 mg. (author)

  12. Examination of fibre composites by ultrasound for defect inspection and determination of material properties

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-07-01

    Fibre composites may be produced by stacking prepregs impregnated with epoxy and hardening those in an autoclave. Results from different non destructive ultrasonic methods used on this product are presented. Two techiques (double through transmission and reflector) are developed from C-scan. They are useful for finding delaminations and porosities. An attempt was made to determine the porosity content in the plates non destructively with the reflector techique. A third technique (called ''in plane transmission'') is a contact method with separated transmitter and receiver on the same side of the plate (50 mm apart). The wave form of the received signal is digitized, and several so-called ''stress wave factors'' are calculated from the digitized values. The sound velocity is also calculated. Measurement has been made on materials in different thicknesses and with variation in fibre orientation and fibre material. Results from scanning with the reflector technique and in plane transmission measurement on the same samples are compared. 15 ills.

  13. Determination of Bacterial Pathogen in Foods for Export and their Raw Material

    International Nuclear Information System (INIS)

    Marambio, E.; Cordano, A.M.; Insunza, M.; Fernández, M.; Astorga, J.

    2005-01-01

    Chile is a South American country with an important fish and shellfish production. These products are some of the most important items for the economy of the country. From 1998 to 2001, Chile exported $1 137 625 788 of fish and shellfish. Statistics also show that frozen vegetables are fast becoming high on the food export list. During recent years (1998 to 2001) $223 312 248 worth of frozen vegetables were exported to different countries. This study was performed to trace the presence of pathogens in some of these Chilean foods to be exported: 97 samples of salmon and 84 samples of different frozen vegetables (asparagus, peas and corn) were analyzed in order to determine their levels of microbial contamination. Total bacteria counts (mesophilic aerobes bacteria), Escherichia coli, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Salmonella spp. and Listeria monocytogenes were tested. Vibrio cholerae was tested only in salmon samples. The analysis of salmon samples showed that the raw material presented a very good quality. However, during the filleting process the fish was contaminated, presenting higher total bacteria counts. Only one of the 48 final product samples presented contamination with a pathogenic bacteria (Listeria monocytogenes (<100 cfu/g)). Frozen vegetable samples (raw material and final products) did not present any of the pathogen bacteria studied. The mesophilic aerobes bacteria counts were reduced during processing due to the effectiveness of the good manufacturing practices and the technological process used. (author)

  14. Colony types and virulence traits of Legionella feeleii determined by exopolysaccharide materials.

    Science.gov (United States)

    Wang, Changle; Saito, Mitsumasa; Ogawa, Midori; Yoshida, Shin-Ichi

    2016-05-01

    Legionella feeleii is a Gram-negative pathogenic bacterium that causes Pontiac fever and pneumonia in humans. When L. feeleii serogroup 1 (ATCC 35072) was cultured on BCYE agar plates, two types of colonies were observed and exhibited differences in color, opacity and morphology. Since the two colony types are white rugose and brown translucent, they were termed as white rugose L. feeleii (WRLf) and brown translucent L. feeleii (BTLf), respectively. They exhibited different growth capacities in BYE broth in vitro, and it was found that WRLf could transform to BTLf. Under the electron microscope, it was observed that WRLf secreted materials which could be stained with ruthenium red, which was absent in BTLf. When U937 macrophages and HeLa cells were infected with the bacteria, WRLf manifested stronger internalization ability than BTLf. Intracellular growth in murine macrophages and Acanthamoeba cells was affected by the level of initial phagocytosis. WRLf was more resistant to human serum bactericidal action than BTLf. After being inoculated to guinea pigs, both organisms caused fever in the animals. These results suggest that ruthenium red-stained materials secreted in the surroundings may play a crucial role in determining L. feeleii colony morphology and virulence traits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    Science.gov (United States)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  16. NDE methods for determining the materials properties of silicon carbide plates

    Science.gov (United States)

    Kenderian, Shant; Kim, Yong; Johnson, Eric; Palusinski, Iwona A.

    2009-08-01

    Two types of SiC plates, differing in their manufacturing processes, were interrogated using a variety of NDE techniques. The task of evaluating the materials properties of these plates was a challenge due to their non-uniform thickness. Ultrasound was used to estimate the Young's Modulus and calculate the thickness profile and Poisson's Ratio of the plates. The Young's Modulus profile plots were consistent with the thickness profile plots, indicating that the technique was highly influenced by the non-uniform thickness of the plates. The Poisson's Ratio is calculated from the longitudinal and shear wave velocities. Because the thickness is cancelled out, the result is dependent only on the time of flight of the two wave modes, which can be measured accurately. X-Ray was used to determine if any density variations were present in the plates. None were detected suggesting that the varying time of flight of the acoustic wave is attributed only to variations in the elastic constants and thickness profiles of the plates. Eddy Current was used to plot the conductivity profile. Surprisingly, the conductivity profile of one type of plates varied over a wide range rarely seen in other materials. The other type revealed a uniform conductivity profile.

  17. Determination of Au, Pt, Pd in gold ore mineral raw materials by stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Kolpakova N.A.

    2016-01-01

    Full Text Available The paper considers the possibilities of use of the method of stripping voltammetry for finding platinum metals in mineral gold and ore raw material. A review of new options of electro-concentration of platinum metals on the surface of graphite electrode with the following sediment electro-oxidation and receipt of an analytical signal is presented: platinum finding was carried out by picks of selective electro-oxidation of iridium from intermetallic compound with platinum; gold finding was carried out by picks of gold electro-oxidation on the surface of graphite electrode modified by bismuth; palladium finding was performed by picks of palladium electro-oxidation on the surface of graphite electrode. 1M HCL solution was selected as a supporting electrolyte. Gold and hydrogen elimination on the process of palladium electro-oxidation was performed by means of UV irradiation of solution in the process of electro-concentration of palladium sediment. Gold, platinum and palladium determination was carried out in mineral gold and ore raw material of Verkhneamylskiy gold and ore district.

  18. Finite Element Verification of Non-Homogeneous Strain and Stress Fields during Composite Material Testing

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    2015-01-01

    Uni-directional glass fiber reinforced polymers play a central role in the task increasing the length of wind turbines blades and thereby lowering the cost of energy from wind turbine installations. During this, optimizing the mechanical performance regarding material stiffness, compression...... strength and fatigue performance is essential. Nevertheless, testing composites includes some challenges regarding stiffness determination using conventional strain gauges and achieving correct material failure unaffected by the gripping region during fatigue testing. Challenges, which in the present study......, has been addressed using the finite element method. During this, a verification of experimental observations, a deeper understanding on the test coupon loading and thereby improved test methods has been achieved....

  19. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    International Nuclear Information System (INIS)

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von; Gourdon, C.; Riahi, H.; Lemaître, A.

    2015-01-01

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessment is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions

  20. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for