WorldWideScience

Sample records for materials microcharacterization collaboratory

  1. X-ray microprobe for the microcharacterization of materials

    International Nuclear Information System (INIS)

    Sparks, C.J.; Ice, G.E.

    1988-01-01

    The unique properties of x rays offer many advantages over those of electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic x-ray fluorescence and produce higher fluorescent signal-to-background ratios than obtained with electrons. Such x-ray microprobes will also produce unprecedentedly low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for structural and chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine. 24 refs., 6 figs., 2 tabs

  2. SEM microcharacterization of semiconductors

    CERN Document Server

    Holt, D B

    1989-01-01

    Applications of SEM techniques of microcharacterization have proliferated to cover every type of material and virtually every branch of science and technology. This book emphasizes the fundamental physical principles. The first section deals with the foundation of microcharacterization in electron beam instruments and the second deals with the interpretation of the information obtained in the main operating modes of a scanning electron microscope.

  3. Expectations for a scientific collaboratory

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    2003-01-01

    In the past decade, a number of scientific collaboratories have emerged, yet adoption of scientific collaboratories remains limited. Meeting expectations is one factor that influences adoption of innovations, including scientific collaboratories. This paper investigates expectations scientists have...... with respect to scientific collaboratories. Interviews were conducted with 17 scientists who work in a variety of settings and have a range of experience conducting and managing scientific research. Results indicate that scientists expect a collaboratory to: support their strategic plans; facilitate management...... of the scientific process; have a positive or neutral impact on scientific outcomes; provide advantages and disadvantages for scientific task execution; and provide personal conveniences when collaborating across distances. These results both confirm existing knowledge and raise new issues for the design...

  4. Scientific collaboratories in higher education

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Li, Bin

    2003-01-01

    Scientific collaboratories hold the promise of providing students access to specialized scientific instruments, data and experts, enabling learning opportunities perhaps otherwise not available. However, evaluation of scientific collaboratories in higher education has lagged behind...

  5. The collaboratory approach

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, A.M.

    1997-04-01

    A {open_quotes}collaboratory{close_quotes} has been defined as a center without walls, in which researchers can perform their work without regard to geographical location. To an increasing degree, engineering design and development is also taking the form of far-flung collaborations among divisions of a plant, subcontractors, university consultants and customers. It has long been recognized that quality engineering education presents the student with an environment that duplicates as much as possible that which the graduate will encounter in industry. To that end, it is important that engineering schools begin to introduce the collaboratory approach in its preparation, and even use it in delivery of subject matter to students.

  6. The socio-technical design of a library and information science collaboratory

    DEFF Research Database (Denmark)

    Lassi, Monica; Sonnenwald, Diane H.

    2013-01-01

    Introduction. We present a prototype collaboratory, a socio-technical platform to support sharing research data collection instruments in library and information science. No previous collaboratory has attempted to facilitate sharing digital research data collection instruments among library...... and information science researchers.  Method. We have taken a socio-technical approach to design, which includes a review of previous research on collaboratories; an empirical study of specific needs of library and information science researchers; and a use case design method to design the prototype collaboratory....... Scenarios of future interactions, use cases, were developed using an analytically-driven approach to scenario design. The use cases guided the implementation of the prototype collaboratory in the MediaWiki software package.  Results. The prototype collaboratory design is presented as seven use cases, which...

  7. Collaboration, communication and categorical complexity: A case study in collaboratory evaluation

    DEFF Research Database (Denmark)

    Cleal, B.R.; Andersen, H.H.K.; Albrechtsen, H.

    2004-01-01

    This article presents findings from an empirical evaluation of a collaboratory supporting film research. Few collaboratories have been formally evaluated. The article makes a case for looking at wider work-based contexts users engage in. Focussing on key features of the prototype system, it is sh......This article presents findings from an empirical evaluation of a collaboratory supporting film research. Few collaboratories have been formally evaluated. The article makes a case for looking at wider work-based contexts users engage in. Focussing on key features of the prototype system...

  8. A Web-based multimedia collaboratory. Empirical work studies in film archives

    DEFF Research Database (Denmark)

    Pejtersen, A.M.; Albrechtsen, H.; Cleal, B.

    2001-01-01

    and interfaces for collaborative work and content-based access to digital repositories for film archives, researchers and end-users. This report is based on empirical analysis of three film archives inGermany, Austria and the Czech Republic, and seeks to elicit the user needs for a collaboratory in this domain....... Both the collection and analysis of data have been organised according to principles of Cognitive Work Analysis (CWA) as pioneered at Risø (cf.Rasmussen, Pejtersen and Goodstein 1994). Research based work on individual film projects is, due to international distribution and multiple versions, dependent......The Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical Archive Material (Collate) is intended to foster and support collaboration on research, cultural mediation and preservation of films through a distributed multimediarepository. The tool will provide web-based tools...

  9. Development and Implementation of the Collaboratory on EAST

    International Nuclear Information System (INIS)

    Zhang Mingxin; Luo Jiarong; Li Guiming; Wang Hua; Cheng Ting

    2006-01-01

    The collaboratory for the EAST is available, which possesses the capacity to further advance active research on EAST. In doing so, the distance between local researchers and participators over the world is just a click away. To feature the system with the function of remote control, the functional business logic is all encapsulated in the mandatory controls, which can potentially boost the computing capability of the clients with a B/S framework. At the same time, the EAST collaboratory embraces powerful on-line data exchange and data management functions via state-of-the-art XML Web services. With the goal of accessing and analysing the pivotal experimental data on-line, a data analysis system is implemented in JAVA. Finally as a valuable asset of the EAST collaboratory the function of videoconference will be also covered in this contribution

  10. The Pulsar Search Collaboratory

    Science.gov (United States)

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  11. The Socio-Technical Design of a Library and Information Science Collaboratory

    Science.gov (United States)

    Lassi, Monica; Sonnenwald, Diane H.

    2013-01-01

    Introduction: We present a prototype collaboratory, a socio-technical platform to support sharing research data collection instruments in library and information science. No previous collaboratory has attempted to facilitate sharing digital research data collection instruments among library and information science researchers. Method: We have…

  12. Collaboratory=Collaborate+Laboratory: The Mid-Columbia STEM Education Collaboratory

    Energy Technology Data Exchange (ETDEWEB)

    Willcuts, Meredith H.; Kennedy, Cathleen A.

    2017-06-15

    Pacific Northwest National Laboratory created a network focused on collaboration in STEM education to design and deliver projects, resources, and professional learning opportunities in a testbed environment. How do you uncover and fill gaps in equitable access to high-quality science, technology, engineering, and math (STEM) education offerings in your local region? Where might you deploy strategies to improve STEM workforce preparation and increase public understanding of STEM-oriented issues? And how can you help to ensure that students, educators, parents, and the community are aware of these programs and know how to access them in schools, colleges, and community venues? If you are the Pacific Northwest National Laboratory (PNNL), you take on the huge goal of designing and implementing an innovative STEM education collaboration project that impacts all levels of local education, both inside and outside of school settings. PNNL is one of the 17 national laboratories funded by the U.S. Department of Energy. Operated by Battelle, PNNL has a vested interest in preparing the next generation of scientists and engineers for their future careers, thus building a STEM-capable workforce and creating a STEM-literate community. One of Battelle’s core principles is a commitment to STEM education and its role in business competitiveness and quality of life. PNNL has been active in STEM education for decades, providing internships for future scientists, giving educators in-house lab experiences, and engaging its researchers in STEM outreach activities in classrooms and the community. The Collaboratory is a relatively recent outcome of Battelle’s longstanding efforts in STEM education. The original Collaboratory planning documents, developed by PNNL’s Office of STEM Education (OSE), state the objective to “design, implement, and mature a local STEM education collaboration zone that highlights the power of PNNL and Battelle to impact the educational ecosystem and serve

  13. Collaboratory for support of scientific research

    International Nuclear Information System (INIS)

    Casper, T.A.; Meyer, W.H.; Moller, J.M.

    1998-01-01

    Collaboration is an increasingly important aspect of magnetic fusion energy research. With the increased size and cost of experiments needed to approach reactor conditions, the numbers being constructed has become limited. In order to satisfy the desire for many groups to conduct research on these facilities, we have come to rely more heavily on collaborations. Fortunately, at the same time, development of high performance computers and fast and reliable wide area networks has provided technological solutions necessary to support the increasingly distributed work force without the need for relocation of entire research staffs. Development of collaboratories, collaborative or virtual laboratories, is intended to provide the capability needed to interact from afar with colleagues at multiple sites. These technologies are useful to groups interacting remotely during experimental operations as well as to those involved in the development of analysis codes and large scale simulations The term ''collaboratory'' refers to a center without walls in which researchers can perform their studies without regard to geographical location - interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries [1],[2]. While it is widely recognized that remote collaboration is not a universal replacement for personal contact, it does afford a means for extending that contact in a manner that minimizes the need for relocation and for travel while more efficiently utilizmg resources and staff that are geographically distant from the central facility location, be it an experiment or design center While the idea of providing a remote environment that is ''as good as being there'' is admirable, it is also important to recognize and capitalize on any differences unique to being remote [3] Magnetic fusion energy research is not unique in its increased dependence on and need to improve methods for collaborative

  14. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    International Nuclear Information System (INIS)

    Li, P; Xie, J; Cheng, J; Wu, K K

    2014-01-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25–80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface. (paper)

  15. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    Science.gov (United States)

    Li, P.; Xie, J.; Cheng, J.; Wu, K. K.

    2014-07-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25-80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface.

  16. Building a Collaboratory in Environmental and Molecular Science

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

  17. Building a Collaboratory in Environmental and Molecular Science

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an 'electronic community of scientists researching and developing innovative environmental preservation and restoration technologies

  18. Application of Telepresence Technologies to Nuclear Material Safeguards

    International Nuclear Information System (INIS)

    Wright, M.C.; Rome, J.A.

    1999-01-01

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications

  19. Experiences with remote electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Parvin, Bahram

    2002-02-22

    With the advent of a rapidly proliferating international computer network, it became feasible to consider remote operation of instrumentation normally operated locally. For modern electron microscopes, the growing automation and computer control of many instrumental operations facilitated the task of providing remote operation. In order to provide use of NCEM TEMs by distant users, a project was instituted in 1995 to place a unique instrument, a Kratos EM-1500 operating at 1.5MeV, on-line for remote use. In 1996, the Materials Microcharacterization Collaboratory (MMC) was created as a pilot project within the US Department of Energy's DOE2000 program to establish national collaboratories to provide access via the Internet to unique or expensive DOE research facilities as well as to expertise for remote collaboration, experimentation, production, software development, modeling, and measurement. A major LBNL contribution to the MMC was construction of DeepView, a microscope-independent computer-control system that could be ported to other MMC members to provide a common graphical user-interface (GUI) for control of any MMC instrument over the wide area network.

  20. Evaluating a scientific collaboratory

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Whitton, Mary C.; Maglaughlin, Kelly L.

    2003-01-01

    of the system, and post-interviews to understand the participants' views of doing science under both conditions. We hypothesized that study participants would be less effective, report more difficulty, and be less favorably inclined to adopt the system when collaborating remotely. Contrary to expectations...... of collaborating remotely. While the data analysis produced null results, considered as a whole, the analysis leads us to conclude there is positive potential for the development and adoption of scientific collaboratory systems....

  1. The collaboratory approach

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1997-01-01

    A open-quotes collaboratoryclose quotes has been defined as a center without walls, in which researchers can perform their work without regard to geographical location. To an increasing degree, engineering design and development is also taking the form of far-flung collaborations among divisions of a plant, subcontractors, university consultants and customers. It has long been recognized that quality engineering education presents the student with an environment that duplicates as much as possible that which the graduate will encounter in industry. To that end, it is important that engineering schools begin to introduce the collaboratory approach in its preparation, and even use it in delivery of subject matter to students

  2. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  3. Special section: OptIPlanet - The OptIPuter global collaboratory

    NARCIS (Netherlands)

    Smarr, L.; Brown, M.; de Laat, C.

    The technological developments made by OptIPuter research project as an OptIPlanet Collaboratory of virtual organizations, in various scientific and technology domains, enhancing and contributing to this evolving cyberinfrastructure to solve complex global problems, are summarized. OptIPuter project

  4. Cross-Cutting Interoperability in an Earth Science Collaboratory

    Science.gov (United States)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  5. Final Report for DOE Project: Portal Web Services: Support of DOE SciDAC Collaboratories

    Energy Technology Data Exchange (ETDEWEB)

    Mary Thomas, PI; Geoffrey Fox, Co-PI; Gannon, D; Pierce, M; Moore, R; Schissel, D; Boisseau, J

    2007-10-01

    Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The goal of this project is the research, development and deployment of interoperable portal and web services that can be used on SciDAC National Collaboratory grids. This project has four primary task areas: development of portal systems; management of data collections; DOE science application integration; and development of web and grid services in support of the above activities.

  6. CSIR Nyendaweb: embedded measuring instrument of the CSIR ITS Lab® collaboratory

    CSIR Research Space (South Africa)

    Labuschangne, FJJ

    2009-05-01

    Full Text Available The paper describes the NyendaWeb technical development concept, the role of NyendaWeb within the ITS Lab collaboratory® as an international ITS R&D platform, and how the inherent, unobtrusive and 24/7 measurement functionality of NyendaWeb...

  7. Pragmatic clinical trials embedded in healthcare systems: generalizable lessons from the NIH Collaboratory

    Directory of Open Access Journals (Sweden)

    Kevin P. Weinfurt

    2017-09-01

    Full Text Available Abstract Background The clinical research enterprise is not producing the evidence decision makers arguably need in a timely and cost effective manner; research currently involves the use of labor-intensive parallel systems that are separate from clinical care. The emergence of pragmatic clinical trials (PCTs poses a possible solution: these large-scale trials are embedded within routine clinical care and often involve cluster randomization of hospitals, clinics, primary care providers, etc. Interventions can be implemented by health system personnel through usual communication channels and quality improvement infrastructure, and data collected as part of routine clinical care. However, experience with these trials is nascent and best practices regarding design operational, analytic, and reporting methodologies are undeveloped. Methods To strengthen the national capacity to implement cost-effective, large-scale PCTs, the Common Fund of the National Institutes of Health created the Health Care Systems Research Collaboratory (Collaboratory to support the design, execution, and dissemination of a series of demonstration projects using a pragmatic research design. Results In this article, we will describe the Collaboratory, highlight some of the challenges encountered and solutions developed thus far, and discuss remaining barriers and opportunities for large-scale evidence generation using PCTs. Conclusion A planning phase is critical, and even with careful planning, new challenges arise during execution; comparisons between arms can be complicated by unanticipated changes. Early and ongoing engagement with both health care system leaders and front-line clinicians is critical for success. There is also marked uncertainty when applying existing ethical and regulatory frameworks to PCTS, and using existing electronic health records for data capture adds complexity.

  8. X-ray microprobe characterization of materials: the case for undulators on advanced storage rings

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1984-01-01

    The unique properties of X rays offer many advantages over electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signals to backgrounds than obtained with electrons. Detectable limits for X rays are a few parts per billion and are 10 -3 to 10 -5 less than for electrons. Energy deposition in the sample by X rays is 10 -3 to 10 -4 less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 6 GeV class with undulators, will be approximately 10 3 brighter in the X-ray energy range from 5 keV to 35 keV than existing storage rings and provide for X-ray microprobes that are as bright as the most advanced electron probes. Such X-ray microprobes will produce unprecedented low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for both chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine

  9. Connecting Distance Learning Communities to Research via Virtual Collaboratories: A Case Study from Library and Information Science

    Science.gov (United States)

    Rebmann, Kristen

    2012-01-01

    This case study reports on patterns of participation in a virtual collaboratory organised around goals associated with the involvement of graduate students in research and writing projects. Traditionally, distance learning classrooms have been devoted to teaching content matter (in a virtual context) yet this case study reports on the use of…

  10. PACIFIC NORTHWEST REGIONAL COLLABORATORY ANNUAL REPORT FOR SYNERGY VII (2007)

    Energy Technology Data Exchange (ETDEWEB)

    Tagestad, Jerry D.; Bolte, John; Guzy, Michael; Woodruff, Dana L.; Humes, Karen; Walden, Von; Wigmosta, Mark S.; Glenn, Nancy; Ames, Dan; Rope, Ronald; Martin, David; Sandgathe, Scott

    2008-04-01

    During this final year of the Pacific Northwest Regional Collaboratory we focused significantly on continuing the relationship between technical teams and government end-users. The main theme of the year was integration. This took the form of data integration via our web portal and integration of our technologies with the end users. The PNWRC's technical portfolio is based on EOS strategies, and focuses on 'applications of national priority: water management, invasive species, coastal management and ecological forecasting.' The products of our technical approaches have been well received by the community of focused end-users. The objective this year was to broaden that community and develop external support to continue and operationalize product development.

  11. The Pulsar Search Collaboratory: A Comprehensive Project for Students and Teachers

    Science.gov (United States)

    Rosen, Rachel; Heatherly, S.; McLauglin, M.; Lorimer, D.

    2009-01-01

    The National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) have partnered to improve the quality of science education in West Virginia high schools through the Pulsar Search Collaboratory (PSC). One of the primary goals of the PSC is to engage students in STEM (science, technology, engineering, and mathematics) and related fields by using information technology to conduct current scientific research, specifically searching for new pulsars. To this end, we also are improving rural teachers' knowledge of the nature of science, the importance of information technology to scientific discovery, and methodologies for incorporating inquiry-based education into the classroom. The PSC hopes to make school science more like the practice of science and to make science fun and interesting for high school students. In 2007, an international team of astronomers received 900 hours of time on the Green Bank Telescope (GBT) during the summer shutdown to search for new pulsars. In conjunction with this group, we applied for and received 300 hours of observing time on the GBT for the PSC students. Around the same time, we were awarded an NSF iTEST grant to fund the Pulsar Search Collaboratory (PSC) project. Over the past year, we have been working with colleagues in the WVU Department of Computer Science to develop a graphical interface through which the students will analyze pulsar search plots (see psrsearch.wvu.edu). We also initiated a robust processing pipeline on a cluster in the WVU Computer Science Department. The PSC started in earnest this summer with a three week workshop in Green Bank where the teachers attended an intensive astronomy mini-course and techniques on introducing astronomy into the classroom. The students joined their teachers for the third week and participated in various activities to teach them about radio astronomy, radio frequency interference, and pulsars.

  12. Workflow management for a cosmology collaboratory

    International Nuclear Information System (INIS)

    Loken, Stewart C.; McParland, Charles

    2001-01-01

    The Nearby Supernova Factory Project will provide a unique opportunity to bring together simulation and observation to address crucial problems in particle and nuclear physics. Its goal is to significantly enhance our understanding of the nuclear processes in supernovae and to improve our ability to use both Type Ia and Type II supernovae as reference light sources (standard candles) in precision measurements of cosmological parameters. Over the past several years, astronomers and astrophysicists have been conducting in-depth sky searches with the goal of identifying supernovae in their earliest evolutionary stages and, during the 4 to 8 weeks of their most ''explosive'' activity, measure their changing magnitude and spectra. The search program currently under development at LBNL is an earth-based observation program utilizing observational instruments at Haleakala and Mauna Kea, Hawaii and Mt. Palomar, California. This new program provides a demanding testbed for the integration of computational, data management and collaboratory technologies. A critical element of this effort is the use of emerging workflow management tools to permit collaborating scientists to manage data processing and storage and to integrate advanced supernova simulation into the real-time control of the experiments. This paper describes the workflow management framework for the project, discusses security and resource allocation requirements and reviews emerging tools to support this important aspect of collaborative work

  13. The role of the collaboratory in enabling large-scale identity management for HEP

    International Nuclear Information System (INIS)

    Cowles, Robert; Jackson, Craig; Welch, Von

    2014-01-01

    The authors are defining a model that describes and guides existing and future scientific collaboratory identity management implementations. Our ultimate goal is to provide guidance to virtual organizations and resource providers in designing an identity management implementation. Our model is captured in previously published work. Here, we substantially extend our analysis in terms of six motivation factors (user isolation, persistence of user data, complexity of virtual organization roles, cultural and historical inertia, scaling, and incentive for collaboration), observed in interviews with community members involved in identity management, that impact implementation decisions. This analysis is a significant step towards our ultimate goal of providing guidance to virtual organizations.

  14. Collaboratory for the Study of Earthquake Predictability

    Science.gov (United States)

    Schorlemmer, D.; Jordan, T. H.; Zechar, J. D.; Gerstenberger, M. C.; Wiemer, S.; Maechling, P. J.

    2006-12-01

    Earthquake prediction is one of the most difficult problems in physical science and, owing to its societal implications, one of the most controversial. The study of earthquake predictability has been impeded by the lack of an adequate experimental infrastructure---the capability to conduct scientific prediction experiments under rigorous, controlled conditions and evaluate them using accepted criteria specified in advance. To remedy this deficiency, the Southern California Earthquake Center (SCEC) is working with its international partners, which include the European Union (through the Swiss Seismological Service) and New Zealand (through GNS Science), to develop a virtual, distributed laboratory with a cyberinfrastructure adequate to support a global program of research on earthquake predictability. This Collaboratory for the Study of Earthquake Predictability (CSEP) will extend the testing activities of SCEC's Working Group on Regional Earthquake Likelihood Models, from which we will present first results. CSEP will support rigorous procedures for registering prediction experiments on regional and global scales, community-endorsed standards for assessing probability-based and alarm-based predictions, access to authorized data sets and monitoring products from designated natural laboratories, and software to allow researchers to participate in prediction experiments. CSEP will encourage research on earthquake predictability by supporting an environment for scientific prediction experiments that allows the predictive skill of proposed algorithms to be rigorously compared with standardized reference methods and data sets. It will thereby reduce the controversies surrounding earthquake prediction, and it will allow the results of prediction experiments to be communicated to the scientific community, governmental agencies, and the general public in an appropriate research context.

  15. Building the US National Fusion Grid: results from the National Fusion Collaboratory Project

    International Nuclear Information System (INIS)

    Schissel, D.P.; Burruss, J.R.; Finkelstein, A.; Flanagan, S.M.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Papka, M.; Peng, Q.; Randerson, L.; Sanderson, A.; Stillerman, J.; Stevens, R.; Thompson, M.R.; Wallace, G.

    2004-01-01

    The US National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion research. The project is creating a robust, user-friendly collaborative software environment and making it available to more than 1000 fusion scientists in 40 institutions who perform magnetic fusion research in the United States. In particular, the project is developing and deploying a national Fusion Energy Sciences Grid (FusionGrid) that is a system for secure sharing of computation, visualization, and data resources over the Internet. The FusionGrid goal is to allow scientists at remote sites to fully participate in experimental and computational activities as if they were working at a common site thereby creating a virtual organization of the US fusion community. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  16. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J. [West Virginia University, White Hall, Morgantown, WV 26506 (United States); Heatherly, S. A.; Scoles, S. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States); Lynch, R. [McGill University, Rutherford Physics Building, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Kondratiev, V. I. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ransom, S. M. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Moniot, M. L.; Thompson, C. [James River High School, 9906 Springwood Road, Buchanan, VA 24066 (United States); Cottrill, A.; Raycraft, M. [Lincoln High School, 100 Jerry Toth Drive, Shinnston, WV 26431 (United States); Weaver, M. [Broadway High School, 269 Gobbler Drive, Broadway, VA 22815 (United States); Snider, A. [Sherando High School, 185 South Warrior Drive, Stephens City, VA 22655 (United States); Dudenhoefer, J.; Allphin, L. [Hedgesville High School, 109 Ridge Road North, Hedgesville, WV 25427 (United States); Thorley, J., E-mail: Rachel.Rosen@mail.wvu.edu [Strasburg High School, 250 Ram Drive, Strasburg, VA 22657 (United States); and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  17. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    International Nuclear Information System (INIS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.

    2013-01-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg 2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926–1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400–1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  18. The Tribal Lands Collaboratory: Building partnerships and developing tools to support local Tribal community response to climate change.

    Science.gov (United States)

    Jones, K. D.; Wee, B.; Kuslikis, A.

    2015-12-01

    Response of Tribal nations and Tribal communities to current and emerging climate change challenges requires active participation of stakeholders who have effective access to relevant data, information and analytical tools. The Tribal Lands Collaboratory (TLC), currently under development, is a joint effort between the American Indian Higher Education Consortium (AIHEC), the Environmental Systems Research Institute (Esri), and the National Ecological Observatory Network (NEON). The vision of the TLC is to create an integrative platform that enables coordination between multiple stakeholders (e.g. Tribal resource managers, Tribal College faculty and students, farmers, ranchers, and other local community members) to collaborate on locally relevant climate change issues. The TLC is intended to facilitate the transformation of data into actionable information that can inform local climate response planning. The TLC will provide the technical mechanisms to access, collect and analyze data from both internal and external sources (e.g. NASA's Giovanni climate data portal, Ameriflux or USA National Phenology Network) while also providing the social scaffolds to enable collaboration across Tribal communities and with members of the national climate change research community. The prototype project focuses on phenology, a branch of science focused on relationships between climate and the seasonal timing of biological phenomena. Monitoring changes in the timing and duration of phenological stages in plant and animal co­­­­mmunities on Tribal lands can provide insight to the direct impacts of climate change on culturally and economically significant Tribal resources . The project will leverage existing phenological observation protocols created by the USA-National Phenology Network and NEON to direct data collection efforts and will be tailored to the specific needs and concerns of the community. Phenology observations will be captured and managed within the Collaboratory

  19. National Fusion Collaboratory: Grid Computing for Simulations and Experiments

    Science.gov (United States)

    Greenwald, Martin

    2004-05-01

    The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.

  20. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  1. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid(FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  2. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    Science.gov (United States)

    Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.

    2015-12-01

    Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being

  3. Evolving the NCSA CyberCollaboratory for Distributed Environmental Observatory Networks

    Science.gov (United States)

    Myers, J.; Liu, Y.; Minsker, B.; Futrelle, J.; Downey, S.; Kim, I.; Rantanen, E.

    2007-12-01

    Since 2004, NCSA's Cybercollaboratory, which is built on top of the open source Liferay portal framework, has been evolving as part of NCSA's efforts to build national cyberinfrastructure to support collaborative research in environmental engineering and hydrological sciences and allow users to efficiently share contents (sensors, data, model, documents, etc.) in a context-sensitive way (e.g., providing different tools/data based on group affiliation and geospatial contexts). During this period, we provided the CyberCollaboratory to users in CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research, now WATer and Environmental Research Systems (WATERS) network) Project Office and several CLEANER /WATERS testbed projects. Preliminary statistics shows that one in four users (among over 400 registered users) provided contents with many other reading/accessing those contents (such as messages, documents, wikis). During the course of this use, and in evaluation by others including representatives from the CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science) community, we have received significant feedback on issues of usability and suitability to various communities involved in environmental observatories. Much of this feedback applies to collaborative portals in general and some reflect a comparison of portals with newer Web 2.0 style social -networking sites. For example, users working in multiple groups found it difficult to get an overview of all of their activities and found differences in group layouts to be confusing. Users also found the standard account creation and group management processes cumbersome compared to inviting people to be friends on social sites and wanted a better sense of presence and social networks within the portal. The fragmentation of group documents between local stores, the portal document repository and email, and issues of "lost updates" was another significant concern. This

  4. University of Michigan lecture archiving and related activities of the U-M ATLAS Collaboratory Project

    International Nuclear Information System (INIS)

    Herr, J; Bhatnagar, T; Goldfarb, S; Irrer, J; McKee, S; Neal, H A

    2008-01-01

    Large scientific collaborations as well as universities have a growing need for multimedia archiving of meetings and courses. Collaborations need to disseminate training and news to their wide-ranging members, and universities seek to provide their students with more useful studying tools. The University of Michigan ATLAS Collaboratory Project has been involved in the recording and archiving of multimedia lectures since 1999. Our software and hardware architecture has been used to record events for CERN, ATLAS, many units inside the University of Michigan, Fermilab, the American Physical Society and the International Conference on Systems Biology at Harvard. Until 2006 our group functioned primarily as a tiny research/development team with special commitments to the archiving of certain ATLAS events. In 2006 we formed the MScribe project, using a larger scale, and highly automated recording system to record and archive eight University courses in a wide array of subjects. Several robotic carts are wheeled around campus by unskilled student helpers to automatically capture and post to the Web audio, video, slides and chalkboard images. The advances the MScribe project has made in automation of these processes, including a robotic camera operator and automated video processing, are now being used to record ATLAS Collaboration events, making them available more quickly than before and enabling the recording of more events

  5. An International Coastline Collaboratory to Broaden Scientific Impacts of a Subduction Zone Observatory

    Science.gov (United States)

    Bodin, P.

    2015-12-01

    A global Subduction Zone Observatory (SZO) presents an exciting opportunity to broaden involvement in scientific research and to ensure multidisciplinary impact. Most subduction zones feature dynamic interactions of the seafloor, the coastline, and the onshore environments also being perturbed by global climate change. Tectonic deformation, physical environment changes (temperature and chemistry), and resulting ecological shifts (intertidal population redistribution, etc.) are all basic observables for important scientific investigation. Yet even simple baseline studies like repeated transects of intertidal biological communities are rare. A coordinated program of such studies would document the local variability across time and spatial scales, permit comparisons with other subducting coastlines, and extend the reach and importance of other SZO studies. One goal is to document the patterns, and separate the component causes of, coastal uplift and subsidence and ecological response to a subduction zone earthquake using a database of pre-event biological and surveying observations. Observations would be directed by local scientists using students and trained volunteers as observers, under the auspices of local educational entities and using standardized sampling and reporting methods. The observations would be added to the global, Internet-accessible, database for use by the entire scientific community. Data acquisition and analysis supports the educational missions of local schools and universities, forming the basis for educational programs. All local programs would be coordinated by an international panel convened by the SZO. The facility would include a web-hosted lecture series and an annual web conference to aid organization and collaboration. Small grants could support more needy areas. This SZO collaboratory advances not only scientific literacy, but also multinational collaboration and scholarship, and (most importantly) produces important scientific results.

  6. Microcharacterization of interplanetary dust collected in the earth's stratosphere

    International Nuclear Information System (INIS)

    Fraundorf, P.B.

    1980-01-01

    This thesis involved an examination of the internal structure of thirteen 10 μm aggregates using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively-unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. This thesis shows that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. In the course of this study, significant developments were necessary in the techniques of analysis for: (i) selected area electron diffraction (SAED) data; (ii) energy dispersive x-ray spectra; and (iii) spatial heterogeneity in geological materials. These developments include a method for analysing single crystal SAED patterns using spherical geometry. The method makes possible much more efficient use of diffraction data taken with a goniometer specimen stage. It allows major portions of the analysis to be done by a microprocessor, and it has potential for a wide range of on-line applications. Also, a comprehensive approach to the study of point-to-point heterogeneity in geological materials was developed. Some statistical, comparative, petrographic, and physical applications are described in the thesis

  7. X-ray spectrometry induced by electron and proton bombardment: Two complementary techniques for the micro-characterization of mineral materials

    International Nuclear Information System (INIS)

    Remond, G.; Gilles, C.; Isabelle, D.; Choi, C.G.; Rouer, O.; Cesbron, F.; Yang, C.

    1994-01-01

    Spatially resolved quantitative analysis by means of the Electron Probe Micro Analyser (EPMA) is now well established as a routine analytical method for point chemical analysis of a variety of mineral materials. Modern computer controlled EPMA are most often equipped with wavelength dispersive spectro- meters (WDS). Quantitative analyses are generally carried out according to a standard based approach, i. e, the x-ray intensities measured at the surface of the unknowns are normalized to those measured at the surface of reference specimens. By the use of energy dispersive spectrometry (EDS) a standardless quantitative based method is preferred when the incident beam current is not accurately known as for the case of EDS analysis coupled to Scanning Electron Microscopy (SEM). The accuracy of point analysis by means of electron beam induced x-ray spectrometry is discussed emphasizing the x-ray photon interactions respectively.The continuous x-ray emission is the physical limit of detection. The excitation conditions must be optimised in order to obtain the higher peak to continuous emission intensity ratios for each element within the matrix. Proton Induced X-ray Emission (PIXE) complements this electron induced x-ray emission for the localization of elements present at trace levels. The experimental procedure used for quantitative analysis by means of PIXE is illustrated emphasizing the use of a limited number of reference materials for deriving quantitative data from the raw PIXE spectra. The complementarity of EMPA/SEM and PIXE techniques is illustrated for the case of rare-earth elements (REE) bearing natural and synthetic doped zircon crystals (Si Zr O sub 4). For such compounds x-ray spectra are very complex because of the existence of severe peak overlaps between the L x-ray emission spectra of the REE. It is shown that cathodoluminescence (EPLA:SEM) and ionoluminescence (PIXE) may be an original alternative approach to x-ray spectrometry for studying REE

  8. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  9. Pain Information Brochure

    Science.gov (United States)

    ... Library Health Care Systems Research Collaboratory Pain Registries IOM Report: Relieving Pain in America HHS Pathways to ... Library Health Care Systems Research Collaboratory Pain Registries IOM Report: Relieving Pain in America HHS Pathways to ...

  10. NIH Pain Consortium

    Science.gov (United States)

    ... Library Health Care Systems Research Collaboratory Pain Registries IOM Report: Relieving Pain in America HHS Pathways to ... Library Health Care Systems Research Collaboratory Pain Registries IOM Report: Relieving Pain in America HHS Pathways to ...

  11. Securing collaborative environments

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Mary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2002-05-16

    The diverse set of organizations and software components involved in a typical collaboratory make providing a seamless security solution difficult. In addition, the users need support for a broad range of frequency and locations for access to the collaboratory. A collaboratory security solution needs to be robust enough to ensure that valid participants are not denied access because of its failure. There are many tools that can be applied to the task of securing collaborative environments and these include public key infrastructure, secure sockets layer, Kerberos, virtual and real private networks, grid security infrastructure, and username/password. A combination of these mechanisms can provide effective secure collaboration capabilities. In this paper, we discuss the requirements of typical collaboratories and some proposals for applying various security mechanisms to collaborative environments.

  12. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  13. Integrating electron microscopy into nanoscience and materials engineering programs

    Science.gov (United States)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  14. A forecast experiment of earthquake activity in Japan under Collaboratory for the Study of Earthquake Predictability (CSEP)

    Science.gov (United States)

    Hirata, N.; Yokoi, S.; Nanjo, K. Z.; Tsuruoka, H.

    2012-04-01

    One major focus of the current Japanese earthquake prediction research program (2009-2013), which is now integrated with the research program for prediction of volcanic eruptions, is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. We started the 1st earthquake forecast testing experiment in Japan within the CSEP framework. We use the earthquake catalogue maintained and provided by the Japan Meteorological Agency (JMA). The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called "All Japan," "Mainland," and "Kanto." A total of 105 models were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. The experiments were completed for 92 rounds for 1-day, 6 rounds for 3-month, and 3 rounds for 1-year classes. For 1-day testing class all models passed all the CSEP's evaluation tests at more than 90% rounds. The results of the 3-month testing class also gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space distribution with most models when many earthquakes occurred at a spot. Now we prepare the 3-D forecasting experiment with a depth range of 0 to 100 km in Kanto region. The testing center is improving an evaluation system for 1-day class experiment to finish forecasting and testing results within one day. The special issue of 1st part titled Earthquake Forecast

  15. CSEP-Japan: The Japanese node of the collaboratory for the study of earthquake predictability

    Science.gov (United States)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2011-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project of earthquake predictability research. The final goal of this project is to have a look for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined the CSEP and started the Japanese testing center called as CSEP-Japan. This testing center constitutes an open access to researchers contributing earthquake forecast models for applied to Japan. A total of 91 earthquake forecast models were submitted on the prospective experiment starting from 1 November 2009. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by the CSEP. The experiments of 1-day, 3-month, 1-year and 3-year forecasting classes were implemented for 92 rounds, 4 rounds, 1round and 0 round (now in progress), respectively. The results of the 3-month class gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space-distribution with most models in some cases where many earthquakes occurred at the same spot. Throughout the experiment, it has been clarified that some properties of the CSEP's evaluation tests such as the L-test show strong correlation with the N-test. We are now processing to own (cyber-) infrastructure to support the forecast experiment as follows. (1) Japanese seismicity has changed since the 2011 Tohoku earthquake. The 3rd call for forecasting models was announced in order to promote model improvement for forecasting earthquakes after this earthquake. So, we provide Japanese seismicity catalog maintained by JMA for modelers to study how seismicity

  16. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches.

    Science.gov (United States)

    Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele

    2008-11-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.

  17. Cathodoluminescence microcharacterization of ballen silica in impactites

    International Nuclear Information System (INIS)

    Okumura, T.; Ninagawa, K.; Toyoda, S.; Gucsik, A.; Nishido, H.

    2009-01-01

    The ballen silica shows fairly weak (faint) CL with homogeneous feature in its grain exhibiting almost same spectral pattern with two broad band peaks at around 390 and 650 nm, which might be assigned to self-trapped excitons (STE) or an intrinsic and nonbridging oxygen hole centers (NBOHC), respectively, recognized in amorphous and crystalline silica. In addition, ballen silica from Lappajaervi crater shows bright and heterogeneous CL with a broad band centered at around 410 nm, presumably attributed to [AlO 4 /M + ] 0 centers or self-trapped excitons (STE). Micro-Raman and micro-XRD analyses show that fairly homogeneous CL part is α-quartz and heterogeneous CL part is composed of α-cristobalite and α-quartz. These indicate that ballen silica could be formed in the quenching process from relatively high temperature.

  18. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  19. Arsenic Encapsulation Using Portland Cement With Ferrous Sulfate/Lime And Terra-BondTM Technologies - Microcharacterization And Leaching Studies

    Science.gov (United States)

    This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-BondTM, a commercially available patented technology. The arsenic materials treated we...

  20. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  1. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Feibush, E.; Fredian, T.W.; Goode, M.M.; Greenwald, M.J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D.C.; Papka, M.E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M.R.; Uram, T.; Wallace, G.

    2006-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  2. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    Sanderson, Allen R.; Johnson, Christopher R.

    2006-01-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  3. Mass spectrometric protein characterization in proteome analysis using GELoader tip micro-columns packed with various chromatographic material

    International Nuclear Information System (INIS)

    Larsen, M.R.

    2001-01-01

    reversed-phase chromatographic material for desalting and concentration of peptides, especially hydrophilic peptides that are not retained by reversed-phase material, or are suppressed in the MS analysis. This result in the detection of peptides not normally observed in MS. Additionally, examples of micro-characterization of phosphorylated and proteolytically processed proteins separated by gel electrophoresis, using MS in combination with GELoader tip micro-columns packed with various chromatographic material e.g. immobilized affinity chromatography resin and immobilized enzymes, will be given

  4. Designing to support situation awareness across distances

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Maglaughlin, Kelly L.; Whitton, Mary C.

    2004-01-01

    . The foundation for this framework is previous research in situation awareness and virtual reality, combined with our analysis of interviews with and observations of collaborating scientists. The framework suggests that situation awareness is comprised of contextual, task and process, and socio......-emotional information. Research in virtual reality systems suggests control, sensory, distraction and realism attributes of technology contribute to a sense of presence [Presence 7 (1998) 225]. We suggest that consideration of these attributes with respect to contextual, task and process, and socio......-emotional information provides insights to guide design decisions. We used the framework when designing a scientific collaboratory system. Results from a controlled experimental evaluation of the collaboratory system help illustrate the framework's utility....

  5. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  6. [?]Nonlinear Issues in the Aerothermochemistry of Gases and Materials and the Associated Physics and Dynamics of Interfaces

    Science.gov (United States)

    Johnson, Joseph A., III

    1996-01-01

    designed for a detailed investigation of the effect of significant streamwise vorticity on the acoustic and IR characteristics of supersonic jets. Our results provide convincing evidence of the significant effect of vorticity on the far-field noise for the diamond jet as compared to the conventional round jets. We have found that the countercurrent shear layer mixes much more efficiently than conventional coflowing shear layers. We also developed the fluid thrust vectoring procedures which use counter flow to vector a jet. Our materials research has shown that the steep stress gradients at the fiber-matrix interface could be the primary cause of interface cracks after the processing of metallic and intermetallic matrix composites. New techniques have been evolved for: the microcharacterization of materials including microplastic strain and, point by point, the misorientation and plasticity for matrix composites; thermally induced stress measurements and load relaxation; the growth and characterization of metallic matrix composite interfaces; and for the growth of ferrite materials by pulsed laser deposition. The FAMU commitment to the HBCU Research Center also continues to be broad and deep.

  7. Building collaboration tools and access to on-line facilities

    International Nuclear Information System (INIS)

    Agarwal, D.; Sachs, S.

    1996-11-01

    Network-based facilities will allow researchers at different locations to collaborate on experiments as if they all were together in the same laboratory. The expected value of these geographically distributed environments includes substantially increased effectiveness in doing science, and an enabling capability for analytical and high-value production use by industry. The Distributed, Collaboratory Experiment Environments (DCEE) Program consists of four projects that were established to build prototype remote experiment and collaborative environments. The work undertaken in this project represents some of the research and development of the mechanisms and infrastructure required to make collaboratories a reality. Some of these mechanisms have already been developed. Several other mechanisms, such as data dissemination, resource management for the sharing of experiment control, safety and security, electronic notebooks, elements of telepresence, and integrated user interfaces need further research and development. The pilot application for these collaborative tools is the Advanced Light Source (ALS) Beamline 7.0 at the Ernest Orlando Lawrence Berkeley Laboratory. The ALS is a particle accelerator and is a source of very high brilliance soft X-ray beams. One experimental facility is the Spectro-Microscopy Facility Beamline 7.0. Through this project, the Spectro-Microscopy Facility will be opened up to users from a wide range of organizations. The goal is to build software that will not only put the ALS Beamline 7.0 on-line, but will also serve as building blocks for future collaboratory development

  8. Scanning electron microscopic analyses of Ferrocyanide tank wastes for the Ferrocyanide safety program

    International Nuclear Information System (INIS)

    Callaway, W.S.

    1995-09-01

    This is Fiscal Year 1995 Annual Report on the progress of activities relating to the application of scanning electron microscopy in addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. The status of the FY 1995 activities directed towards establishing facilities capable of providing SEM based micro-characterization of ferrocyanide tank wastes is described. A summary of key events in the SEM task over FY 1995 and target activities in FY 1996 are presented. A brief overview of the potential applications of computer controlled SEM analytical data in light of analyses of ferrocyanide simulants performed by an independent contractor is also presented

  9. 77 FR 31862 - National Center for Complementary & Alternative Medicine; Notice of Closed Meetings

    Science.gov (United States)

    2012-05-30

    ... Complementary & Alternative Medicine; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... Scientific Review, National Center for Complementary and Alternative Medicine, NIH, 6707 Democracy Blvd... for Complementary and Alternative Medicine Special Emphasis Panel; HCS Collaboratory Pragmatic Trials...

  10. The DCCD: a digital data infrastructure for tree-ring research

    NARCIS (Netherlands)

    Jansma, E.; Lanen, R.J. van; Brewer, P.; Kramer, R. de

    2012-01-01

    Existing on-line databases for dendrochronology are not flexible in terms of user permissions, tree-ring data formats, metadata administration and language. This is why we developed the Digital Collaboratory for Cultural Dendrochronology (DCCD). This TRiDaS-based multi-lingual database allows users

  11. Recent recordings

    CERN Multimedia

    Steve Goldfarb

    The University of Michigan ATLAS Collaboratory Project would like to announce the publication of a number of recent web lectures concerning ATLAS and the LHC. Most recently, we produced a series of presentations made at the First ATLAS Physics Workshop of the Americas, held at SLAC in August. The complete set of lectures can be found here.There is a lot of outstanding material there, relevant to all of ATLAS, including detector summaries, trigger and physics talks, software and computing presentations, and an overview of operations. Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.Additional ATLAS material, including plenary lectures, workshops and tutorials, can be found via our portal athttp://www.wlap.org/atlasincluding: First ATLAS Physics Workshop of the Americas (Aug 2007) Glasgow Overview Week Plenary Sessions (Jul 2007) CTEQ Workshop: "Physics at ...

  12. ESnet authentication services and trust federations

    Energy Technology Data Exchange (ETDEWEB)

    Muruganantham, Dhivakaran; Helm, Mike; Genovese, Tony [ESnet, Energy Sciences Network, 1 Cyclotron Road, MS 50A-3111 Berkeley, California 94720 (United States)

    2005-01-01

    ESnet provides authentication services and trust federation support for SciDAC projects, collaboratories, and other distributed computing applications. The ESnet ATF team operates the DOEGrids Certificate Authority, available to all DOE Office of Science programs, plus several custom CAs, including one for the National Fusion Collaboratory and one for NERSC. The secure hardware and software environment developed to support CAs is suitable for supporting additional custom authentication and authorization applications that your program might require. Seamless, secure interoperation across organizational and international boundaries is vital to collaborative science. We are fostering the development of international PKI federations by founding the TAGPMA, the American regional PMA, and the worldwide IGTF Policy Management Authority (PMA), as well as participating in European and Asian regional PMAs. We are investigating and prototyping distributed authentication technology that will allow us to support the 'roaming scientist' (distributed wireless via eduroam), as well as more secure authentication methods (one-time password tokens)

  13. ESnet authentication services and trust federations

    International Nuclear Information System (INIS)

    Muruganantham, Dhivakaran; Helm, Mike; Genovese, Tony

    2005-01-01

    ESnet provides authentication services and trust federation support for SciDAC projects, collaboratories, and other distributed computing applications. The ESnet ATF team operates the DOEGrids Certificate Authority, available to all DOE Office of Science programs, plus several custom CAs, including one for the National Fusion Collaboratory and one for NERSC. The secure hardware and software environment developed to support CAs is suitable for supporting additional custom authentication and authorization applications that your program might require. Seamless, secure interoperation across organizational and international boundaries is vital to collaborative science. We are fostering the development of international PKI federations by founding the TAGPMA, the American regional PMA, and the worldwide IGTF Policy Management Authority (PMA), as well as participating in European and Asian regional PMAs. We are investigating and prototyping distributed authentication technology that will allow us to support the 'roaming scientist' (distributed wireless via eduroam), as well as more secure authentication methods (one-time password tokens)

  14. Neoludica: (libro arte e (libro gioco

    Directory of Open Access Journals (Sweden)

    Federico Giordano

    2013-03-01

    Full Text Available Il volume Arte e Videogames. Neoludica 2011-1966, Skira, 2011, a cura di Debora Ferrari, e di un gruppo di collaboratori raccolti attorno alla stessa, nasce come catalogo di un’importante mostra dedicata ad arte e videogioco quale evento collaterale della 54ª Biennale di Venezia.

  15. Cathodoluminescence microcharacterization of forsterite in the chondrule experimentally grown under super cooling

    International Nuclear Information System (INIS)

    Gucsik, A.; Tsukamoto, K.; Nishido, H.; Miura, H.; Kayama, M.; Ninagawa, K.; Kimura, Y.

    2012-01-01

    Cathodoluminescence (CL) of laboratory forsterite chondrules has been characterized to clarify the formation process of chondrules and related mechanism of the crystal growth in a supercooled melt. Color CL image of the experimentally grown forsterite exhibits significant blue luminescence in the main branches of the interior structure of lab-chondrule, which reflects to the anisotropy of crystallization. A new CL band centered at 450–525 nm (2.76–2.36 eV) in blue to green region might be assigned to a microdefect-related center, which is a diagnostic peak for the forsterite that was formed due to the rapid growth as high as ∼10 mm/s or higher from a supercooled melt.

  16. Interdisciplinary Intellect: HASTAC and the Commitment to Encourage Collective Intelligence

    Science.gov (United States)

    Singletary, Kimberly Alecia

    2012-01-01

    This article explores the role of the Humanities, Arts, Science, and Technology Advanced Collaboratory (HASTAC) in facilitating and encouraging a collaborative community of junior and senior scholars on issues of technology and humanistic learning. As a result of its emphasis on collaboration and discussion, HASTAC encourages a form of collective…

  17. Pain Research Forum: Application of Scientific Social Media Frameworks in Neuroscience

    Directory of Open Access Journals (Sweden)

    Sudeshna eDas

    2014-03-01

    Full Text Available Background: Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. Methods: We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF. PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Results: Launched in 2011, PRF has over 1,300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum and StemBook.Discussion: Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned and ongoing challenges in using PRF as a driving force to develop tools for online collaboration in

  18. Pain Research Forum: application of scientific social media frameworks in neuroscience.

    Science.gov (United States)

    Das, Sudeshna; McCaffrey, Patricia G; Talkington, Megan W T; Andrews, Neil A; Corlosquet, Stéphane; Ivinson, Adrian J; Clark, Tim

    2014-01-01

    Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions, and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Launched in 2011, PRF has over 1300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook (http://stembook.org). Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned, and ongoing challenges in using PRF as a driving force to develop tools for

  19. Analysis of Earthquake Catalogs for CSEP Testing Region Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Romashkova, L.; Nekrasova, A.; Kossobokov, V.; Panza, G.F.

    2010-07-01

    A comprehensive analysis shows that the set of catalogs provided by the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) as the authoritative database for the Collaboratory for the Study of Earthquake Predictability - Testing Region Italy (CSEP-TRI), is hardly a unified one acceptable for the necessary tuning of models/algorithms, as well as for running rigorous prospective predictability tests at intermediate- or long-term scale. (author)

  20. Application of modern autoradiography to nuclear forensic analysis.

    Science.gov (United States)

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael

    2018-05-01

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this

  1. Using the Tools and Resources of the RCSB Protein Data Bank.

    Science.gov (United States)

    Costanzo, Luigi Di; Ghosh, Sutapa; Zardecki, Christine; Burley, Stephen K

    2016-09-07

    The Protein Data Bank (PDB) archive is the worldwide repository of experimentally determined three-dimensional structures of large biological molecules found in all three kingdoms of life. Atomic-level structures of these proteins, nucleic acids, and complex assemblies thereof are central to research and education in molecular, cellular, and organismal biology, biochemistry, biophysics, materials science, bioengineering, ecology, and medicine. Several types of information are associated with each PDB archival entry, including atomic coordinates, primary experimental data, polymer sequence(s), and summary metadata. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) serves as the U.S. data center for the PDB, distributing archival data and supporting both simple and complex queries that return results. These data can be freely downloaded, analyzed, and visualized using RCSB PDB tools and resources to gain a deeper understanding of fundamental biological processes, molecular evolution, human health and disease, and drug discovery. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  2. Retrospective Evaluation of the Five-Year and Ten-Year CSEP-Italy Earthquake Forecasts

    OpenAIRE

    Werner, M. J.; Zechar, J. D.; Marzocchi, W.; Wiemer, S.

    2010-01-01

    On 1 August 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP) launched a prospective and comparative earthquake predictability experiment in Italy. The goal of the CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented eighteen five-year and ten...

  3. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  4. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.

    Science.gov (United States)

    Zhu, Hao; Tropsha, Alexander; Fourches, Denis; Varnek, Alexandre; Papa, Ester; Gramatica, Paola; Oberg, Tomas; Dao, Phuong; Cherkasov, Artem; Tetko, Igor V

    2008-04-01

    Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the

  5. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2018-01-09

    A product formed from a first material including a geopolymer resin material, a geopolymer material, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  6. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Science.gov (United States)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  7. In Depth Analyses of LEDs by a Combination of X-ray Computed Tomography (CT) and Light Microscopy (LM) Correlated with Scanning Electron Microscopy (SEM).

    Science.gov (United States)

    Meyer, Jörg; Thomas, Christian; Tappe, Frank; Ogbazghi, Tekie

    2016-06-16

    In failure analysis, device characterization and reverse engineering of light emitting diodes (LEDs), and similar electronic components of micro-characterization, plays an important role. Commonly, different techniques like X-ray computed tomography (CT), light microscopy (LM) and scanning electron microscopy (SEM) are used separately. Similarly, the results have to be treated for each technique independently. Here a comprehensive study is shown which demonstrates the potentials leveraged by linking CT, LM and SEM. In depth characterization is performed on a white emitting LED, which can be operated throughout all characterization steps. Major advantages are: planned preparation of defined cross sections, correlation of optical properties to structural and compositional information, as well as reliable identification of different functional regions. This results from the breadth of information available from identical regions of interest (ROIs): polarization contrast, bright and dark-field LM images, as well as optical images of the LED cross section in operation. This is supplemented by SEM imaging techniques and micro-analysis using energy dispersive X-ray spectroscopy.

  8. The RCSB protein data bank: integrative view of protein, gene and 3D structural information.

    Science.gov (United States)

    Rose, Peter W; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R; Christie, Cole H; Costanzo, Luigi Di; Duarte, Jose M; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y; Zardecki, Christine; Berman, Helen M; Burley, Stephen K

    2017-01-04

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a 'Structural View of Biology.' Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  10. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300/sup 0/K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along <222> directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating ..beta.. and ..omega.. phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope (DSTEM).

  11. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300 0 K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating β and ω phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope

  12. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  13. Material efficiency: providing material services with less material production.

    Science.gov (United States)

    Allwood, Julian M; Ashby, Michael F; Gutowski, Timothy G; Worrell, Ernst

    2013-03-13

    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

  14. Grid computing and collaboration technology in support of fusion energy sciences

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2005-01-01

    Science research in general and magnetic fusion research in particular continue to grow in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. The simultaneous increase in wide area network speeds has made it practical to envision distributed working environments that are as productive as traditionally collocated work. In computing power, it has become reasonable to decouple production and consumption resulting in the ability to construct computing grids in a similar manner as the electrical power grid. Grid computing, the secure integration of computer systems over high speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. For human interaction, advanced collaborative environments are being researched and deployed to have distributed group work that is as productive as traditional meetings. The DOE Scientific Discovery through Advanced Computing Program initiative has sponsored several collaboratory projects, including the National Fusion Collaboratory Project, to utilize recent advances in grid computing and advanced collaborative environments to further research in several specific scientific domains. For fusion, the collaborative technology being deployed is being used in present day research and is also scalable to future research, in particular, to the International Thermonuclear Experimental Reactor experiment that will require extensive collaboration capability worldwide. This paper briefly reviews the concepts of grid computing and advanced collaborative environments and gives specific examples of how these technologies are being used in fusion research today

  15. VisPortal: Deploying grid-enabled visualization tools through a web-portal interface

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, Wes; Siegerist, Cristina; Shalf, John; Shetty, Praveenkumar; Jankun-Kelly, T.J.; Kreylos, Oliver; Ma, Kwan-Liu

    2003-06-09

    The LBNL/NERSC Visportal effort explores ways to deliver advanced Remote/Distributed Visualization (RDV) capabilities through a Grid-enabled web-portal interface. The effort focuses on latency tolerant distributed visualization algorithms, GUI designs that are more appropriate for the capabilities of web interfaces, and refactoring parallel-distributed applications to work in a N-tiered component deployment strategy. Most importantly, our aim is to leverage commercially-supported technology as much as possible in order to create a deployable, supportable, and hence viable platform for delivering grid-based visualization services to collaboratory users.

  16. Developments in Remote Collaboration and Computation

    International Nuclear Information System (INIS)

    Burruss, J.R.; Abla, G.; Flanagan, S.; Keahey, K.; Leggett, T.; Ludesche, C.; McCune, D.; Papka, M.E.; Peng, Q.; Randerson, L.; Schissel, D.P.

    2005-01-01

    The National Fusion Collaboratory (NFC) is creating and deploying collaborative software tools to unite magnetic fusion research in the United States. In particular, the NFC is developing and deploying a national FES 'Grid' (FusionGrid) for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid is to allow scientists at remote sites to participate as fully in experiments, machine design, and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community

  17. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

    Directory of Open Access Journals (Sweden)

    Anubhav Jain

    2013-07-01

    Full Text Available Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org, a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

  18. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  19. Materials Discovery | Materials Science | NREL

    Science.gov (United States)

    Discovery Materials Discovery Images of red and yellow particles NREL's research in materials characterization of sample by incoming beam and measuring outgoing particles, with data being stored and analyzed Staff Scientist Dr. Zakutayev specializes in design of novel semiconductor materials for energy

  20. Materials 2014: a great success for materials sector

    International Nuclear Information System (INIS)

    Isnard, Olivier; Crepin, Jerome

    2014-01-01

    In this work are presented the summaries of the 19 symposiums presented at the conference: 'Materials 2014' and whose topics were: eco-materials, materials for energy storage and conversion, strategic materials, rare elements and recycling, surfaces functionalization and physico-chemical characterization, interfaces and coatings, corrosion, aging, durability, damage mechanical behaviours, disordered materials, glasses and their functionalization, materials and health, functional materials, porous, granular and with a high surface area materials, nano-materials, nano-structured systems, assembling processes, carbonaceous materials, great instruments and studies of materials, materials in severe conditions, powder forming processes, metallic materials and structures lightening. (O.M.)

  1. Towards Materials Sustainability through Materials Stewardship

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2016-10-01

    Full Text Available Materials sustainability requires a concerted change in philosophy across the entire materials lifecycle, orienting around the theme of materials stewardship. In this paper, we address the opportunities for improved materials conservation through dematerialization, durability, design for second life, and diversion of waste streams through industrial symbiosis.

  2. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  3. Toward single cell traction microscopy within 3D collagen matrices

    International Nuclear Information System (INIS)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels

  4. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  5. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  8. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  9. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  10. Materials, critical materials and clean-energy technologies

    Directory of Open Access Journals (Sweden)

    Eggert R.

    2017-01-01

    Full Text Available Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess “what is critical” to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  11. Photorefractive Materials and Their Applications 2 Materials

    CERN Document Server

    Günter, Peter

    2007-01-01

    Photorefractive Materials and Their Applications 2: Materials is the second of three volumes within the Springer Series in Optical Sciences. The book gives a comprehensive review of the most important photorefractive materials and discusses the physical properties of organic and inorganic crystals as well as poled polymers. In this volume, photorefractive effects have been investigated at wavelengths covering the UV, visible and near infrared. Researchers in the field and graduate students of solid-state physics and engineering will gain a thorough understanding of the properties of materials in photorefractive applications. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects. Photorefractive Materials and Their Applications 3: Applications.

  12. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Science.gov (United States)

    2015-03-26

    materials like crystalline semiconductors, graphene , and composites, the materials discussed here could have a significant impact. This thesis investigates...diagnosis [124], crystallinity of pharmaceutical materials [125], materials diagnosis for restoration of paintings [126], and materials research [127...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order

  13. Reference material systems: a sourcebook for material assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, N. (ed.)

    1976-12-01

    A reference set of data related to material systems and a framework for carrying out the material technologies assessment are presented. While the bulk of renewables have been considered in this report, the nonrenewable materials dealt with here include structural materials only, such as steel, aluminum, cement and concrete, and bricks. The complete data set is supposed to include material flows, energy requirements, capital and labor inputs, and environmental effects for each process that a resource must go through to become a useful material for an end use. Although effort has been made to obtain as much information as possible, considerable gaps in data, apparent throughout this report, could not be avoided. A new material technology can be evaluated by substituting that technology for appropriate elements of the reference materials system and calculating the net change in material resource, energy, capital and labor requirements, and environmental impacts. This combination of information thus serves as a means of evaluating the potential benefits to be gained by research in various material technologies.

  14. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    by the Millennium Ecosystem Assessment (Table1). Collectively, this primer synthesizes existing information in a new way that aims to support management of rivermouths as distinct and important ecosystems. The development and management decisions made around rivermouths today will shape the future of these ecosystems, and the human communities within them, well into the future. 1 The information presented in this paper was derived from discussions and draft documents of the Great Lakes Rivermouth Collaboratory. The Great Lakes Rivermouth Collaboratory was established by the U.S. Geological Survey's Great Lakes Science Center (USGS-GLSC) in collaboration with the Great Lakes Commission to engage the Great Lakes scientific community in sharing and documenting knowledge about freshwater rivermouth ecosystems. For more information, see http://www.glc.org/habitat/Rivermouth-Collaboratory.html.

  15. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  16. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Andrea Zanni, Collaboratory Digital Libraries for Humanities in the Italian context

    Directory of Open Access Journals (Sweden)

    Maria Chiara Pievatolo

    2011-07-01

    Full Text Available Archiviato su E-Lis, il testo si occupa del senso attuale e futuro dell’uso delle tecnologie informatiche nella ricerca umanistica, nell’interessante prospettiva dell’autore, matematico per formazione e segretario di Wikimedia Italia. Il web, secondo Tim Berners-Lee, non è stato inventato come un mezzo per scorrere delle pagine, ma come uno spazio di informazione per permettere a [...

  18. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  19. The first word in material control is material

    International Nuclear Information System (INIS)

    Martin, H.R.; Wilkey, D.D.

    1989-01-01

    Material control has tended to rely on containment and access control, augmented by physical inventories, to meet the material control and accounting (MC ampersand A) goals of detecting theft/diversion and providing assurance that all nuclear material (NM) is present. Such systems have significant deficiencies. Material containment strategies are generally based on protection provided at boundaries around the NM and rely on alarms at the boundary for detection of theft/diversion. Assurance that all NM is present requires a negative inference based on the absence of alarms. Additionally, design of effective boundary protection systems requires that the designer be able to anticipate and provide protection for all scenarios that the insider adversary might utilize in removing material from the facility. Access control is an administrative system that cannot protect against malevolent actions by insiders authorized to access the material. Inventories may not provide timely detection of theft/diversion, and the sensitivity of detection depends on the magnitude of the variance of the inventory difference. More effective material control is provided for both material in storage and in process by a material-oriented system designed to detect abnormal events involving NM. Abnormal events are defined as any unauthorized activity involving NM, whether accidental or deliberate, and are assessed to determine the cause of the discrepancy. The designs of material-oriented control systems vary greatly, depending on the operations involved; however, a model system would include the use of process monitoring data for material control and automated surveillance of material in storage

  20. Materials Analysis and Modeling of Underfill Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  1. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  2. Cybermaterials: materials by design and accelerated insertion of materials

    Science.gov (United States)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  3. Alternate Materials In Design Of Radioactive Material Packages

    International Nuclear Information System (INIS)

    Blanton, P.; Eberl, K.

    2010-01-01

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  4. ANDRA - Referential Materials. Volume 1: Context and scope; Volume 2: Argillaceous materials; Volume 3: Cementitious materials; Volume 4: The corrosion of metallic materials

    International Nuclear Information System (INIS)

    2001-01-01

    This huge document gathers four volumes. The first volume presents some generalities about materials used in the storage of radioactive materials (definition, design principle, current choices and corresponding storage components, general properties of materials and functions of the corresponding storage components, physical and chemical solicitations experienced by materials in a storage), and the structure and content of the other documents. The second volume addresses argillaceous materials. It presents some generalities about these materials in the context of a deep geological storage, and about their design. It presents and comments the crystalline and chemical, and physical and chemical characteristics of swelling argillaceous materials and minerals, describes how these swelling argillaceous materials are shaped and set up, presents and comments physical properties (hydraulic, mechanical and thermal properties) of these materials, comments and discusses the modelling of the geo-chemical behaviour, and their behaviour in terms of containment and transport of radionuclides. The third volume addresses cementitious materials. It presents some generalities about these materials in the context of a deep geological storage, and about their definition and specifications. It presents some more detailed generalities (cement definition and composition, hydration, microstructure of hydrated cements, adjuvants), presents and comments their physical properties (fresh concrete structure and influence of composition, main aimed properties in the hardened status, transfer, mechanical, and thermal properties, shaping and setting up of these materials, technical solutions for hydraulic works). The fourth volume addresses the corrosion of metallic materials. It presents some generalities about these materials in the context of a deep geological storage of radioactive materials. It presents metallic materials and discusses their corrosion behaviour. It describes the peculiarities

  5. Materials design and development of functional materials for industry

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-01-01

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success

  6. Materials and material testing

    International Nuclear Information System (INIS)

    Joergens, H.

    1978-01-01

    A review based on 105 literature quotations is given on the latest state of development in the steel sector and in the field of non-ferrous metals and plastics. The works quoted also include, preparation, working, welding including simulation methods, improvement of weldability, material mechanics (explanation of defects mechanisms by means of fracture mechanics), defect causes (corrosion, erosion, hydrogen influence), mechanical-technological and non-destructive material testing. Examples from the field of reactor building are also given within there topics. (IHOE) [de

  7. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  8. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  9. Physically Functional Materials

    DEFF Research Database (Denmark)

    2002-01-01

    acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage...... of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  10. Implied Materiality and Material Disclosures of Credit Ratings

    OpenAIRE

    Eccles, Robert G; Youmans, Timothy John

    2015-01-01

    This first of three papers in our series on materiality in credit ratings will examine the materiality of credit ratings from an “implied materiality” and governance disclosure perspective. In the second paper, we will explore the materiality of environmental, social, and governance (ESG) factors in credit ratings’ methodologies and introduce the concept of “layered materiality.” In the third paper, we will evaluate current and potential credit rating agency (CRA) business models based on our...

  11. Virtual materials design using databases of calculated materials properties

    International Nuclear Information System (INIS)

    Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T

    2009-01-01

    Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

  12. Calculated sputtering and atomic displacement cross-sections for applications to medium voltage analytical electron microscopy

    International Nuclear Information System (INIS)

    Bradley, C.R.; Zaluzec, N.J.

    1987-08-01

    The development of medium voltage electron microscopes having high brightness electron sources and ultra-high vacuum environments has been anticipated by the microscopy community now for several years. The advantages of such a configuration have been discussed to great lengths, while the potential disadvantages have for the most part been neglected. The most detrimental of these relative to microcharacterization are the effects of electron sputtering and atomic displacement to the local specimen composition. These effects have in the past been considered mainly in the high voltage electron microscope regime and generally were ignored in lower voltage instruments. Recent experimental measurements have shown that the effects of electron sputtering as well as radiation induced segregation can be observed in conventional transmission electron microscopes. It is, therefore, important to determine at what point the effects will begin to manifest themselves in the new generation of medium voltage analytical electron microscopes. In this manuscript we present new calculations which allow the individual experimentalist to determine the potential threshold levels for a particular elemental system and thus avoid the dangers of introducing artifacts during microanalysis. 12 refs., 3 figs

  13. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    Science.gov (United States)

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  14. New Materials = New Expressive Powers: Smart Material Interfaces and Arts, experience via smart materials

    NARCIS (Netherlands)

    Minuto, A.; Pittarello, Fabio; Nijholt, Antinus

    2014-01-01

    It is not easy for a growing artist to find his poetry. Smart materials could be an answer for those who are looking for new forms of art. Smart Material Interfaces (SMI) define a new interaction paradigm based on dynamic modications of the innovative materials' properties. SMI can be applied in

  15. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  16. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  17. Report of the Material Control and Material Accounting Task Force: the role of material control and material accounting in the safeguards program

    International Nuclear Information System (INIS)

    1978-03-01

    Results are presented of NRC Task Force investigations to identify the functions of a safeguards program in relation to the NRC safeguards objective, define the role and objectives of material control and material accounting systems within that program, develop goals for material control and material accounting based on those roles and objectives, assess current material control and material accounting requirements and performance levels in the light of the goals, and recommend future actions needed to attain the proposed goals. It was found that the major contribution of material accounting to the safeguards program is in support of the assurance function. It also can make secondary contributions to the prevention and response functions. In the important area of loss detection, a response measure, it is felt that limitations inherent in material accounting for some fuel cycle operations limit its ability to operate as a primary detection system to detect a five formula kilogram loss with high assurance (defined by the Task Force as a probability of detection of 90 percent or more) and that, in those cases, material accounting can act only in a backup role. Physical security and material control must make the primary contributions to the prevention and detection of theft, so that safeguards do not rely primarily for detection capabilities on material accounting. There are several areas of accounting that require more emphasis than is offered by the current regulatory base. These areas include: timely shipper-receiver difference analysis and reconciliation; a demand physical inventory capability; improved loss localization;discard measurement verification; timely recovery of scrap; improved measurement and record systems; and limits on cumulative inventory differences and shipper-receiver differences. An increased NRC capability for monitoring and analyzing licensee accounting data and more timely and detailed submittals of data to NRC by licensees are recommended

  18. Reference materials and representative test materials: the nanotechnology case

    International Nuclear Information System (INIS)

    Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. J.; Rauscher, H.; Emons, H.; Stamm, H.

    2013-01-01

    An increasing number of chemical, physical and biological tests are performed on manufactured nanomaterials for scientific and regulatory purposes. Existing test guidelines and measurement methods are not always directly applicable to or relevant for nanomaterials. Therefore, it is necessary to verify the use of the existing methods with nanomaterials, thereby identifying where modifications are needed, and where new methods need to be developed and validated. Efforts for verification, development and validation of methods as well as quality assurance of (routine) test results significantly benefit from the availability of suitable test and reference materials. This paper provides an overview of the existing types of reference materials and introduces a new class of test materials for which the term ‘representative test material’ is proposed. The three generic concepts of certified reference material, reference material(non-certified) and representative test material constitute a comprehensive system of benchmarks that can be used by all measurement and testing communities, regardless of their specific discipline. This paper illustrates this system with examples from the field of nanomaterials, including reference materials and representative test materials developed at the European Commission’s Joint Research Centre, in particular at the Institute for Reference Materials and Measurements (IRMM), and at the Institute for Health and Consumer Protection (IHCP).

  19. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  20. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  1. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  2. Dirac materials

    OpenAIRE

    Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.

    2014-01-01

    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions ...

  3. Report of the Material Control and Material Accounting Task Force

    International Nuclear Information System (INIS)

    1978-03-01

    In September 1977 a Task Force was formed to complete a study of the role of material control and material accounting in NRC's safeguards program. The Task Force's assignment was to: define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for the material control and material accounting systems based on their roles and objectives; assess the extent to which the existing safeguards regulatory base meets or provides the capability to meet the recommended goals; and provide direction for material control and material accounting development, including both near-term and long-term upgrades. The study was limited to domestic nuclear facilities possessing significant amounts of plutonium, uranium-233 or highly enriched uranium in unsealed form. The Task Force findings are reported

  4. Proceedings of DAE-BRNS national workshop on materials chemistry: functional materials

    International Nuclear Information System (INIS)

    2011-12-01

    Design and development of materials with tailored properties assumes great significance in our everyday life and are crucial to modern technologies. Chemistry has had a tremendous Convener role in developing several need based materials by integrating multiple functionalities. The year 2011, being recognised as the International Year of Chemistry by the UNESCO, assumes further significance for material chemists. In view of the renowned interest in advanced functional materials, the Society for Materials Chemistry, India together with Chemistry Division, BARC has taken an initiative to organise this National Workshop on Materials Chemistry (NWMC-2011) under the theme 'Functional Materials (FUN-MAT)'. NWMC- 2011 aims to provide a forum for young researchers to interact with experts involved in synthesis, processing and applications of various advanced functional materials. In particular, recent developments and future prospects of magnetic, electronic and optical materials, glasses, ceramics, soft materials, materials for sensors, materials for hydrogen production and storage etc. will be addressed in this workshop. Papers relevant to INIS are indexed separately

  5. Computational materials chemistry for carbon capture using porous materials

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Malani, Ateeque; Huang, Runhong; Babarao, Ravichandar

    2017-01-01

    Control over carbon dioxide (CO 2 ) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO 2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO 2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO 2 capture are discussed. (topical review)

  6. Magnetic Materials

    Science.gov (United States)

    Spaldin, Nicola A.

    2003-04-01

    Magnetic materials are the foundation of multi-billion dollar industries and the focus of intensive research across many disciplines. This book covers the fundamentals, basic theories and applications of magnetism and conventional magnetic materials. Based on a lecture course given by Nicola Spaldin in the Materials Department at University of California, Santa Barbara, the book is ideal for a one- semester course in magnetic materials. It contains numerous homework problems and solutions.

  7. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  8. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  9. Mechanical Material Engineering

    International Nuclear Information System (INIS)

    Kim, Mun Il

    1993-01-01

    This book introduced mechanical material with introduction, basic problems about metal ingredient of machine of metal and alloy, property of metal material mechanical metal material such as categorization of metal material and high tensile structure steel, mechanic design and steel material with three important points on using of steel materials, selection and directions machine structural steel, selection and directions of steel for tool, selection and instruction of special steel like stainless steel and spring steel, nonferrous metal materials and plastic.

  10. Discrimination of Naturally Occurring Radioactive Material in Plastic Scintillator Material

    International Nuclear Information System (INIS)

    Ely, James H.; Kouzes, Richard T.; Geelhood, Bruce D.; Schweppe, John E.; Warner, Ray A.

    2003-01-01

    Plastic scintillator material is used in many applications for the detection of gamma-rays from radioactive material, primarily due to the sensitivity per unit cost compared to other detection materials. However, the resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. Therefore, other materials such as doped sodium iodide are used for spectroscopic applications. The limited spectroscopic information can however be exploited in plastic scintillator materials to provide some discrimination. The discrimination between man-made and naturally occurring sources would be useful in reducing alarm screening for radiation detection applications which target man-made sources. The results of applying the limited energy information from plastic scintillator material for radiation portal monitors are discussed.

  11. Materials science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Materials Science Division is engaged in research on physical properties of materials and the effects of radiation upon them. This involves solid state materials undergoing phase transitions, energy storing materials, and biomaterials. The Division also offers research facilities for M.S. and Ph.D. thesis work in the fields of physics, chemistry, materials, and radiation sciences in cooperation with the various colleges and departments of the UPR Mayaguez Campus. It is anticipated that it will serve as a catalyst in starting energy-related research programs in cooperation with UPR faculty, especially programs involving solar energy. To encourage and promote cooperative efforts, contact is maintained with former graduate students and with visiting scientists from Latin American research institutions

  12. Materials in the economy; material flows, scarcity, and the environment

    Science.gov (United States)

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  13. Creation a Geo Big Data Outreach and Training Collaboratory for Wildfire Community

    Science.gov (United States)

    Altintas, I.; Sale, J.; Block, J.; Cowart, C.; Crawl, D.

    2015-12-01

    A major challenge for the geoscience community is the training and education of current and next generation big data geoscientists. In wildfire research, there are an increasing number of tools, middleware and techniques to use for data science related to wildfires. The necessary computing infrastructures are often within reach and most of the software tools for big data are freely available. But what has been lacking is a transparent platform and training program to produce data science experts who can use these integrated tools effectively. Scientists well versed to take advantage of big data technologies in geoscience applications is of critical importance to the future of research and knowledge advancement. To address this critical need, we are developing learning modules to teach process-based thinking to capture the value of end-to-end systems of reusable blocks of knowledge and integrate the tools and technologies used in big data analysis in an intuitive manner. WIFIRE is an end-to-end cyberinfrastructure for dynamic data-driven simulation, prediction and visualization of wildfire behavior.To this end, we are openly extending an environment we have built for "big data training" (biobigdata.ucsd.edu) to similar MOOC-based approaches to the wildfire community. We are building an environment that includes training modules for distributed platforms and systems, Big Data concepts, and scalable workflow tools, along with other basics of data science including data management, reproducibility and sharing of results. We also plan to provide teaching modules with analytical and dynamic data-driven wildfire behavior modeling case studies which address the needs not only of standards-based K-12 science education but also the needs of a well-educated and informed citizenry.Another part our outreach mission is to educate our community on all aspects of wildfire research. One of the most successful ways of accomplishing this is through high school and undergraduate student internships. Students have worked closely with WIFIRE researchers on various projects including the development of statistical models of wildfire ignition probabilities for southern California, and the development of a smartphone app for crowd-sourced wildfire reporting through social networks such as Twitter and Facebook.

  14. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  15. Plasma-material interactions

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1984-01-01

    Plasma-interactive components must be resistant to erosion processes, efficient in heat removal, and effective in minimizing tritium inventory and permeation. As long as plasma edge temperatures are 50 eV, no one material can satisfy the diverse requirements imposed by these plasma materials interactions. The only solution is the design of duplex, or even more complicated, structures. The material that faces the plasma should be low atomic number, with acceptable erosion and evaporation characteristics. The substrate material must have high thermal conductivity for heat removal. Finally, materials must be selected judiciously for tritium compatibility. In conclusion, materials play a critical role in the achievement of safe and economical magnetic fusion energy. Improvements in materials have already led to many advances in present day device operation, but additional innovative materials solutions are required for the critical plasma materials interaction issues in future power reactors

  16. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material...... in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...... being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 [Omega]cm2 at around 600 DEG C....

  17. Light-material interactions in laser material processing

    International Nuclear Information System (INIS)

    Chiang, S.; Albright, C.E.

    1989-01-01

    The authors discusses how light interactions with materials in laser material processing operations occur by a variety of mechanisms depending on the material being processed, the wavelength of the laser light, the gaseous environment, and the physical state of the material surface. The high reflectivity of metals limits the fraction of the beam power absorbed by the solid metal surface. For metals in the solid state, reflectivity increases as the wavelength of the laser light and the electrical conductivity of the metal increase. The reflectivity of metals is reduced upon heating to the melting point, and further reduced upon melting. At high power densities the liquid metal surface is heated so quickly that very rapid vaporization occurs. The recoil force produced by the evaporation causes a depression in the liquid/vapor interface. The keyhole resulting from this depression allows for multiple reflections and thus increases beam absorption in the liquid

  18. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  19. Material Ecocriticism: Materiality, Agency, and Models of Narrativity

    Directory of Open Access Journals (Sweden)

    Serenella Iovino

    2012-01-01

    Full Text Available The proliferation of studies bearing on the intellectual movement known as the "new materialisms" evinces that a material turn is becoming an important paradigm in environmental humanities. Ranging from social and science studies, feminism, to anthropology, geography, environmental philosophies and animal studies, this approach is bringing innovative ways of considering matter and material relations that, coupled with reflections on agency, text, and narrativity, are going to impact ecocriticism in an unprecedented way.In consideration of the relevance of this debate, we would like to draw for Ecozon@'s readers an introductory map of the new paradigm and introduce what can be called "material ecocriticism." We will illustrate what we consider to be its main features, situating them in the conceptual horizons of the new materialisms. From this genealogical sketch, we will examine the re-definitions of concepts like matter, agency, discursivity, and intentionality, with regard to their effects on ecocriticism and in terms of their ethical perspectives.

  20. Method for forming materials

    Science.gov (United States)

    Tolle, Charles R [Idaho Falls, ID; Clark, Denis E [Idaho Falls, ID; Smartt, Herschel B [Idaho Falls, ID; Miller, Karen S [Idaho Falls, ID

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  1. Report of the Material Control and Material Accounting Task Force: appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Five appendixes are presented. The first comprises a chronological development of material control and material accounting requirements. The second gives a description of current NRC control and material accounting requirements, practices, and capabilities. In the third a description is given of NRC's research and technical assistance program concerning the measurement and measurement quality control elements of licensee material control and material accounting systems. The fourth covers some special considerations related to inventory differences and their analysis. In the fifth a detailed description is presented of the evaluation methodologies used in development of improved material control and material accounting systems

  2. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  3. Touching Materiality

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Rosén

    2012-01-01

    Dripping ink pens, colourful paint on skin, vegetables pots on a school roof. In interviews with three generations of former school pupils, memories of material objects bore a relation to everyday school life in the past. Interwoven, these objects entered the memorising processes, taking...... the interviewer and interviewee beyond an exclusively linguistic understanding of memory. This article analyses how the shifting objects of materiality in personal and generational school memories connects to material as well as sensuous experiences of everyday school life and its complex processes of learning....... Drawing on anthropological writings, the article argues that the objects of materiality are part of important but non-verbalised memories of schooling. The Dutch philosopher Eelco Runia’s notions of presence and metonymy are incorporated as tools for approaching objects of materiality in memory studies....

  4. Coated electroactive materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  5. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  6. The Newest Machine Material

    International Nuclear Information System (INIS)

    Seo, Yeong Seop; Choe, Byeong Do; Bang, Meong Sung

    2005-08-01

    This book gives descriptions of machine material with classification of machine material and selection of machine material, structure and connection of material, coagulation of metal and crystal structure, equilibrium diagram, properties of metal material, elasticity and plasticity, biopsy of metal, material test and nondestructive test. It also explains steel material such as heat treatment of steel, cast iron and cast steel, nonferrous metal materials, non metallic materials, and new materials.

  7. Electrode material comprising graphene-composite materials in a graphite network

    Science.gov (United States)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  8. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  9. Materials Genome Initiative

    Science.gov (United States)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  10. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke

    2012-01-01

    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  11. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  12. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  13. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  14. Sustaining an Online, Shared Community Resource for Models, Robust Open source Software Tools and Data for Volcanology - the Vhub Experience

    Science.gov (United States)

    Patra, A. K.; Valentine, G. A.; Bursik, M. I.; Connor, C.; Connor, L.; Jones, M.; Simakov, N.; Aghakhani, H.; Jones-Ivey, R.; Kosar, T.; Zhang, B.

    2015-12-01

    Over the last 5 years we have created a community collaboratory Vhub.org [Palma et al, J. App. Volc. 3:2 doi:10.1186/2191-5040-3-2] as a place to find volcanology-related resources, and a venue for users to disseminate tools, teaching resources, data, and an online platform to support collaborative efforts. As the community (current active users > 6000 from an estimated community of comparable size) embeds the tools in the collaboratory into educational and research workflows it became imperative to: a) redesign tools into robust, open source reusable software for online and offline usage/enhancement; b) share large datasets with remote collaborators and other users seamlessly with security; c) support complex workflows for uncertainty analysis, validation and verification and data assimilation with large data. The focus on tool development/redevelopment has been twofold - firstly to use best practices in software engineering and new hardware like multi-core and graphic processing units. Secondly we wish to enhance capabilities to support inverse modeling, uncertainty quantification using large ensembles and design of experiments, calibration, validation. Among software engineering practices we practice are open source facilitating community contributions, modularity and reusability. Our initial targets are four popular tools on Vhub - TITAN2D, TEPHRA2, PUFF and LAVA. Use of tools like these requires many observation driven data sets e.g. digital elevation models of topography, satellite imagery, field observations on deposits etc. These data are often maintained in private repositories that are privately shared by "sneaker-net". As a partial solution to this we tested mechanisms using irods software for online sharing of private data with public metadata and access limits. Finally, we adapted use of workflow engines (e.g. Pegasus) to support the complex data and computing workflows needed for usage like uncertainty quantification for hazard analysis using physical

  15. From Libraries to ‘Libratories’

    Directory of Open Access Journals (Sweden)

    Leo Waaijers

    2006-04-01

    Full Text Available While the eighties of the last century were a time of local automation for libraries and the nineties the decade in which libraries embraced the internet and the WWW, now is the age in which the big search engines and institutional repositories are gaining a firm footing. This heralds a new era in both the evolution of scholarly communication and its agencies themselves, i.e. the libraries. Until now libraries and publishers have developed a digital variant of existing processes and products, i.e. catalogues posted on the Web, scanned copies of articles, e-mail notification about acquisitions or expired lending periods, or traditional journals in a digital jacket. However, the new OAI repositories and services based upon them have given rise to entirely new processes and products, libraries transforming themselves into partners in setting up virtual learning environments, building an institution’s digital showcase, maintaining academics’ personal websites, designing refereed portals and – further into the future – taking part in organising virtual research environments or collaboratories. Libraries are set to metamorphose into ‘libratories’, an imaginary word to express their combined functions of library, repository and collaboratory. In such environments scholarly communication will be liberated from its current copyright bridle while its coverage will be both broader - including primary data, audiovisuals and dynamic models - and deeper, with cross-disciplinary analyses of methodologies and applications of instruments. Universities will make it compulsory to store in their institutional repositories the results of research conducted within their walls for purposes of academic reporting, review committees, and other modes of clarification and explanation. Big search engines will provide access to this profusion of information and organise its mass customisation.

  16. Building the Southern California Earthquake Center

    Science.gov (United States)

    Jordan, T. H.; Henyey, T.; McRaney, J. K.

    2004-12-01

    Kei Aki was the founding director of the Southern California Earthquake Center (SCEC), a multi-institutional collaboration formed in 1991 as a Science and Technology Center (STC) under the National Science Foundation (NSF) and the U. S. Geological Survey (USGS). Aki and his colleagues articulated a system-level vision for the Center: investigations by disciplinary working groups would be woven together into a "Master Model" for Southern California. In this presentation, we will outline how the Master-Model concept has evolved and how SCEC's structure has adapted to meet scientific challenges of system-level earthquake science. In its first decade, SCEC conducted two regional imaging experiments (LARSE I & II); published the "Phase-N" reports on (1) the Landers earthquake, (2) a new earthquake rupture forecast for Southern California, and (3) new models for seismic attenuation and site effects; it developed two prototype "Community Models" (the Crustal Motion Map and Community Velocity Model) and, perhaps most important, sustained a long-term, multi-institutional, interdisciplinary collaboration. The latter fostered pioneering numerical simulations of earthquake ruptures, fault interactions, and wave propagation. These accomplishments provided the impetus for a successful proposal in 2000 to reestablish SCEC as a "stand alone" center under NSF/USGS auspices. SCEC remains consistent with the founders' vision: it continues to advance seismic hazard analysis through a system-level synthesis that is based on community models and an ever expanding array of information technology. SCEC now represents a fully articulated "collaboratory" for earthquake science, and many of its features are extensible to other active-fault systems and other system-level collaborations. We will discuss the implications of the SCEC experience for EarthScope, the USGS's program in seismic hazard analysis, NSF's nascent Cyberinfrastructure Initiative, and other large collaboratory programs.

  17. Moderator material for neutrons and use of said material

    International Nuclear Information System (INIS)

    Hiismaeki, P.; Auterinen, I.

    1994-01-01

    The invention concerns a moderator material used for mediation of high-velocity neutrons, in particular of fission neutrons, to epithermal neutrons. The principal components of the moderator material are aluminum fluoride and aluminum metal, which have been formed into a dense composite substantially free of pores, wherein the material contains 20-50 percent-vol. of aluminum metal and 80-50 percent-vol. aluminum fluoride. Further, the use of the moderator material in accordance with the invention in neutron capture therapy of cancer tumours is described, such as in boron neutron capture therapy (BNCT)

  18. Production of a calcium silicate cement material from alginate impression material.

    Science.gov (United States)

    Washizawa, Norimasa; Narusawa, Hideaki; Tamaki, Yukimichi; Miyazaki, Takashi

    2012-01-01

    The purpose of this study was to synthesize biomaterials from daily dental waste. Since alginate impression material contains silica and calcium salts, we aimed to synthesize calcium silicate cement from alginate impression material. Gypsum-based investment material was also investigated as control. X-ray diffraction analyses revealed that although firing the set gypsum-based and modified investment materials at 1,200°C produced calcium silicates, firing the set alginate impression material did not. However, we succeeded when firing the set blend of pre-fired set alginate impression material and gypsum at 1,200°C. SEM observations of the powder revealed that the featured porous structures of diatomite as an alginate impression material component appeared useful for synthesizing calcium silicates. Experimentally fabricated calcium silicate powder was successfully mixed with phosphoric acid solution and set by depositing the brushite. Therefore, we conclude that the production of calcium silicate cement material is possible from waste alginate impression material.

  19. Nondestructive materials characterization with applications to aerospace materials

    CERN Document Server

    Nagy, Peter; Rokhlin, Stanislav

    2004-01-01

    With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated. An introductory chapter describes the typical degradation mechanisms that must be considered and the microstructure features that have to be detected by NDE methods. Finally, some approaches for making lifetime predictions are discussed. It is suitable as a textbook in special training courses in advanced NDE and aircraft materials characterization.

  20. Matter and materials

    International Nuclear Information System (INIS)

    Lefevre, J.

    1997-01-01

    This paper is an introduction to the materials used in nuclear engineering from the uranium (extraction, processing, ultimate use) to all radioactive products encountered in nuclear processes and more particularly those having particular applications or presenting particular risks in their ultimate disposal. This introduction gives a general presentation of the different topics which are developed in other chapters: nuclear materials and fuel cycle (fuel fabrication, actinides and recycling, direct storage and reprocessing of spent fuels, management of radioactive wastes, transport of radioactive materials, production and use of radioelements in the industry and medicine), moderators and coolants, other materials used in reactors (fuel cladding materials, special steels, zircaloy, neutron absorbent materials), and the mechanical behaviour of materials (steels, concretes). (J.S.)

  1. Uranium reference materials

    International Nuclear Information System (INIS)

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs

  2. Reactor core materials research and integrated material database establishment

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Jang, J. S.; Kim, D. W.

    2002-03-01

    Mainly two research areas were covered in this project. One is to establish the integrated database of nuclear materials, and the other is to study the behavior of reactor core materials, which are usually under the most severe condition in the operating plants. During the stage I of the project (for three years since 1999) in- and out of reactor properties of stainless steel, the major structural material for the core structures of PWR (Pressurized Water Reactor), were evaluated and specification of nuclear grade material was established. And the damaged core components from domestic power plants, e.g. orifice of CVCS, support pin of CRGT, etc. were investigated and the causes were revealed. To acquire more resistant materials to the nuclear environments, development of the alternative alloys was also conducted. For the integrated DB establishment, a task force team was set up including director of nuclear materials technology team, and projector leaders and relevant members from each project. The DB is now opened in public through the Internet

  3. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  4. Computational materials design

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1999-01-01

    Full text: Trial and error experimentation is an extremely expensive route to the development of new materials. The coming age of reduced defense funding will dramatically alter the way in which advanced materials have developed. In the absence of large funding we must concentrate on reducing the time and expense that the R and D of a new material consumes. This may be accomplished through the development of computational materials science. Materials are selected today by comparing the technical requirements to the materials databases. When existing materials cannot meet the requirements we explore new systems to develop a new material using experimental databases like the PDF. After proof of concept, the scaling of the new material to manufacture requires evaluating millions of parameter combinations to optimize the performance of the new device. Historically this process takes 10 to 20 years and requires hundreds of millions of dollars. The development of a focused set of computational tools to predict the final properties of new materials will permit the exploration of new materials systems with only a limited amount of materials characterization. However, to bound computational extrapolations, the experimental formulations and characterization will need to be tightly coupled to the computational tasks. The required experimental data must be obtained by dynamic, in-situ, very rapid characterization. Finally, to evaluate the optimization matrix required to manufacture the new material, very rapid in situ analysis techniques will be essential to intelligently monitor and optimize the formation of a desired microstructure. Techniques and examples for the rapid real-time application of XRPD and optical microscopy will be shown. Recent developments in the cross linking of the world's structural and diffraction databases will be presented as the basis for the future Total Pattern Analysis by XRPD. Copyright (1999) Australian X-ray Analytical Association Inc

  5. Chemical reactor for converting a first material into a second material

    Science.gov (United States)

    Kong, Peter C

    2012-10-16

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  6. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  7. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  8. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  9. Materials of 13. conference: ATM'92 - Advanced materials and technologies

    International Nuclear Information System (INIS)

    1992-01-01

    13th conference on metal science, modern materials and technologies (ATM'92) has been held in Popowo near Warsaw, Poland in September 1992. The conference has been divided into 9 sections. There are: Plenary section (7 lectures); Functional materials (12 lectures); Methods of material microstructure shaping (5 lectures and 14 posters); Surface engineering (5 lectures and 27 posters); Composites (5 lectures and 9 posters); Iron alloys A (7 lectures and 8 posters); Iron alloys B (7 lectures and 18 posters); Non-ferrous metal alloys (7 lectures and 11 posters) and Methods for materials research (5 lectures and 23 posters). The new materials preparation, their properties and structure as well as a methods for obtaining a desirable properties of material or their surface have been broadly referred and discussed

  10. A routine chromium determination in biological materials; application to various reference materials and standard reference materials

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Volkers, K.J.

    1979-01-01

    The determination limit under standard working conditions of chromium in biological materials is discussed. Neutron activation analysis and atomic spectrometry have been described for some analytical experiences with NBS SRM 1577 reference material. The chromium determination is a part of a larger multi-element scheme for the determination of 12 elements in biological materials

  11. Material Programming

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki

    2017-01-01

    . Consequently we ask what the practice of programming and giving form to such materials would be like? How would we be able to familiarize ourselves with the dynamics of these materials and their different combinations of cause and effect? Which tools would we need and what would they look like? Will we program......, and color, but additionally being capable of sensing, actuating, and computing. Indeed, computers will not be things in and by themselves, but embedded into the materials that make up our surroundings. This also means that the way we interact with computers and the way we program them, will change...... these computational composites through external computers and then transfer the code them, or will the programming happen closer to the materials? In this feature we outline a new research program that floats between imagined futures and the development of a material programming practice....

  12. Materials characterisation

    International Nuclear Information System (INIS)

    Azali Muhammad

    2005-01-01

    Various nuclear techniques have been developed and employed by technologies and scientists worldwide to physically and chemically characterise the material particularly those that have applications in industry. These include small angle neutron scattering (SANS), x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) for the internal structural study of material, whereas, the x-ray fluorescence (XRF) for the chemical analysis, while the Moessbauer spectroscopy for the study on the magnetic properties and structural identity of material. Basic principle and instrumentations of the techniques are discussed in this chapter. Example of their applications in various disciplines particularly in characterisation of industrial materials also described

  13. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  14. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  15. Materials by design

    International Nuclear Information System (INIS)

    Eberhardt, J.; Hay, P.J.; Carpenter, J.A. Jr.

    1986-01-01

    Major developments in materials characterization instrumentation over the past decade have helped significantly to elucidate complex processes and phenomena connected with the microstructure of materials and interfacial interactions. Equally remarkable advances in theoretical models and computer technology also have been taking place during this period. These latter now permit, for example, in selected cases the computation of material structures and bonding and the prediction of some material properties. Two assessments of the state of the art of instrumental techniques and theoretical methods for the study of material structures and properties have recently been conducted. This paper discusses aspects from these assessments of computational theoretical methods apply to materials

  16. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  17. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    , because the projection filter is a non-linear function of the design variables, the projected variables have to be re-scaled in a final so-called normalization filter. This is done to prevent the optimizer in creating superior, but non-physical pseudo-materials. The method is demonstrated on a series......This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...

  18. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  19. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    , imitate and articulate the students’ inclusion of materials. This paper particularly discusses the experiences made and ideas generated after the execution of a material science course for second year students, with emphasis on the concept of the material selection matrix as an educational tool......This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe...

  20. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  1. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.

    2017-01-01

    Predictions of long term hygrothermal performance can be assessed by dynamic hygrothermal simulations, in which material parameters are crucial input. Material parameters for especially historic materials are often unknown; therefore, there is a need to determine important parameters, and simple...

  2. Structural characterization of amorphous materials applied to low-k organosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Raymunt, Alexandra Cooper, E-mail: amc442@cornell.edu; Clancy, Paulette

    2014-07-01

    We present a methodology to create computational atomistic-level models of porous amorphous materials, in particular, an organosilicate structure for ultra-low dielectric constant (ULK) materials known as “SiCOH.” The method combines the ability to satisfy geometric and chemical constraints with subsequent molecular dynamics (MD) techniques as a way to capture the complexities of the porous and amorphous nature of these materials. The motivation for studying ULK materials arises from a desire to understand the origin of the material's weak mechanical properties. The first step towards understanding how these materials might behave under processing conditions that are intended to improve their mechanical properties is to develop a suitable computational model of the material and hence is the focus of this paper. We define the atomic-scale topology of ULK materials that have been produced by chemical vapor deposition-like experimental techniques. Specifically, we have developed a method of defining the initial atom configurations and interactions, as well as a method to rearrange these starting configurations into relaxed structures. The main advantage of our described approach is the ability of our structure generation method to maintain a random distribution of relevant structural motifs throughout the structure, without relying on large unit cells and periodic boundaries to approximate the behavior of this complex material. The minimization of the different models was accomplished using replica exchange molecular dynamics (REMD). Following the generation of the ‘equilibrium’ configurations that result from REMD for a ULK material of a pre-specified composition, we demonstrate that its structural properties, including bonding topology, porosity and pore size distribution are similar to experimentally used ULK materials. - Highlights: • Method for creating a model of a low dielectric constant organosilicate material • Method of defining porosity in

  3. Materializing Ethnography

    OpenAIRE

    Geismar, H.; Horst, H. A.

    2004-01-01

    The articles in this volume were originally presented in a panel entitled ‘Material Methodologies’ at the American Anthropological Association meeting in New Orleans (November 2002). The panel was devised to tie together theoretical advances in the study of the material with the creative possibilities of fieldwork practices. Through detailed ethnographic discussion, we highlighted the ways in which a focus on a specifically material world enabled us to discover new perspecti...

  4. Theoretical backgrounds of non-tempered materials production based on new raw materials

    Science.gov (United States)

    Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.

    2018-03-01

    One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.

  5. Phase-change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  6. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  7. Strategic Materials

    National Research Council Canada - National Science Library

    Buhler, Carl; Burke, Adrian; Davis, Kirk; Gerhard, Michelle; Heil, Valerie; Hulse, Richard; Kwong, Ralph; Mahoney, Michael; Moran, Scott; Peek, Michael

    2006-01-01

    Some materials possess greater value than others. Materials that provide essential support for the nation's economic viability or enable critical military capabilities warrant special attention in security studies...

  8. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  9. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  10. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  11. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  12. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  13. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  14. Sea materials experimental plans

    International Nuclear Information System (INIS)

    1987-07-01

    This Seal Materials Performance Test Plan describes the plan for testing materials that will be used to seal a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The need for sealing and backfilling the repository and the use of various sealing materials are described. The seal materials include mined salt backfills, cementitious bulkheads and plugs, and earthen backfills. The laboratory testing program for characterizing the behavior and performance of these materials is described. This report includes plans for screening materials, evaluating candidate materials to be tested, and testing a representative set of materials

  15. Material focus

    DEFF Research Database (Denmark)

    Sokoler, Tomas; Vallgårda, Anna K. A.

    2009-01-01

    In this paper we build on the notion of computational composites, which hold a material perspective on computational technology. We argue that a focus on the material aspects of the technology could be a fruitful approach to achieve new expressions and to gain a new view on the technology's role...... in design. We study two of the computer's material properties: computed causality and connectability and through developing two computational composites that utilize these properties we begin to explore their potential expressions....

  16. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael

    2009-01-01

    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....

  17. Contrast Materials

    Science.gov (United States)

    ... is mixed with water before administration liquid paste tablet When iodine-based and barium-sulfate contrast materials ... for patients with kidney failure or allergies to MRI and/or computed tomography (CT) contrast material. Microbubble ...

  18. Insulating materials from renewable raw materials. 4. ed.; Daemmstoffe aus nachwachsenden Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Brandhorst, Joerg; Spritzendorfer, Josef; Gildhorn, Kai; Hemp, Markus

    2012-03-27

    The thermal insulation has become a central issue in the construction and renovation of buildings. The question of healthy building materials and appropriate construction follows the desire of a comfartable and allergy-free living. Due to these developments, insulation materials from renewable resources increasingly has raised the consciousness. The brochure under consideration describes the dynamic market of insulation materials consisting of renewable raw materials. Wood fibers, wood wool, sheep wool, flax, hemp, reeds, meadow grass, cork, cellulose, seaweed and bulrushes are considered as renewable raw materials for insulating materials.

  19. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  20. Methods of materiality

    DEFF Research Database (Denmark)

    Aagaard, Jesper; Matthiesen, Noomi Christine Linde

    2016-01-01

    that researchers should start paying attention to the material world (consisting of both human bodies and material objects) and what it means for how people live their lives. It is argued that this can be done by incorporating the concept of material presence to capture embodied and material layers of existence......This article challenges the hegemonic status of “language” as the primary substance of qualitative research in psychology, whether through interviews or recordings of naturally occurring talk. It thereby questions the overt focus on analyzing linguistic “meaning.” Instead, it is suggested...... practical guidelines for incorporating attention to materiality in qualitative research....

  1. Materials with structural hierarchy

    Science.gov (United States)

    Lakes, Roderic

    1993-01-01

    The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.

  2. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  3. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  4. Security of material

    International Nuclear Information System (INIS)

    Nilsson, A.

    2001-01-01

    Full text: From the early days of discovery and experimentation with nuclear science, nuclear and radioactive materials have held extraordinary potential for being of great benefit to humankind, as well as for causing significant harm. For the past forty years, the IAEA has played an important role in ensuring that nuclear technologies and materials are used only for peaceful purposes. The Agency's safeguards programme has been providing assurances that States honour their undertakings to use nuclear facilities and materials for peaceful purposes only. The potential of nuclear materials and other radioactive materials being used in subversive activities, such as theft, illicit trafficking, sabotage and threats thereof, has been recognized by the international community. The tragic events in New York have given new light to and increased concern for this potential. No target may be considered immune from terrorism. Since 1993, States have confirmed over 370 cases of illicit trafficking. Information is also available on potential attempts of and actual acts of sabotage. For any State, the first step in ensuring the security of their materials is an effective national system. Such a system must contain multiple elements, including physical protection measures, material accountability arrangements, reliable detection capabilities, and plans for rapid and effective response when material is found to be lost, stolen or otherwise not under proper control. The system must also cover illegal waste dumping and other activities that would result in the release of radioactive material into the environment. All these measures should be based on well founded legal and regulatory structures. In many cases, the responsibility for these various elements lies with different bodies, and co-operation between them is vital to the success of the national system. The Agency's programme Security of Material aims at being of service to States in their efforts to upgrade their security

  5. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  6. Fusion reactor materials

    International Nuclear Information System (INIS)

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  7. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  8. Nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    In 1998, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) performed 38 inspections, 25 of them were performed in co-operation with IAEA inspectors. There is no fresh nuclear fuel at Bohunice A-1 NPP at present. Fresh fuel of Bohunice V-1 and V-2 NPPs is inspected in the fresh fuel storage.There are 327 fresh fuel assemblies in Mochovce NPP fresh fuel storage. In addition to that, are also 71 small users of nuclear materials in Slovakia. In most cases they use: covers made of depleted uranium for non-destructive works, detection of level in production plants, covers for therapeutical sources at medical facilities. In. 1995, NRA SR issued 4 new licences for nuclear material withdrawal. In the next part manipulation with nuclear materials, spent fuel stores and illegal trafficking in nuclear materials are reported

  9. The role of certified reference materials in material control and accounting

    International Nuclear Information System (INIS)

    Turel, S.P.

    1979-01-01

    One way of providing an adequate material control and accounting system for the nuclear fuel cycle is to calculate material unaccounted for (MUF) after a physical inventory and to compare the limit of error of the MUF value (LEMUF) against prescribed criteria. To achieve a meaningful LEMUF, a programme for the continuing determination of systematic and random errors is necessary. Within this programme it is necessary to achieve traceability of all Special Nuclear Material (SNM) control and accounting measurements to an International/National Measurement System by means of Certified Reference Materials. SNM measurements for control and accounting are made internationally on a great variety of materials using many diverse measurement procedures by a large number of facilities. To achieve valid overall accountability over this great variety of measurements there must be some means of relating all these measurements and their uncertainties to each other. This is best achieved by an International/National Measurement System (IMS/NMS). To this end, all individual measurement systems must be compatible to the IMS/NMS and all measurement results must be traceable to appropriate international/national Primary Certified Reference Materials. To obtain this necessary compatibility for any given SNM measurement system, secondary certified reference materials or working reference materials are needed for every class of SNM and each type of measurement system. Ways to achieve ''traceability'' and the various types of certified reference material are defined and discussed in this paper. (author)

  10. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  11. Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials

    Science.gov (United States)

    Mildenhall, Scott D.; McCool, Alex (Technical Monitor)

    2001-01-01

    The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.

  12. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  13. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  14. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    Science.gov (United States)

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  15. Computing and Material

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2013-01-01

    The digital is often said to bring us away from material. The adverse is true: digital design and fabrication grants new interfaces towards material and allows architectural design to engage with material on architectural scale in a way that is further reaching than ever before....

  16. Control of nuclear material specified equipment and specified material

    International Nuclear Information System (INIS)

    1982-04-01

    The goal and application field of NE 2.02 regulatory guide of CNEN (Comissao Nacional de Energia Nuclear), are described. This regulatory guide is about nuclear material management, specified equipment and specified material. (E.G.) [pt

  17. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  18. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  19. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  20. Anthropogenic materials and products containing natural radionuclides. Pt. 1a. Radiation properties of raw materials and waste materials. A literature study

    International Nuclear Information System (INIS)

    Reichelt, A.; Roehrer, J.; Lehmann, K.H.

    1995-12-01

    Cased on the literature study, the publication presents relevant data on raw materials and wastes containing natural radionuclides. The study is part 1a of the project on ''Anthropogenic materials and waste materials containing natural radionuclides''. Part 1 of the project gives data and information on about 100 different materials and wastes or products for household or industrial applications which contain significant amounts of natural radioactivity. In addition, part 1 presents for some of these materials information on their applications, consumption, radioactivity and resulting radiation doses. The raw materials and waste materials on the list in part 1 are characterised in this 1a report. Wherever appropriate, two or more materials are dealt with in one chapter, as e.g. felspar and felspar sands (pegmatite), talcum, and soapstone. The wastes are dealt with in the chapters discussing the relevant raw materials. The information given is as derived from the literature and does not include comments or evaluation by the authors of this report. Whenever the literature study did not yield information on radiological aspects of a material on the list, an appropriate notice is given. (Orig./DG) [de

  1. What is materialism? Testing two dominant perspectives on materialism in the marketing literature

    Directory of Open Access Journals (Sweden)

    Manchiraju Srikant

    2015-09-01

    Full Text Available Materialism is defined as the importance an individual attaches to worldly possessions, which has been considered as an important construct in consumer behavior and marketing literature. There are two dominant perspectives on individual materialism in the marketing literature that focus on (1 personality traits or (2 individual personal values. However, several scholars have questioned the aforementioned materialism conceptualizations. Therefore, the present study directly compares the constructs of personality materialism and value materialism. Structural equation modeling was employed to address the following issues: (1 what are the key conceptual dimensions of materialism, (2 how much do they overlap, and (3 what is their discriminant validity in predicting outcomes linked to materialism. We suggest these two dominant perspectives on individual materialism are two distinct constructs, as they shared only 21 percent of common variance. Furthermore, we stress the multi-faceted nature of materialism, with an emphasis on future research directions related to materialism in marketing.

  2. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  3. QUECHUA LANGUAGE MATERIALS PROJECT, GUIDE TO THE MATERIALS.

    Science.gov (United States)

    SOLA, DONALD F.

    THIS GUIDEBOOK DESCRIBES THE NATURE AND USE OF THE MATERIALS PREPARED FOR TEACHING THREE OF THE MAIN DIALECTS OF QUECHUA TO SPEAKERS OF ENGLISH INTERESTED IN WORKING OR DOING RESEARCH IN THE ANDEAN REGION. DESCRIPTIVE AND PEDAGOGICAL MATERIALS HAVE BEEN PREPARED FOR EACH OF THREE IMPORTANT DIALECTS--CUZCO AND AYACUCHO IN PERU, AND COCHABAMBA IN…

  4. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  5. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  6. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Underground processing method for radiation-contaminated material and transferring method for buffer molding material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Asano, Eiichi; Yamagata, Junji; Ninomiya, Nobuo; Kawakami, Susumu.

    1995-01-01

    A bottomed molding material (buffer molding material) is formed into a bottomed cylindrical shape by solidifying, under pressure, powders such as of bentonite into a highly dense state by a cold isotropic pressing or the like, having a hole for accepting and containing a vessel for radiation-contaminated materials. The bottomed cylindrical molding material is loaded on a transferring vessel, and transferred to a position near the site for underground disposal. The bottomed cylindrical molding material having a upwarded containing hole is buried in the cave for disposal. The container for radiation-contaminated material is loaded and contained in the containing hole of the bottomed cylindrical molding material. A next container for radiation-contaminated materials is juxtaposed thereover. Then, a bottomed cylindrical molding material having a downwarded containing hole is covered to the container for the radiation-contaminated material in a state being protruded upwardly. The radiation-contaminated material is thus closed by a buffer material of the same material at the circumference thereof. (I.N.)

  8. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  9. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  10. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing

  11. Utopian Materialities

    DEFF Research Database (Denmark)

    Elgaard-Jensen, Torben

    2004-01-01

    In various ways, this paper makes the counter-intuitive claim that the utopian and the material are thoroughlyinterdependent, rather than worlds apart. First, through a reading of Thomas More's Utopia, it is argued thatUtopia is the product of particular kinds of relations, rather than merely...... a detachment from the known world.Second, the utopianism of a new economy firm is examined. It is argued that the physical set-up of the firm -in particular the distribution of tables and chairs - evoke a number of alternatives to ordinary work practice.In this way the materialities of the firm are crucial...... to its persuasive image of being the office of the future.The notion that utopia is achieved through material arrangements is finally related to the analysis of facts andfictions in ANT. It is argued, that even though Utopias are neither fact nor fiction, they are both material andeffective...

  12. «A Ca’ Giustinian fu tutto diverso». La mostra di Paolo Veronese a Venezia (1939 / «A Ca’ Giustinian fu tutto diverso» (At Ca’ Giustiniani eveything was different. Paolo Veronese exhibition in Venice (1939

    Directory of Open Access Journals (Sweden)

    Matilde Cartolari

    2016-12-01

    Full Text Available La mostra di Paolo Veronese si svolse a Venezia nel 1939 sotto la direzione di Rodolfo Pallucchini. Promuovendo una ricognizione materiale e critica dell’opera del maestro, la mostra fu l’occasione per effettuare una massiccia campagna di restauri ad opera del bergamasco Mauro Pellicioli e della sua squadra di collaboratori. Agendo sul duplice fronte della museografia e del restauro, Pallucchini si pose in dialogo con le parallele definizioni elaborate in sede istituzionale da Guglielmo Pacchioni e Giulio Carlo Argan. Il presente saggio intende offrire, attraverso materiale archivistico inedito, un’analisi del ruolo della mostra di Veronese nel contesto nazionale e internazionale, ricostruendo con un approccio interdisciplinare le dinamiche teoriche e operative che ne animarono lo svolgimento. Veronese exhibition took place in Venice in 1939 under the direction of Rodolfo Pallucchini. While promoting both material and critical examination of Veronese’s work, the exhibition was an opportunity to undertake a massive restoration, performed by Mauro Pellicioli and his team of collaborators. Pallucchini’s museographical and conservative program was in close relation with the theories promoted by Guglielmo Pacchioni and Giulio Carlo Argan in public administration. This paper intends to offer, through unpublished archival evidence, a detailed analysis of Veronese exhibition in relation to national and international context, in order to understand with an interdisciplinary approach both its theoretical and practical aspects.

  13. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  14. Editorial: Defining materials science: A vision from APL Materials

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2014-07-01

    Full Text Available These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  15. Effect of material parameters on the compactibility of backfill materials

    International Nuclear Information System (INIS)

    Keto, P.; Kuula-Vaeisaenen, P.; Ruuskanen, J.

    2006-05-01

    The effect of different parameters on compactibility of mixture of bentonite and ballast as well as Friedland-clay was studied in laboratory with two different types of compaction tests. The material parameters varied were grain size distribution of the ballast material, grain shape, water ratio and bentonite content (15/30%). The other parameters varied were salinity of the mixing water, mixing process and compaction method and energy. Ballast materials with varying grain size distributions were produced from Olkiluoto mica-gneiss with different type of crushing processes. In addition, sand was chosen for ballast material due to its uniform grain size distribution and rounded grain shape. The maximum grain size of the ballast materials was between 5-10 mm. When comparing the compactibility of ballast materials, the highest dry densities were gained for ballast materials with graded grain size distribution. The compaction behaviour of the tested bentonite ballast mixtures is dominated by the bentonite content. The other parameters varied did not have significant effect on the compactibility of the mixtures with bentonite content of 30%. This can be explained with the amount of bentonite that is higher than what is needed to fill up the volume between the ballast grains. The results gained with the two different compaction tests are comparable. Both the bentonite/ballast mixtures and the Friedland clay behaved similarly when compacted with three different compaction pressures (180, 540 and 980 kPa). (orig.)

  16. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  17. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  18. Materials at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory

  19. 2002 materials report

    International Nuclear Information System (INIS)

    2003-01-01

    This report is the very first devoted to the researches carried out in all centres of the French atomic energy commission (CEA) in the domain of materials. Each material, technology or process is presented with some explanations. The report is divided in three chapters dealing with: 1 - the nano-materials and the engineering of surfaces: surface functionalization (new coatings for cutting tools, new CVD process for the deposition of carbon nano-tubes, nano-structured metallic films, polymerization by gaseous phase deposition, electro-chromium systems, functional coatings by sol-gel process, sol-gel processing of optical fibers, modeling of the plasma projection process); nano-particulates and emerging materials (synthesis of SiCN nano-particulates by laser pyrolysis, hot-forming of Si/C/N/O nano-metric powders by isostatic compression, synthesis of aligned carbon nano-tubes by pyrolysis of mixed aerosols, elaboration and characterization of new oxide-type materials in supercritical CO 2 phase, fluorescent semiconductor nano-crystals for labelling, fibrillary proteins and their behaviour at interfaces); 2 - materials engineering and numerical materials (simulation of the welding process by YAG laser pulses, welded joints reliability, control of precipitation microstructures by the addition of nucleating agents, optimization of pressing cycles for the forming of industrial parts by matrix compaction, mechanical and thermal pre-dimensioning of thermo-structural composites, modeling of the behaviour of thermo-structural composites, joints follow up system for innovative welding control process); joining technologies (feasibility study for the fabrication by diffusion welding of the first wall panels of ITER reactor, welding of spent fuel containers for long lasting storage, electron beam welding of aluminium 6061 and hot cracking risk, hybrid welding technology, heat source model for TIG welding, cladding of the amplifying plates of the Megajoule laser facility

  20. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  1. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  2. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  3. The Time of Materiality

    Directory of Open Access Journals (Sweden)

    Estrid Sørensen

    2007-01-01

    Full Text Available While time and space form a classic duality in social science, this article demonstrates a perspective on time, space and materiality as a core trinity. As a prominent figure in contemporary discussions on materiality in the social sciences Science and Technology Studies (STS emphasizes relational approaches. STS however lacks a clear relational definition of materiality and tends instead to focus on the agency of entities, on for instance material agency. The article suggests a relational definition of materiality and notes that this move implies turning the question of the time of materiality into an empirical question. It is argued that relational materiality must be studied spatially, and thus a spatial approach describing patterns of relations is presented. Based on field work in a primary school classroom and computer lab, three materials are analyzed: the blackboard, a bed-loft and an online 3D virtual environment. The empirical descriptions depict three different materialities, and it is shown how time is formed differently in each of them. Time, it is argued, is an emergent and characterizing aspect of materialities as spatial formations. URN: urn:nbn:de:0114-fqs070122

  4. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  5. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  6. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  7. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The internationally controlled materials determined according to the law for nuclear source materials, etc. are the following: nuclear source materials, nuclear fuel materials, moderating materials, facilities including reactors, etc. sold, transferred, etc. to Japan according to the agreements for peaceful uses of atomic energy between Japan, and the United States, the United Kingdom, Canada, Australia and France by the respective governments and those organs under them; nuclear fuel materials resulting from usage of the above sold and transferred materials, facilities; nuclear fuel materials sold to Japan according to agreements set by the International Atomic Energy Agency; nuclear fuel materials involved with the safeguards in nuclear weapons non-proliferation treaty with IAEA. (Mori, K.)

  8. Computerized real-time materials accountability system for safeguards material control

    International Nuclear Information System (INIS)

    Spencer, W.F.; Affel, R.G.; Austin, H.C.; Nichols, J.P.; Stoutt, B.H.; Wachter, J.W.

    1975-01-01

    A real-time, computer-based system is described which provides safeguards material control at the Oak Ridge National Laboratory. Originally installed in 1972 to provide computerized real-time fissile materials accountability for criticality control purposes, the system has been expanded to provide accountability of all source and nuclear materials (SNM) and to utilize the on-line inventory files in support of the Laboratory physical protection and surveillance procedures. (auth)

  9. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  10. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  11. The materials physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Introduction to Materials Physics: Structure of matter. Solid state physics. Dynamic properties of solids. Dielectric Properties of Materials: Dielectric properties. Ferroelectric and piezoelectric materials. Dielectric breakdown. Applications of dielectrics. Magnetic Properties of Materials: Magnetic properties. Magnetic moment. Spontaneous magnetization. Superconductivity.

  12. Materials and nanotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. These are achieved through execution of R&D projects in engineering and materials science, cooperative projects with private and public sector companies, universities and other research institutes. Besides technology development, this Program also fosters training and human resource development in association with the University of São Paulo and many industrial sectors. This Program is divided into sub-programs in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials. The sub-programs are further divided into general topics and within each topic, R&D projects. A brief description of progress in each topic during the last three years follows. (author)

  13. Of 'other' materialities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    within the ‘new materiality’ literature in philosophy as well as in cultural theory. Important lessons are drawn in from across different positions such as non-representational theory, the nonhuman turn, Object-Oriented-Ontology to mention a few. It is argued that to create the necessary materially......In this article, the notion of materialities is rearticulated as an important field for the future of mobilities research. We focus on the intersection between situational mobilities research and design/architecture. The vocabulary and material imaginary developed within the latter are an important...... sensitive imaginary, mobilities research should be looking to architecture and design, as well as it may profit from engaging with these new materially sensitive thinkers. The article ends with some concrete themes for future research inspired by these intersections and identifies ‘material pragmatism...

  14. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe....... Furthermore the purpose is to initiate a discussion on, how to create educational tools for material awareness creation in the design education e.g. by applying objective and quantitative methods in an otherwise often subjective design process....

  15. Report of the Material Control and Material Accounting Task Force: summary

    International Nuclear Information System (INIS)

    1978-03-01

    A special review was made of the safeguards maintained by licensees possessing 5 kg or more of strategic special nuclear material (SSNM), i.e., plutonium, uranium-233, or uranium enriched in the uranium-235 isotope to 20 percent or more. A Task Force was formed to define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for material control and material accounting systems based on their roles and objectives; assess the extent to which the existing regulatory base meets or provides the capability to meet the recommended goals; and to provide direction for material control and material accounting development, including both near-term and long-term upgrades. Based on results of Task Force investigations it is recommended that licensee plans for measurement control programs be submitted in response to Section 70.57(c) of Title 10 of the Code of Federal Regulations. Other recommendations include the review and upgrading, as necessary, of measurement error propagation models used by each licensee; revision of Nuclear Materials Management and Safeguards System (NMMSS) reporting entities for SSNM licensees to be consistent with the partitioning of facilities into plants or, if appropriate, accounting units; review of NMMSS reporting entities for SSNM licensees to assure that data for high enriched uranium operations are clearly separated from low enriched uranium operations; upgrading of the editing by NMMSS of reported licensee safeguards data for accuracy and consistency; and the acquisition of (a) a secure interactive computer capability for use in collecting, storing, sorting, and analyzing special nuclear material accounting data, and (b) associated flexible computer software that presents safeguards information in a succinct and comprehensive manner

  16. Materials information data bank

    International Nuclear Information System (INIS)

    Mead, K.E.

    1978-03-01

    A major concern in the design of weapons systems is compatibility of materials with each other and with the enclosed environment. Usually these systems require long-term storage and must have high reliability at the end of this storage period. Materials selection is thus based on past experience and on laboratory-accelerated testing to assure this long-term reliability. To assist in materials selection, a computerized materials data bank has been established. In addition to references on personnel and documents, this data bank provides annotated information on materials so that the designer and materials engineer can draw on it for guidance in selecting materials. The primary purpose of the data bank is to provide materials compatibility data. However, the structure of the system permits the data bank to be used for storage and retrieval of general materials information. The data bank storage and information retrieval philosophy is discussed and procedures for information gathering are outlined. Examples of data entries and a list of search routines are presented to demonstrate the usefulness and versatility of the system

  17. D7.9.1 (Final) Reports and recommendations for a collaboratory for kaleidoscope

    DEFF Research Database (Denmark)

    Derycke, Alain; Dirckinck-Holmfeld, Lone; Peter, Yvan

    2006-01-01

    The Shared Virtual laboratory (SVL) is one of the efforts of the Kaleidoscope, a European network of excellence, to promote and support scientific collaboration inside the networks of partners. It can be seen at this stage as a virtual place to facilitate collaboration around several research the...

  18. Do It Yourself (DIY) Earth Science Collaboratories Using Best Practices and Breakthrough Technologies

    Science.gov (United States)

    Stephan, E.

    2017-12-01

    The objective of published earth science study data results and literature on the Web should be to provide a means to integrate discoverable science resources through an open collaborative-Web. At the core of any open science collaborative infrastructure is the ability to discover, manage and ultimately use relevant data accessible to the collaboration. Equally important are the relationships between people, applications, services, and publications, which capture critical contextual knowledge that enable their effective use. While contributions of either irreproducible or costly data can be a great asset the inability of users being able to use the data intelligently or make sense of it, makes these investments not usable. An ability to describe ad-hoc discoverable usage methodologies, provide feedback to data producers, and identify and cite data in a systematic way by leveraging existing Web-enabled off the shelf technology is needed. Fortunately many break-through advancements in data publication best practices and government, open source, and commercial investments support consumers who can provide feedback, share experiences, and contribute back to the earth science ecosystem.

  19. Sharing Electrophysiological Data and Metadata on HBP Platforms – An Example Collaboratory Workflow

    OpenAIRE

    Sprenger, Julia; Yegenoglu, Alper; Grün, Sonja; Denker, Michael

    2017-01-01

    IntroductionThe Human Brain Project (HBP) [1] aims at creating and operating a European scientific Research Infrastructurefor the neurosciences. A main goal is to gather, organise and disseminate data describing the brain and itsdiseases on the basis of experimental as well as simulated data. Therefore a lot of effort is put into thedevelopment of tools for data registration, storage, access and sharing. The most prominent data type availablethrough the HBP to date are anatomical data and dat...

  20. CSIR Nyendaweb - instrument of the ITS LAB collaboratory, and research and development platform

    CSIR Research Space (South Africa)

    Labuschagne, FJJ

    2008-07-01

    Full Text Available the "demostrator" functionality of NyendaWeb is envisaged to contribute to raising the awareness and interest of the engineering and associated disciplines at school, under-graduate and post-graduate levels in traffic engineering, ITS, traffic management, and other...

  1. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    Science.gov (United States)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.

  2. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  3. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  4. Collaboration tools for the global accelerator network Workshop Report

    CERN Document Server

    Agarwal, D; Olson, J

    2002-01-01

    The concept of a ''Global Accelerator Network'' (GAN) has been put forward as a means for inter-regional collaboration in the operation of internationally constructed and operated frontier accelerator facilities. A workshop was held to allow representatives of the accelerator community and of the collaboratory development community to meet and discuss collaboration tools for the GAN environment. This workshop, called the Collaboration Tools for the Global Accelerator Network (GAN) Workshop, was held on August 26, 2002 at Lawrence Berkeley National Laboratory. The goal was to provide input about collaboration tools in general and to provide a strawman for the GAN collaborative tools environment. The participants at the workshop represented accelerator physicists, high-energy physicists, operations, technology tool developers, and social scientists that study scientific collaboration.

  5. Collaboration tools for the global accelerator network: Workshop Report

    International Nuclear Information System (INIS)

    Agarwal, Deborah; Olson, Gary; Olson, Judy

    2002-01-01

    The concept of a ''Global Accelerator Network'' (GAN) has been put forward as a means for inter-regional collaboration in the operation of internationally constructed and operated frontier accelerator facilities. A workshop was held to allow representatives of the accelerator community and of the collaboratory development community to meet and discuss collaboration tools for the GAN environment. This workshop, called the Collaboration Tools for the Global Accelerator Network (GAN) Workshop, was held on August 26, 2002 at Lawrence Berkeley National Laboratory. The goal was to provide input about collaboration tools in general and to provide a strawman for the GAN collaborative tools environment. The participants at the workshop represented accelerator physicists, high-energy physicists, operations, technology tool developers, and social scientists that study scientific collaboration

  6. Improving usability and accessibility of cheminformatics tools for chemists through cyberinfrastructure and education.

    Science.gov (United States)

    Guha, Rajarshi; Wiggins, Gary D; Wild, David J; Baik, Mu-Hyun; Pierce And, Marlon E; Fox, Geoffrey C

    Some of the latest trends in cheminformatics, computation, and the world wide web are reviewed with predictions of how these are likely to impact the field of cheminformatics in the next five years. The vision and some of the work of the Chemical Informatics and Cyberinfrastructure Collaboratory at Indiana University are described, which we base around the core concepts of e-Science and cyberinfrastructure that have proven successful in other fields. Our chemical informatics cyberinfrastructure is realized by building a flexible, generic infrastructure for cheminformatics tools and databases, exporting "best of breed" methods as easily-accessible web APIs for cheminformaticians, scientists, and researchers in other disciplines, and hosting a unique chemical informatics education program aimed at scientists and cheminformatics practitioners in academia and industry.

  7. Trends in building materials

    CSIR Research Space (South Africa)

    Mapiravana, Joseph

    2012-07-01

    Full Text Available , steel and composites research. Analysis of the building materials market situation in South Africa identified the major building material cost drivers as cement and concrete and steel. For South Africa, research and development focus has been... in South Africa be cement and concrete, light-weight steel construction, smart tiles and composite materials. Nanotechnology materials should be used for property enhancement. The building materials developed should be modularised and/or panelised...

  8. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  9. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  10. Polymeric Smart Skin Materials: Concepts, Materials, and Devices

    Science.gov (United States)

    2006-03-31

    Fudouzi, H. and Xia, Y., Langmuir 2003, 19, 9653-9658 (also see the highlight in Materials Today, 2003, December, p. 7). 15. Langmuir - Blodgett Silver...development of electroactive dendrimers, dendronized polymers, hyperbranched polymers, and phase- separating block copolymers. Development of such materials...Dalton, and A. K-Y. Jen, " Hyperbranched Fluorinated Aromatic Polyester from Mild One-Pot Polymerization of AB 2 Hydroxy Acid Monomer," Macromolecules

  11. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  12. Superconductors and electrotechnical materials

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, V

    1975-07-01

    A description is given of the properties of superconducting materials and of other materials which will be used in low temperature electrical engineering. The electrical and magnetic properties of type 1 or soft and type 2 or hard superconducting materials are analyzed. Electroinsulating and magnetic materials at low temperatures are also surveyed. Emphasis is placed on gaseous and fluid dielectric substances which retain their condition of physical aggregation at low temperatures and provide a cryogenic medium. These include helium, hydrogen, and nitrogen. As for solid dielectrics, satisfactory electroinsulating materials in terms of mechanical and electrical properties include the category of thermoplastic organic materials such as mylar, teflon, kapton, and nylon. It is also emphasized that cryoelectrical engineering requires magnetic materials with high magnetic induction at low temperatures, coercive field and low magnetic loss.

  13. Material for desulphurisation. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, F; Maus, W

    1979-07-19

    The invention concerns a material in pellet formm for desulphurisation of gases with a high CO/sub 2/ content, particularly sewer gas, where the material consists mainly of iron oxide hydrate, to which a loosening material, binding material and additional materials such as calcium carbonate and furnace slack are added, and which contains combined water. Chemically active iron oxide hydrate material such as material which occurs as remnant in pyrogenic bauxite treatment in aluminium manufacture, bog iron ore, material from water works and similar materials can be used as iron oxide hydrate. Sawdust or turf can be used as loosening material to increase the open porosity.

  14. Back to the Future? History, Material Culture and New Materialism

    Directory of Open Access Journals (Sweden)

    Hans Schouwenburg

    2015-04-01

    Full Text Available The study of history currently witnesses two markedly different material turns. Some historians are using material artefacts as alternatives to textual sources. Others draw on ‘new materialism’, a new tradition in thought that originated in the field of gender studies. Both groups are trying to move beyond the cultural turn, which has dominated the study of history since the 1980s. However, the first group merely extends the programme of the cultural turn into new domains without rejecting its methods or epistemological foundations. The latter group, on the other hand, provides a new cultural theory. This article demonstrates that the ‘new’ in new materialism is not so much an increased engagement with the material world, but rather a new conceptualization of developing theory and reading texts, which cuts through established dichotomies between matter and meaning or culture and the social. In doing so, a new materialist history can solve some of the problems associated with the cultural turn and the turn to material artefacts.

  15. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  16. Food Packaging Materials

    Science.gov (United States)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  17. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  18. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  19. New materials in defence

    International Nuclear Information System (INIS)

    Khan, Sikandar S.; Khan, Shahid A.; Butt, N.M.

    1992-01-01

    National defence is very important and always needs new such materials which have technological and socio-economic development of human society. The types of materials used by a society reflect its level of sophistication. These modern materials are basically the same conventional materials but with a greater knowledge content which include superalloys, modern polymers, engineering ceramics and the advanced composite. The production and use of new materials is playing and important role in the recent development in the defence industry. (A.B.)

  20. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  1. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  2. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  3. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  4. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Ferrada, J.J.

    1996-01-01

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials

  5. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  6. Green materials for sustainable development

    Science.gov (United States)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  7. Intelligent material systems - The dawn of a new materials age

    International Nuclear Information System (INIS)

    Rogers, C.A.

    1993-01-01

    The intelligent material system solution to such engineering problems as the design of a robotic arm borrows directly from biological analogs; materials that behave much as muscles do during contraction can be employed as induced strain actuators which work against the intrinsic structural impedance of the component. Unlike actual human arms, which are jointed, the intelligent structure may be a continuum. The adaptation of structural impedance may be regarded as the most fundamental and consequential concept in the field of intelligent material systems

  8. Effects of Material And Non-Material Reinforcers On Academic ...

    African Journals Online (AJOL)

    This study examined effects of material and non-material reinforcers on academic performance of Abia State Senior Secondary Schools girls on health science. As a quasi-experimental study, 120 SS II students were selected from six secondary schools located in the three Educational zones of the state. From each zone ...

  9. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  10. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  11. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    According to the provisions of The Law, those stipulated as internationally controlled materials are nuclear source materials, nuclear fuel materials, moderating materials, reactors and facilities, transferred from such as the U.S.A., the U.K. and Canada on the agreements of peaceful uses of atomic energy, and nuclear fuel materials accruing therefrom. (Mori, K.)

  12. Skateboard deck materials selection

    Science.gov (United States)

    Liu, Haoyu; Coote, Tasha; Aiolos; Charlie

    2018-03-01

    The goal of this project was to identify the ideal material for a skateboard deck under 200 in price, minimizing the weight. The material must have a fracture toughness of 5 MPa/m2, have a minimum lifetime of 10, 000 cycles and must not experience brittle fracture. Both single material and hybrid solutions were explored. When further selecting to minimize weight, woods were found to be the best material. Titanium alloy-wood composites were explored to determine the optimal percentage composition of each material.A sandwich panel hybrid of 50% titanium alloy and 50% wood (Ti-Wood) was found to be the optimum material, performing better than the currently used plywood.

  13. The Application of materials attractiveness in a graded approach to nuclear materials security

    International Nuclear Information System (INIS)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.; Murphy, J.

    2013-01-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED

  14. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  15. Impact-limiting materials characterization

    International Nuclear Information System (INIS)

    Glass, R.E.; Duffey, T.A.; McConnell, P.

    1993-01-01

    Three types of impact-limiting materials have been characterized which have applications in packages for the transport of radioactive materials. These materials are aluminum honeycombs, polyurethane foams, and aluminum foams. The results of the materials characterization have indicated strengths and weaknesses for each type of material. The polyurethane foams provide good impact limiting ability and excellent thermal insulation. However, they burn when subjected to the regulatory thermal event in the presence of air. The aluminum honeycombs provide excellent impact resistance in specific impact orientations. However, they provide relatively poor resistance to thermal assault. Finally, the aluminum foams exhibit relatively poor impact energy absorption capacities, significant variability in energy absorption, and limited thermal insulation. The development of the figures of merit examined the response of the materials to the impact event with the intent of maximizing the energy absorption of the materials with respect to either the volume or mass of the materials. Three figures of merit will be presented for the structural response. The figure of merit for the thermal event is based on minimizing the heat flux to the containment boundary. The paper presents a discussion of the test methods, a summary of the data and the figures of merit for each material. (J.P.N.)

  16. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  17. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  18. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  19. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  20. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors, and the former notification No. 26, 1961, is hereby abolished. Internationally regulated goods under the law are as follows: nuclear raw materials, nuclear fuel materials and moderator materials transferred by sale or other means from the governments of the U.S., U.K., Canada, Australia and France or the persons under their jurisdictions according to the agreements concluded between the governments of Japan and these countries, respectively, the nuclear fuel materials recovered from these materials or produced by their usage, nuclear reactors, the facilities and heavy water transferred by sale or other means from these governments or the persons under their jurisdictions, the nuclear fuel materials produced by the usage of such reactors, facilities and heavy water, the nuclear fuel materials sold by the International Atomic Energy Agency under the contract between the Japanese government and the IAEA, the nuclear fuel materials recovered from these materials or produced by their usage, the heavy water produced by the facilities themselves transferred from the Canadian government, Canadian governmental enterprises or the persons under the jurisdiction of the Canadian government or produced by the usage of these facilities, etc. (Okada, K.)

  1. Electrically conductive material

    Science.gov (United States)

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  2. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.

    Science.gov (United States)

    McLaren, Edward A; Figueira, Johan

    2015-06-01

    The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.

  3. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  4. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  5. Materials for the nuclear - Modelling and simulation of structure materials

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Cappelaere, Chantal; Andrieux, Catherine; Athenes, Manuel; Baldinozzi, Guido; Bechade, Jean-Luc; Bonin, Bernard; Boutard, Jean-Louis; Brechet, Yves; Bruneval, Fabien; Carassou, Sebastien; Castelier, Etienne; Chartier, Alain; Clouet, Emmanuel; Marinica, Mihai-Cosmin; Crocombette, Jean-Paul; Dupuy, Laurent; Forget, Pierre; Fu, Chu Chun; Garnier, Jerome; Gelebart, Lionel; Henry, Jean; Jourdan, Thomas; Luneville, Laurence; Marini, Bernard; Meslin, Estelle; Nastar, Maylise; Onimus, Fabien; Poussard, Christophe; Proville, Laurent; Ribis, Joel; Robertson, Christian; Rodney, David; Roma, Guido; Sauzay, Maxime; Simeone, David; Soisson, Frederic; Tanguy, Benoit; Toffolon-Masclet, Caroline; Trocellier, Patrick; Van Brutzel, Laurent; Ventelon, Usa; Vincent, Ludovic; Willaime, Francois; Yvon, Pascal; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2016-01-01

    This collective publication proposes presentations of scientific approaches implemented to model and simulate the behaviour of materials submitted to irradiation, of associated experimental methods, and of some recent important results. After an introduction presenting the various materials used in different types of nuclear reactors (PWR, etc.), the effects of irradiation at the macroscopic or at the atomic scale, and the multi-scale (time and space) approach to the modelling of these materials, a chapter proposes an overview of modelling tools: multi-scale approach, electronic calculations for condensed matter, inter-atomic potentials, molecular dynamics simulation, thermodynamic and medium force potentials, phase diagrams, simulation of primary damages in reactor materials, kinetic models, dislocation dynamics, production of microstructures for simulation, crystalline visco-plasticity, homogenization methods in continuum mechanics, local approach and probabilistic approach in material fracture. The next part presents tools for experimental validation: tools for microscopic characterization or for mechanical characterization, experimental reactors and tests in atomic pile, tools for irradiation by charged particles. The next chapters presents different examples of thermodynamic and kinetic modelling in the case of various alloys (zirconium alloys, iron-chromium alloys, silicon carbide, austenitic alloys), of plasticity and failure modelling

  6. New materials

    International Nuclear Information System (INIS)

    Joshi, S.K.; Rao, C.N.R.; Tsuruta, T.

    1992-01-01

    The book contains the state-of-the art lectures delivered at the discussion meeting on new materials, a field in which rapid advances are taking place. The main objective of the meeting was to bring active scientists in this area from Japan and India together. The topics covered diverse aspects of modern materials including high temperature superconducting compounds. (M.G.B.)

  7. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  8. Laser Materials Processing for NASA's Aerospace Structural Materials

    Science.gov (United States)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  9. The Application of materials attractiveness in a graded approach to nuclear materials security

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Bathke, C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Dalton, D.; Murphy, J. [National Nuclear Security Administration, US Department of Energy, 1000 Independent Ave., S. W. Washington, DC 20585 (United States)

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.

  10. Reflections on prospective raw materials and materials with regard to the Czech Republic

    International Nuclear Information System (INIS)

    Schejbal, C.; Palas, M.

    1997-01-01

    Reflections on prospective mineral raw materials and materials must rest upon the expected demographic evolution, the evaluation of economic development and the development of manufacturing technologies and materials corresponding to them, trends in the consumption of mineral raw materials and possibilities of securing them. The evaluation of the given factors under conditions of the Czech Republic shows that one of the decisive prerequisites to transforming the Czech economy is to assure the fuel and energy security of the state. In addition to emphasis put on traditional and newly developed technologies of utilization of domestic resources of coal and the development of nuclear power, a diversification of supplies of oil and gas is necessary. Moreover, it is necessary to ensure domestic resources of raw materials to some prospective material areas, or to provide these raw materials by means of imports and/or entrepreneurial activity abroad. As far as raw materials for building and industrial rocks are concerned, it is necessary to support the exploitation and home utilization through laws and suitable economic tools at respecting environmental limitations. With non-traditional prospective raw materials, it will be desirable to promote exploration and mining especially in those cases when a precondition exists for the securing of sufficient reserves or when reserves are already known

  11. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  12. Impacted material placement plans

    International Nuclear Information System (INIS)

    Hickey, M.J.

    1997-01-01

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility

  13. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  14. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  15. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  16. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials

    Directory of Open Access Journals (Sweden)

    Jinghua Ye

    2017-01-01

    Full Text Available Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials.

  17. Electromagnetic Processing of Materials Materials Processing by Using Electric and Magnetic Functions

    CERN Document Server

    Asai, Shigeo

    2012-01-01

    This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrica...

  18. Materials data base as an interface between fusion reactor designs and materials development

    International Nuclear Information System (INIS)

    Ishino, S.; Iwata, S.

    1983-01-01

    The materials data base is an integrated information system of experimental and/or calculated data of materials being compiled to meet the broad needs for materials data by taking advantage of the data base management systems. In this paper the objective of such computerized data base is described from the viewpoint of materials engineers and fusion system designers. Materials data spread themselves widely from the field that relates fundamental understanding of the behaviors of electrons, atoms, vacancies, dislocations and so on to the performance of components, devices, machines and systems. In our approach this information is described as ''relations'' by a set of tables which comprise related variables, for example, a set of values about essential properties for materials selection. This approach based on the relational model enables relational operations, i.e. SELECTION, PROJECTION, JOIN and so on, to select suitable materials, to set trade-off parameters for system designers and to establish design criteria. Stored data comprise (i) fundamental properties for all elements and potential structural materials, (ii) low cycle fatigue, irradiation creep and swelling data for type 316 stainless steels. These data have been selected and evaluated from critical reviews of existing data base of about 2 mega bytes data, some examples of materials selections and extraction of trade-off parameters are shown as a subject of critical issue concerning how to bridge the large gap between materials developments and system designs. (author)

  19. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  20. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  1. Ecological materials for solar architecture

    International Nuclear Information System (INIS)

    Zbasnik-Senegaenik, M.

    2000-01-01

    In general, materials which have been used in construction, have had a negative influence in all the phases of the life cycle. The effects can be seen in the form of tampering with the environment, overuse of electric power, harmful emissions, wastes and in the form of pollution with vapours, dust, fibres, poisonous and radioactive matter. Materials can be divided into three groups regarding their origin: natural materials, artificial mineral materials and synthetic materials. An assessment of separate influences on macro- and micro-environment shows a hierarchical scale of suitability of material use. Materials of natural origin (stone, clay, wood) and less artificial ones (brick, ceramic, metals, glass, lime, cement, concrete, mineral thermal-insulation materials) are most convenient for man and environment. Synthetic materials (plastics, polymers, synthetic thermal-insulation materials, synthetic pastes, composed synthetic materials) negatively influence macro- and micro-environment and therefore they should be used on an extremely selective and premeditated basis. Ecological structure of the future will demand the nowadays-established exploitation of natural sources of power and passive exploitation of natural resources. Introduction of ecological constructing is to be foreseen in planing of the future buildings. At present ecological constructing includes two principles ecological selection of materials and disintegration of composite materials and constructions. (au)

  2. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  3. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  4. Auditing nuclear materials statements

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    A standard that may be used as a guide for persons making independent examinations of nuclear materials statements or reports regarding inventory quantities on hand, receipts, production, shipment, losses, etc. is presented. The objective of the examination of nuclear materials statements by the independent auditor is the expression of an opinion on the fairness with which the statements present the nuclear materials position of a nuclear materials facility and the movement of such inventory materials for the period under review. The opinion is based upon an examination made in accordance with auditing criteria, including an evaluation of internal control, a test of recorded transactions, and a review of measured discards and materials unaccounted for (MUF). The standard draws heavily upon financial auditing standards and procedures published by the American Institute of Certified Public Accountants

  5. Material Parenting: How the Use of Goods in Parenting Fosters Materialism in the Next Generation

    OpenAIRE

    Marsha L. Richins; Lan Nguyen Chaplin

    2015-01-01

    This research introduces the concept of material parenting, in which parents use material goods to express their love or to shape children's behavior. Despite the common use of material goods for these purposes, possible long term effects of material parenting practices have not been studied. This article addresses this oversight by examining the potential effects of material parenting on the material values of children once they're grown. This research proposes and tests a material parenting...

  6. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  7. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  8. Contributions to materials science

    International Nuclear Information System (INIS)

    Asbeck, O.W.; Matucha, K.H.

    1989-01-01

    The ten papers presented at a festive colloquium held on November 14, 1988 in Frankfurt to honour Prof. Peter Wincierz deal with the texture and mechanical anisotropy of zirconium alloys (by E. Tenckhoff), materials for cladding tubes (H. Boehm), aluminium materials achieved by near technology (W. Bunk), dispersion-strengthened materials (H. Fischmeister), materials for plain bearings (K.H. Matucha), and the archeometallurgy of copper (H.-G. Bachmann). (MM) [de

  9. Material requirements planning: a better way to plan material.

    Science.gov (United States)

    Tomas, S

    1990-08-01

    MRP systems can benefit hospitals in their management of material. Systems provide the means to schedule surgical procedures, calculate material requirements, release orders, plan future capacity requirements, and release and track work orders. MRP can be a powerful tool if properly implemented. All it takes is individuals dedicated to maintaining the discipline and data integrity required to make MRP successful.

  10. Practical materials characterization

    CERN Document Server

    2014-01-01

    Presents cross-comparison between materials characterization techniquesIncludes clear specifications of strengths and limitations of each technique for specific materials characterization problemFocuses on applications and clear data interpretation without extensive mathematics

  11. Neutron protection material and neutron protection devices made of such material

    International Nuclear Information System (INIS)

    Ries, W.

    1984-01-01

    This is concerned with a neutron protection material made of thermoplastic or thermosetting plastic from high molecule hydrocarbon compounds with particularly high hydrogen and carbon contents as braking or shielding material (moderator) for fast neutrons. The plastic can contain boron for absorbing low energy neutrons. The material is used to manufacture foil, plates, pipes, shielding walls, components, bodies for radiation protection equipment, devices and plant and for neutron protection clothes. (orig./HP) [de

  12. Irradiation environment and materials behavior

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1992-01-01

    Irradiation environment is unique for materials used in a nuclear energy system. Material itself as well as irradiation and environmental conditions determine the material behaviour. In this review, general directions of research and development of materials in an irradiation environment together with the role of materials science are discussed first, and then recent materials problems are described for energy systems which are already existing (LWR), under development (FBR) and to be realized in the future (CTR). Topics selected are (1) irradiation embrittlement of pressure vessel steels for LWRs, (2) high fluence performance of cladding and wrapper materials for fuel subassemblies of FBRs and (3) high fluence irradiation effects in the first wall and blanket structural materials of a fusion reactor. Several common topics in those materials issues are selected and discussed. Suggestions are made on some elements of radiation effects which might be purposely utilized in the process of preparing innovative materials. (J.P.N.) 69 refs

  13. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  14. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ironside, T G

    1921-09-01

    In the distillation of carbonaceous material such as shale, coal, lignite, wood or liquid hydrocarbons, the material is mixed with a heated granular substance such as sand which supplies the necessary heat. The shale or the like, which may be preheated, is fed from a hopper by a worm conveyer to a tube leading into a retort, and the heated granular material such as sand is supplied from a jacketed container through a tube. On the lower end of a rotary shaft are radial arms to which are fixed angularly disposed blades which serve to mix the shale and hot sand and deliver the residue to a central discharge pipe closed at the bottom by a conical valve which opens when the weight of the superimposed material is sufficient. The distillates are taken off by an outlet. Steam vapor or gas may be supplied to the retort, preferably through a hollow shaft leading to hollow stirrers perforated to permit of the gas passing into the material. The retort may be externally heated by hot gases in the space surrounding the retort, and the latter may be divided by horizontal floors so that the material is caused to funnel from the periphery to the center of the floor, then through a central opening on to the floor next below, and from the center to the periphery of this floor, and so on.

  15. In-plane material continuity for the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    When performing discrete material optimization of laminated composite structures, the variation of the in-plane material continuity is typically governed by the size of the finite element discretization. For a fine mesh, this can lead to designs that cannot be manufactured due to the complexity...

  16. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    Mechanical and Corrosion Properties (ORNL/TM-2005/81/R1). The final report on another related project at the University of Tennessee by George Pharr, Easo George, and Michael Santella has been published as Development of Combinatorial Methods for Alloy Design and Optimization (ORNL/TM-2005-133). The goal of the project was to increase the high-temperature strength by 50% and upper use temperature by 86 to 140 F (30 to 60 C) of H-Series of cast austenitic stainless steels. Meeting such a goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The goal of the project was achieved by using the alloy design methods developed at ORNL, based on precise microcharacterization and identification of critical microstructure/properties relationships and combining them with the modern computational science-based tools that calculate phases, phase fractions, and phase compositions based on alloy compositions. The combined approach of microcharacterization of phases and computational phase prediction would permit rapid improvement of the current alloy composition of an alloy and provide the long-term benefit of customizing alloys within grades for specific applications. The project was appropriate for the domestic industry because the current H-Series alloys have reached their limits both in high-temperature-strength properties and in upper use temperature. The desire of Duraloy's industrial customers to improve process efficiency, while reducing cost, requires that the current alloys be taken to the next level of strength and that the upper use temperature limit be increased. This project addressed a specific topic from the subject call: to develop materials for manufacturing processes that will increase high-temperature strength, fatigue resistance, corrosion, and wear resistance. The outcome of the project would benefit manufacturing processes in the chemical, steel, and heat-treating industries.

  17. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  18. X-ray screening materials

    International Nuclear Information System (INIS)

    Wardley, R.B.

    1981-01-01

    This invention relates to x-ray screening materials and especially to materials in sheet form for use in the production of, for example, protective clothing such as aprons and lower back shields, curtains, mobile screens and suspended shields. The invention is based on the observation that x-ray screening materials in sheet form having greater flexiblity than the hitherto known x-ray screening materials of the same x-ray absorber content can be produced if, instead of using a single sheet of filled sheet material of increased thickness, one uses a plurality of sheets of lesser thickness together forming a laminar material of the desired thickness and one bonds the individual sheets together at their edges and, optionally, at other spaced apart points away from the edges thereby allowing one sheet to move relative to another. (U.K.)

  19. Advanced Industrial Materials Program

    Science.gov (United States)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  20. Thermoelectric materials -- New directions and approaches. Materials Research Society symposium proceedings, Volume 478

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M; Kanatzidis, M G; Lyon, Jr, H B; Mahan, G D [eds.

    1997-07-01

    Thermoelectric materials are utilized in a wide variety of applications related to solid-state refrigeration or small-scale power generation. Thermoelectric cooling is an environmentally friendly method of small-scale cooling in specific applications such as cooling computer chips and laser diodes. Thermoelectric materials are used in a wide range of applications from beverage coolers to power generation for deep-space probes such as the Voyager missions. Over the past thirty years, alloys based on the Bi-Te systems {l{underscore}brace}(Bi{sub 1{minus}x}Sb{sub x}){sub 2} (Te{sub 1{minus}x}Se{sub x}){sub 3}{r{underscore}brace} and Si{sub 1{minus}x}Ge{sub x} systems have been extensively studied and optimized for their use as thermoelectric materials to perform a variety of solid-state thermoelectric refrigeration and power generation tasks. Despite this extensive investigation of the traditional thermoelectric materials, there is still a substantial need and room for improvement, and thus, entirely new classes of compounds will have to be investigated. Over the past two-to-three years, research in the field of thermoelectric materials has been undergoing a rapid rebirth. The enhanced interest in better thermoelectric materials has been driven by the need for much higher performance and new temperature regimes for thermoelectric devices in many applications. The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, ZT = ({alpha}{sup 2}{sigma}/{lambda})T, where {alpha} is the Seebeck coefficient, {sigma} the electrical conductivity and {lambda} the total thermal conductivity. The best thermoelectric materials have a value of ZT = 1. This ZT = 1 has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exits for why it can not be larger. The focus of the symposium is embodied in the title, Thermoelectric Materials: New Directions and Approaches. Many of the researchers in the

  1. Analysis of irradiated materials

    International Nuclear Information System (INIS)

    Bellamy, B.A.

    1988-01-01

    Papers presented at the UKAEA Conference on Materials Analysis by Physical Techniques (1987) covered a wide range of techniques as applied to the analysis of irradiated materials. These varied from reactor component materials, materials associated with the Authority's radwaste disposal programme, fission products and products associated with the decommissioning of nuclear reactors. An invited paper giving a very comprehensive review of Laser Ablation Microprobe Mass Spectroscopy (LAMMS) was included in the programme. (author)

  2. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  3. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Energy Technology Data Exchange (ETDEWEB)

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  4. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    International Nuclear Information System (INIS)

    Santaoja, K.

    1997-01-01

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable 'equivalent tensile flow stress in the matrix material' denoted by σ M . Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for σ M . This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor σ and σM. Investigation of the Clausius-Duhem inequality shows that in compression, states occur which are not

  5. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  6. Materials risk analysis.

    Science.gov (United States)

    2010-02-01

    State highway authorities routinely examine the quality of the materials used to build highway construction projects. Some : materials are tested, some are accepted through a manufacturers certification of quality or compliance, some are physicall...

  7. Reference materials and measurement traceability

    International Nuclear Information System (INIS)

    Bingham, C.D.

    1980-01-01

    Nuclear materials safeguards within the U.S.A. are accomplished by the integration of activities involving physical protection, material control and material accountability. Material accountability requires both sound measurement technology and well-defined accounting procedures to provide final evidence that physical protection and materials control have achieved their purpose. 5 refs

  8. Materials selection in mechanical design

    International Nuclear Information System (INIS)

    Ashby, M.F.; Cebon, D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape. (orig.)

  9. Materials selection in mechanical design

    OpenAIRE

    Ashby , M.; Cebon , D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape.

  10. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  11. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  12. Nuclear Materials Management. Proceedings of the Symposium on Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    An increasing number of countries are using nuclear materials which, because of their high value and the potential hazards involved, require special methods of handling. To discuss these and to provide a forum at which different systems for achieving the necessary economy and safety could be compared, the International Atomic Energy Agency held a Symposium at Vienna on Nuclear Materials Management from 30 August to 3 September, 1965. It was attended by 115 participants from 19 Member States and two international organizations. Nuclear materials are already being used on an industrial scale and their high cost demands close and continuous control to ensure that they are delivered precisely on time and that they are used to the fullest possible extent before they are withdrawn from service. Routine industrial methods of material control and verification are widely used to ensure safe and economical operation and handling in nuclear power stations, in fuel-element fabrication and reprocessing plants, and in storage facilities. In addition special refinements are needed to take account of the value and the degree of purity required of nuclear materials. Quality as well as quantity has to be checked thoroughly and the utmost economy in processing is necessary. The radioactivity of the material poses special problems of handling and storage and creates a potential hazard to health. A further problem is that of criticality. These dangers and the means of averting them are well understood, as is evidenced by the outstandingly good safety record of the atomic energy industry. But besides accommodating all these special problems, day-to-day procedures must be simple enough to fit in with industrial conditions. Many of the 58 papers presented at the Symposium emphasized that records, checks, measurements and handling precautions, if suitably devised, provide the control vital to efficient operation, serve as checks against loss or waste of valuable materials and help meet the

  13. Combating illicit trafficking in nuclear and other radioactive material. Reference material

    International Nuclear Information System (INIS)

    2007-01-01

    This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. This manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material. However, it is recognized that effective measures for controlling the transfer of equipment, non-nuclear material, technology or information that may assist in the development of nuclear explosive devices, improvised nuclear devices (INDs) or other radiological dispersal devices (RDDs) are important elements of an effective nuclear security system. In addition, issues of personal integrity, inspection and investigative procedures are not discussed in this manual, all of which are essential elements for an effective overall security system. The manual considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving nuclear and other radioactive material. Depending on conditions in a specific State, including its legal and governmental infrastructure, some of the measures discussed will need to be adapted to suit that State's circumstances. However, much of the material can be applied directly in the context of other national programmes. This manual is divided into four main parts. Section 2 discusses the threat posed by criminal or unauthorized acts involving nuclear and other radioactive material, as well as the policy and legal bases underlying the international effort to restrain such activities. Sections 3 and 4 summarize the major international undertakings in the field. Sections 5-8 provide some basic technical information on radiation, radioactive material, the health consequences of radiation

  14. Radiation-sensitive material and method of recording information upon radiation-sensitive material

    International Nuclear Information System (INIS)

    Petrov, V.V.; Krjuchin, A.A.

    1981-01-01

    The invention can be employed for recording binary information in memory units of electronic computers, in video-recording equipment, laser recording devices and other recording means. The proposed radiation-sensitive material comprises a metallic layer made of silver, or copper, or nickel, or thallium, or alloy thereof, an inorganic material layer made of arsenic chalcogenide, or antimony chalcogenide, or bismuth chalcogenide, and a separation layer disposed between the metallic layer and the inorganic material layer made of a material which is inert relative to said layers, which separation layer has a thickness sufficient for preventing interaction between the metallic layer and the inorganic material layer when the radiation-sensitive materials is exposed to electromagnetic or corpuscular radiation having a power density lower than a threshold value required for the breakdown of the separation layer in the area exposed to radiation. The separation layer can be made from As, Sb, Si or Ge or their oxides, metallic oxides of e.g. Al, Ti, V or Fe, or from polyorganosiloxane films. (author)

  15. Encountering Materiality

    DEFF Research Database (Denmark)

    Svabo, Connie

    2016-01-01

    DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016.......DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016....

  16. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  17. Molecules to Materials

    Indian Academy of Sciences (India)

    the School of Chemistry, ... Design and fabrication of molecular materials combines ... insights into materials gained through condensed matter ... The most important characteristic of liquid crystals is that they exhibit fluid nature and at the same.

  18. Leaching models for multiple immersed materials and for granular materials flushed in a column

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1997-01-01

    The present paper addresses the leaching of hazardous contaminants from immersed and replenished materials and from granular materials flushed in a column. First, the leaching of an immersed material in contact with a limited volume of leachant is studied. The mass transfer from material to leachant

  19. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  20. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  1. Materials characterization studies on LANA75/85 materials for replacement beds

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Kirk L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    During FY15 and FY16, a purchase order (PO) was placed with Japan Metals and Chemicals, USA after an open bidding procurement process for 282 kg of LaNi4.25Al0.75 and 226 kg. of LaNi4.15Al0.85. These materials were to be used in Tritium Facility replacement beds for existing beds that have reached the end of their useful life. As part of the PO, a 100 g. sample of each material was delivered to the SRNL Hydrogen Processing Group for characterization studies as is typically done for all newly acquired hydride materials. The PO actually employed a “trust but verify” approach where JMCUSA was allowed to ship materials it felt met specifications without SRS confirmation, as long as the data used to do so was delivered to SRS as part of the PO documentation package. Subsequent SRNL analysis revealed that the material met all specifications and was of very high quality. This report documents those findings.

  2. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  3. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    Science.gov (United States)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  4. Heat-resistant materials 2. Conference proceedings of the 2. international conference on heat-resistant materials

    International Nuclear Information System (INIS)

    Natesan, K.; Ganesan, P.; Lai, G.Y.

    1995-01-01

    The Second International Conference on Heat-Resistant Materials was held in Gatlinburg, Tennessee, September 11--14, 1995 and focused on materials performance in cross-cutting technologies where heat resistant materials play a large and sometimes life-and performance-limiting roles in process schemes. The scope of materials for heat-resistant applications included structural iron- and nickel-base alloys, intermetallics, and ceramics. The conference focused on materials development, performance of materials in simulated laboratory and actual service environments on mechanical and structural integrity of components, and state-of-the-art techniques for processing and evaluating materials performance. The three keynote talks described the history of heat-resistant materials, relationship between microstructure and mechanical behavior, and applications of these materials in process schemes. The technical sessions included alloy metallurgy and properties, environmental effects and properties, deformation behavior and properties, relation between corrosion and mechanical properties, coatings, intermetallics, ceramics, and materials for waste incineration. Seventy one papers have been processed separately for inclusion on the data base

  5. IMPORTANCE OF MATERIAL BALANCES AND THEIR STATISTICAL EVALUATION IN RUSSIAN MATERIAL, PROTECTION, CONTROL AND ACCOUNTING

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1999-01-01

    While substantial work has been performed in the Russian MPC and A Program, much more needs to be done at Russian nuclear facilities to complete four necessary steps. These are (1) periodically measuring the physical inventory of nuclear material, (2) continuously measuring the flows of nuclear material, (3) using the results to close the material balance, particularly at bulk processing facilities, and (4) statistically evaluating any apparent loss of nuclear material. The periodic closing of material balances provides an objective test of the facility's system of nuclear material protection, control and accounting. The statistical evaluation using the uncertainties associated with individual measurement systems involved in the calculation of the material balance provides a fair standard for concluding whether the apparent loss of nuclear material means a diversion or whether the facility's accounting system needs improvement. In particular, if unattractive flow material at a facility is not measured well, the accounting system cannot readily detect the loss of attractive material if the latter substantially derives from the former

  6. Materials Genome Initiative Element

    Science.gov (United States)

    Vickers, John

    2015-01-01

    NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.

  7. Hysteresis in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    von Moos, Lars

    , obtained at the initial low and final high field. However, in first order materials thermal entropy hysteresis loops are obtained through characterization, corresponding to measurements done in an increasing and a decreasing temperature mode. Indirectly determining the MCE through the use of the Maxwell...... order materials, taking the magnetic and thermal history dependence of material properties into account, as well as the heat production due to hysteretic losses. MnFe(P,As) and Gd5Si2Ge2 compounds are modelled and it is found that the Preisach approach is suitable to reproduce material behavior in both......In this thesis the effects of hysteresis on magnetocaloric material properties and their performance in magnetic refrigeration devices are investigated. This is done through an experimental and model study of first order magnetocaloric materials MnFe(P,As) and Gd5Si2Ge2. The experimental...

  8. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  9. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database

    Directory of Open Access Journals (Sweden)

    But Paul

    2010-06-01

    Full Text Available Abstract Background Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database. Description We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at http://www.cuhk.edu.hk/icm/mmdbd.htm. Conclusions This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.

  10. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are provided for under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning refining business in the enforcement order for the law. The basic concepts and terms are defined, such as: exposure dose, accumulative dose; controlled area; inspected surrounding area and employee. Refining facilities listed in the application for designation shall be classified into clushing and leaching, thickning, refining facilities, storage facilities of nuclear source materials and nuclear fuel materials, disposal facilities of contaminated substances and building for refining, etc. Business program attached to the application shall include expected time of beginning of refining, estimated production amount of nuclear source materials or nuclear fuel materials for the first three years and funds necessary for construction, etc. Records shall be made and kept for particular periods on delivery and storage of nuclear source materials and nuclear fuel materials, control of radiation, maintenance and accidents of refining facilities. Safety securing, application of internationally regulated substances and measures in dangerous situations are stipulated respectively. Exposure dose of employees and other specified matters shall be reported by the refiner yearly to the Director General of Science and Technology Agency and the Minister of International Trade and Industry. (Okada, K.)

  11. Characterization of sialon-type materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Paul Newman [Univ. of California, Berkeley, CA (United States)

    1977-06-01

    Four sialon-type materials using volcanic ash as a raw material were characterized and some of their properties were determined. The M3 and M4 materials were identified as β1--Si3N4 sialons; their principal constituent is silicon. The M2 material was identified as a 15R-A1N polytype sialon whose principal constituent is aluminum. The M1 material is a mixture of the two types. An overview of results showing the general structural formulae and the relative order of the materials with respect to various properties as determined by the investigation is presented. It is concluded that of the materials tested, the M2 material shows the most promise as a candidate for meeting some of the current needs for high-temperature materials. It is also concluded that more research is needed in order to explain the low resistance of these materials to thermal shock since their coefficients of thermal expansion are relatively low.

  12. Electro photographic materials

    International Nuclear Information System (INIS)

    Buzdugan, A.; Andries, A.; Iovu, M.

    2000-01-01

    The invention relates to the creation of electro photographic materials . The invention allows to extend the material photosensitivity into the infrared range of the spectrum. An electro photographic materials contains an electro conducting base, including a dielectric base 1, for example glass, an electro conducting layer 2, for example of Al, Ni, Cr, an injecting layer 3, consisting of amorphous indium phosphide, a vitreous layer 4 of the arsenic sulphide - antimony sulphide system and a transporting layer 5 of the arsenic sulphide or arsenic selenide

  13. Strategic raw materials. Risk management

    International Nuclear Information System (INIS)

    Bertau, Martin; Matschullat, Joerg; Kausch, Peter

    2014-01-01

    This volume is divided into four chapters: (1) Raw material management, (2) Primary raw materials, (3) Secondary raw materials and recycling, (4). Processing and products. The topics for the chapter ''Raw material management'' are: Substitution of raw materials - framework conditions and implementation; Thales: Strategic raw materials; Time for cooperation between the EU and China in raw materials policy; Availability of elements for the semiconductor industry; Market price risks of raw material-intensive companies - identification and management. The topics on the second item ''Primary raw materials'' are: The supply of economic-critical raw materials - A search and analysis for causes; Lithium extraction from primary raw materials - state and perspectives; The global market of rare earths - A balancing act; Rare earth deposits in Namibia; New technologies in exploration and discovery - Focus on activities in Europe. The third chapter, ''Secondary Raw Materials and Recycling'', covered the topics: Technology metals - Systemic Requirements along the recycling chain; Integrated re-use of high-tech and greentech wastes; From the sewage sludge ash to the phosphorus fertilizer RecoPhos P38 in the stress field of waste, fertilizer and soil protection. In chapter 4. ''Processing and products'' are the topics: Treatment and processing of rare earth metals; Processing of mineral resources - opportunities and challenges; Consequences of modern germanium chemistry; Strategic resources - Risk management. A review and outlook with a pinch of fantasy.. [de

  14. Sustainable Materials Management

    Science.gov (United States)

    To introduce businesses, NGOs, and government officials to the concept of Sustainable Materials Management (SMM). To provide tools to allow stakeholders to take a lifecycle approach managing their materials, & to encourage them to join a SMM challenge.

  15. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  16. Material Tracking Using LANMAS

    International Nuclear Information System (INIS)

    Armstrong, F.

    2010-01-01

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  17. Measurement of naturally occurring radioactive materials in commonly used building materials in Hyderabad, India

    International Nuclear Information System (INIS)

    Balbudhe, A.Y.; Vishwa Prasad, K.; Vidya Sagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Building materials can cause significant gamma dose indoors, due to their natural radioactivity content. The knowledge of the natural radioactivity level of building materials is important for determination of population exposure, as most people spend 80-90% of their time indoors furthermore, it is useful in setting the standards and national guidelines for the use and management of these materials. The concentrations of natural radionuclides in building materials vary depending on the local geological and geographical conditions as well as geochemical characteristics of those materials. The aim of the study is to determine levels of natural radionuclide in the commonly used building materials in Hyderabad, India

  18. Safeguards for special nuclear materials

    International Nuclear Information System (INIS)

    Carlson, R.L.

    1979-12-01

    Safeguards, accountability, and nuclear materials are defined. The accuracy of measuring nuclear materials is discussed. The use of computers in nuclear materials accounting is described. Measures taken to physically protect nuclear materials are described

  19. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  20. Fuels and auxiliary materials

    International Nuclear Information System (INIS)

    Svab, V.

    A brief survey is given of the problems of fuels, fuel cans, absorption and moderator materials proceeding from the papers presented at the 1971 4th Geneva Conference on the Peaceful Uses of Nuclear Energy and the 1970 IAEA Conference in New York. Attention is focused on the behaviour of fuel and fuel can materials for thermal and fast reactors during irradiation, radiation stability of absorption materials and the effects of radiation on concrete and on moderator materials. (Z.M.)

  1. Injection Laryngoplasty Materials

    OpenAIRE

    Haldun Oðuz

    2013-01-01

    Injection laryngoplasty is one of the treatment options for voice problems. In the recent years, more safe and more biocompatible injection materials are available on the market. Long and short term injection materials are discussed in this review.

  2. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  3. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  4. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  5. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  6. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  7. I want to make mysterious material

    International Nuclear Information System (INIS)

    Kim, Do Yeon; Jo, Wok

    2006-10-01

    This book deals with material engineering. The contents of this book are revolution of fire, development of material technology, development of metal technology, synthetic fiber, semiconductor revolution, new material alloy, fine ceramics, plastic revolution, superconductivity materials, material for a light emitting display of semiconductor and nano technology. It tells of prologue of artificial material era, beginning of material engineering material engineering revolution and the future of material engineering.

  8. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  9. Characterization of Nanophase Materials

    Science.gov (United States)

    Wang, Zhong Lin

    2000-01-01

    Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.

  10. Material control evaluation

    International Nuclear Information System (INIS)

    Waddoups, I.G.; Anspach, D.A.; Abbott, J.A.

    1993-01-01

    Changes in the Department of Energy's (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel

  11. Mechanical meta-materials

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2016-01-01

    The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed

  12. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis

    OpenAIRE

    Ong, Shyue Ping; Richards, William Davidson; Jain, Anubhav; Hautier, Geoffroy; Kocher, Michael; Cholia, Shreyas; Gunter, Dan; Chevrier, Vincent L.; Persson, Kristin A.; Ceder, Gerbrand

    2012-01-01

    We present the Python Materials Genomics (pymatgen) library, a robust, open-source Python library for materials analysis. A key enabler in high-throughput computational materials science efforts is a robust set of software tools to perform initial setup for the calculations (e.g., generation of structures and necessary input files) and post-calculation analysis to derive useful material properties from raw calculated data. The pymatgen library aims to meet these needs by (1) defining core Pyt...

  13. Research for new materials manufacturing using XAFS. Around the non-crystal materials

    International Nuclear Information System (INIS)

    Sakurai, Masaki

    2000-01-01

    In the new materials manufacturing it becomes important to control its structure in nano-scale. The fine structure analysis using XAFS with the proton factory is also useful for the manufacturing. The following two items are reported. 1) The new materials manufacturing from amorphous state is very useful through the control of super cooling state and through the doping of a very small amount of additive elements; Radial distribution analysis using XAFS is important for understanding of the concentration fluctuation in the amorphous. 2) The new materials manufacturing from the cluster as a raw materials; Manufacturing the new materials from the cluster is very useful method through the condensation of the cluster of through the distribution the cluster in the matrix. The magic number clusters such as Me9O6, Me13O8, Me22O12 and Me43O20 (Me=Fe, Co, Ni) are observed they are much stable in comparing with other clusters. These magic number clusters are expected to be useful for the new material manufacturing. For the control of the cluster formation the in-situ analysis using LVCS is important in understanding the cluster formation process. (H. Katsuta)

  14. Chemicals in material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard

    2015-01-01

    Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material and diisob...

  15. Frontiers in Magnetic Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

  16. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  17. Development of magnetic materials

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.

    2000-01-01

    In the paper are presented both experimental and theoretical basic results of physics of magnetic materials. The special attention is given to a problem of creation of magnetic materials for recording and reproduction of the information. The influence of fundamental scientific results on process of creation of materials with the given properties and constriction of devices and facilities of new generation, and return influence of financing of scientific researches on process of discovering of new unknown fundamental properties of magnetic materials is considered. (author)

  18. Run-off from roofing materials

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to find the runn-off from roof material, a roof has been constructed with two different slopes (30 deg. and 45 deg.). 7 Be and 137 Cs have been used as tracers. Considering new roof material, the pollution removed by run-off processes has been shown to be very different for various roof materials. The pollution is much more easily removed from silicon-treated material than from porous red-tile roof material. Cesium is removed more easily than beryllium. The content of cesium in old roof materials is greater in red-tile than in other less porous roof materials. However, the measured removal from new material does not correspond to the amount accumulated in the old. This could be explained by weathering and by saturation effects. The last effect is probably the more important. The measurements on old material indicate a removal of 44-86% of cesium pollution by run-off, whereas the measurement on new material showed a removal of only 31-50%. It has been demonstrated that the pollution concentration in run-off water could be very different from that in rainwater

  19. X-ray Characterization of Materials

    Science.gov (United States)

    Lifshin, Eric

    1999-09-01

    Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.

  20. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Lee, B. S.

    2002-04-01

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  1. Investigating a new material Practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul; Ayres, Phil

    2013-01-01

    Investigating ways of integrating material performance as a design parameter, four presented projects employ the ability to model force and flow to parameterize and calculate material properties. According to Beylerian and Ritter material performance is today regarded as one of the richest sources...... of innovation. By understanding materials not as static or inanimate, but as engaged by complex behaviours and performances, a new dimension of design potentials can be unleashed. The notion of a new digital-material practice, in which the design and detailing of materials are directly linked to the design...... and detailing of buildings, provides the framework for an emerging field of architectural research. Aiming to innovate structural thinking and create better and more sustainable material usage, these new material practices rely on the ability to compute complex inter-scalar dependencies and link these directly...

  2. Photopolymer holographic recording material

    Science.gov (United States)

    Lawrence, J. R.; O'Neill, F. T.; Sheridan, J. T.

    Photopolymers are promising materials for use in holography. They have many advantages, such as ease of preparation, and are capable of efficiencies of up to 100%. A disadvantage of these materials is their inability to record high spatial frequency gratings when compared to other materials such as dichromated gelatin and silver halide photographic emulsion. Until recently, the drop off at high spatial frequencies of the material response was not predicted by any of the diffusion based models available. It has recently been proposed that this effect is due to polymer chains growing away from their initiation point and causing a smeared profile to be recorded. This is termed a non-local material response. Simple analytic expressions have been derived using this model and fits to experimental data have allowed values to be estimated for material parameters such as the diffusion coefficient of monomer, the ratio of polymerisation rate to diffusion rate and the distance that the polymer chains spread during holographic recording. The model predicts that the spatial frequency response might be improved by decreasing the mean polymer chain lengths and/or by increasing the mobility of the molecules used in the material. The experimental work carried out to investigate these predictions is reported here. This work involved (a) the changing of the molecular weights of chemical components within the material (dyes and binders) and (b) the addition of a chemical retarder in order to shorten the polymer chains, thereby decreasing the extent of the non-local effect. Although no significant improvement in spatial frequency response was observed the model appears to offer an improved understanding of the operation of the material.

  3. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  4. Electrofracturing test system and method of determining material characteristics of electrofractured material samples

    Science.gov (United States)

    Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom; Su, Jiann-Cherng; Williamson, Kenneth Martin; Broome, Scott Thomas; Gardner, William Payton

    2017-08-01

    A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.

  5. Synchrotron radiation and fusion materials

    International Nuclear Information System (INIS)

    Nielsen, S.F.

    2009-01-01

    The development of fusion energy is approaching a stage where the capabilities of materials will be dictating the further progress and the time scale for the attainment of fusion power. EU has therefore funded the Fusion Energy Materials Science project Coordination Action (FEMaS - CA) with the intension to utilise the know-how in the materials community to help overcome the material science problems with the fusion related materials. The FEMaS project and some of the possible applications of synchrotron radiation for materials characterisation are described in this paper. (au)

  6. Defeating anisotropy in material extrusion 3D printing via materials development

    Science.gov (United States)

    Torrado Perez, Angel Ramon

    Additive Manufacturing technologies has been in continuous development for more than 35 years. Specifically, the later denominated Material Extrusion Additive Manufacturing (MEAM), was first developed by S. Scott Crump around 1988 and trademarked later as Fused Deposition Modeling (FDM). Although all of these technologies have been around for a while, it was not until recently that they have been more accessible to everyone. Today, the market of 3D printers covers all ranges of price, from very specialized, heavy and expensive machines, to desktop printers of only a few cubic inches in volume. Until recently, FDM technology had remained somewhat stagnant in terms of developments; however, with the new market boom, scholars and hobbyists have opened new doors for investigation in this area. The technology is now better understood from a software, mechanical, electrical and not less important, materials point of view. The current availability of materials for MEAM is very broad: PLA (Polylactic Acid), ABS (Acrylonitrile Butadiene Styrene), PC (Polycarbonate), PEEK (Polyether Ether Ketone), nylon, polyurethanes, and many others. Even so, these are all materials that were used before for other technologies, adapted but not specifically developed for MEAM. The processes that take place during the production of a part are currently not very well understood, and the final properties exhibited are long ways away from reaching the potential of more traditional manufacturing techniques. Due to the nature of the process, all the material properties always display a certain level of anisotropy. The research covered in these pages aims to shed some light on understanding the different mechanics taking place during the extrusion process of additive manufacturing. The development of new materials for MEAM has been explored. Several blends and composites have been developed, and their tensile properties and fracture mechanics evaluated. The blending of different combinations of

  7. Materials for Space Exploration

    Science.gov (United States)

    Robertson, Luke B.; Williams, Martha

    2010-01-01

    Topics include a lab overview, testing and processing equipment, hemochromic hydrogen sensors, antimicrobial materials, wire system materials, CNT ink formulations, CNT ink dust screens, CNT ink printed circuitry, cryogenic materials development, fire and polymers, the importance of lighting, electric lighting systems, LED for plant growth, and carbon nanotube fiber filaments.

  8. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  9. Insulating materials from renewable raw materials. 3. upd. ed.; Daemmstoffe aus nachwachsenden Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Brandhorst, Joerg; Spritzendorfer, Josef; Gildhorn, Kai; Hemp, Markus

    2009-07-01

    Due to increasing energy prices, obligations to climatic protection and the desire for comfortable, allergy-free living, the thermal insulation is a central question with building and sanitation. Under this aspect, the contribution under consideration describes the very dynamic market of the insulating materials from renewable raw materials and deals with the questions of the users. In particular, the following raw materials are considered in the production of insulating materials: Wood fibre, wood chips, wood wool, sheep wool, flax, hemp, reeds, straw, cellulose.

  10. Functional materials in amperometric sensing polymeric, inorganic, and nanocomposite materials for modified electrodes

    CERN Document Server

    Seeber, Renato; Zanardi, Chiara

    2014-01-01

    Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and

  11. Containing and discarding method for radiation contaminated materials and radiation contaminated material containing composite member

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A container for high level radiation contaminated materials is loaded in an outer container in a state of forming a gap between the outer container and a container wall, low level radiation contaminated materials are filled to the gap between the container of the radiation contaminated materials and the container wall, and then the outer container is sealed. In addition, the thickness of the layer of the low level radiation contaminated materials is made substantially uniform. Then, since radiation rays from the container of the radiation contaminated materials are decayed by the layer of the low level radiation contaminated materials at the periphery of the container and the level of the radiation rays emitted from the outer container is extremely reduced than in a case where the entire amount of high level radiation contaminated materials are filled, the level is suppressed to an extent somewhat higher than the level in the case where the entire amount of the low level radiation contaminated materials are filled. Accordingly, the management corresponds to that for the low level radiation contaminated materials, and the steps for the management and the entire volume thereof are reduced than in a case where the high level radiation contaminated materials and the low level radiation contaminated materials are sealed separately. (N.H.)

  12. Is the materialization of architecture necessarily material?

    Directory of Open Access Journals (Sweden)

    Čarapić Ana

    2008-01-01

    Full Text Available Architectural dematerialization process has started in the first half of the previous century, and has intensively developed at the beginning of this one. Architectural form decomposition on homo­geneous envelope and dependent internal structure, affect on façade materials to liberate from the ballast of supported role, and to gain the privilege to be the main holder of symbolic and sensual dimension. Therefore, on semantic level, they became primary driving force of dematerialization of form, and architecture in the whole. With new technological development, continuity in 'relieving' of matter has been brought to the extreme. Striving for complete liberty of conventional firmness and stability (in functional and phenomenal mode architecture take over the efemer 'week' substances from nature: water, air light, sound, and turn them in it's proper frame. Therefore, the general thesis of this paper is the absurd of architectural materialization with it's on demateriality. Being brought to the turning point, this absurd transforms both architecture (as artificial matter as well as nature itself. The goal of this paper is to predicate principles of material, formal and architectural genesis, in relation to the theoretical sources, as well as by examples of two developed constructions (pavilion 'Blur building' by Diller & Skofidio, and 'Tower of sound' by Toyo Ito.

  13. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  14. Multiscale modeling of materials. Materials Research Society symposium proceedings: Volume 538

    International Nuclear Information System (INIS)

    Bulatov, V.V.; Diaz de la Rubia, T.; Phillips, R.; Kaxiras, E.; Ghoniem, N.

    1999-01-01

    The symposium, Multiscale Modeling of Materials, was held at the 1998 MRS Fall Meeting in Boston, Massachusetts, November 30 to December 3. Though multiple scale models are not new the topic has recently taken on a new sense of urgency. This is in large part due to the recognition that brute force computational approaches often fall short of allowing for direct simulation of both the characteristic structures and temporal processes found in real materials. As a result, a number of hybrid approaches are now finding favor in which ideas borrowed from distinct disciplines or modeling paradigms are unified to produce more powerful techniques. Topics included are modeling dislocation properties and behavior, defect dynamics and microstructural evolution, crystal defects and interfaces, novel methods for materials modeling, and non-crystalline and nanocrystalline materials. Eighty papers have been processed separately for inclusion on the data base

  15. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    1999-01-01

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  16. Materials for Slack Diaphragms

    Science.gov (United States)

    Puschmann, Traute

    1940-01-01

    This report deals with systematic experiments carried out on five diaphragm materials with different pretreatment, for the purpose of ascertaining the suitability of such materials for slack diaphragms. The relationship of deflection and load, temperature and moisture, was recorded. Of the explored materials, synthetic leather, balloon cloth, goldbeaters skin, Igelit and Buna, synthetic leather treated with castor oil is the most suitable material for the small pressure range required. Balloon cloth is nearly as good, while goldbeaters skin, Igelit and Buna were found to be below the required standards.

  17. Materials development for TESOL

    CERN Document Server

    Mishan, Freda

    2015-01-01

    Materials development has become much more important in the field of TESOL in the last twenty years: modules on materials development are now commonplace on MA TESOL courses around the world. The overall aim of the book is to introduce readers to a wide range of theoretical and practical issues in materials development to enable them to make informed and principled choices in the selection, evaluation, adaptation and production of materials. The book aims to show how these choices need to be informed by an awareness of culture, context and purpose.

  18. The materialization of fear

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    to matter in ways not simply reducible to security optimization, risk management and symbolic politics? To reach this aim, I draw on material studies, mobilities design and non-representational theories to provide a rich socio-material tale of how granite stones, bollards and other counter......-terrorist materials contribute to the construction and ‘feel’ of contemporary urban tourism. How do such prominent material designs influence, both affectively, practically and emotionally, tourists? How are they re-appropriated and imbued with (inter)subjective meanings, and how may a richer understanding of how...

  19. [Materials for construction sector].

    Science.gov (United States)

    Macchia, C

    2012-01-01

    The construction sector is characterized by high complexity due to several factors. There are a lot of processes within the building sites and they need the use of different materials with the help of appropriate technologies. Traditional materials have evolved and diversified, meanwhile new products and materials appeared and still appear, offering services which meet user needs, but that often involve risks to the health of workers. Research in the field of materials, promoted and carried out at various levels, has led to interesting results, encoded in the form of rules and laws.

  20. Cathodoluminescence | Materials Science | NREL

    Science.gov (United States)

    shown on a computer screen; the image of a sample semiconductor material appears as a striated oval material sample shown above; the image is a high-contrast light and dark oval on a dark background and was top left of copper indium gallium selenide semiconductor material sample; the image is shown on a

  1. Ladinia linguistica in una monumentale opera: Atlante linguistico del ladino dolomitico e dei dialetti limitrofi - ALD-1, Dr. Ludwig Reichert Verlag, Wiesbaden 1998

    Directory of Open Access Journals (Sweden)

    Mitja Skubic

    2000-12-01

    Full Text Available L'apparizione dell'atlante linguistico di un territorio romanzo va salutata con gioia, come una festa della ricerca scientifica in tale settore. E il sentimenta di gioia ci pervade quando sfogliamo i primi quattro volumi, in folio, dell 'ALD. Non solo per la mole e l'ampia concezione dell'opera, ma altrettanto e più ancora per il ricco materiale che l' ALD offre. A tutta l' equipe scientifica guidata dal rinomato romanista salisburghese prof. Hans Goebl che assieme a Lois Craffonara é anche ideatore dell 'opera, nonché ai collaboratori e all'editore vadano i nostri sinceri ringraziamenti. Ci sia permesso di aggiungere che la nostra rivista si pregia d'aver potuto ospitare alcuni studi scientifici del prof. Goebl, come anche del suo stretto collaboratore prof. Roland Bauer.

  2. Ladinia linguistica in una monumentale opera: atlante lunguistico del ladino dolomitico e dei dialetti limitrofi - ald-1, Dr. Ludwig Reichert Verlag, Wiesbaden 1998.

    Directory of Open Access Journals (Sweden)

    Mitja Skubic

    2015-08-01

    Full Text Available L'apparizione dell'atlante linguistico di un territorio romanzo va salutata con gioia, come una festa della ricerca scientifica in tale settore. E il sentimento di gioia ci pervade quando sfogliamo i primi quattro vol umi, in folio, deli' ALD. Non sol oper la mole e l'ampia concezione dell'opera, ma altrettanto e più ancora per il ricco materiale che l 'ALD offre. A tutta l' équipe scientifica guidata dal rinomato romanista salisburghese prof. Hans Goebl che assieme a Lois Craffonara e anche ideatore deli' opera, nonché ai collaboratori è all'editore vadano i nostri sinceri ringraziamenti. Ci sia permesso di aggiungere che la nostra rivista si pregia d'aver potuto ospitare alcuni studi scientifici del prof. Goebl, come anche del suo stretto collaboratore prof. Roland Bauer.

  3. Correlation monitor materials

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-01-01

    This task has been established with the explicit purpose of ensuring the continued availability of the pedigreed and extremely well-characterized material now required for inclusion in all additional and future surveillance capsules in commercial light-water reactors. During this reporting period, concrete was poured and pallets storage racks were installed to provide adequate room for the storage of the correlation monitor material being transferred from its location at the Y-12 Plant to its archival storage location at ORNL. The racks came from surplus material storage at ORNL and hence were obtained at no cost to the HSSI Program. Inquiries into cost-effective means of sheltering the blocks of correlation monitor materials from further weather-related deteriorization were initiated. The most likely approach would be to procure a turn-key sheet metal building installed over the storage racks by an outside contractor to minimize costs. Most of the material has now been transferred from Y-12 to the ORNL storage area. It has been repositioned on new storage pallets and placed into the storage racks, An update of the detailed material inventory was initiated to ascertain the revised location of all blocks. Pieces of HSST plate O3 were distributed to participants in the ASTM cross-comparison exercise on subsize specimen testing technology. The use of the HSST O3 will provide for data from the many varieties of tests to be performed to be compared with the standardized data previously developed. The testing techniques will focus on ways to measure transition temperature and fracture toughness

  4. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  5. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material......This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag...

  6. Designing through Material

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2014-01-01

    as an opportunity to connect the digital environment with the reality of materials – and use realisation and materialisation to generate architectural developments and findings through an iterative mode of thinking about the dialogue between drawing, materials and fabrication. Consequently the interest and mind...

  7. Innovative Materials for Aircraft Morphing

    Science.gov (United States)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  8. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  9. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  10. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-08-26

    To separate the constituents or conversion products, which are liquid or which liquefy when heated, from solid distillable carbonaceous materials such as coals, oil shales, or other bituminous substances, the initial materials are subjected to a destructive hydrogenation under mild conditions so that the formation of benzines is substantially avoided, after which the material is subjected to an extraction treatment with solvents. The constituents of high boiling point range, suitable for the production of lubricating oils and solid paraffins, obtained by the said destructive hydrogenation are separated off before or/and after the said extraction treatment.

  11. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  12. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  13. Professional Nuclear Materials Management

    International Nuclear Information System (INIS)

    Forcella, A.A.; O'Leary, W.J.

    1966-01-01

    This paper describes the scope of nuclear materials management for a typical power reactor in the United States of America. Since this power reactor is financed by private capital, one of the principal obligations of the reactor operator is to ensure that the investment is protected and will furnish an adequate financial return. Because of the high intrinsic value of nuclear materials, appropriate security and accountability must be continually exercised to minimize losses beyond security and accountability for the nuclear materials. Intelligent forethought and planning must be employed to ensure that additional capital is not lost as avoidable additional costs or loss of revenue in a number of areas. The nuclear materials manager must therefore provide in advance against the following contingencies and maintain constant control or liaison against deviations from planning during (a) pre-reactor acquisition of fuel and fuel elements, (b) in-reactor utilization of the fuel elements, and (c) post-reactor recovery of fuel values. During pre-reactor planning and operations, it is important that the fuel element be designed for economy in manufacture, handling, shipping, and replaceability. The time schedule for manufacturing operations must minimize losses of revenue from unproductive dead storage of high cost materials. For in-reactor operations, the maximum achievable burn-up of the fissionable material must be obtained by means of appropriate fuel rearrangement schemes. Concurrently the unproductive down-time of the reactor for fuel rearrangement, inspections, and the like must be minimized. In the post-reactor period, when the fuel has reached a predetermined depletion of fissionable material, the nuclear materials manager must provide for the most economical reprocessing and recovery of fissionable values and by-products. Nuclear materials management is consequently an essential factor in achieving competitive fuel cycle and unit energy costs with power reactors

  14. Raw material versus processing

    International Nuclear Information System (INIS)

    Berg, E.A.T.

    1989-01-01

    Some brazilian aspects related with the obtainment of raw materials for advanced ceramic products are described. The necessity of import raw materials by the advanced ceramic industries is mentioned, generating dangerous depedence for the country. The brazilian mineral reserves for using in raw materials of advanced ceramic are also cited. (C.G.C.) [pt

  15. Armor systems including coated core materials

    Science.gov (United States)

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  16. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  17. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia

    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders.......This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  18. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions concerning refining business in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as: exposure radiation dose, cumulative dose, control area, surrounding monitoring area and worker. The application for the designation for refining business under the law shall be classified into the facilities for crushing and leaching-filtration, thikening, and refining, the storage facilities for nuclear raw materials and nuclear fuel materials, and the disposal facilities for radioactive wastes, etc. To the application, shall be attached business plans, the explanations concerning the technical abilities of applicants and the prevention of hazards by nuclear raw materials and nuclear fuel materials regarding refining facilities, etc. Records shall be made on the accept, delivery and stock of each kind of nuclear raw materials and nuclear fuel materials, radiation control, the maintenance of and accidents in refining facilities, and kept for specified periods, respectively. Security regulations shall be enacted for each works or enterprise on the functions and organizations of persons engaged in the control of refining facilities, the operation of the apparatuses which must be controlled for the prevention of accidents, and the establishment of control area and surrounding monitoring area, etc. The report on the usage of internationally regulated goods and the measures taken at the time of danger are defined particularly. (Okada, K.)

  19. PENERAPAN MATERIAL KACA DALAM ARSITEKTUR

    Directory of Open Access Journals (Sweden)

    Lestari .

    2014-07-01

    Full Text Available Kaca telah dikenal sejak ribuan tahun dan merupakan bahan buatan manusia yang cukup tua. Penggunaannya sebagai bahan bangunan meluas sejak abad ke 17 terutama setelah perang dunia kedua.  Arsitektur kaca menjadi suatu kecenderungan dari desain-desain bangunan di dunia sejak abad ke-20. Material ini dianggap sangat relevan dengan konsep-konsep yang ada. Kaca digunakan sebagai material ornamen, bukaan atau jendela, material kulit  bangunan,  sampai pada material struktur  bangunan. Sifat kaca yang transparan,  simple, dan bersih menjadikan material ini menguntungkan untuk mendukung konsep yang digunakan. Tulisan ini memaparkan penggunaan kaca sebagai bahan bangunan, baik sebagai bahan ornamen, kulit bangunan atau struktur bangunan, maupun sebagai pendukung konsep arsitektur khususnya konsep transparansi. Dipaparkan pula mengenai sifat-sifat teknis dari bahan kaca sebagai pertimbangan dalam pemilihan bahan bangunan.   Glass has been known for thousands of years and is a man made material  that is quite old. Extends its use as building material since the 17 century, especially after the second world war. Glass architecture become a trend of buiding designs in the world since 20th century. This material relevant to the existing concepts. Glass is used as an ornament material, window, the building skin materials, and the building structure materials. Glass  properties that transparent, simple and clean make this material support the concepts used. This paper describes the use of glass as a building material, either as a ornament, the building skins, the building structures, and the building concepts expecially transparency concept. This paper also present the technical properties of glass as a building material REFERENCES Garg, N.K . 2007. Guidelines for Use of Glass in Building. New age international publisher. New Delhi Piano, R. 1997. The Renzo Piano Logbook. The Monacelli Press. London Staib, Schittich. 1999. Glass Construction

  20. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  1. BOOK REVIEW: Heterogeneous Materials I and Heterogeneous Materials II

    Science.gov (United States)

    Knowles, K. M.

    2004-02-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field\

  2. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Garrow, J R

    1921-04-16

    To obtain an increased yield of by-products such as oils, ammonia, and gas from coal, oil shale, wood, peat, and the like by low and medium temperature processes, the requisite quantity of hot producer gas from a gas producer, is caused to travel, without ignition, through the material as it passes in a continuous manner through the retort so that the sensible heat of the producer gas is utilized to produce distillation of the carbonaceous material, the gases passing to a condenser, absorption apparatus, and an ammonia absorber respectively. In a two-stage method of treatment of materials such as peat or the like, separate supplies of producer gas are utilized for a preliminary drying operation and for the distillation of the material, the drying receptacle and the retort being joined together to render the process continuous. The gas from the drying receptacle may be mixed with the combined producer and retort gas from the retort, after the hydrocarbon oils have deen removed therefrom.

  3. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T D

    1927-07-29

    Coal, lignite, shale, peat, or like carbonaceous material is heated at 70 to 300/sup 0/C with an alkaline solution of sodium, potassium, or ammonium oleate and aluminum sulfate is added in order to solidify the oleate. The solid material is separated and molded or shaped or disintegrated for use as a pigment or mixed with rubber or similar compounds such as solidified, oxidized or polymerized oils in making building blocks or tiles, tires, footwear, or other resilient material. It may be distilled with water or steam in a retort to make gas, or in porous condition can be burnt. The liquid products may be subjected to fractional distillation or mixed with bitumen, resin or oils or materials such as clay, red oxide, or barytes to give colour or body in the manufacture of waterproof heatproof dressings which may be made quick-drying by the addition of ammonia, or for mixing with or spreading over stones or on roads or concrete.

  4. Systems and methods for treating material

    Science.gov (United States)

    Scheele, Randall D; McNamara, Bruce K

    2014-10-21

    Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

  5. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus

    2008-10-15

    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  6. Value assignment of nutrient concentrations in five standard reference materials and six reference materials.

    Science.gov (United States)

    Sharpless, K E; Gill, L M

    2000-01-01

    A number of food-matrix reference materials (RMs) are available from the National Institute of Standards and Technology (NIST) and from Agriculture Canada through NIST. Most of these materials were originally value-assigned for their elemental composition (major, minor, and trace elements), but no additional nutritional information was provided. Two of the materials were certified for selected organic constituents. Ten of these materials (Standard Reference Material [SRM] 1,563 Cholesterol and Fat-Soluble Vitamins in Coconut Oil [Natural and Fortified], SRM 1,566b Oyster Tissue, SRM 1,570a Spinach Leaves, SRM 1,974a Organics in Mussel Tissue (Mytilus edulis), RM 8,415 Whole Egg Powder, RM 8,418 Wheat Gluten, RM 8,432 Corn Starch, RM 8,433 Corn Bran, RM 8,435 Whole Milk Powder, and RM 8,436 Durum Wheat Flour) were recently distributed by NIST to 4 laboratories with expertise in food analysis for the measurement of proximates (solids, fat, protein, etc.), calories, and total dietary fiber, as appropriate. SRM 1846 Infant Formula was distributed as a quality control sample for the proximates and for analysis for individual fatty acids. Two of the materials (Whole Egg Powder and Whole Milk Powder) were distributed in an earlier interlaboratory comparison exercise in which they were analyzed for several vitamins. Value assignment of analyte concentrations in these 11 SRMs and RMs, based on analyses by the collaborating laboratories, is described in this paper. These materials are intended primarily for validation of analytical methods for the measurement of nutrients in foods of similar composition (based on AOAC INTERNATIONAL's fat-protein-carbohydrate triangle). They may also be used as "primary control materials" in the value assignment of in-house control materials of similar composition. The addition of proximate information for 10 existing reference materials means that RMs are now available from NIST with assigned values for proximates in 6 of the 9 sectors of

  7. LECI Department of Nuclear Materials

    International Nuclear Information System (INIS)

    2006-01-01

    The LECI is a 'hot' laboratory dedicated mostly to the characterization of irradiated materials. It has, however, limited activities on fuel, as a back up to the LECA STAR in Cadarache. The LECI belongs to the Section of Research on Irradiated Materials (Department of Nuclear Materials). The Department for Nuclear Materials (DMN) has for its missions: - to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the material physical and mechanical properties under service conditions (irradiation, thermomechanical solicitations, influence of the environment,..); - to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy, in particular via modelling. These materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiations with charged particles; - to establish, maintain and make use of the databases generated by these data; - to propose new or optimized materials, satisfying future service conditions and extend the life or the competitiveness of the associated systems; - to establish constitutive laws and models for the materials in service, incidental, accidental and storage conditions, and contribute to the development of the associated design codes in order to support the safety argumentation of utilities and vendors; - to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms and to offer leads for improvement. This document presents, first, the purpose of the LECI (Historical data, Strategy, I and K shielded cell lines (building 605), M shielded cell line (building 625), Authorized materials). Then, it presents the microscopy and irradiation damage studies laboratory of the Saclay centre (Building 605) Which belongs to the Nuclear

  8. Materials Discovery via CALYPSO Methodology

    Science.gov (United States)

    Ma, Yanming

    2014-03-01

    Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software (http://www.calypso.cn) which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.

  9. Material civilization: things and society.

    Science.gov (United States)

    Dant, Tim

    2006-06-01

    This paper argues that although classical sociology has largely overlooked the importance of social relations with the material world in shaping the form of society, Braudel's concept of 'material civilization' is a useful way to begin to understand the sociological significance of this relationship. The limitations of Braudel's historical and general concept can be partially overcome with Elias's analysis of the connection between 'technization' and 'civilization' that allows for both a civilizing and a de-civilizing impact of emergent forms of material relation that both lengthen and shorten the chains of interdependence between the members of a society. It is suggested that the concept of the 'morality of things' employed by a number of commentators is useful in summarizing the civilizing effects of material objects and addressing their sociological significance. From the sociology of consumption the idea of materiality as a sign of social relationships can be drawn, and from the sociology of technology the idea of socio-technical systems and actor-networks can contribute to the understanding of material civilization. It is argued that the concept of 'material capital' can usefully summarize the variable social value of objects but to understand the complexity of material civilization as it unfolds in everyday life, an analysis of 'material interaction' is needed. Finally the paper suggests some initial themes and issues apparent in contemporary society that the sociological study of material civilization might address; the increased volume, functional complexity and material specificity of objects and the increased social complexity, autonomy and substitutability that is entailed. A theory of 'material civilization' is the first step in establishing a sociology of objects.

  10. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  11. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  12. Materials in machine, plant, and apparatus construction

    International Nuclear Information System (INIS)

    Blumenauer, H.; Hampe, E.; Hoehne, D.

    1983-01-01

    The subject is covered under the following headings: principles of materials economy and selection, designation of materials, general construction materials; materials for tools, materials for low temperatures, materials for high temperatures, materials for corrosive stress, materials with high wear resistance and friction materials, sliding and bearing materials, materials for spring load, materials for joints, and materials for nuclear reactors

  13. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  14. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  15. EU-policy and smart materials; EU-beleid en smart materials

    Energy Technology Data Exchange (ETDEWEB)

    Pieters, D.; Van der Beek, M.

    2012-09-15

    Netherlands will focus on large-scale production of smart materials. Several examples from Dutch universities show that the Netherlands is very active in this sector. Nanotechnology and the development of advanced materials are considered as 'key technologies'. To realize these applications EU funding will be made available both for research projects and to support market introduction [Dutch] Nederland zet in de toekomst in op grootschalige productie van smart materials. Verschillende voorbeelden van Nederlandse universiteiten laten zien dat Nederland tot op heden zeer actief is in deze veelzijdige sector. Nanotechnologie en de ontwikkeling van geavanceerde materialen worden in dit licht beschouwd als zogenoemde 'sleuteltechnologieen'. Om deze toepassingen te realiseren komt zowel EU-geld beschikbaar voor onderzoeksprojecten als ter ondersteuning van marktintroductie.

  16. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  17. Electronic materials

    CERN Document Server

    Kwok, H L

    2010-01-01

    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  18. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  19. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  20. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  1. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  2. Sound absorption with green materials

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-07-01

    Green materials are a valid alternative to traditional materials that are by-products of processing oil. At the end of their useful life, green materials can be disposed of without polluting the environment. They are now being used in the construction and automotive industries. While, studies are currently being carried out in the aviation sector on the use of green materials for non-structural components of airplanes. Green materials can be used to improve the acoustic comfort inside buildings as well as mitigate reverberation, echoes effects and reduce the transmission of noise between rooms. In this paper, the acoustic measurements of the properties of green materials are reported. The absorption coefficient of samples of the materials were measured in the frequency range from 200 Hz to 2,000 Hz with an impedance tube, with the flow resistance being measured.

  3. Magnetic losses in composite materials

    International Nuclear Information System (INIS)

    Ramprecht, J; Sjoeberg, D

    2008-01-01

    We discuss some of the problems involved in homogenization of a composite material built from ferromagnetic inclusions in a nonmagnetic background material. The small signal permeability for a ferromagnetic spherical particle is combined with a homogenization formula to give an effective permeability for the composite material. The composite material inherits the gyrotropic structure and resonant behaviour of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. The magnetic losses are described by a magnetic conductivity which can be made independent of frequency and proportional to the volume fraction by choosing a certain bias. Finally, some concerns regarding particles of small size, i.e. nanoparticles, are treated and the possibility of exciting exchange modes are discussed. These exchange modes may be an interesting way to increase losses in composite materials

  4. Materials selection for cutting tools

    International Nuclear Information System (INIS)

    Burkhis, Adel M.

    2008-01-01

    The selection of proper tool steel for a given application is a difficult task. So; the most important selection factors in choosing cutting tool materials are based on their tool material requirements, cutting tool design and service conditions which is mainly considered as functional requirements. The processability requirements concerns in heat treat ability of the material tool. The classification of these tool materials were discussed with their properties requirement and percent of alloying element which is added to give best properties with a little increase in cost that highly appear in comparison of the selection. The cutting tool materials were evaluated based on two cases; The first was in case of rough surface; the high speed steels is the best material and the other was the ceramic material is the highest performance in cutting of soft or high rate of metal removal. (author)

  5. Security of material: Preventing criminal activities involving nuclear and other radioactive materials

    International Nuclear Information System (INIS)

    Nilsson, A.

    2001-01-01

    The report emphasizes the need for national regulatory authorities to include in the regulatory systems, measures to control and protect nuclear materials from being used in illegal activities, as well as aspects of relevance for detecting and responding to illegal activities involving nuclear and other radioactive materials. The report will give an overview of the international treaties and agreements that underpin the establishment of a regulatory structure necessary for States to meet their non-proliferation policy and undertakings. Ongoing work to strengthen the protection of nuclear material and to detect and respond to illegal activities involving nuclear and other radioactive material will be included. The focus of the paper is on the need for standards and national regulation in the nuclear security area. (author)

  6. Very low level radioactive material

    International Nuclear Information System (INIS)

    Schaller, K.H.; Linsley, G.; Elert, M.

    1993-01-01

    Man's environment contains naturally occurring radionuclides and doses from exposures to these radionuclides mostly cannot be avoided. Consequently, almost everything may be considered as very low level radioactive material. In practical terms, management and the selection of different routes for low level material is confined to material which was subject to industrial processing or which is under a system of radiological control. Natural radionuclides with concentrations reaching reporting or notification levels will be discussed below; nevertheless, the main body of this paper will be devoted to material, mainly of artificial origin, which is in the system involving notification, registration and licensing of practices and sources. It includes material managed in the nuclear sector and sources containing artificially produced radionuclides used in hospitals, and in industry. Radioactive materials emit ionising radiations which are harmful to man and his environment. National and international regulations provide the frame for the system of radiation protection. Nevertheless, concentrations, quantities or types of radionuclide may be such, that the material presents a very low hazard, and may therefore be removed from regulatory control, as it would be a waste of time and effort to continue supervision. These materials are said to be exempted from regulatory control. Material exempted in a particular country is no longer distinguishable from ''ordinary'' material and may be moved from country to country. Unfortunately, criteria for exempting radioactive materials differ strongly between countries and free trade. Therefore there is a necessity for an international approach to be developed for exemption levels

  7. RADIOACTIVE MATERIALS SENSORS

    International Nuclear Information System (INIS)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-01-01

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  8. Inflammable materials stores

    International Nuclear Information System (INIS)

    Nandagopan, V.

    2017-01-01

    A new Inflammable Materials Stores has been constructed by A and SED, BARC near Gamma Field for storage of inflammable materials falling into Petroleum Class ‘A’ ‘B’ and “C” mainly comprising of oils and lubricants, Chemicals like Acetone, Petroleum Ether etc. which are regularly procured by Central Stores Unit (CSU) for issue to the various divisions of BARC. The design of the shed done by A and SED, BARC was duly got approved from Petroleum and Explosive Safety Organization (PESO) which is a mandatory requirement before commencement of the construction. The design had taken into account various safety factors which is ideally required for an inflammable materials stores

  9. Report of the Material Control and Material Accounting Task Force: blueprint for the future

    International Nuclear Information System (INIS)

    1978-03-01

    A blueprint is presented for the development of improved material control and material accounting systems by integrating the goals and capabilities of material control and material accounting and recommending specific upgrading actions. An analysis is included of several specific issues and developing recommendations for future actions related to those issues. It is felt that there is a need for a program to define specific quantified goals for an integrated safeguards program, and to monitor safeguards programs in terms of these goals. NRC should give highest priority to developing regulations and guides that will enable material control to make a greater contribution to safeguards by providing greater timeliness and sensitivity in detecting and assessing material losses. It is recommended that a technical study be conducted to determine a quantitative measure or at least a figure of merit for the effectiveness of a security clearance program, based upon full field background investigations, in protecting against malevolent conspiracies involving two or more security cleared individuals. It is also recommended that a specific effort be initiated to formulate an approach to combating collusion. This effort should specifically consider the contribution that material control and material accounting programs can make to safeguards effectiveness in this area

  10. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  11. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  12. Scintillator material. Szintillatormaterial

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, M; Bendig, J; Regenstein, W

    1987-11-25

    A scintillator material for detection and quantitative determination of ionizing radiation is discussed consisting of an acridone dissolved in a fluid or solid medium. Solvent mixtures with at least one protogenic component or polymers and copolymers are used. The scintillator material is distinguished by an excellent stability at high energy doses.

  13. Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials

    Science.gov (United States)

    Boyce, Lola; Bast, Callie C.

    1992-01-01

    The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  14. Materials in world perspective. Assessment of resources, technologies and trends for key materials industries

    Energy Technology Data Exchange (ETDEWEB)

    Altenpohl, D G

    1980-01-01

    This book deals with the entire materials cycle - from extraction or harvesting to processing, manufacture, use, and reuse or disposal. It covers the present status and ongoing developments in six key materials industries in both industrialized and developing countries. Techno-economics trends, which are recognizable today, as well as important changes taking place from the mine through the refining stage on to finished products, are outlined. The 'problem triangle' of the materials industry - basic or raw materials, ecology and energy - is discussed. Of specific importance are the impacts which a given material or technology can have on the environment. Methods of assessing these impacts, which should be integrated into overall technology planning by the materials industry, are described. This book discusses resources, industry's social responsibilities and limits-to-growth. An explanation is given for opposing views on constraints and growth, not only for the materials industry, but also for the automotive and packaging industries. Thus, this book spotlights the interaction between different fields of technology and their interrelationship with and between different regions on Earth.

  15. Special purpose materials: an assessment of needs and the role of these materials in the national program

    International Nuclear Information System (INIS)

    Gold, R.E.; Clinard, F.W. Jr.; Davis, J.W.

    1978-01-01

    The scope of activities of the Task Group on Special Purpose Materials includes those materials requirements not specifically addressed by the other OFE materials task groups. These materials can be organized according to seven broad materials applications or functions which appear to be generic to all magnetically confined fusion reactor concepts. These are breeding materials, coolants, materials for tritium service, graphite and silicon carbide, electrical insulators and ceramics, heat-sink materials, and magnet materials. The present paper describes the importance of each of these areas of materials technology, outlines major problems or areas of uncertainty, and reviews past and current contributions to our state of understanding as it may relate to fusion power applications

  16. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  17. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  18. Tribological comparison of materials

    Science.gov (United States)

    Shi, Bing

    Approximately 600,000 total joint replacement surgeries are performed each year in the United States. Current artificial joint implants are mainly metal-on-plastic. The synthetic biomaterials undergo degradation through fatigue and corrosive wear from load-bearing and the aqueous ionic environment of the human body. Deposits of inorganic salts can scratch weight-bearing surfaces, making artificial joints stiff and awkward. The excessive wear debris from polyethylene leads to osteolysis and potential loosening of the prosthesis. The lifetime for well-designed artificial joints is at most 10 to 15 years. A patient can usually have two total joint replacements during her/his lifetime. Durability is limited by the body's reaction to wear debris of the artificial joints. Wear of the artificial joints should be reduced. A focus of this thesis is the tribological performance of bearing materials for Total Replacement Artificial Joints (TRAJ). An additional focus is the scaffolds for cell growth from both a tissue engineering and tribological perspective. The tribological properties of materials including Diamond-like Carbon (DLC) coated materials were tested for TRAJ implants. The DLC coatings are chemically inert, impervious to acid and saline media, and are mechanically hard. Carbon-based materials are highly biocompatible. A new alternative to total joints implantation is tissue engineering. Tissue engineering is the replacement of living tissue with tissue that is designed and constructed to meet the needs of the individual patient. Cells were cultured onto the artificial materials, including metals, ceramics, and polymers, and the frictional properties of these materials were investigated to develop a synthetic alternative to orthopedic transplants. Results showed that DLC coated materials had low friction and wear, which are desirable tribological properties for artificial joint material. Cells grew on some of the artificial matrix materials, depending on the

  19. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  20. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.