WorldWideScience

Sample records for materials doped

  1. Doping of III-nitride materials

    OpenAIRE

    Pampili, Pietro; Parbrook, Peter J.

    2016-01-01

    In this review paper we will report the current state of research regarding the doping of III-nitride materials and their alloys. GaN is a mature material with both n-type and p-type doping relatively well understood, and while n-GaN is easily achieved, p-type doping requires much more care. There are significant efforts to extend the composition range that can be controllably doped for AlGaInN alloys. This would allow application in shorter and longer wavelength optoelectronics as well as ex...

  2. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  3. Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY

    Directory of Open Access Journals (Sweden)

    Luis H. da S. Lacerda

    2016-04-01

    Full Text Available ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.

  4. The importance of reference materials in doping-control analysis.

    Science.gov (United States)

    Mackay, Lindsey G; Kazlauskas, Rymantas

    2011-08-01

    Currently a large range of pure substance reference materials are available for calibration of doping-control methods. These materials enable traceability to the International System of Units (SI) for the results generated by World Anti-Doping Agency (WADA)-accredited laboratories. Only a small number of prohibited substances have threshold limits for which quantification is highly important. For these analytes only the highest quality reference materials that are available should be used. Many prohibited substances have no threshold limits and reference materials provide essential identity confirmation. For these reference materials the correct identity is critical and the methods used to assess identity in these cases should be critically evaluated. There is still a lack of certified matrix reference materials to support many aspects of doping analysis. However, in key areas a range of urine matrix materials have been produced for substances with threshold limits, for example 19-norandrosterone and testosterone/epitestosterone (T/E) ratio. These matrix-certified reference materials (CRMs) are an excellent independent means of checking method recovery and bias and will typically be used in method validation and then regularly as quality-control checks. They can be particularly important in the analysis of samples close to threshold limits, in which measurement accuracy becomes critical. Some reference materials for isotope ratio mass spectrometry (IRMS) analysis are available and a matrix material certified for steroid delta values is currently under production. In other new areas, for example the Athlete Biological Passport, peptide hormone testing, designer steroids, and gene doping, reference material needs still need to be thoroughly assessed and prioritised.

  5. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material

    International Nuclear Information System (INIS)

    Zhang, Jiajia; He, Haiyan; Pan, Bicai

    2015-01-01

    An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe 2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe 2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe 2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe 2 is a promising two-dimensional photovoltaic material. (paper)

  6. A process for doping an amorphous semiconductor material by ion implantation

    International Nuclear Information System (INIS)

    Kalbitzer, S.; Muller, G.; Spear, W.E.; Le Comber, P.G.

    1979-01-01

    In a process for doping a body of amorphous semiconductor material, the body is held at a predetermined temperature above 20 deg. C which is below the recrystallization temperature of the amorphous semiconductor material during bombardment by accelerated ions of a predetermined doping material. (U.K.)

  7. Experimental results on performance improvement of doped carbon-base materials

    International Nuclear Information System (INIS)

    Xu Zengyu

    2002-01-01

    Carbon-base materials is one of candidate plasma facing materials and have been widely used in current tokamak facilities in the world. But some defect properties are presented on high yield of chemical sputtering , high yield of radiation enhancement sublimate (RES), cracking after heat flux and so on. It can be improved by doped some little other elements into the carbon-base materials, such as boron, silicon, titanium and so on. Experimental results indicate that it is feasible and successful to improve thermo-physics and chemical properties of carbon-base materials by multi-element doped. Doped 12 % silicon can strained RES and chemical sputtering yield do not changed. It is the same level of chemical sputtering yield for B 4 C from 3 % to 10 % , but their resistance thermal shock properties ability increases with B 4 C increases

  8. The influence of Fe doping on the surface topography of GaN epitaxial material

    International Nuclear Information System (INIS)

    Cui Lei; Yin Haibo; Jiang Lijuan; Wang Quan; Feng Chun; Xiao Hongling; Wang Cuimei; Wang Xiaoliang; Gong Jiamin; Zhang Bo; Li Baiquan; Wang Zhanguo

    2015-01-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 10 19 cm −3 . High resistivity GaN epitaxial material which is 1 × 10 9 Ω·cm is achieved. (paper)

  9. Material attractiveness of plutonium composition on doping minor actinide of large FBR

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke

    2011-01-01

    Material attractiveness analysis on isotopic plutonium compositions of fast breeder reactors (FBR) has been investigated based on figure of merit (FOM) formulas as key parameters as well as decay heat (DH) and spontaneous fission neutron (SFN) compositions. Increasing minor actinide (MA) doping gives the significant effect to increase Pu-238 composition. However, the compositions of Pu-240 and Pu-242 become less with increasing MA doping. DH and SFN compositions in the core regions similar to the DH and SFN compositions of MOX-grade. Material attractiveness based on FOM1 formula shows all isotopic plutonium compositions in the blanket regions as well as in the core regions are categorized as high attractive material. Adopted FOM2 formula can distinguishes the material attractiveness levels which show the plutonium compositions in blanket regions as high attractiveness level and its composition in the core regions as low level of material attractiveness. MA doping is effective to reduce the material attractiveness level of blanket regions from high to medium and it requires much more MA doping rate to achieve low level of attractiveness (FOM<1) based on adopted FOM1 formula. Low material attractiveness level can be obtained by 4 % or more doping MA based on adopted FOM2 formula which considers not only DH composition effect, but also SFN composition effect that gives relatively higher contribution to material barrier of plutonium isotopes. (author)

  10. Optical bistability and multistability in polaritonic materials doped with nanoparticles

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate the optical bistability and multistability in polaritonic materials doped with nanoparticles inside an optical ring cavity. It is found that the optical bistability and multistability can be easily controlled by adjusting the corresponding parameters of the system properly. The effect of the dipole–dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens up the possibility of controling the optical bistability and multistability in polaritonic materials doped with nanoparticles. (letter)

  11. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  12. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  13. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  14. Synthesis of phthalocyanine doped sol-gel materials

    Science.gov (United States)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross

  15. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  16. Special quasirandom structures for gadolinia-doped ceria and related materials

    KAUST Repository

    Wang, Hao

    2012-01-01

    Gadolinia doped ceria in its doped or strained form is considered to be an electrolyte for solid oxide fuel cell applications. The simulation of the defect processes in these materials is complicated by the random distribution of the constituent atoms. We propose the use of the special quasirandom structure (SQS) approach as a computationally efficient way to describe the random nature of the local cation environment and the distribution of the oxygen vacancies. We have generated two 96-atom SQS cells describing 9% and 12% gadolinia doped ceria. These SQS cells are transferable and can be used to model related materials such as yttria stabilized zirconia. To demonstrate the applicability of the method we use density functional theory to investigate the influence of the local environment around a Y dopant in Y-codoped gadolinia doped ceria. It is energetically favourable if Y is not close to Gd or an oxygen vacancy. Moreover, Y-O bonds are found to be weaker than Gd-O bonds so that the conductivity of O ions is improved. © 2012 the Owner Societies.

  17. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    Science.gov (United States)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  18. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rosales, C. [CEIT and Tecnun (University of Navarra), Paseo de Manuel Lardizabal, 15, E-20018 San Sebastian (Spain)], E-mail: cgrosales@ceit.es; Lopez-Galilea, I.; Ordas, N. [CEIT and Tecnun (University of Navarra), Paseo de Manuel Lardizabal, 15, E-20018 San Sebastian (Spain); Adelhelm, C.; Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Juelich GmbH, EURATOM Association, D-52425 Juelich (Germany); Grattarola, M.; Gualco, C. [Ansaldo Ricerche S.p.A., I-16152 Genoa (Italy)

    2009-04-30

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of {approx}200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  19. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Lopez-Galilea, I.; Ordas, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-01-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ∼200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  20. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    Directory of Open Access Journals (Sweden)

    Siang-Wen Lan

    2016-07-01

    Full Text Available In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

  1. Genetic algorithm based approach to investigate doped metal oxide materials: Application to lanthanide-doped ceria

    Science.gov (United States)

    Hooper, James; Ismail, Arif; Giorgi, Javier B.; Woo, Tom K.

    2010-06-01

    A genetic algorithm (GA)-inspired method to effectively map out low-energy configurations of doped metal oxide materials is presented. Specialized mating and mutation operations that do not alter the identity of the parent metal oxide have been incorporated to efficiently sample the metal dopant and oxygen vacancy sites. The search algorithms have been tested on lanthanide-doped ceria (L=Sm,Gd,Lu) with various dopant concentrations. Using both classical and first-principles density-functional-theory (DFT) potentials, we have shown the methodology reproduces the results of recent systematic searches of doped ceria at low concentrations (3.2% L2O3 ) and identifies low-energy structures of concentrated samarium-doped ceria (3.8% and 6.6% L2O3 ) which relate to the experimental and theoretical findings published thus far. We introduce a tandem classical/DFT GA algorithm in which an inexpensive classical potential is first used to generate a fit gene pool of structures to enhance the overall efficiency of the computationally demanding DFT-based GA search.

  2. Polysulfone as a scintillation material without doped fluorescent molecules

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hidehito, E-mail: hidehito@rri.kyoto-u.ac.jp [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kitamura, Hisashi [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Sato, Nobuhiro; Kanayama, Masaya [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Shirakawa, Yoshiyuki [Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501 (Japan); Takahashi, Sentaro [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-10-11

    Scintillation materials made from un-doped aromatic ring polymers can be potentially used for radiation detection. Here we demonstrate that Polysulfone (PSU) works without doped fluorescent guest molecules, and thus broadens the choices available for radiation detection. The transparent PSU substrate (1.24 g/cm{sup 3}) significantly absorbs short-wavelength light below approximately 350 nm. Visible light absorption colours the substrate slightly yellow, and indigo blue fluorescence is emitted. The fluorescence maximum occurs at the intersection of the 340-nm excitation and 380-nm emission spectra; thus the emission is partially absorbed by the substrate. An effective refractive index of 1.70 is derived based on the wavelength dependence of the refractive indices and the emission spectrum. A peak caused by 976-keV internal-conversion electrons from a {sup 207}Bi radioactive source appears in the light yield distribution. The light yield is equivalent to that of poly (phenyl sulfone), which has a similar structure. Overall, un-doped PSU could be a component substrate in polymer blends and be used as an educational tool in radiation detection. - Highlights: • Polysulfone (PSU) is a scintillation material that does not require doping. • PSU is slightly yellow. • Indigo blue light with 380-nm emission maximum is emitted. • An effective refractive index of 1.70 was derived. • A peak caused by mono-energetic internal-conversion electrons appears in the light yield distribution.

  3. The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths

    International Nuclear Information System (INIS)

    Liu Yang; Liao Fuhui; Li Junran; Zhang Shaohua; Chen Shumei; Wei Chenguan; Gao Song

    2006-01-01

    Electrorheological (ER) materials of pure SiO 2 and SiO 2 doped with rare earths (RE = Ce, Gd, Y) (non-metallic glasses (silicates)) were prepared using Na 2 SiO 3 and RECl 3 as starting materials. The electrorheological properties are not enhanced by all rare earth additions. The material doped with Ce exhibits the best ER performance

  4. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    Zukowski, P.; Karwat, Cz.; Kozak, Cz. M.; Kolasik, M.; Kiszczak, K.

    2009-01-01

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  5. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    Science.gov (United States)

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  6. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  7. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  8. Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jongbum Kim

    2013-12-01

    Full Text Available Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO, are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical studies are performed by the total-energy-minimization method for the equilibrium atomic structure of GZO and random phase approximation with the quasiparticle gap correction. Plasma excitation effects are also included for optical functions. This study identifies mechanisms other than doping, such as alloying effects, that significantly influence the optical properties of GZO films. It also indicates that ultraheavy Ga doping of ZnO results in a new alloy material, rather than just degenerately doped ZnO. This work is the first step to achieve a fundamental understanding of the connection between material, structural, and optical properties of highly doped TCOs to tailor those materials for various plasmonic applications.

  9. Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor

    Science.gov (United States)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-12-01

    Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.

  10. Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Wan, Dao Yong; Fan, Zhi Yu; Dong, Yong Xiang; Baasanjav, Erdenebayar; Jun, Hang-Bae; Jin, Bo; Jin, En Mei; Jeong, Sang Mun

    2018-01-01

    NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01) cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping res...

  11. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2017-01-01

    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  12. Optical properties of ion beam modified waveguide materials doped with erbium and silver

    NARCIS (Netherlands)

    Strohhöfer, C. (Christof)

    2001-01-01

    In the first part of this thesis we investigate codoping of erbium-doped waveguide materials with different ions in order to increase the efficiency of erbium-doped optical amplifiers. Codoping with ytterbium can overcome the limitations due to the small absorption cross section of Er3+ in Al2O3 at

  13. Special quasirandom structures for gadolinia-doped ceria and related materials

    KAUST Repository

    Wang, Hao; Chroneos, Alexander I.; Jiang, Chao; Schwingenschlö gl, Udo

    2012-01-01

    cells describing 9% and 12% gadolinia doped ceria. These SQS cells are transferable and can be used to model related materials such as yttria stabilized zirconia. To demonstrate the applicability of the method we use density functional theory

  14. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  15. Optical and structural properties of Mo-doped NiTiO{sub 3} materials synthesized via modified Pechini methods

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo, E-mail: ewshin@ulsan.ac.kr

    2017-07-31

    Highlights: • Mo-doped NiTiO{sub 3} materials were well prepared by a modified Pechini method. • Recombination rates of the materials were significantly inhibited by Mo doping. • Defect sites were generated by the substitution of Mo for Ni or Ti positions. • The generation of defect sites gradually decreased the grain sizes of the materials. • The surface areas of the materials were increased with decreasing the grain sizes. - Abstract: In this study, molybdenum (Mo)-doped nickel titanate (NiTiO{sub 3}) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO{sub 3} structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO{sub 3} lattice was doped with Mo. On the other hand, Mo doping of NiTiO{sub 3} materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  16. Bone cell-material interactions on metal-ion doped polarized hydroxyapatite

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    The objective of this work is to study the influence of Mg 2+ and Sr 2+ dopants on in vitro bone cell-material interactions of electrically polarized hydroxyapatite [HAp, Ca 10 (PO 4 ) 6 (OH) 2 ] ceramics with an aim to achieve additional advantage of matching bone chemistry along with the original benefits of electrical polarization treatment relevant to biomedical applications. To achieve our research objective, commercial phase pure HAp has been doped with MgO, and SrO in single, and binary compositions. All samples have been sintered at 1200 deg. C for 2 h and subsequently polarized using an external d.c. field (2.0 kV/cm) at 400 deg. C for 1 h. Combined addition of 1 wt.% MgO/1 wt.% SrO in HAp has been most beneficial in enhancing the polarizability in which stored charge was 4.19 μC/cm 2 compared to pure HAp of 2.23 μC/cm 2 . Bone cell-material interaction has been studied by culturing with human fetal osteoblast cells (hFOB) for a maximum of 7 days. Scanning electron microscope (SEM) images of cell morphology reveal that favorable surface properties and dopant chemistry lead to good cellular adherence and spreading on negatively charged surfaces of both Sr 2+ and Mg 2+ doped HAp samples over undoped HAp. MTT assay results at 7 days show the highest viable cell densities on the negatively charged surfaces of binary doped HAp samples, while positive charged doped HAp surfaces exhibit limited cellular growth in comparison to neutral surfaces.

  17. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    Science.gov (United States)

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  18. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Niraj Kumar; Bathula, Sivaiah; Gahtori, Bhasker [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tyagi, Kriti [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Acdemy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (NPL) Campus, New Delhi (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-05-25

    Tin selenide (SnSe) based thermoelectric materials are being explored for making inexpensive and efficient thermoelectric devices with improved thermoelectric efficiency. As both Sn and Se are earth abundant and relatively inexpensive and these alloys do not involve toxic materials, such as lead and expensive tellurium. Hence, in the present study, we have synthesized SnSe doped with 2 at% of aluminium (Al), lead (Pb), indium (In) and copper (Cu) individually, which is not reported in literature. Out of these, Cu doped SnSe resulted in enhancement of figure-of-merit (zT) of ∼0.7 ± 0.02 at 773 K, synthesized employing conventional fusion method followed by spark plasma sintering. This enhancement in zT is ∼16% over the existing state-of-the-art value for p-type SnSe alloy doped with expensive Ag. This enhancement in ZT is primarily due to the presence of Cu{sub 2}Se second phase associated with intrinsic nanostructure formation of SnSe. This enhancement has been corroborated with the microstructural characterization using field emission scanning electron microscopy and X-ray diffraction studies. Also, Cu doped SnSe exhibited a higher value of carrier concentration in comparison to other samples doped with Al, Pb and In. Further, the compatibility factor of Cu doped SnSe alloys exhibited value of 1.62 V{sup −1} at 773 K and it is suitable to segment with most of the novel TE materials for obtaining the higher thermoelectric efficiencies. - Highlights: • Tin selenide (SnSe) doped with non-toxic and inexpensive dopants. • Synthesized highly dense SnSe employing Spark plasma sintering. • Enhanced thermoelectric compatibility factor of SnSe. • Enhanced thermoelectric performance of SnSe doped with Copper.

  19. Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light

    International Nuclear Information System (INIS)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.

    2013-01-01

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuth nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed

  20. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping

    International Nuclear Information System (INIS)

    Chowdhury, M H; Kabir, M Z

    2011-01-01

    An analytical model is developed to study the electrical properties (electric field and potential distributions, potential energy barrier height and polarization phenomenon) of polycrystalline materials at intrinsic or low doping for detector and solar cell applications by considering an arbitrary amount of grain boundary charge and a finite width of grain boundary region. The general grain boundary model is also applicable to highly doped polycrystalline materials. The electric field and potential distributions are obtained by solving Poisson's equation in both depleted grains and grain boundary regions. The electric field and potential distributions across the detector are analysed under various doping, trapping and applied biases. The electric field collapses, i.e. a nearly zero-average electric field region exists in some part of the biased detector at high trapped charge densities at the grain boundaries. The model explains the conditions of existence of a zero-average field region, i.e. the polarization mechanisms in polycrystalline materials. The potential energy barrier at the grain boundary exists if the electric field changes its sign at the opposite side of the grain boundary. The energy barrier does not exist in all grain boundaries in the low-doped polycrystalline detector and it never exists in intrinsic polycrystalline detectors under applied bias condition provided that there is no charge trapping in the grain.

  1. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    Science.gov (United States)

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. N, S co-doped-TiO{sub 2}/fly ash beads composite material and visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jun, E-mail: lvjun117@126.com; Sheng, Tong; Su, Lili; Xu, Guangqing; Wang, Dongmei; Zheng, Zhixiang; Wu, Yucheng, E-mail: ycwu@hfut.edu.cn

    2013-11-01

    Using TiCl{sub 4} as the titanium source, urea as the precipitating agent, nano-TiO{sub 2}/fly ash beads composite materials were prepared by hydrolysis-precipitation method. Using (NH{sub 2}){sub 2}CO and (NH{sub 2}){sub 2}SC as the N and S source respectively, N and S co-doped TiO{sub 2}/fly ash beads composite materials were prepared by grinding them together according to a certain proportion and calcined at 500 °C for 2 h. The composite materials were characterized by SEM, EDS, XPS, and UV–vis spectrophotometer methods. The UV–vis absorption spectra results show that the absorption edge of un-doped composites is 390 nm while that of doped composites red-shifts to 500 nm. The photocatalytic activity of composite materials was evaluated by degradation of methyl orange under visible light irradiation (halogen lamp, 250 W). The results showed that after irradiation for 1 h, degradation rate of N, S co-doped-TiO{sub 2}/fly ash beads composite material can reach 65%, while the degradation rate of un-doped sample and P25 were just 10% and 6%, respectively. The composite material also showed excellent recycling properties.

  3. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    International Nuclear Information System (INIS)

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-01-01

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  4. Thermoelectric properties of Al doped Mg{sub 2}Si material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder, E-mail: kulwindercmp@gmail.com; Kumar, Ranjan [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Rani, Anita [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India)

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  5. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiaoyang Li

    2018-01-01

    Full Text Available Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and oxygen-containing functional groups on the carbon is significantly reduced by nitrogen doping, as verified by X-ray photoelectron spectroscopy. The adsorption mechanisms are further revealed on the basis of DFT (the first density functional theory calculations. The RPNC (red phosphorus/nitrogen-doped carbon composite material shows higher cycling stability and higher capacity than that of RPC (red phosphorus/carbon composite anode. After 100 cycles, the RPNC still keeps discharge capacity of 1453 mAh g−1 at the current density of 300 mA g−1 (the discharge capacity of RPC after 100 cycles is 1348 mAh g−1. Even at 1200 mA g−1, the RPNC composite still delivers a capacity of 1178 mAh g−1. This work provides insight information about the interface interactions between composite materials, as well as new technology develops high performance phosphorus based anode materials.

  6. Stoichiometric transfer of material in the infrared pulsed laser deposition of yttrium doped Bi-2212 films

    International Nuclear Information System (INIS)

    De Vero, Jeffrey C.; Blanca, Glaiza Rose S.; Vitug, Jaziel R.; Garcia, Wilson O.; Sarmago, Roland V.

    2011-01-01

    Highlights: → This work describes the stoichiometric transfer of Y-doped Bi-2212 during IR-PLD. → As-deposited films show spheroidal morphology with similar composition as the target. Relatively flat and highly c-axis oriented films were obtained after heat treatment. → IR-PLD can be a viable technique in growing other high Tc superconducting materials. - Abstract: Films of Y-doped Bi-2212 were successfully grown on MgO (1 0 0) substrates by infrared pulsed laser deposition (IR-PLD). With post-heat treatments, smooth and highly c-axis oriented films were obtained. The average compositions of the films have the same stoichiometry as the target. Y content is also preserved on the grown films at all doping levels. The electrical properties of the grown Y-doped Bi-2212 films exhibit the expected electrical properties of the bulk Y-doped Bi-2212. This is attributed to the stoichiometric transfer of material by IR-PLD.

  7. White emission materials from glass doped with rare Earth ions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000 (Thailand)

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.

  8. Lead Telluride Doped with Au as a Very Promising Material for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Pantelija M. Nikolic

    2015-01-01

    Full Text Available PbTe single crystals doped with monovalent Au or Cu were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for all samples and plasma minima were registered. These experimental spectra were numerically analyzed and optical parameters were calculated. All the samples of PbTe doped with Au or Cu were of the “n” type. The properties of these compositions were analyzed and compared with PbTe containing other dopants. The samples of PbTe doped with only 3.3 at% Au were the best among the PbTe + Au samples having the lowest plasma frequency and the highest mobility of free carriers-electrons, while PbTe doped with Cu was the opposite. Samples with the lowest Cu concentration of 0.23 at% Cu had the best properties. Thermal diffusivity and electronic transport properties of the same PbTe doped samples were also investigated using a photoacoustic (PA method with the transmission detection configuration. The results obtained with the far infrared and photoacoustic characterization of PbTe doped samples were compared and discussed. Both methods confirmed that when PbTe was doped with 3.3 at% Au, thermoelectric and electrical properties of this doped semiconductor were both significantly improved, so Au as a dopant in PbTe could be used as a new high quality thermoelectric material.

  9. Design and analysis of doped left-handed materials

    International Nuclear Information System (INIS)

    Zhang Hongxin; Bao Yongfang; Chen Tianming; Lü Yinghua; Wang Haixia

    2008-01-01

    We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finite-difference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed

  10. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  11. Heteroatom-Doped Carbon Materials for Electrocatalysis.

    Science.gov (United States)

    Asefa, Tewodros; Huang, Xiaoxi

    2017-08-10

    Fuel cells, water electrolyzers, and metal-air batteries are important energy systems that have started to play some roles in our renewable energy landscapes. However, despite much research works carried out on them, they have not yet found large-scale applications, mainly due to the unavailability of sustainable catalysts that can catalyze the reactions employed in them. Currently, noble metal-based materials are the ones that are commonly used as catalysts in most commercial fuel cells, electrolyzers, and metal-air batteries. Hence, there has been considerable research efforts worldwide to find alternative noble metal-free and metal-free catalysts composed of inexpensive, earth-abundant elements for use in the catalytic reactions employed in these energy systems. In this concept paper, a brief introduction on catalysis in renewable energy systems, followed by the recent efforts to develop sustainable, heteroatom-doped carbon and non-noble metal-based electrocatalysts, the challenges to unravel their structure-catalytic activity relationships, and the authors' perspectives on these topics and materials, are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. First results on the development of improved doped carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Paz, P.; Echeberria, J.; Balden, M.; Behrisch, R.

    2001-01-01

    Improved carbon-based plasma facing materials are developed by doping graphite with different carbides and optimizing the microstructure in order to refine their thermomechanical properties and to reduce both processes of chemical erosion. As starting material a mixture of mesophase carbon powder with mean particle size of 0.6 μm, and carbide powders (TiC, V 8 C 7 , WC, ZrC, SiC and B 4 C) with particle sizes around 1 μm have been used. The carbides were added to the carbon powder up to a metal concentration of about 5 at.%. Most dopants showed a catalytic effect on graphitization, V 8 C 7 being the most effective one. The materials obtained exhibit a high density, a low open porosity and good mechanical properties. Chemical erosion was reduced with doping, typically by a factor of the order of two. (orig.)

  13. Magneto optical properties of silver doped magnetic nanocomposite material

    Directory of Open Access Journals (Sweden)

    N. Abirami

    2017-11-01

    Full Text Available Magnetic composite materials challenge traditional materials in broad applications such as transformer, sensors and electrical motors. In this work by studying the permittivity and permeability spectra of silver doped magnetic nanocomposite system, the variation of the effective refractive index with frequency is investigated for different filling factor. It is found that the value of resonance frequency decrease with filling factor. The polariton dispersion of the system is also studied. This study of the nanocomposite system can be exploited in designing modern optical devices.PACS: 75.50-y, 71.36.+c, 78.67.Sc, 78.20.Ci. Keywords: Permittivity, Permeability, Nanocomposite system, Polariton

  14. Role of Morphological Structure, Doping, and Coating of Different Materials in the Sensing Characteristics of Humidity Sensors

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Cho, Jongman; Santhosh, Jayasree; Osman, Noor Azuan Abu

    2014-01-01

    The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability. PMID:25256110

  15. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    International Nuclear Information System (INIS)

    Thiel, C W; Macfarlane, R M; Cone, R L; Sun, Y; Böttger, T; Sinclair, N; Tittel, W

    2014-01-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3 H 6 to 3 H 4 optical transition of three thulium-doped crystals, Tm 3+ :YAG, Tm 3+ :LiNbO 3 and Tm 3+ :YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm 3+ :YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material. (paper)

  16. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-01

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g −1 at 100 mA g −1 after 30th cycles. At high current density value of 1 A g −1 , B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states

  17. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  18. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhang, Zhongshen; Xing, Wei; Yu, Jing; Han, Guoxing; Si, Weijiang; Zhuo, Shuping

    2015-01-01

    Graphical abstract: N-doped hierarchical porous carbons with high rate capacitive performance are prepared by a combination method of nano-SiO 2 template/KOH activation. - Highlights: • A mass produced nano-SiO 2 is used to prepared hierarchical porous carbon. • N-doped hierarchical porous carbon materials are easily prepared. • The NHPCs materials exhibit a very high capacitance of up to 260.5 F g −1 . • The NHPC-800 sample shows very high rate capability. • Hierarchical porosity and N-doping synergistically enhances the whole capacitance. - Abstract: In this work, nitrogen-doped hierarchical porous carbon materials (NHPCs) are prepared by a two-step method combined of a hard template process and KOH-activation treatment. Low cost and large-scale commercial nano-SiO 2 are used as a hard template. The hierarchical porosity, structure and nitrogen-doped surface chemical properties are proved by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. When the prepared NHPCs materials are used as the electrode materials for supercapacitors in KOH electrolyte, they exhibit very high specific capacitance, good power capability and excellent cyclic stability. NHPC-800 carbon shows a high capacitance of 114.0 F g −1 at the current density of 40 A g −1 , responding to a high energy and power densities of 4.0 Wh kg −1 and 10 000 W kg −1 , and a very short drain time of 1.4 s. The excellent capacitive performance may be due to the synergistic effect of the hierarchical porosity, high effective surface area and heteroatom doping, resulting in both electrochemical double layer and Faradaic capacitance contributions

  19. Synthesis and characterization of hydrotalcite-hydroxyapatite material doped with carbon nanotubes and its application in catalysis of transesterification reaction

    International Nuclear Information System (INIS)

    Rodrigues, E.; Barros, T.; Pereira, C.; Almeida, O.; Brasil, H.; Reis, M.A L. dos

    2018-01-01

    The aim of this study was to synthesize and characterize hydrotalcite-hydroxyapatite (HTHAp) material doped with three different proportions (1, 5 and 15% w/w) of carbon nanotubes (NTC) in order to evaluate its potential as a heterogeneous catalyst in the soybean oil methanolysis reaction. The synthesis of the HTHAp material was performed by the co-precipitation method (10≤pH≤ 11) with ultrasonic homogenization and hydrothermal treatment at 80 °C. XRD, SEM/EDS, FT-IR, Raman, N 2 physisorption and TG/DTA were the characterization techniques performed. The sample HTHAp1NTC, doped at 1% w/w, was tested as a catalyst under two temperature conditions (180 and 240 °C), 4 h reaction time, 2.5% catalyst loading and alcohol:oil ratio of 12:1. Doping contributed to improve structural, morphological and thermal stability properties of HTHAp material. The yield results achieved 35.2% (180 °C) and 40.5% (240 °C) qualifying the HTHAp material doped with CNT as a potential catalyst in the transesterification reaction. (author)

  20. Orientation-dependent low field magnetic anomalies and room-temperature spintronic material – Mn doped ZnO films by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-12-01

    Full Text Available of ferromagnetism, a relatively new phenomenon called “low-field microwave absorption” has been observed in ferromagnetic materials and other various materials such as high temperature superconductors, ferrites, manganites, doped silicate glasses and soft... absorption phenomenon has been observed in ferromagnetic materials and various other materials such as superconductors, ferrites, manganites, semiconductors, doped silicate glasses, in soft materials and recently in iron monosilicides films [41- 46...

  1. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  2. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    International Nuclear Information System (INIS)

    You-Hua, Jia; Biao, Zhong; Xian-Ming, Ji; Jian-Ping, Yin

    2008-01-01

    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ul-traBne particles, which can be achieved by the enhancement of local Geld around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material

  3. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Science.gov (United States)

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  4. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  5. Grain growth control and transparency in spark plasma sintered self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2009-01-01

    Doping alumina particles with aluminum alkoxides allows dense spark plasma sintered (SPSed) materials to be obtained that have a refined grain size compared to pure materials, which is critical for their transparency. An optical model considering pore and grain size distributions has been developed to obtain information about porosity in dense materials. This work suggests that the atomic diffusion mechanisms do not depend on the sintering technique. A reduction in the activation energy by a factor of 2 has been found in SPSed materials.

  6. Zr-doped TiO{sub 2} supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Belver, C., E-mail: carolina.belver@uam.es; Bedia, J.; Rodriguez, J.J.

    2017-01-15

    Highlights: • Novel Zr-doped TiO{sub 2} delaminated clay materials were prepared by a sol-gel process. • Zr is incorporated into the anatase lattice. • Zr-TiO{sub 2} nanoparticles are homogenously distributed over the delaminated clay. • Zr doping enhances the photoactivity by reducing the band gap. • Degradation rates were favored at low concentrations and high radiation intensities. - Abstract: Solar light-active Zr-doped TiO{sub 2} nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO{sub 2} at 65 wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO{sub 2}/clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO{sub 2} particles (15–20 nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO{sub 2}/clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay.

  7. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  8. Highly luminescent Eu{sup 3+}-doped benzenetricarboxylate based materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ivan G.N. [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Mustafa, Danilo, E-mail: dmustafa@iq.usp.br [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Andreoli, Bruno [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Felinto, Maria C.F.C. [Centro de Química do Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP (Brazil); Malta, Oscar L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-90, PE (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil)

    2016-02-15

    [RE(TMA)] anhydrous complexes (RE{sup 3+}: Y, Gd and Lu) present high red emission intensity with a quantum efficiency (~45%) for the [Y(TMA):Eu{sup 3+}] complexes, due to the absence of non-radioactive decay pathways mediated by water molecules. The complexes were prepared in mild conditions. All the compounds are crystalline and thermostable up to 460 °C. Phosphorescence data of the complexes with Y, Gd and Lu show that the T{sub 1} state of the TMA{sup 3−} anion has energy higher than the {sup 5}D{sub 0} emitting level of the Eu{sup 3+} ion, indicating that the ligand can act as an intramolecular energy sensitizer. The photoluminescence properties of the doped materials were studied based on the excitation and emission spectra and luminescence decay curves. The experimental intensity parameters (Ω{sub λ}), lifetimes (τ), radiative (A{sub rad}) and non-radiative (A{sub nrad}) decay rates were determined and discussed. - Highlights: • Highly luminescent Europium doped anhydrous complexes. • Efficient monochromatic red light conversion molecular devices (LCMDs). • High emission quantum efficiencies.

  9. Polarization catastrophe in nanostructures doped in photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-11-30

    In the presence of the dipole-dipole interaction, we have studied a possible dielectric catastrophe in photonic band gap materials doped with an ensemble of four-level nanoparticles. It is found that the dielectric constant of the system has a singularity when the resonance energy lies within the bands. This phenomenon is known as the dielectric catastrophe. It is also found that this phenomenon depends on the strength of the dipole-dipole interaction.

  10. Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping

    International Nuclear Information System (INIS)

    Hashem, A.M.; Abdel-Latif, A.M.; Abuzeid, H.M.; Abbas, H.M.; Ehrenberg, H.; Farag, R.S.; Mauger, A.; Julien, C.M.

    2011-01-01

    Highlights: → Doping MnO 2 with Sn improved properties of α-MnO 2 . → Thermal stabilization and electrochemical performances were improved. → Doping affected also the morphology feature of α-MnO 2 . - Abstract: Sn-doped MnO 2 was prepared by hydrothermal reaction between KMnO 4 as oxidant, fumaric acid C 4 H 4 O 4 as reductant and SnCl 2 as doping agent. XRD analysis indicates the cryptomelane α-MnO 2 crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO 2 to rod-like structure for Sn-MnO 2 . Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO 2 cell display lower capacity loss.

  11. Enhanced electrochemical properties of vanadium-doped titanium niobate as a new anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Xiaoyan; Ma, Chenxiang; Du, Chenqiang; Liu, Jie; Zhang, Xinhe; Qu, Deyang; Tang, Zhiyuan

    2015-01-01

    The Vanadium-doped TiNb 2 O 7 (TNO) samples have been investigated as novel anode active materials for application in lithium-ion batteries. The samples are characterized by X-ray diffraction patterns (XRD), raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge tests, and cyclic voltammetry (CV) tests. The XRD results indicate that V-doping expands the lattice parameters of TiNb 2 O 7 samples and facilitates the enhanced lithium ion diffusion. SEM and TEM results show that lattice expansion caused by V-doping doesn’t significantly change the particle size distribution of TiNb 2 O 7 samples. The electrochemical measurements indicate that the TiNb 1.98 V 0.02 O 7 anode material displays a highly reversible capacity and excellent cycling stability. The initial discharge capacities of TiNb 1.98 V 0.02 O 7 are 298.48 mAh g −1 and 171.99 mAh g −1 at 0.3C and 10C, respectively, indicating that the TiNb 1.98 V 0.02 O 7 material can be utilized as a promising anode material for lithium-ion batteries.

  12. Synthesis of Fluorophore-Doped Polystyrene Microspheres: Seed Material for Airflow Sensing.

    Science.gov (United States)

    Wohl, Christopher J; Kiefer, Jacob M; Petrosky, Brian J; Tiemsin, Pacita I; Lowe, K Todd; Maisto, Pietro M F; Danehy, Paul M

    2015-09-23

    Kiton red 620 (KR620) doped polystyrene latex microspheres (PSLs) were synthesized via soap-free emulsion polymerization to be utilized as a relatively nontoxic, fluorescent seed material for airflow characterization experiments. Poly(styrene-co-styrenesulfonate) was used as the PSL matrix to promote KR620 incorporation. Additionally, a bicarbonate buffer and poly(diallyldimethylammonium chloride), polyD, cationic polymer were added to the reaction solution to stabilize the pH and potentially influence the electrostatic interactions between the PSLs and dye molecules. A design of experiments (DOE) approach was used to efficiently investigate the variation of these materials. Using a 4-factor, 2-level response surface design with a center point, a series of experiments were performed to determine the dependence of these factors on particle diameter, diameter size distribution, fluorescent emission intensity, and KR620 retention. Using statistical analysis, the factors and factor interactions that most significantly affect the outputs were identified. These particles enabled velocity measurements to be made much closer to walls and surfaces than previously. Based on these results, KR620-doped PSLs may be utilized to simultaneously measure the velocity and mixing concentration, among other airflow parameters, in complex flows.

  13. Doping Li-rich cathode material Li2MnO3 : Interplay between lattice site preference, electronic structure, and delithiation mechanism

    Science.gov (United States)

    Hoang, Khang

    2017-12-01

    We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.

  14. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  15. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  16. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H. (San Ramon, CA); Schaffers, Kathleen I. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA); Krupke, William F. (Pleasanton, CA); Beach, Raymond J. (Livermore, CA)

    1997-01-01

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.

  17. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods

    OpenAIRE

    Muto, Shunsuke; Tatsumi, Kazuyoshi; Kojima, Yuji; Oka, Hideaki; Kondo, Hiroki; Horibuchi, Kayo; Ukyo, Yoshio

    2012-01-01

    The performance of a LiNiO2-based cell has been shown to be significantly improved by Mg-doping of LiNi0.8Co0.15Al0.05O2 (Mg-doped NCA) cathode materials. In the present study, the effects of Mg-doping were examined by electrochemical impedance spectroscopy (EIS) and scanning transmission electron microscopy-electron energy loss spectroscopy. EIS analysis revealed that the activation energy of Mg-doped NCA for the charge-transfer reaction was larger than that of undoped NCA by a factor of ∼10...

  18. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  19. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    Science.gov (United States)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  20. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    International Nuclear Information System (INIS)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S.K.

    2014-01-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge 2 Sb 2 Te 5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In 2 Te 3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation αhν = β(hν - E g ) 2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials. (orig.)

  1. Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials

    Science.gov (United States)

    Singamaneni, S. R.; Martinez, L. M.; Swadipta, R.; Ramana, C. V.

    2018-05-01

    We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.

  2. Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials

    Directory of Open Access Journals (Sweden)

    S. R. Singamaneni

    2018-05-01

    Full Text Available We report the magnetic and electron spin resonance (ESR properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15% in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc (1300-2200 Oe and saturation magnetization MS (35-82 emu/g vary strongly as a function of W doping at all the temperatures (4-300 K measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC and field cooled (FC, 1000 Oe magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation. This observation is corroborated by ESR (9.398 GHz measurements collected as a function of temperature (10-150 K and W doping (0-15%. We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.

  3. Improvement of the electrochemical performance of nanosized {alpha}-MnO{sub 2} used as cathode material for Li-batteries by Sn-doping

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, A.M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abdel-Latif, A.M.; Abuzeid, H.M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abbas, H.M. [National Research Centre, Physical Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Farag, R.S. [Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo (Egypt); Mauger, A. [Universite Pierre et Marie Curie, Institut de Mineralogie et Physique de la Matiere Condensee (IMPMC), 4 Place Jussieu, 75005 Paris (France); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 Place Jussieu, 75005 Paris (France)

    2011-10-06

    Highlights: > Doping MnO{sub 2} with Sn improved properties of {alpha}-MnO{sub 2}. > Thermal stabilization and electrochemical performances were improved. > Doping affected also the morphology feature of {alpha}-MnO{sub 2}. - Abstract: Sn-doped MnO{sub 2} was prepared by hydrothermal reaction between KMnO{sub 4} as oxidant, fumaric acid C{sub 4}H{sub 4}O{sub 4} as reductant and SnCl{sub 2} as doping agent. XRD analysis indicates the cryptomelane {alpha}-MnO{sub 2} crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO{sub 2} to rod-like structure for Sn-MnO{sub 2}. Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO{sub 2} cell display lower capacity loss.

  4. Preparation and Luminescent Properties of the antibacterial materials of the La3+ Doped Sm3+-Hydroxyapatite

    Science.gov (United States)

    Lv, Yuguang; Shi, Qi; Jin, Yuling; Ren, Hengxin; Qin, Yushan; Wang, Bo; Song, Shanshan

    2018-03-01

    In this paper, the La3+-doped Sm3+ hydroxyapatite (La/Sm/HAP) complexes were prepared by a precipitation method. The sample was defined by IR spectra, fluorescence spectra and X ray diffraction analysis et al. The structure of complexes were discussed. The emission wavelength of heat treatment of Sm3+ do not change, but will affect the intensity of the peak Sm3+ luminescence properties and the occupy hydroxyapatite in the lattice Ca( II )and Ca( I ) loci with Sm3+ doped concentration and the proportion of the sintering temperature change and change: The nano hydroxyapatite complex of the La3+ doped samarium obtain the good fluorescence intensity, by La3+ doping content of Sm3+ were hydroxyapatite 6% (La3+, Sm3+ mole ratio) device. The complex of La3+ doped samarium HAP have Stable chemical property, fluorescence property and excellent biological activity. The ligand HAP absorbs energy or captures an electron-hole pair and then transfers it to the lanthanide ions. The catalytic activity influence of the La3+-doped Sm3+hydroxyapatite was discussed, the La/Sm/HAP had excellent antibacterial property, which used as potential biological antibacterial material.

  5. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  6. Nitrogen-doped Sb-rich Si–Sb–Te phase-change material for high-performance phase-change memory

    International Nuclear Information System (INIS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Cheng, Yan; Rao, Feng; Ren, Kun; Song, Sannian; Liu, Bo; Feng, Songlin

    2013-01-01

    The effects of nitrogen doping on the phase-change performance of Sb-rich Si–Sb–Te materials are systemically investigated, focusing on the chemical state and the role of nitrogen upon crystallization. The tendency of N atoms to bond with Si (SiN x ) in the crystalline film is analyzed by X-ray photoelectron spectroscopy. The microstructures of the materials mixed with Sb 2 Te crystal grains and amorphous Si/SiN x regions are elucidated via in situ transmission electron microscopy, from which a percolation behavior is demonstrated to possibly describe the random crystallization feature in the nucleation-dominated nanocomposite material. The phase-change memory cells based on N-doped Sb-rich Si–Sb–Te materials display more stable and reliable electrical performance than the nitrogen-free ones. An endurance characteristic in the magnitude of 10 7 cycles of the phase-change memory cells is realized with moderate nitrogen addition, meaning that the nitrogen incorporation into Si–Sb–Te material is a suitable method to achieve high-performance phase-change memory for commercial applications

  7. Aluminum-Doped SnO2 Hollow Microspheres as Photoanode Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Binghua Xu

    2016-01-01

    Full Text Available Al doped SnO2 microspheres were prepared through hydrothermal method. As-prepared SnO2 microspheres were applied as photoanode materials in dye-sensitized solar cells (DSCs. The properties of the assembled DSCs were significantly improved, especially the open-circuit voltage. The reason for the enhancement was explored through the investigation of dark current curves and electrochemistry impedance spectra. These results showed that the Al doping significantly increased the reaction resistance of recombination reactions and restrained the dark current. The efficient lifetime of photoexcited electrons was also obviously lengthened.

  8. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    Science.gov (United States)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  10. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum-doped

  11. Development of anabolic-androgenic steroids purity certified reference materials for anti-doping.

    Science.gov (United States)

    Quan, Can; Su, Fuhai; Wang, Haifeng; Li, Hongmei

    2011-12-20

    The need for certified reference materials (CRM) of anabolic-androgenic steroids reference materials was emphasized by the Beijing 2008 Olympic game as a tool to improve comparability, ensuring accuracy and traceability of analytical results for competing athletes. The China National Institute of Metrology (NIM) responded to the state request by providing seven anabolic-androgenic steroids (AAS) reference materials for Beijing Olympic anti-doping, GBW (E) 100086-GBW (E) 100092. This work describes the production of the series of AAS CRMs, according to ISO Guides 34 and 35 [1,2], which comprises the material processing, homogeneity and stability assessment, CRMs' characterization including moisture content, trace metal content. The AASs' purity values were assigned with collaborative study involved eight laboratories applying high resolution liquid chromatography-diode array detector (HPLC-DAD). Homogeneity of the AAS CRMs were determined by an in-house validated liquid chromatographic methodology. Potential degradation during storage was also investigated and a shelf-life based on this value was established. The certified values of CRMs were 99.76±0.079%, 99.76±0.25%, 99.63±0.09%, 99.67±0.11%, 98.82±0.56%, 96.30±0.39% and 99.71±0.49% (purity±expanded uncertainty with confidence level of 95%) for methyltestosterone, testosterone propionate, nandrolone, nandrolone 17-propionate, boldenone, trenbolone acetate and testosterone respectively. The certified values for all the studied AAS reference materials are traceable to the international system of units (SI). The CRMs developed were applied by 32 laboratory including sports organizations and analytical laboratories during the 2008 Olympic game for anti-doping control. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  13. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  14. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  15. Three Dimensional Nitrogen-Doped and Nitrogen, Sulfur-Codoped Graphene Hydrogels for Electrode Materials in Supercapacitors.

    Science.gov (United States)

    Yuan, Zhao; Qiao, Fei; Wang, Guiqiang; Zhou, Jin; Cui, Hongyou; Zhuo, Shuping; Xing, Ling-Bao

    2018-08-01

    In present work, reduced graphene oxide hydrogels (RGOHs) with three-dimensional (3D) porous structure are prepared through chemical reduction method by using aminourea (NRGOHs) and aminothiourea (NSRGOHs) as reductants. The as-prepared RGOHs are considered not only as promising electrode materials for supercapacitors, but also the doping of nitrogen (aminourea, NRGOHs) or nitrogen/sulfur (aminothiourea, NSRGOHs) can improve electrochemical performance through faradaic pseudocapacitance. The optimized samples have been prepared by controlling the mass ratios of graphene oxide (GO) to aminourea or aminothiourea to be 1:1, 1:2 and 1:5, respectively. With adding different amounts of aminourea or aminothiourea, the obtained RGOHs exhibited different electrochemical performance in supercapacitors. With increasing the dosage of the reductants, the RGOHs revealed better specific capacitances. Moreover, NSRGOHs with nitrogen, sulfur-codoping exhibited better capacitance performance than that of NRGOHs with only nitrogen-doping. NSRGOHs showed excellent capacitive performance with a very high specific capacitance up to 232.2, 323.3 and 345.6 F g-1 at 0.2 A g-1, while NRGOHs showed capacitive performance with specific capacitance up to 220.6, 306.5 and 332.7 F g-1 at 0.2 A g-1. This provides a strategy to improve the capacitive properties of RGOHs significantly by controlling different doping the materials.

  16. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  17. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

    Directory of Open Access Journals (Sweden)

    Daniela Lehr

    2015-11-01

    Full Text Available Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides. Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn2+ by other metals (e.g., Al3+. Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O2− versus halogenides. A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl. We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies.

  18. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

    Science.gov (United States)

    Anand, Sunny; Sarin, R. K.

    2017-02-01

    In this paper, charge-plasma-based tunnel FET is proposed by employing dual material gate with hetero gate dielectric technique and it is named hetero-dielectric dual material gate doping-less TFET (HD_DMG_DLTFET). It is compared with conventional doping-less TFET (DLTFET) and dual material gate doping-less TFET (DMG_DLTFET) on the basis of analog and RF performance. The HD_DMG_DLTFET provides better ON state current ({I}\\text{ON}=94 μ \\text{A}/μ \\text{m}), {I}\\text{ON}/{I}\\text{OFF}(≈ 1.36× {10}13), \\text{point} (≈ 3\\text{mV}/\\text{dec}) and average subthreshold slope (\\text{AV}-\\text{SS}=40.40 \\text{mV}/\\text{dec}). The proposed device offers low total gate capacitance (C gg) along with higher drive current. However, with a better transconductance (g m) and cut-off frequency (f T), the HD_DMG_DLTFET can be a good candidate for RF circuitry. The early voltage (V EA) and output conductance (g d) are also moderate for the proposed device with comparison to other devices and therefore can be a candidate for analog devices. From all these simulation results and their study, it is observed that HD_DMG_DLTFET has improved analog/RF performance compared to DLTFET and DMG_DLTFET.

  19. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  20. Synthesis and Electrochemical Properties of Fe-doped V6O13 as Cathode Material for Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    YUAN Qi

    2018-01-01

    Full Text Available Fe-doped V6O13 was synthesized via a facile hydrothermal method after preparing precursor in order to improve the discharge capacity and cycle performance of V6O13 cathode material at high-lithium state. XRD, SEM and XPS were employed to characterize the phase, morphology and valence of the Fe-doped V6O13. Meanwhile, the electrochemical performance was analyzed and researched. Different morphologies and electrochemical performances of Fe-doped V6O13 were obtained via doping different contents of Fe3+ ion. The sample 0.02 presented the largest thickness of nanosheets (the thickness of 600-900nm and clearance between layers. The Fe-doped V6O13 has a better electrochemical performance than that of pure V6O13. The sample 0.02 exhibits the best electrochemical performance, the initial discharge specific capacity is 433mAh·g-1 and the capacity retention is 47.1% after 100 cycles.

  1. Effect of Metal (Mn, Ti Doping on NCA Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dao Yong Wan

    2018-01-01

    Full Text Available NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01 cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping resulted in cell volume expansion. This larger volume also improved the electrochemical properties of the cathode materials because Mn4+ and Ti4+ were introduced into the octahedral lattice space occupied by the Li-ions to expand the Li layer spacing and, thereby, improved the lithium diffusion kinetics. As a result, the NCA-Ti electrode exhibited superior performance with a high discharge capacity of 179.6 mAh g−1 after the first cycle, almost 23 mAh g−1 higher than that obtained with the undoped NCA electrode, and 166.7 mAh g−1 after 30 cycles. A good coulombic efficiency of 88.6% for the NCA-Ti electrode is observed based on calculations in the first charge and discharge capacities. In addition, the NCA-Ti cathode material exhibited the best cycling stability of 93% up to 30 cycles.

  2. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  3. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  4. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    Science.gov (United States)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2. Theoretically it has been proven that by engineering nanostructures with lower dimensionality one can significantly increase ZT. A superlattice, or a system of 2-dimensional multilayer quantum wells has previously shown the potential to be used for thermoelectric structures. However, the use of conventional materials within these structures has only allowed this at low temperatures and has utilized cross-plane transport. This study focuses on both high temperature range operation and the in-plane transport properties of such structures, which benefit from both quantum confinement and an enhancement in density of states near EF. The n-type structures are fabricated by alternately sputtering barrier and well materials of Al-doped ZnO (AZO) and indium co-doped AZO, respectively. Samples investigated consist of 50 periods with targeted layer thicknesses of 10nm, which results in sufficient sampling material as well as quantum well effects. The indium doping level within the quantum well was controlled by varying the target power, and ultimately results in a 3x improvement in power factor (S 2sigma) over the parent bulk materials. The film characterization was determined by X-ray reflectometry, transmission electron microscopy, X-ray diffraction, auger electron spectroscopy, as well as other relevant techniques. In addition, process optimization was performed on material parameters such as layer thickness, interface roughness, and band-gap offset which all play a major role in determining the

  5. IR-doped ruthenium oxide catalyst for oxygen evolution

    Science.gov (United States)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  6. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    Science.gov (United States)

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Luminescence properties of Tm3+ ions single-doped YF3 materials in an unconventional excitation region.

    Science.gov (United States)

    Chen, Yuan; Liu, Qing; Lin, Han; Yan, Xiaohong

    2018-05-01

    According to the spectral distribution of solar radiation at the earth's surface, under the excitation region of 1150 to 1350 nm, the up-conversion luminescence of Tm 3+ ions was investigated. The emission bands were matched well with the spectral response region of silicon solar cells, achieved by Tm 3+ ions single-doped yttrium fluoride (YF 3 ) phosphor, which was different from the conventional Tm 3+ /Yb 3+ ion couple co-doped materials. Additionally, the similar emission bands of Tm 3+ ions were achieved under excitation in the ultraviolet region. It is expected that via up-conversion and down-conversion routes, Tm 3+ -sensitized materials could convert photons to the desired wavelengths in order to reduce the energy loss of silicon solar cells, thereby enhancing the photovoltaic efficiency. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  9. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  10. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

    Science.gov (United States)

    Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin

    2018-04-01

    The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

  11. Doped graphene supercapacitors

    Science.gov (United States)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  12. Doped graphene supercapacitors

    International Nuclear Information System (INIS)

    Kumar, Nanjundan Ashok; Baek, Jong-Beom

    2015-01-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed. (topical review)

  13. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2015-01-01

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  14. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  15. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com; Li, Xingying, E-mail: lixingying0479@link.tyut.edu.cn; Guo, Yuyu, E-mail: guoyuyu0455@link.tyut.edu.cn; Zhang, Shen, E-mail: zhangshen0472@link.tyut.edu.cn; Li, Zhe, E-mail: lizhe@tyut.edu.cn

    2017-04-15

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.

  16. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Doping of organic semiconductors

    International Nuclear Information System (INIS)

    Luessem, B.; Riede, M.; Leo, K.

    2013-01-01

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  19. Radiation doping methods of semiconductor materials: the nuclear doping by charged particles

    International Nuclear Information System (INIS)

    Kozlovskii, V.V.; Zakharenkov, L.F.

    1996-01-01

    A review is given of the state of the art in one of the current topics in radiation doping of semiconductors, which is process of nuclear transmutation doping (NTD) by charged particles. In contrast to the neutron and photonuclear transmutation doping, which have been dealt with in monograths and reviews, NTD caused by the action of charged particles is a subject growing very rapidly in the last 10-15 years, but still lacking systematic accounts. The review consists of three sections. The first section deals with the characteristics of nuclear reactions in semiconductors caused by the action of charged particles: the main stress is on the modeling of NTD processes in semiconductors under the action of charged particles. In the second section the state of the art of experimental investigations of NTD under the influence of charged particles is considered. An analysis is made of the communications reporting experimental data on the total numbers of dopants which are introduced, concentration of the electrically active fraction of the impurity, profiles of the dopant distributions, and conditions for efficient annealing of radiation defects. The third section deals with the suitability of NTD by charged particles for the fabrication of semiconductor devices. (author)

  20. Structural, magnetic and electric properties of Nd and Ni co-doped BiFeO3 materials

    Directory of Open Access Journals (Sweden)

    Dao Viet Thang

    2017-09-01

    Full Text Available Multiferroic Bi1−xNdxFe0.975Ni0.025O3 (x = 0.00, 0.05, 0.10, 0.125, and 0.15 (BNFNO and BiFeO3 (BFO materials were synthesized by a sol-gel method. Crystal structure, ferromagnetic and ferroelectric properties of the as-synthesized materials were investigated. Results showed that Nd3+ and Ni2+ co-doping affected to the electrical leakage, enhanced ferroelectric polarization and magnetization of BiFeO3. Co-doped sample with 12.5 mol% of Nd3+ and 2.5 mol% of Ni2+ exhibited an enhancement in both ferromagnetism and ferroelectric properties up to MS ~ 0.528 emu/g and PS ~ 18.35 μC/cm2 with applied electric field at 5 kV/cm, respectively. The origins of ferromagnetism and ferroelectricity enhancement were discussed in the paper.

  1. Highly doped InP as a low loss plasmonic material for mid-IR region

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.

    2016-01-01

    by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom......We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found...... interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated...

  2. Nitrogen-doped carbon based on peptides of hair as electrode materials for surpercapacitors

    International Nuclear Information System (INIS)

    Guo, Zihan; Zhou, Qingwen; Wu, Zhaojun; Zhang, Zhiguo; Zhang, Wen; Zhang, Yao; Li, Lijun; Cao, Zhenzhu; Wang, Hong; Gao, Yanfang

    2013-01-01

    Highlights: • Hair was directly carbonized by environmental and energy-saving methods. • Hair was utilized to prepare nitrogen-doped carbon materials for supercapacitor. • A new approache for preparing nitrogen-rich active carbon from biomass waste of hair-like precursor. • Hair-based carbon having a non-crystalline layered structure and excellent capacitive performance. -- Abstract: Hair, a high-nitrogen energetic material, is utilized as a precursor for nitrogen-doped porous carbon. The preparation procedures for obtaining carbon from hair are very simple, namely, reductant or deionized water activation process followed by hair carbonization under argon atmosphere at 800 °C for 2 h. The samples are characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption, and X-ray photoelectron microscopy. The carbon samples are tested as electrode materials in supercapacitors in a three-electrode system. The carbon (soaked in deionized water at 80 °C) presents relatively low specific surface areas (441.34 m 2 g −1 ) and shows higher capacitance (154.5 F g −1 ) compared with nitrogen-free commercial activated carbons (134.5 F g −1 ) at 5 A g −1 . The capacitance remains at 130.5 F g −1 even when the current load is increased to 15 A g −1 . The capacitance loss is only 5% in 6 M KOH after 10,000 charge and discharge cycles at 5 A g −1 . It is the unique microstructure after activation processing and electroactive nitrogen functionalities that enable the carbon obtained through a simple, ecological, and economical process to be utilized as a potential electrode material for electrical double-layer capacitors

  3. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  4. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  5. Controlling Molecular Doping in Organic Semiconductors.

    Science.gov (United States)

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marr, I.; Moos, R., E-mail: functional.materials@uni-bayreuth.de [Department of Functional Materials, University of Bayreuth, Bayreuth 95440 (Germany); Neumann, K.; Thelakkat, M. [Department of Macromolecular Chemistry I, Applied Functional Polymers, University of Bayreuth, Bayreuth 95440 (Germany)

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  7. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  8. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    Science.gov (United States)

    Geier, Michael

    symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits. Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.

  9. synthesis and optical characterization of acid-doped polyaniline thin

    African Journals Online (AJOL)

    HOD

    SYNTHESIS AND OPTICAL CHARACTERIZATION OF ACID-DOPED. POLYANILINE THIN .... MATERIALS AND METHODS .... Characterization of Se Doped Polyaniline”,Current. Applied ... with Silver Nanoparticles”, Advances in Materials.

  10. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    Science.gov (United States)

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  11. Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries

    International Nuclear Information System (INIS)

    Lai, Yanqing; Chen, Wei; Zhang, Zhian; Qu, Yaohui; Gan, Yongqing; Li, Jie

    2016-01-01

    Graphical abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene are prepaed by a one-step carbonization process, with MOF as the structure-directing agent. The method provides a simple and scalable route for preparing 3-D porous graphene materials.The as-prepared material possesses an excellent bi-functional electrocatalytic activity. While applied as the cathode materials of Li–O 2 batteries, the cell exihibits high capacity and considerable rate capability. - Highlights: • A facile simple strategy is employed to in-situ fabricate Fe/Fe 3 C decorated 3-D porous nitrogen-doped graphene. • MIL-100(Fe), a kind of metal-organic framework, is proved playing a structure-directing role in this advanced synthesis route. • This material possesses excellent bi-functional electro-catalytic activity for ORR and OER and shows good electrochemical performance while used as cathode material for Li–O 2 batteries. • The MOF-assisted synthesis method would be a promising new strategy for the synthesis of 3-D porous graphene materials. - Abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene (F-PNG) is designed and synthesized via a one-step carbonization route. During the process, MIL-100(Fe), a kind of metal organic frameworks (MOFs) plays a structure-directing role. It is found that F-PNG with 3-D porous structure is constituted by N-doped graphene and extremely small Fe/Fe 3 C particles uniformly distribute on the surface of graphene. This rationally designed F-PNG possesses excellent oxygen reduction reaction and oxygen evolution reaction bifunctional electrocatalytic activity. While the material is explored as a cathode of Li–O 2 batteries, it exhibits excellent electrochemical performances, delivering a discharge voltage platform of ∼2.91 V and a charge voltage platform of ∼3.52 V at 0.1 mA cm −2 , showing a good cycle performance and having a discharge capacity of ∼7150 mAh g −1 carbon+catalyst at 0.1 mA cm −2 . The excellent performance of

  12. Fuel cells with doped lanthanum gallate electrolyte

    Science.gov (United States)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  13. Fuel cells with doped lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng Man [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Goodenough, J.B. [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Huang Keqin [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Milliken, C. [Cerematec, Inc., Salt Lake City, UT (United States)

    1996-11-01

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800 C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800 C was achieved, our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum gallate and achieve higher power density at 800 C from solid oxide fuel cells. (orig.)

  14. First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped

    International Nuclear Information System (INIS)

    Wu, Liang; Hou, Tingjun; Wang, Yi; Zhao, Yanfei; Guo, Zhenyu; Li, Youyong; Lee, Shuit-Tong

    2012-01-01

    Highlights: ► We study the doping effect on B4, B1 structures and phase transition of ZnO. ► We calculate the phase transition barrier and phase transition path of doped ZnO. ► The transition metal doping decreases the bulk modulus and phase transition pressure. ► The magnetic properties are influenced by the phase transition process. - Abstract: Zinc oxide (ZnO) is a promising material for its wide application in solid-state devices. With the pressure raised from an ambient condition, ZnO transforms from fourfold wurtzite (B4) to sixfold coordinated rocksalt (B1) structure. Doping is an efficient approach to improve the structures and properties of materials. Here we use density-functional theory (DFT) to study doped ZnO and find that the transition pressure from B4 phase to B1 phase of ZnO always decreases with different types of transition metal (V, Cr, Mn, Fe, Co, or Ni) doped, but the phase transition path is not affected by doping. This is consistent with the available experimental results for Mn-doped ZnO and Co-doped ZnO. Doping in ZnO causes the lattice distortion, which leads to the decrease of the bulk modulus and accelerates the phase transition. Mn-doped ZnO shows the strongest magnetic moment due to its half filled d orbital. For V-doped ZnO and Cr-doped ZnO, the magnetism is enhanced by phase transition from B4 to B1. But for Mn-doped ZnO, Fe-doped ZnO, Co-doped ZnO, and Ni-doped ZnO, B1 phase shows weaker magnetic moment than B4 phase. These results can be explained by the amount of charge transferred from the doped atom to O atom. Our results provide a theoretical basis for the doping approach to change the structures and properties of ZnO.

  15. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    International Nuclear Information System (INIS)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-01-01

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures

  16. Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria

    Science.gov (United States)

    Fan, Xiaofeng

    For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and

  17. Temperature evolution in silver nanoparticle doped PETN composite

    Science.gov (United States)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  18. Potential thermoelectric performance of hole-doped Cu2O

    International Nuclear Information System (INIS)

    Chen, Xin; Parker, David; Du, Mao-Hua; Singh, David J

    2013-01-01

    High thermoelectric performance in oxides requires stable conductive materials that have suitable band structures. Here we show, based on an analysis of the thermopower and related properties using first-principles calculations and Boltzmann transport theory in the relaxation time approximation, that hole-doped Cu 2 O may be such a material. We find that hole-doped Cu 2 O has a high thermopower of above 200 μV K −1 even with doping levels as high as 5.2 × 10 20 cm −3 at 500 K, mainly attributed to the heavy valence bands of Cu 2 O. This is reminiscent of the cobaltate family of high-performance oxide thermoelectrics and implies that hole-doped Cu 2 O could be an excellent thermoelectric material if suitably doped. (paper)

  19. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  20. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, B. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Brand, R.A. [Department of Physics, Gerhard-Mercator-Universitaet GH Duisburg, D-47048, Duisburg (Germany); Marjanovic, A.; Schwickardi, M.; Toelle, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Muelheim an der Ruhr (Germany)

    2000-04-28

    Thermodynamics and kinetics of the reversible dissociation of metal-doped NaAlH{sub 4} as a hydrogen (or heat) storage system have been investigated in some detail. The experimentally determined enthalpies for the first (3.7 wt% of H) and the second dissociation step of Ti-doped NaAlH{sub 4} (3.0 wt% H) of 37 and 47 kJ/mol are in accordance with low and medium temperature reversible metal hydride systems, respectively. Through variation of NaAlH{sub 4} particle sizes, catalysts (dopants) and doping procedures, kinetics as well as the cyclization stability within cycle tests have been substantially improved with respect to the previous status [B. Bogdanovic, M. Schwickardi (1997)]. In particular, using combinations of Ti and Fe compounds as dopants, a cooperative (synergistic) catalytic effect of the metals Ti and Fe in enhancing rates of both de- and rehydrogenation of Ti/Fe-doped NaAlH{sub 4} within cycle tests, reaching a constant storage capacity of {proportional_to}4 wt% H{sub 2}, has been demonstrated. By means of {sup 57}Fe Moessbauer spectroscopy of the Ti/Fe-doped NaAlH{sub 4} before and throughout a cycle test, it has been ascertained that (1) during the doping procedure, nanosize metallic Fe particles are formed from the doping agent Fe(OEt){sub 2} and (2) already after the first dehydrogenation, the nanosize Fe particles with NaAlH{sub 4} present are probably transformed into an Fe-Al-alloy which throughout the cycle test remains practically unchanged. (orig.)

  1. The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review

    International Nuclear Information System (INIS)

    Zhang, S.B.

    2002-01-01

    This paper reviews the recent developments in first-principles total energy studies of the phenomenological equilibrium 'doping limit rule' that governs the maximum electrical conductivity of semiconductors via extrinsic or intrinsic doping. The rule relates the maximum equilibrium carrier concentrations (electrons or holes) of a wide range of materials to their respective band alignments. The microscopic origin of the mysterious 'doping limit rule' is the spontaneous formation of intrinsic defects: e.g., in n-type semiconductors, the formation of cation vacancies. Recent developments in overcoming the equilibrium doping limits are also discussed: it appears that a common route to significantly increase carrier concentrations is to expand the physically accessible range of the dopant atomic chemical potential by non-equilibrium doping processes, which not only suppresses the formation of the intrinsic defects but also lowers the formation energy of the impurities, thereby significantly increasing their solubility. (author)

  2. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    Science.gov (United States)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  3. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    Science.gov (United States)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  4. Effect of Zn doping on the microwave absorption of BFO multiferroic materials

    Science.gov (United States)

    Bi, S.; Li, J.; Mei, B.; Su, X. J.; Ying, C. Z.; Li, P. H.

    2018-01-01

    The microwave absorbing materials were firstly used in the Second World War. And the BiFeO3 (BFO) based microwave absorbers have been widely applied into the microwave absorbing area due to its possession of excellent electromagnetic properties. Various methods have been conducted to improve the microwave absorption performance of the BFO based materials. In the work, the sol-gel method were used to prepare the BFO, and the Zn were doped into the BFO to prepare the Bi1-xZnxFeO3 nanoparticles. The X-ray diffraction, scanning electron microscope, and vector network analysis (VNA) were conducted to characterize the microstructure and electromagnetic properties of the as-prepared samples. The results indicate that the Bi1-xZnxFeO3 nanoparticles were successfully gained and the as-prepared samples possess excellent microwave absorption properties.

  5. Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material

    Science.gov (United States)

    Seo, Inseok; Lee, Cheul-Ro; Kim, Jae-Kwang

    2017-09-01

    To improve the electrochemical properties, fine Zr-doping Li4Ti5O12 anode materials for rechargeable lithium batteries with a uniform particle size distribution were synthesized by a modified solid-state reaction using fine Li2CO3 and TiO2 (anatase) powders as precursors with a Li:Ti molar ratio of 4:5. The use of fine Li2CO3 and TiO2 (anatase) powders as precursors prevented the formation of ZrO2 at 0.1 mol Zr-doping. XRD analysis revealed that the substitution of Zr for Ti leads to the increase of lattice parameters, allowing improved Li diffusion. The discharge capacity retention increased slightly with Zr-doping and the 0.1 mol Zr-doped Li4Ti5O12 electrode achieved 99% retention of discharge capacity.

  6. Sm 3+-doped polymer optical waveguide amplifiers

    Science.gov (United States)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  7. The investigation of Y doping content effect on the microstructure and microhardness of tungsten materials

    International Nuclear Information System (INIS)

    Zhao, Mingyue; Zhou, Zhangjian; Ding, Qingming; Zhong, Ming; Tan, Jun

    2014-01-01

    In this study, the microstructure and microhardness of tungsten–yttrium (W–Y) composites were investigated as a function of Y doping content (0.25–3 wt%). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W–Y alloys when the Y content was higher than 0.5 wt%. The EDS analysis revealed that the Y rich phases were complex (W–Y) oxides formed during the sintering process. The Y doping content showed obvious influence on the refinement of tungsten grains during sintering. W–1.5Y composite showed the finest microstructure with an average grain size of 0.32 μm, and thus achieved the highest Vickers microhardness with the value of 770 HV 0.2

  8. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    International Nuclear Information System (INIS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-01-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.

  9. Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study

    International Nuclear Information System (INIS)

    Song Chen; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Zhang Hongyu; Zhang Bingyun

    2006-01-01

    We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding

  10. Silicon doped InP as an alternative plasmonic material for mid-infrared

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  11. Doping reversed-phase media for improved peptide purification.

    Science.gov (United States)

    Khalaf, Rushd; Forrer, Nicola; Buffolino, Gianluca; Gétaz, David; Bernardi, Susanna; Butté, Alessandro; Morbidelli, Massimo

    2015-06-05

    The purification of therapeutic peptides is most often performed using one or more reversed phase chromatography steps. This ensures high purities while keeping the costs of purification under control. In this paper, a doped reversed phase chromatographic material is tested and compared to traditional reversed phase materials. The doping consists of adding limited amounts of ion exchange ligands to the surface of the material to achieve orthogonal separation and increase the non-hydrophobic interactions with the surface. These ionic groups can either be attractive (opposite charge), or repulsive (same charge) to the peptide. The benefit of this new doped reversed phase material is shown through increases in selectivity in diluted conditions and yield and productivity in overloaded (i.e. industrial) conditions. It is the conjectured that all performance characteristics should increase using repulsive doping groups, whereas these characteristics should decrease when using attractive doping groups. This conjecture is shown to be true through several examples, including purifications of industrially relevant peptide crudes, in industrially relevant conditions. Moreover, the effect of ionic strength and organic modifier concentration was explored and shown to be in line with the expected behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    OpenAIRE

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prep...

  13. Synthesis strategies for improving the performance of doped-BaZrO 3 materials in solid oxide fuel cell applications

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    is lower than that of conventional oxygen-ion conductors, enabling the operating temperature reduction at 600 °C. Among HTPC oxides, doped BaZrO3 materials possess high chemical stability, needed for practical applications. Though, poor sinterability

  14. Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Yang, Jing; Wang, Shuyuan; Ma, Zhipeng; Du, Zhiling; Li, Chunying; Song, Jianjun; Wang, Guiling; Shao, Guangjie

    2015-01-01

    Highlights: • Nitrogen-doped hierarchically porous coralloid carbon/sulfur composites were prepared • Nitrogen atoms were introduced to improve electrochemical properties • The intriguing structural features benefited discharge capacity and cycling stability - Abstract: Nitrogen-doped hierarchically porous coralloid carbon/sulfur composites (N-HPCC/S) served as attractive cathode materials for lithium–sulfur (Li–S) batteries were fabricated for the first time. The nitrogen-doped hierarchically porous coralloid carbon (N-HPCC) with an appropriate nitrogen content (1.29 wt%) was synthesized via a facile hydrothermal approach, combined with subsequent carbonization–activation. The N-HPCC/S composites prepared by a simple melt–diffusion method displayed an excellent electrochemical performance. With a high sulfur content (58 wt%) in the total electrode weight, the N-HPCC/S cathode delivered a high initial discharge capacity of 1626.8 mA h g −1 and remained high up to 1086.3 mA h g −1 after 50 cycles at 100 mA g −1 , which is about 1.86 times as that of activated carbon. Particularly, the reversible discharge capacity still maintained 607.2 mA h g −1 after 200 cycles even at a higher rate of 800 mA g −1 . The enhanced electrochemical performance was attributed to the synergetic effect between the intriguing hierarchically porous coralloid structure and appropriate nitrogen doping, which could effectively trap polysulfides, alleviate the volume expansion, enhance the electronic conductivity and improve the surface interaction between the carbon matrix and polysulfides

  15. Implantation doping of GaN

    International Nuclear Information System (INIS)

    Zolper, J.C.

    1996-01-01

    Ion implantation has played an enabling role in the realization of many high performance photonic and electronic devices in mature semiconductor materials systems such as Si and GaAs. This can also be expected to be the case in III-Nitride based devices as the material quality continues to improve. This paper reviews the progress in ion implantation processing of the III-Nitride materials, namely, GaN, AlN, InN and their alloys. Details are presented of the successful demonstrations of implant isolation as well as n- and p-type implantation doping of GaN. Implant doping has required activation annealing at temperatures in excess of 1,000 C. The nature of the implantation induced damage and its response to annealing is addressed using Rutherford Backscattering. Finally, results are given for the first demonstration of a GaN device fabricated using ion implantation doping, a GaN junction field effect transistor (JFET)

  16. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    OpenAIRE

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition (overtones), rare earth concentration, and ligand contribution (increase of exponential loss trend in the UV). Furthermore, nanoparticle size and concentration in case of a refractive index mismatch (1//spl l...

  17. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  18. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhou, Xiaosi; Wan, Li-Jun; Guo, Yu-Guo

    2013-04-18

    Hybrid anode materials for Li-ion batteries are fabricated by binding SnO2 nanocrystals (NCs) in nitrogen-doped reduced graphene oxide (N-RGO) sheets by means of an in situ hydrazine monohydrate vapor reduction method. The SnO2NCs in the obtained SnO2NC@N-RGO hybrid material exhibit exceptionally high specific capacity and high rate capability. Bonds formed between graphene and SnO2 nanocrystals limit the aggregation of in situ formed Sn nanoparticles, leading to a stable hybrid anode material with long cycle life. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Switching mechanism due to the spontaneous emission cancellation in photonic band gap materials doped with nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Canada N6A 3K7 (Canada)]. E-mail: msingh@uwo.ca

    2007-03-26

    We have investigated the switching mechanism due to the spontaneous emission cancellation in a photonic band gap (PBG) material doped with an ensemble of four-level nano-particles. The effect of the dipole-dipole interaction has also been studied. The linear susceptibility has been calculated in the mean field theory. Numerical simulations for the imaginary susceptibility are performed for a PBG material which is made from periodic dielectric spheres. It is predicted that the system can be switched between the absorbing state and the non-absorbing state by changing the resonance energy within the energy bands of the photonic band gap material.0.

  20. Material and Doping Dependence of the Nodal and Anti-Nodal Dispersion Renormalizations in Single- and Multi-Layer Cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.; /Waterloo U. /SLAC; Lee, W.S.; /Stanford U., Geballe Lab. /SLAC; Nowadnick, E.A.; /SLAC /Stanford U., Phys. Dept.; Moritz, B.; /SLAC /North Dakota U.; Shen, Z.-X.; /Stanford U., Geballe Lab. /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Devereaux, T.P.; /Stanford U., Geballe Lab. /SLAC

    2010-02-15

    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of CuO{sub 2} layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.

  1. Proton-transfer doping of polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.; Schomaker, J.A. (School of Chemistry and Biochemistry, Georgia Inst. of Tech., Atlanta (USA))

    1991-04-30

    Exhaustive deprotonation of films of poly(acetylene-co-1,3-butadiene) (PAB) fails to produce a conductive film. In contrast, deprotonation of segmented polyacetylene (SPA) produces a conductive material with similar characteristics to n-doped polyacetylene. Thus the feasibility of a proton-transfer approach to doping of polyacetylene has been demonstrated. (orig.).

  2. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  3. High rate capability of TiO{sub 2}/nitrogen-doped graphene nanocomposite as an anode material for lithium–ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Dandan; Li, Dongdong; Wang, Suqing [School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road, Guangzhou (China); Zhu, Xuefeng; Yang, Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China); Zhang, Shanqing [Centre for Clean Environment and Energy, Environmental Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222 (Australia); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road, Guangzhou (China)

    2013-06-05

    Highlights: ► TiO{sub 2}/N-doped graphene composite was synthesized by a gas/liquid interfacial method. ► The nanocomposite was used to fabricate lithium-ion batteries. ► Its electrochemical performance was evaluated for the first time. ► The anode material exhibits a good cycling performance and rate capability. -- Abstract: TiO{sub 2}/nitrogen-doped graphene nanocomposite was synthesized by a facile gas/liquid interface reaction. The structure and morphology of the sample were analyzed by X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The results indicate that nitrogen atoms were successfully doped into graphene sheets. The TiO{sub 2} nanoparticles (8–13 nm in size) were homogenously anchored on the nitrogen-doped graphene sheets through gas/liquid interface reaction. The as-prepared TiO{sub 2}/nitrogen-doped graphene nanocomposite shows a better electrochemical performance than the TiO{sub 2}/graphene nanocomposite and the bare TiO{sub 2} nanoparticles. TiO{sub 2}/nitrogen-doped graphene nanocomposite exhibits excellent cycling stability and shows high capacity of 136 mAh g{sup −1} (at a current density of 1000 mA g{sup −1}) after 80 cycles. More importantly, a high reversible capacity of 109 mAh g{sup −1} can still be obtained even at a super high current density of 5000 mA g{sup −1}. The superior electrochemical performance is attributed to the good electronic conductivity introduced by the nitrogen-doped graphene sheets and the positive synergistic effect between nitrogen-doped graphene sheets and TiO{sub 2} nanoparticles.

  4. Influence of quantum confinement on the carrier contribution to the elastic constants in quantum confined heavily doped non-linear optical and optoelectronic materials: simplified theory and the suggestion for experimental determination

    International Nuclear Information System (INIS)

    Baruah, D; Choudhury, S; Singh, K M; Ghatak, K P

    2007-01-01

    In this paper we study the carrier contribution to elastic constants in quantum confined heavily doped non-linear optical compounds on the basis of a newly formulated electron dispersion law taking into account the anisotropies of the effective electron masses and spin orbit splitting constants together with the proper inclusion of the crystal field splitting in the Hamiltonian within the framework of k.p formalism. All the results of heavily doped three, and two models of Kane for heavily doped III-V materials form special cases of our generalized analysis. It has been found, taking different heavily doped quantum confined materials that, the carrier contribution to the elastic constants increases with increase in electron statistics and decrease in film thickness in ladder like manners for all types of quantum confinements with different numerical values which are totally dependent on the energy band constants. The said contribution is greatest in quantum dots and least in quantum wells together with the fact the heavy doping enhances the said contributions for all types of quantum confined materials. We have suggested an experimental method of determining the carrier contribution to the elastic constants in nanostructured materials having arbitrary band structures

  5. Structure prediction of boron-doped graphene by machine learning

    Science.gov (United States)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  6. Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc

    Science.gov (United States)

    Gaul, Christopher; Hutsch, Sebastian; Schwarze, Martin; Schellhammer, Karl Sebastian; Bussolotti, Fabio; Kera, Satoshi; Cuniberti, Gianaurelio; Leo, Karl; Ortmann, Frank

    2018-05-01

    Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.

  7. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Guanghui Yuan

    2018-01-01

    Full Text Available A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG, is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g−1 after 200 cycles at 100 mA g−1. Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li+ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  8. Borazino-Doped Polyphenylenes.

    Science.gov (United States)

    Marinelli, Davide; Fasano, Francesco; Najjari, Btissam; Demitri, Nicola; Bonifazi, Davide

    2017-04-19

    The divergent synthesis of two series of borazino-doped polyphenylenes, in which one or more aryl units are replaced by borazine rings, is reported for the first time, taking advantage of the decarbonylative [4 + 2] Diels-Alder cycloaddition reaction between ethynyl and tetraphenylcyclopentadienone derivatives. Because of the possibility of functionalizing the borazine core with different groups on the aryl substituents at the N and B atoms of the borazino core, we have prepared borazino-doped polyphenylenes featuring different doping dosages and orientations. To achieve this, two molecular modules were prepared: a core and a branching unit. Depending on the chemical natures of the central aromatic module and the reactive group, each covalent combination of the modules yields one exclusive doping pattern. By means of this approach, three- and hexa-branched hybrid polyphenylenes featuring controlled orientations and dosages of the doping B 3 N 3 rings have been prepared. Detailed photophysical investigations showed that as the doping dosage is increased, the strong luminescent signal is progressively reduced. This suggests that the presence of the B 3 N 3 rings engages additional deactivation pathways, possibly involving excited states with an increasing charge-separated character that are restricted in the full-carbon analogues. Notably, a strong effect of the orientational doping on the fluorescence quantum yield was observed for those hybrid polyphenylene structures featuring low doping dosages. Finally, we showed that Cu-catalyzed 1,3-dipolar cycloaddition is also chemically compatible with the BN core, further endorsing the inorganic benzene as a versatile aromatic scaffold for engineering of molecular materials with tailored and exploitable optoelectronic properties.

  9. Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2.

    Science.gov (United States)

    Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2018-05-11

    In this paper, Er 3+ -Yb 3+ -Li + tri-doped TiO 2 (UC-TiO 2 ) was prepared by an addition of Li + to Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 presented an enhanced up-conversion emission compared with Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO 2 was 14.0%, while the PCE of the solar cells with UC-TiO 2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO 2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.

  10. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-11-21

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

  11. First principles study of P-doped borophene as anode materials for lithium ion batteries

    Science.gov (United States)

    Chen, Hui; Zhang, Wei; Tang, Xian-Qiong; Ding, Yan-Huai; Yin, Jiu-Ren; Jiang, Yong; Zhang, Ping; Jin, Haibao

    2018-01-01

    In this paper, Li storage in P-doped borophene nanosheet was stimulated by Density Functional Theory (DFT). Without destroying the nanosheet structure, borophene doped with P atom possessed high binding energy of 3.42 eV. The electronic properties, binding energy, capacity and open-circuit voltage of P-doped borophene were calculated. These results demonstrated that P-doping has a positive effect on the Li storage of borophene nanosheet. Besides, the maximum adsorption number of Li atoms in P-doped borophene is 18, accompanied with an ultra-high theoretical capacity of 1732 mAh/g.

  12. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    International Nuclear Information System (INIS)

    Tripathi Shweta

    2014-01-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator. (interdisciplinary physics and related areas of science and technology)

  13. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    Science.gov (United States)

    Shweta, Tripathi

    2014-11-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator.

  14. Airplane dopes and doping

    Science.gov (United States)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  15. A computational study of the effects of linear doping profile on the high-frequency and switching performances of hetero-material-gate CNTFETs

    International Nuclear Information System (INIS)

    Wang Wei; Li Na; Ren Yuzhou; Li Hao; Zheng Lifen; Li Jin; Jiang Junjie; Chen Xiaoping; Wang Kai; Xia Chunping

    2013-01-01

    The effects of linear doping profile near the source and drain contacts on the switching and high-frequency characteristics for conventional single-material-gate CNTFET (C-CNTFET) and hetero-material-gate CNTFET (HMG-CNTFET) have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self-consistently with Poisson's equations. The simulation results show that at a CNT channel length of 20 nm with chirality (7, 0), the intrinsic cutoff frequency of C-CNTFETs reaches up to a few THz. In addition, a comparison study has been performed between C-and HMG-CNTFETs. For the C-CNTFET, results reveal that a longer linear doping length can improve the cutoff frequency and switching speed. However, it has the reverse effect on on/off current ratios. To improve the on/off current ratios performance of CNTFETs and overcome short-channel effects (SCEs) in high-performance device applications, a novel CNTFET structure with a combination of an HMG and linear doping profile has been proposed. It is demonstrated that the HMG structure design with an optimized linear doping length has improved high-frequency and switching performances as compared to C-CNTFETs. The simulation study may be useful for understanding and optimizing high-performance of CNTFETs and assessing the reliability of CNTFETs for prospective applications. (semiconductor devices)

  16. Effect of Doping Phosphorescent Material and Annealing Treatment on the Performance of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2013-01-01

    Full Text Available A series of polymer solar cells (PSCs with P3HT:PCBM or P3HT:PCBM:Ir(btpy3 blend films as the active layer were fabricated under the same conditions. Effects of phosphorescent material Ir(btpy3 doping concentration and annealing temperature on the performance of PSCs were investigated. The short-circuit current density (Jsc and open-circuit voltage (Voc are increased by adopting P3HT:PCBM:Ir(btpy3 blend films as the active layer when the cells do not undergo annealing treatment. The increased Jsc should be attributed to the increase of photon harvesting induced by doping phosphorescent material Ir(btpy3 and the effective energy transfer from Ir(btpy3 to P3HT. The effective energy transfer from Ir(btpy3 to P3HT was demonstrated by time-resolved photoluminescence (PL spectra. The increased Voc is due to the photovoltaic effect between Ir(btpy3 and PCBM. The power conversion efficiency (PCE of PSCs with P3HT:PCBM as the active layer is increased from 0.19% to 1.49% by annealing treatment at 140°C for 10 minutes. The PCE of PSCs with P3HT:PCBM:Ir(btpy3 as the active layer is increased from 0.49% to 0.95% by annealing treatment at lower temperature at 100°C for 10 minutes.

  17. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2008-01-01

    been synthesized with a recently developed modified glycine-nitrate process. The synthesized powders have been calcined and sintered in air or in 9% H(2) / N(2) between 800 - 1400 degrees C. After calcination the samples were single phase Nb-doped strontium titanate with grain sizes of less than 100 nm...... in diameter on average. The phase purity, defect structure, and microstructure of the materials have been analyzed with SEM, XRD, and TGA. The electrical conductivity of the Nb-doped titanate decreased with increasing temperature and showed a phonon scattering conduction mechanism with sigma > 120 S...... ability of the Nb-doped titanates to be used as a part of a SOFC anode. However, the catalytic activity of the materials was not sufficient and it needs to be improved if titanate based materials are to be realized as constituents in SOFC anodes....

  18. Method of doping a semiconductor

    International Nuclear Information System (INIS)

    Yang, C.Y.; Rapp, R.A.

    1983-01-01

    A method is disclosed for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient

  19. Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials

    Science.gov (United States)

    Eilers-Rethwisch, Matthias; Winter, Martin; Schappacher, Falko Mark

    2018-05-01

    Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xMx]O2 cathode materials (x = 0, 0.05; M = Al, Fe, Sn) are synthesized via a co-precipitation synthesis route and the effect of dopants on the structure and electrochemical performance is investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase investigated by X-ray diffraction (XRD). Undoped LiNi0.6Mn0.2Co0.2O2 exhibits a discharge capacity of 170 mAh g-1 in Li-metal 2032 coin-type cells. Doped materials reach lower capacities between 145 mAh g-1 for Al and 160 mAh g-1 for Sn. However, all doped materials prolong the cycle life by up to 20%. Changes of the lattice parameter before and after delithiation yield information about structural stability. A smaller repulsion of the transition metal layer during delithiation in the Sn-doped material leads to a smaller expansion of the unit cell, which results in enhanced structural stability of the material. The improved structural stability of Sn-doped NMC cathode active material is proven by thermal investigations with the help of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).

  20. Potassium-doped zinc oxide as photocathode material in dye-sensitized solar cells.

    Science.gov (United States)

    Bai, Jie; Xu, Xiaobao; Xu, Ling; Cui, Jin; Huang, Dekang; Chen, Wei; Cheng, Yibing; Shen, Yan; Wang, Mingkui

    2013-04-01

    ZnO nanoparticles are doped with K and applied in p-type dye-sensitized solar cells (DSCs). The microstructure and dynamics of hole transportation and recombination are investigated. The morphology of the K-doped ZnO nanoparticles shows a homogeneous distribution with sizes in the range 30-40 nm. When applied in p-type DSCs in combination with C343 as sensitizer, the K-doped ZnO nanoparticles achieve a photovoltaic power conversion efficiency of 0.012 % at full-intensity sunlight. A further study on the device by transient photovoltage/photocurrent decay measurements shows that the K-doped ZnO nanoparticles have an appreciable hole diffusion coefficient (ca. 10(-6) cm(2) s(-1) ). Compared to the widely used p-type NiO nanoparticles, this advantage is crucial for further improving the efficiency of p-type DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  2. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng

    2010-02-25

    Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase, modifying electronic properties, modulating magnetism as well as tuning emission properties. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF 4 nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF 4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays. © 2010 Macmillan Publishers Limited. All rights reserved.

  3. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  4. Electronic structures and valence band splittings of transition metals doped GaNs

    International Nuclear Information System (INIS)

    Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan

    2007-01-01

    For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials

  5. Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation.

    Science.gov (United States)

    Renné, Walter G; Lindner, Amanda; Mennito, Anthony S; Agee, Kelli A; Pashley, David H; Willett, Daniel; Sentelle, David; Defee, Michael; Schmidt, Michael; Sabatini, Camila

    2017-01-01

    This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation. PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student's t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties. The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.

  6. Synthesis strategies for improving the performance of doped-BaZrO 3 materials in solid oxide fuel cell applications

    KAUST Repository

    Bi, Lei

    2013-08-07

    Solid oxide fuel cells (SOFCs) offer an efficient energy conversion technology for alleviating current energy problems. High temperature proton-conducting (HTPC) oxides are promising electrolytes for this technology, since their activation energy is lower than that of conventional oxygen-ion conductors, enabling the operating temperature reduction at 600 °C. Among HTPC oxides, doped BaZrO3 materials possess high chemical stability, needed for practical applications. Though, poor sinterability and the resulting large volume of highly resistive grain boundaries hindered their deployment for many years. Nonetheless, the recently demonstrated high proton conductivity of the bulk revived the attention on doped BaZrO3, stimulating research on solving the sintering issues. The proper selection of dopants and sintering aids was demonstrated to be successful for improving the BaZrO3 electrolyte sinterability. We here briefly review the synthesis strategies proposed for preparing BaZrO3-based nanostructured powders for electrolyte and electrodes, with the aim to improve the SOFC performance. © Materials Research Society 2013.

  7. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    International Nuclear Information System (INIS)

    Colomer, M.T.; Maczka, M.

    2011-01-01

    Taking advantage of the fact that TiO 2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO 2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y 2 (Ti 1-y Zr y ) 2 O 7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO 2 content. Furthermore, zirconium titanate phase (ZrTiO 4 ) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y 2 O 3 in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO 2 range from 0.21 to 10 -7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 o C and 10 -12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO 2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti 3+ and Ti 4+ . -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: → Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors under low partial pressures. → From 5 mol% of TiO 2 , Y 2 (Ti 1-y ,Zr y ) 2 O 7 pyrochlore is

  8. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  9. Doping of two-dimensional MoS2 by high energy ion implantation

    Science.gov (United States)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  10. Porous allograft bone scaffolds: doping with strontium.

    Directory of Open Access Journals (Sweden)

    Yantao Zhao

    Full Text Available Strontium (Sr can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05. Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  11. Thermal decomposition pathway of undoped and doped zinc layered gallate nanohybrid with Fe 3+, Co 2+ and Ni 2+ to produce mesoporous and high pore volume carbon material

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; bin Hussein, Mohd Zobir; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki

    2009-12-01

    A series of brucite-like materials, undoped and doped zinc layered hydroxide nitrate with 2% (molar) Fe 3+, Co 2+ and Ni 2+ were synthesized. Organic-inorganic nanohybrid material with gallate anion as a guest, and zinc hydroxide nitrate, as an inorganic layered host was prepared by the ion-exchange method. The nanohybrid materials were heat-treated at various temperatures, 400-700 °C. X-ray diffraction, thermal analysis and also Fourier transform infrared results showed that incorporation of the doping agents within the zinc layered hydroxide salt layers has enhanced the heat-resistivity of the nanohybrid materials in the thermal decomposition pathway. Porous carbon materials can be obtained from the heat-treating the nanohybrids at 600 and 700 °C. Calcination of the nanohybrids at 700 °C under nitrogen atmosphere produces mesoporous and high pore volume carbon materials.

  12. Preparation and characterization of Ce-doped HfO2 nanoparticles

    International Nuclear Information System (INIS)

    Gálvez-Barboza, S.; González, L.A.; Puente-Urbina, B.A.; Saucedo-Salazar, E.M.; García-Cerda, L.A.

    2015-01-01

    Highlights: • Ce-doped HfO 2 nanoparticles were prepared by a modified solgel method. • Ce-doped HfO 2 nanoparticles have a semispherical shape with sizes between 6 and 11.5 nm. • The samples doped with 10% in weight of Ce directly crystallized in a cubic structure. • A quick, straightforward and effective route for the preparation of Ce-doped nanoparticles. - Abstract: A modified solgel method to synthesize Ce-doped HfO 2 nanoparticles was carried out using a precursor material prepared with cerium nitrate, hafnium chloride, citric acid and ethylene glycol. The obtained precursor material was calcined at 500 and 700 °C for 2 h in air. The influence of the concentration of Ce and the calcination temperature was studied to observe the structural and morphological changes of the obtained materials. For the characterization, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman scattering (RS) were employed. The XRD patterns shown that the Ce-doped HfO 2 undergoes a structural transformation from monoclinic to cubic phase, which is significantly dependent on the Ce content and calcination temperature. TEM images have also confirmed the existence of semispherical nanoparticles with sizes between 6 and 11.5 nm

  13. Morphological and electrical properties of zirconium vanadate doped with cesium

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2014-09-01

    Full Text Available Cesium doped zirconium vanadate ZrV2O7 with different Cs dopant content (Cs/Zr varied from 0 to 0.5 in weight ratio were fabricated by hydrothermal technique at 120 °C for 60 min. The synthesized materials are thermally treated using microwave technique. The structural and morphological properties of the synthesized materials and thermally treated samples were investigated using XRD and SEM respectively. It was evident that all synthesized specimens have cubic phase structural without any extra phase but after heat treatment Orthorhombic phase appear with doped samples. However, the morphological structure of the doped synthesized materials has transferred from nanoparticles into rods aspect with heat treatment for the different dopant ratio. Moreover, the electrical properties of both the synthesized and thermally treated materials are studied by AC impedance measurements. The results indicated that the ionic conductivity of Cs-doped ZrV2O7 materials decreased by increasing the dopant ratio while that thermally treated samples the ionic conductivity increase by increasing the dopant ratio. Finally, the concentration of cesium dopants is found to play crucial role in tuning the morphology and electrical properties of nanostructures.

  14. Ferromagnetism in Fe-doped transition metal nitrides

    Science.gov (United States)

    Sharma, Ramesh; Sharma, Yamini

    2018-04-01

    Early transition metal mononitrides ScN and YN are refractory compounds with high hardness and melting points as well semiconducting properties. The presence of nitrogen vacancies in ScN/YN introduces asymmetric peaks in the density of states close to Fermi level, the same effects can be achieved by doping by Mn or Fe-atoms. Due to the substitution of TM atoms at Sc/Y sites, it was found that the p-d hybridization induces small magnetic moments at both Sc/Y and N sites giving rise to magnetic semiconductors (MS). From the calculated temperature dependent transport properties, the power factor and ZT is found to be lowered for doped ScN whereas it increases for doped YN. It is proposed that these materials have promising applications as spintronics and thermoelectric materials.

  15. Influence of the carbon-doping location on the material and electrical properties of a AlGaN/GaN heterostructure on Si substrate

    International Nuclear Information System (INIS)

    Ni, Yiqiang; Zhou, Deqiu; Chen, Zijun; Zheng, Yue; He, Zhiyuan; Yang, Fan; Yao, Yao; Zhou, Guilin; Shen, Zhen; Zhong, Jian; Zhang, Baijun; Liu, Yang; Wu, Zhisheng

    2015-01-01

    The influence of different C-doping locations in a GaN/Si structure with a GaN/AlN superlattice (SL) buffer on the material and electrical properties of GaN/Si was studied. The introduction of C doping can remarkably degrade the crystal quality of the buffer. C-doping of a top GaN buffer can introduce compressive stress into the top GaN due to the size effect, while C-doping in a SL buffer can impair the compressive stress provided from the SL buffer to the top GaN. It is found that introducing high-density carbon into the whole buffer can result in a more strain-balanced GaN/Si system with small deterioration of the 2DEG channel. Furthermore, the whole buffer C-doping method is an effective and easy way to achieve a thin buffer with low leakage current and high breakdown voltage (266 V@1 nA mm −1 ; 698 V@10 μA mm −1 ; 912 V@1 mA mm −1 ). By using the whole-buffer C-doping method, a 2.5 μm-thick AlGaN/GaN HFET with a breakdown voltage higher than 900 V was achieved, and the breakdown voltage per unit buffer thickness can reach 181 V μm −1 . (paper)

  16. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  17. High-Throughput Fabrication Method for Producing a Silver-Nanoparticles-Doped Nanoclay Polymer Composite with Novel Synergistic Antibacterial Effects at the Material Interface.

    Science.gov (United States)

    Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2017-06-28

    In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.

  18. Silver doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  19. Silver-doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness. (paper)

  20. Stability aspects of hydrogen-doped indium oxide

    OpenAIRE

    Jost, Gabrielle; Hamri, Alexander Nordin; Köhler, Florian; Hüpkes, Jürgen

    2015-01-01

    Transparent conductive oxides play an important role as contact layers in various opto-electronic devices such as solar cells or LEDs. Whilst crystalline materials e.g. zinc oxide (ZnO), tin oxide (Sn2O3) or tin doped indium oxide (ITO) have already been vastly investigated and applied [1] hydrogen doped indium oxide (In2O3:H) entered the scene a while ago as a new material with a superior trade-off between electrical and optical performance. In2O3:H is commonly deposited at room temperature...

  1. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  2. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...... samples showed that the average grain size increased drastically in reducing conditions with increasing La content (and associated A‐site vacancies). By incorporating 2 mol.% La, the electronic conductivity significantly improved from 80 to 135 S cm−1 at 1,000 °C, and even larger improvements were...... observed at lower temperatures. These observations demonstrate the flexibility in tailoring the microstructure and electronic transport properties by doping small amounts of La into the Nb‐doped SrTiO3 and show that Sr1–3x/2LaxTi0.9Nb0.1O3 is a potential electrode material for solid oxide cells....

  3. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    Science.gov (United States)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  4. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  5. Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors.

    Science.gov (United States)

    Tan, Yongtao; Liu, Ying; Tang, Zhenghua; Wang, Zhe; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-13

    N-doped carbon nanosheets/vanadium nitride nanoparticles (N-CNS/VNNPs) are synthesized via a novel method combining surface-initiated in-situ intercalative polymerization and thermal-treatment process in NH 3 /N 2 atmosphere. The pH value of the synthesis system plays a critical role in constructing the structure and enhancing electrochemical performance for N-CNS/VNNPs, which are characterized by SEM, TEM, XRD, and XPS, and measured by electrochemical station, respectively. The results show that N-CNS/VNNPs materials consist of 2D N-doped carbon nanosheets and 0D VN nanoparticles. With the pH value decreasing from 2 to 0, the sizes of both carbon nanosheets and VN nanoparticles decreased to smaller in nanoscale. The maximum specific capacitance of 280 F g -1 at the current density of 1 A g -1 for N-CNS/VNNPs is achieved in three-electrode configuration. The asymmetric energy device of Ni(OH) 2 ||N-CNS/VNNPs offers a specific capacitance of 89.6 F g -1 and retention of 60% at 2.7 A g -1 after 5000 cycles. The maximum energy density of Ni(OH) 2 ||N-CNS/VNNPs asymmetric energy device is as high as 29.5 Wh kg -1 .

  6. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage

    Science.gov (United States)

    Yang, Chao; Yu, Shu; Ma, Yu; Lin, Chunfu; Xu, Zhihao; Zhao, Hua; Wu, Shunqing; Zheng, Peng; Zhu, Zi-Zhong; Li, Jianbao; Wang, Ning

    2017-08-01

    Ti2Nb10O29 is an advanced anode material for lithium-ion batteries due to its large specific capacity and high safety. However, its poor electronic/ionic conductivity significantly limits its rate capability. To tackle this issue, a Cr3+-Nb5+ co-doping is employed, and a series of CrxTi2-2xNb10+xO29 compounds are prepared. The co-doping does not change the Wadsley-Roth shear structure but increases the unit-cell volume and decreases the particle size. Due to the increased unit-cell volumes, the co-doped samples show increased Li+-ion diffusion coefficients. Experimental data and first-principle calculations reveal significantly increased electronic conductivities arising from the formation of impurity bands after the co-doping. The improvements of the electronic/ionic conductivities and the smaller particle sizes in the co-doped samples significantly contribute to improving their electrochemical properties. During the first cycle at 0.1 C, the optimized Cr0.6Ti0.8Nb10.6O29 sample delivers a large reversible capacity of 322 mAh g-1 with a large first-cycle Coulombic efficiency of 94.7%. At 10 C, it retains a large capacity of 206 mAh g-1, while that of Ti2Nb10O29 is only 80 mAh g-1. Furthermore, Cr0.6Ti0.8Nb10.6O29 shows high cyclic stability as demonstrated in over 500 cycles at 10 C with tiny capacity loss of only 0.01% per cycle.

  7. Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Rajwali, Khan; Fang Ming-Hu

    2015-01-01

    Polycrystalline samples of (Zn, Co) co-doped SnO 2 nanoparticles were prepared using a co-precipitation method. The influence of (Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the (Zn, Co) co-doped SnO 2 powder samples have the same tetragonal structure of SnO 2 . A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO 2 samples exhibits room temperature ferromagnetism. Our results illustrate that (Zn, Co) co-doped SnO 2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these (Zn, Co) co-doped SnO 2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics. (paper)

  8. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  9. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach.

    Science.gov (United States)

    Liu, Yanyan; Fan, Liangdong; Cai, Yixiao; Zhang, Wei; Wang, Baoyuan; Zhu, Bin

    2017-07-19

    Sufficiently high oxygen ion conductivity of electrolyte is critical for good performance of low-temperature solid oxide fuel cells (LT-SOFCs). Notably, material conductivity, reliability, and manufacturing cost are the major barriers hindering LT-SOFC commercialization. Generally, surface properties control the physical and chemical functionalities of materials. Hereby, we report a Sm 3+ , Pr 3+ , and Nd 3+ triple-doped ceria, exhibiting the highest ionic conductivity among reported doped-ceria oxides, 0.125 S cm -1 at 600 °C. It was designed using a two-step wet-chemical coprecipitation method to realize a desired doping for Sm 3+ at the bulk and Pr 3+ /Nd 3+ at surface domains (abbreviated as PNSDC). The redox couple Pr 3+ /Pr 4+ contributes to the extraordinary ionic conductivity. Moreover, the mechanism for ionic conductivity enhancement is demonstrated. The above findings reveal that a joint bulk and surface doping methodology for ceria is a feasible approach to develop new oxide-ion conductors with high impacts on advanced LT-SOFCs.

  10. Behaviour of Ti-doped CFCs under thermal fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, A. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Pintsuk, G.; Linke, J. [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Gualco, C. [Ansaldo Energia, I-16152 Genoa (Italy); Blanco, C., E-mail: clara@incar.csic.es [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Santamaria, R.; Granda, M.; Menendez, R. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain)

    2011-01-15

    In spite of the remarkable progress in the design of in-vessel components for the divertor of the first International Thermonuclear Experimental Reactor (ITER), a great effort is still put into the development of manufacturing technologies for carbon armour with improved properties. Newly developed 3D titanium-doped carbon fibre reinforced composites and their corresponding undoped counterparts were brazed to a CuCrZr heat sink to produce actively cooled flat tile mock-ups. By exposing the mock-ups to thermal fatigue tests in an electron beam test facility, the material behaviour and the brazing between the individual constituents in the mock-up was qualified. The mock-ups with titanium-doped CFCs exhibited a significantly improved thermal fatigue resistance compared with those undoped materials. The comparison of these mock-ups with those produced using pristine NB31, one of the reference materials as plasma facing material for ITER, showed almost identical results, indicating the high potential of Ti-doped CFCs due to their improved thermal shock resistance.

  11. Characterization of standard reference material 2944, Bi-ion-doped glass, spectral correction standard for red fluorescence

    International Nuclear Information System (INIS)

    DeRose, Paul C.; Smith, Melody V.; Anderson, Jeffrey R.; Kramer, Gary W.

    2013-01-01

    Standard Reference Material (SRM) 2944 is a cuvette-shaped, Bi-ion-doped glass, recommended for optimal use for relative spectral correction of emission from 590 nm to 805 nm and day-to-day performance verification of steady-state fluorescence spectrometers. Properties of this standard that influence its effective use or contribute to the uncertainty in its certified emission spectrum were explored here. These properties include its photostability, absorbance, dissolution rate in water, anisotropy and temperature coefficient of fluorescence intensity. The expanded uncertainties (k=2) in the certified spectrum are about 4% around the nominal peak maximum at 704 nm and increase to about 6% at the wings, using an excitation wavelength of 515 nm. -- Highlights: ► The fluorescence emission spectrum of SRM 2944 was determined for spectral correction. ► This Bi-ion-doped glass has been certified in the fluorescence region from 530 nm to 830 nm. ► Fluorescence properties of the glass were determined, e.g., anisotropy, lifetime. ► SRM 2944 is photostable under common visible lamp excitation, when UV light is not present

  12. Preparation and characterization of Ce-doped HfO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gálvez-Barboza, S. [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico); Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Industria Metalúrgica # 1062 Parque Industrial, C.P. 25900 Ramos Arizpe, Coahuila (Mexico); González, L.A. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Industria Metalúrgica # 1062 Parque Industrial, C.P. 25900 Ramos Arizpe, Coahuila (Mexico); Puente-Urbina, B.A.; Saucedo-Salazar, E.M. [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico); García-Cerda, L.A., E-mail: luis.garcia@ciqa.edu.mx [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico)

    2015-09-15

    Highlights: • Ce-doped HfO{sub 2} nanoparticles were prepared by a modified solgel method. • Ce-doped HfO{sub 2} nanoparticles have a semispherical shape with sizes between 6 and 11.5 nm. • The samples doped with 10% in weight of Ce directly crystallized in a cubic structure. • A quick, straightforward and effective route for the preparation of Ce-doped nanoparticles. - Abstract: A modified solgel method to synthesize Ce-doped HfO{sub 2} nanoparticles was carried out using a precursor material prepared with cerium nitrate, hafnium chloride, citric acid and ethylene glycol. The obtained precursor material was calcined at 500 and 700 °C for 2 h in air. The influence of the concentration of Ce and the calcination temperature was studied to observe the structural and morphological changes of the obtained materials. For the characterization, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman scattering (RS) were employed. The XRD patterns shown that the Ce-doped HfO{sub 2} undergoes a structural transformation from monoclinic to cubic phase, which is significantly dependent on the Ce content and calcination temperature. TEM images have also confirmed the existence of semispherical nanoparticles with sizes between 6 and 11.5 nm.

  13. Preparation of antimony-doped nanoparticles by hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-xi; YANG Tian-zu; GU Ying-ying; DU Zuo-juan; LIU Jian-ling

    2005-01-01

    Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.

  14. Group-13 and group-15 doping of germanane

    Directory of Open Access Journals (Sweden)

    Nicholas D. Cultrara

    2017-08-01

    Full Text Available Germanane, a hydrogen-terminated graphane analogue of germanium has generated interest as a potential 2D electronic material. However, the incorporation and retention of extrinsic dopant atoms in the lattice, to tune the electronic properties, remains a significant challenge. Here, we show that the group-13 element Ga and the group-15 element As, can be successfully doped into a precursor CaGe2 phase, and remain intact in the lattice after the topotactic deintercalation, using HCl, to form GeH. After deintercalation, a maximum of 1.1% As and 2.3% Ga can be substituted into the germanium lattice. Electronic transport properties of single flakes show that incorporation of dopants leads to a reduction of resistance of more than three orders of magnitude in H2O-containing atmosphere after As doping. After doping with Ga, the reduction is more than six orders of magnitude, but with significant hysteretic behavior, indicative of water-activation of dopants on the surface. Only Ga-doped germanane remains activated under vacuum, and also exhibits minimal hysteretic behavior while the sheet resistance is reduced by more than four orders of magnitude. These Ga- and As-doped germanane materials start to oxidize after one to four days in ambient atmosphere. Overall, this work demonstrates that extrinsic doping with Ga is a viable pathway towards accessing stable electronic behavior in graphane analogues of germanium.

  15. Thermoelectric performance enhancement of SrTiO3 by Pr doping

    KAUST Repository

    Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2014-01-01

    We investigate Pr doping at the Sr site as a possible route to enhance the thermoelectric behavior of SrTiO3-based materials, using first principles calculations in full-potential density functional theory. The effects of the Pr dopant on the local electronic structure and resulting transport properties are compared to common Nb doping. We demonstrate a substantial enhancement of the thermoelectric figure of merit and develop an explanation for the positive effects, which opens new ways for materials optimization by substitutional doping at the perovskite B site. © 2014 the Partner Organisations.

  16. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots

    Science.gov (United States)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-12-01

    The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.

  17. Ferromagnetism in doped or undoped spintronics nanomaterials

    Science.gov (United States)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  18. Materials and mechanisms of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-01-15

    We study the applicability of the model of hole superconductivity to materials. Both conventional and unconventional materials are considered. Many different classes of materials are discussed. The theory is found suitable to describe all of them. No other theory of superconductivity can describe all these classes of materials. The theory of hole superconductivity proposes that there is a single mechanism of superconductivity that applies to all superconducting materials. This paper discusses several material families where superconductivity occurs and how they can be understood within this theory. Materials discussed include the elements, transition metal alloys, high T{sub c} cuprates both hole-doped and electron-doped, MgB{sub 2}, iron pnictides and iron chalcogenides, doped semiconductors, and elements under high pressure.

  19. 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors

    Science.gov (United States)

    Su, Xiao-Li; Fu, Lin; Cheng, Ming-Yu; Yang, Jing-He; Guan, Xin-Xin; Zheng, Xiu-Cheng

    2017-12-01

    Nitrogen-doped graphene aerogel nanomesh (N-GANM) has been hydrothermally prepared from graphene oxide and ammonium hydroxide using iron nitrate as the etching agent. The results showed that N-GANM with an interesting nanomesh structure on the graphene sheets maintained the 3D architecture of graphene aerogel (GA). Furthermore, it exhibited excellent electrochemical capacitive behavior and the specific capacitance value (290.0 F g-1 at 1 A g-1) remained approximately 90.3% after 2000 cycles in the three-electrode system. In addition, N-GANM displayed an energy density of 30.9 Wh kg-1 at the power density of 450.3 W kg-1 and excellent cycling stability retention (98%) after 10,000 cycles in the two-electrode symmetric device. The resulting N-GANM was expected to be a much favorable supercapacitor electrode material due to the heteroatom-doping and its unique porous structure.

  20. Synthesis and characterization of titanium and yttrium precursors with unsaturated ligands: application to the doping of low-density micro-molecular materials oxides

    International Nuclear Information System (INIS)

    Gamet-Cauro, L.-C.

    2001-01-01

    The laser-matter interaction experiments for high-power pulsed lasers require doped micro-targets. The ablator is a Low-Density Microcellular Material,foam namely a styrene-divinylbenzene copolymer obtained by a HIPE process (High Internal Polymerisation Emulsion). The spectroscopic tracers selected for doping are titanium, yttrium and aluminium as oxides. For obtaining these hybrid organic-inorganic materials, precursors with polymerizable ligands were introduced during the emulsification step since the unsaturation of the ligands could participate in the copolymerization reaction. We report here in the synthesis and characterization of titanium and yttrium precursors with polymerizable ligands. The structures of [Ti(O i Pr) 3 (AMP)] 2 (HAMP allyl-methylphenol), [Ti(OEt) 3 (AAA)] 2 (HAAA allylacetoacetate), Y 8 O 2 (OH) 4 (OEt) 6 (AAA) 10 were established by X-ray diffraction. Ti 4 O 3 (OR) 8 (AAA) 2 (R Et, i Pr).[TiO(O i Pr)(oleate)] m , Y 4 (OH) 2 (AAA) 5 , Y 4 O(O i Pr) 5 (AAA) 5 , Y 4 (OH) 4 Cl 5 (AAA) 3 (THF) 3 have been prepared as well and characterized by FT-IR, 1 HNMR and elemental analysis. Micro-hydrolysis reactions of titanium derivatives were investigated. The rates of polymerisation and copolymerization with styrene were evaluated for the titanium precursors with polymerizable ligands. The parameters of the HIPE process were adapted to the fabrication of doped foams, only the dopant and initiator change. We discuss incorporation mechanisms of titanium oxide and yttrium oxo-hydroxides: precursor-surfactant interaction, copolymerization of precursors with unsaturated ligands and physical or chemical retention. The foams have been characterized by scanning electron microscopy (morphology), elemental analysis and fluorescence X cartography (amount, distribution of metal oxide), adsorption isotherms (BET, texture), compression tests (mechanical strength). Due to this systematic study, a good control of doping has become possible and allowed us to develop

  1. Synthesis and structural studies of Mg doped LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

    Science.gov (United States)

    Murali, N.; Margarette, S. J.; Madhuri Sailaja, J.; Kondala Rao, V.; Himakar, P.; Kishore Babu, B.; Veeraiah, V.

    2018-02-01

    Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of α-NaFeO2 layered structure with R\\bar 3m space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 µm. These materials show some changes in the local ion environment, as examined by FT-IR studies.

  2. Progress in efficient doping of high aluminum-containing group III-nitrides

    Science.gov (United States)

    Liang, Y.-H.; Towe, E.

    2018-03-01

    The group III-nitride (InN, GaN, and AlN) class of semiconductors has become one of two that are critical to a number of technologies in modern life—the other being silicon. Light-emitting diodes made from (In,Ga)N, for example, dominate recent innovations in general illumination and signaling. Even though the (In,Ga)N materials system is fairly well established and widely used in advanced devices, challenges continue to impede development of devices that include aluminum-containing nitride films such as (Al,Ga)N. The main difficulty is efficient doping of films with aluminum-rich compositions; the problem is particularly severe for p-type doping, which is essential for Ohmic contacts to bipolar device structures. This review briefly summarizes the fundamental issues related to p-type doping, and then discusses a number of approaches that are being pursued to resolve the doping problem or for circumventing the need for p-type doping. Finally, we discuss an approach to doping under liquid-metal-enabled growth by molecular beam epitaxy. Recent results from a number of groups appear to indicate that p-type doping of nitride films under liquid-metal-enabled growth conditions might offer a solution to the doping problem—at least for materials grown by molecular beam epitaxy.

  3. On the role of doping in High-Tc superconductors

    International Nuclear Information System (INIS)

    Mei, C.; Smith, V.H. Jr.

    1994-01-01

    High-T c superconductors (HTSCS) are usually obtained by doping electron donors or acceptors into parent materials. The actual role played by doping is still uncertain with various interpretations. The present electronic structure study provides some hints which may help to solve the mystery

  4. Doping of (Bi,Pb)-2223 with metal oxides

    International Nuclear Information System (INIS)

    Goehring, D.; Vogt, M.; Wischert, W.; Kemmler-Sack, S.

    1997-01-01

    The effect of doping on formation, superconductivity and pinning forces of (Bi,Pb)-2223 was studied for several dopants. They can be subdivided into promoters (Cu, Mn at low doping level of x=0.1 and Rh) and inhibitors (Mg, Al, Sn, Co, Y, Pd and high substitution levels of Mn and Ni) of the transformation of the precursor material into (Bi,Pb)-2223. According to X-ray diffraction (XRD) studies the incorporation of the dopant into the 2223 lattice is restricted to a very low doping level. Higher dopant concentrations are accompanied by a segregation of secondary phases. These segregations are not effective in the process of creating flux pinning centres. A depression of T c is observed for 2223 materials with the dopants Co, Ni and Pd. (orig.)

  5. A novel hetero-material gate-underlap electrically doped TFET for improving DC/RF and ambipolar behaviour

    Science.gov (United States)

    Yadav, Shivendra; Sharma, Dheeraj; Chandan, Bandi Venkata; Aslam, Mohd; Soni, Deepak; Sharma, Neeraj

    2018-05-01

    In this article, the impact of gate-underlap with hetero material (low band gap) has been investigated in terms of DC and Analog/RF parameters by proposed device named as hetero material gate-underlap electrically doped TFET (HM-GUL-ED-TFET). Gate-underlap resolves the problem of ambipolarity, gate leakage current (Ig) and slightly improves the gate to drain capacitance, but DC performance is almost unaffected. Further, the use of low band gap material (Si0.5 Ge) in proposed device causes a drastic improvement in the DC as well as RF figures of merit. We have investigated the Si0.5 Ge as a suitable candidate among different low band gap materials. In addition, the sensitivity of gate-underlap in terms of gate to drain inversion and parasitic capacitances has been studied for HM-GUL-ED-TFET. Further, relatively it is observed that gate-underlap is a better way than drain-underlap in the proposed structure to improve Analog/RF performances without degrading the DC parameters of device. Additionally, hetero-junction alignment analysis has been done for fabrication feasibility.

  6. Doping effect in Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  7. Magnetotransport in doped manganate perovskites (invited) (abstract)

    International Nuclear Information System (INIS)

    Sun, J.Z.; Krusin-Elbaum, L.; Gupta, A.; Xiao, G.; Duncombe, P.R.; Gallagher, W.J.; Parkin, S.S.

    1997-01-01

    Recent progress in oxide perovskite thin-film technology has led to the discovery of a large negative magnetoresistance at room temperature in the doped manganate perovskite thin films. For applications such as magnetic-field sensing, the saturation magnetic field for large magnetoresistance has to be significantly lowered. The magnetic and transport properties of the doped manganates involve a curious magnetic-field scale, on the order of 1 endash 10 T. Upon the application of a field on this scale, the magnetoresistance saturates, and a significant broadening of the temperature-dependent magnetization is seen. An understanding of the materials physics that underlie such behavior can point to new ways of lowering the saturation field in this class of materials. We argue that this characteristic field is suggestive of an inhomogeneous magnetic state in the system. We will discuss the basic phenomena and physics of magnetotransport in this class of materials. We will also report the successful fabrication of a trilayer thin-film pillar structure made using the doped manganate perovskites in which a magnetoresistance change by about a factor of 2 was observed at temperatures below 100 K in a field less than 200 Oe, proving that large magnetoresistance in low field can be obtained in these materials. copyright 1997 American Institute of Physics

  8. Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles

    Science.gov (United States)

    Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.

    2018-04-01

    We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.

  9. Low- and high-index sol-gel films for planar and channel-doped waveguides

    Science.gov (United States)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  10. Synthesis, characterization and antimicrobial activity of the micro/nano structured biogenic silver doped calcium phosphate

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; David, Ernest

    2016-01-01

    Scale formation in PVC pipelines reduces the water flow efficiency and enhances microbial contamination. A bio-based composite material comprising of silver doped calcium phosphate (Cp-Ag) was synthesized using a simple technique (photo catalysis) and herein, we report for the first time on preparation and evaluation of the antimicrobial efficacy of silver doped calcite extracted from the scale in drinking water pipe lines. Five concentrations of silver doped calcite materials viz,5, 10, 15, 20 and 25 ppm were prepared using chemical ammonia mediated synthetic method. The material Cp-Ag was characterized by using the techniques UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, Raman spectroscopy, Thermo gravimetric analysis, X-ray photo electron spectroscopy (XPS), Nuclear magnetic resonance spectrometer and X-ray flouresence microscopy (XRF). Typical rhombohedral structure of the silver doped calcite was observed. XRF and XPS studies confirmed the presence of both calcium and silver in the composite material (Cp-Ag). The silver doped calcite material exhibited enhanced inhibition against Escherichia coli and staphylococcus aureus (Kirby-Bauer discs diffusion assay) which is also dependent on the concentration of the Cp-Ag material.

  11. Role of nitrogen vacancies in cerium doped aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com [Department of Physics, University of Gujrat, Gujrat (Pakistan); Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Asghar, Farzana [Department of Physics, University of Gujrat, Gujrat (Pakistan); Rana, Usman Ali; Ud-Din Khan, Salah [Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO-Box 800, Riyadh 11421 (Saudi Arabia); Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Hussain, Fayyaz [Physics Department, Bahauddin Zakarya University, Multan (Pakistan); Ahmad, Iftikhar [Department of Mathematics, University of Gujrat, Gujrat (Pakistan)

    2016-08-15

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce{sub Al}–V{sub N} complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce{sub Al}–V{sub N} complex is favorable in Ce:AlN.

  12. Role of nitrogen vacancies in cerium doped aluminum nitride

    International Nuclear Information System (INIS)

    Majid, Abdul; Asghar, Farzana; Rana, Usman Ali; Ud-Din Khan, Salah; Yoshiya, Masato; Hussain, Fayyaz; Ahmad, Iftikhar

    2016-01-01

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce Al –V N complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce Al –V N complex is favorable in Ce:AlN.

  13. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  14. Er –Al2O3 nanoparticles doping of borosilicate glass

    Indian Academy of Sciences (India)

    Administrator

    for determining the optical properties.2 While in homoge- ... of RE-doped single crystals (higher absorption/emission ... nanoparticles doping on the thermal, optical, structural ... The density of the bulk glass materials was measured.

  15. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  16. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  17. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  18. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping

    Science.gov (United States)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-03-01

    Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.

  19. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  20. Graphenated tantalum(IV) oxide and poly(4-styrene sulphonic acid)-doped polyaniline nanocomposite as cathode material in an electrochemical capacitor

    International Nuclear Information System (INIS)

    Njomo, Njagi; Waryo, Tesfaye; Masikini, Milua; Ikpo, Chinwe O.; Mailu, Stephen; Tovide, Oluwakemi; Ross, Natasha; Williams, Avril; Matinise, Nolubabalo; Sunday, Christopher E.; Mayedwa, Noluthando; Baker, Priscilla G.L.; Ozoemena, Kenneth I.; Iwuoha, Emmanuel I.

    2014-01-01

    Nanostructured poly(4-styrene sulphonic acid) and tantalum (IV) oxide-doped polyaniline nanocomposite were synthesised and their electro-conductive properties were determined. The oxide was synthesized using a modified sol-gel method and then dispersed in acidic media through sonication and entrapped in-situ into the polymeric matrix during the oxidative chemical polymerization of aniline doped with poly(4-styrene sulphonic acid). The oxides and novel polymeric nanocomposite were characterised with TEM, SEM, EDX, XRD, FTIR, UV-visible to ascertain elemental and phase composition, successful polymerization, doping, morphology and entrapment of the metal oxide nanoparticles. The electro-conductivity of the nanomaterial was interrogated using scanning electrochemical microscopy (SECM) and cyclic voltammetry (CV). The material was then anchored on activated graphitic carbon and used in the design of an asymmetric supercapacitor cell using 6 M KOH aqueous electrolyte. Characteristically high specific capacitance values of 318.4 F/g with a corresponding energy and power densities of 1.57 kWh/kg and 0.435 kW/kg, respectively, were demonstrated. The cell also showed high coulombic efficiency of 94.9% with a long cycle life and good cycle stability making the nanomaterial suitable for constructing supercapacitor cell electrodes

  1. Preparation of Polyaniline-Doped Fullerene Whiskers

    Directory of Open Access Journals (Sweden)

    Bingzhe Wang

    2013-01-01

    Full Text Available Fullerene C60 whiskers (FWs doped with polyaniline emeraldine base (PANI-EB were synthesized by mixing PANI-EB/N-methyl pyrrolidone (NMP colloid and FWs suspension based on the nature of the electron acceptor of C60 and electron donor of PANI-EB. Scanning electron microscopy (SEM, Fourier transform infrared (FT-IR, and ultraviolet-visible (UV-Vis spectra characterized the morphology and molecular structure of the FWs doped with PANI-EB. SEM observation showed that the smooth surface of FWs was changed to worm-like surface morphology after being doped with PANI-EB. The UV-Vis spectra suggested that charge-transfer (CT complex of C60 and PANI-EB was formed as PANI-EBδ+-C60δ-. PANI-EB-doped FWs might be useful as a new type of antibacterial and self-cleaning agent as well as multifunctional material to improve the human health and living environment.

  2. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  3. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza, E-mail: mmousavi@iust.ac.ir; Targholi, Ehsan

    2017-05-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  4. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza; Targholi, Ehsan

    2017-01-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  5. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  6. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  7. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  8. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    L Balan; L Duclaux; S Los

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7-8]. Presently, the best performance of hydrogen adsorption was found in super-activated microporous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physi-sorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field at the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  9. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    Balan, L.; Duchaux, L.; Los, S.

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7- 8]. Presently, the best performance of hydrogen adsorption was found in super-activated micro-porous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physisorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field al the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  10. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    Science.gov (United States)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  11. Flexible, lightweight and paper-like supercapacitors assembled from nitrogen-doped multi-dimensional carbon materials

    DEFF Research Database (Denmark)

    Cao, Xianyi; Duus, Jens Øllgaard; Chi, Qijin

    2017-01-01

    hydrophilicity. In this work, a facile approach is developed to prepare nitrogen-doped carbon based flexible and free-standing paper electrodes {N3CPs) built from three types of representative carbon materials in different dimensions {OD: carbon black nanoparticles (CBNPs); 10: carbon nanotubes {CNTs); 20: GRSs......Flexible supercapacitors have shown great potential to fulfill the increasing demand on wearable, miniature, lightweight, thin and highly efficient power supply systems for advanced portable electronics. Owing to its superior supercapacitive performances as well as high chemical stability...... and excellent mechanical flexibility, graphene {GR} based flexible supercapacitors have received much research attention in recent years. However, GR-based supercapacitors often suffer from GR restacking leading to capacitance attenuation. Therefore, some macromolecules, polymers and zero...

  12. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. ELABORATION AND DIELECTRIC CHARACTERIZATION OF A DOPED FERROELECTRIC MATERIAL TYPE PZT

    Directory of Open Access Journals (Sweden)

    M. Abba

    2013-12-01

    Full Text Available The main objective of this work is based on the synthesis and dielectric characterization of a new material in ceramic PZT with a perovskite structure ABO3. We are interested to study the Quaternary system (doping in site A and site B of general formula: Pb0.96Ba0.02Ca0.02[(Zr0.52Ti0.480.94(Zn1/3Ta2/30.03(In1/3Sb2/30.03]O3 short PZT-PBC-ZTIS. The sample selected for this study was prepared by the method of synthesis with solid way. Heat treatment was applied to these compositions at different temperatures: 1100, 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: tgδ = 7.62%, for the composition sintered to 1180 ° C included in the phase morphotropique zone (FMP.

  14. Synthesis of N-doped potassium tantalate perovskite material for environmental applications

    Science.gov (United States)

    Rao, Martha Purnachander; Nandhini, Vellangattupalayam Ponnusamy; Wu, Jerry J.; Syed, Asad; Ameen, Fuad; Anandan, Sambandam

    2018-02-01

    Nitrogen containing potassium tantalate perovskite material has been synthesized by the solvothermal method using urea (CH4N2O) as a nitrogen source. The as-prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The particle size of nitrogen containing KTaO3 observed from SEM images was found to be 100-150 nm. Doping KTaO3 with nitrogen causes reduction of band gap from 3.5 to 2.54 eV. The incorporation of Nitrogen into the crystal lattice of KTaO3 not only extended the absorption of light from UV (ultraviolet) region to visible region and also enhanced the photocatalytic activity. As prepared nitrogen containing KTaO3 samples exhibit cubic-like morphology and noticed efficient photocatalytic activity towards methylene blue dye degradation under visible light illumination. The intermediates formed during photodegradation were identified by mass spectrometry (GC-MS) and proposed suitable degradation pathway.

  15. ELABORATION AND DIELECTRIC CHARACTERIZATION OF A DOPED FERROELECTRIC MATERIAL TYPE PZT

    Directory of Open Access Journals (Sweden)

    M. Abba

    2015-07-01

    Full Text Available The main objective of this work is based on the synthesis and dielectric characterization of a new material in ceramic PZT with a perovskite structure ABO3. We are interested to study the Quaternary system (doping in site A and site B of general formula: Pb0.96Ba0.02Ca0.02[(Zr0.52Ti0.480.94(Zn1/3Ta2/30.03(In1/3Sb2/30.03]O3 short PZT-PBC-ZTIS. The sample selected for this study was prepared by the method of synthesis with solid way. Heat treatment was applied to these compositions at different temperatures: 1100, 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: tgδ = 7.62%, for the composition sintered to 1180 ° C included in the phase morphotropique zone (FMP.

  16. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    Science.gov (United States)

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phosphates nanoparticles doped with zinc and manganese for sunscreens

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, T.S. de, E-mail: tatiana.araujo@ifs.edu.br [Departamento de Fisica, Universidade Federal de Sergipe, Sergipe (Brazil); Instituto Federal de Ciencias e Tecnologia de Sergipe, Sergipe (Brazil); Souza, S.O. de [Departamento de Fisica, Universidade Federal de Sergipe, Sergipe (Brazil); Miyakawa, W. [Divisao de Fotonica - Instituto de Estudos Avancados, Sao Jose dos Campos (Brazil); Sousa, E.M.B. de [Centro de Desenvolvimento de Tecnologia Nuclear - CDTN/CNEN, Minas Gerais (Brazil)

    2010-12-01

    The crescent number of skin cancer worldwide gives impulse to the development of sunscreen that can both prevent skin cancer and also permit gradual tanning. In this work, the synthesis of hydroxyapatite and tricalcium phosphate nanocrystalline powders was investigated in order to obtain materials with optical properties and appropriate size for sunscreen. Pure, Zn{sup 2+}-doped and Mn{sup 2+}-doped hydroxyapatite (HAP) and tricalcium phosphate ({beta}-TCP) were produced by the wet precipitation process using diammonium phosphate, calcium nitrate, ammonium hydroxide, zinc nitrate and manganese nitrate as reagents. The pure and doped HAP precipitates were calcined at 500 deg. C for 1 h, while the {beta}-TCP (pure and doped) were calcined at 800 deg. C for 2 h. The powder samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDX), atomic force microscopy (AFM) and ultraviolet (UV)-vis spectroscopy. XRD and EDX showed the formation of the expected materials (HAP and {beta}-TCP) without toxic components. AFM micrographs showed aggregated ellipsoidal particles with dimensions smaller than 120 nm. Optical absorption spectra showed that the calcium phosphate produced in this work absorbs in the UV region. The obtained materials presented structural, morphological and optical properties that allow their use as the active centers in sunscreens.

  18. Phosphates nanoparticles doped with zinc and manganese for sunscreens

    International Nuclear Information System (INIS)

    Araujo, T.S. de; Souza, S.O. de; Miyakawa, W.; Sousa, E.M.B. de

    2010-01-01

    The crescent number of skin cancer worldwide gives impulse to the development of sunscreen that can both prevent skin cancer and also permit gradual tanning. In this work, the synthesis of hydroxyapatite and tricalcium phosphate nanocrystalline powders was investigated in order to obtain materials with optical properties and appropriate size for sunscreen. Pure, Zn 2+ -doped and Mn 2+ -doped hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) were produced by the wet precipitation process using diammonium phosphate, calcium nitrate, ammonium hydroxide, zinc nitrate and manganese nitrate as reagents. The pure and doped HAP precipitates were calcined at 500 deg. C for 1 h, while the β-TCP (pure and doped) were calcined at 800 deg. C for 2 h. The powder samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDX), atomic force microscopy (AFM) and ultraviolet (UV)-vis spectroscopy. XRD and EDX showed the formation of the expected materials (HAP and β-TCP) without toxic components. AFM micrographs showed aggregated ellipsoidal particles with dimensions smaller than 120 nm. Optical absorption spectra showed that the calcium phosphate produced in this work absorbs in the UV region. The obtained materials presented structural, morphological and optical properties that allow their use as the active centers in sunscreens.

  19. N-doped Sb2Te phase change materials for higher data retention

    International Nuclear Information System (INIS)

    Zhu Min; Wu Liangcai; Rao Feng; Song Zhitang; Li Xuelai; Peng Cheng; Zhou Xilin; Ren Kun; Yao Dongning; Feng Songlin

    2011-01-01

    Highlights: → Crystallization temperatures of the N-doped Sb 2 Te films increase remarkably. → The E a of N-doped Sb 2 Te films increase first, and then decrease. → The best 10-years lifetime at temperature up to 141 deg. C is found in Sb 2 TeN1 films. → The power consumption of PCRAM test cell based on Sb 2 TeN1 film is low. - Abstract: Crystallization temperatures of the Sb 2 Te films increase remarkably from 139.4 deg. C to 223.0 deg. C as the N 2 flow rates increasing from 0 sccm to 1.5 sccm. Electrical conduction activation energies for amorphous and crystalline states increase by doping nitrogen. A small amount of nitrogen atoms can locate at interstitial sites in the hexagonal structure, generating a strain field, and improving the thermal stability of amorphous state. The best 10-years lifetime at temperature up to 141 deg. C is found in Sb 2 TeN 1 films. Doping excessively high nitrogen in Sb 2 Te film will form nitride and make Te separate out. As a result, the activation energy for crystallization decreases instead, accompanying with the deterioration of thermal stability. The power consumption of PCRAM test cell based on Sb 2 TeN 1 film is ten times lower than that of PCRAM device using Ge 2 Sb 2 Te 5 films.

  20. Nb-doped TiO2 thin films as photocatalytic materials

    Indian Academy of Sciences (India)

    Administrator

    that hydrophilicity is ruled by a different mechanism than photocatalysis. Keywords. Nb-doped ... studied for a large area of applications: solar cells,1–3 hydrogen ... our previous work.12,13 Results show that all the films are amorphous and ...

  1. Structural and electrochemical properties of Cl-doped LiFePO{sub 4}/C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.S.; Zhang, Y.; Zhang, X.J.; Zhou, Z. [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2010-06-01

    Cl-doped LiFePO{sub 4}/C cathode materials were synthesized through a carbothermal reduction route, and the microstructure and electrochemical performances were systematically studied. Cl-doped LiFePO{sub 4}/C cathode materials presented a high discharge capacity of {proportional_to}90 mAh g{sup -1} at the rate of 20 C (3400 mA g{sup -1}) at room temperature. Electrochemical impedance spectroscopy and cyclic voltamperometry indicated the optimized electrochemical reaction and Li{sup +} diffusion in the bulk of LiFePO{sub 4} due to Cl-doping. The improved Li{sup +} diffusion capability is attributed to the microstructure modification of LiFePO{sub 4} via Cl-doping. (author)

  2. N-type doped nano-diamond in a first MEMS application

    Energy Technology Data Exchange (ETDEWEB)

    Dipalo, M.; Kusterer, J.; Janischowsky, K.; Kohn, E. [Dept. of Electron Devices and Circuits, University of Ulm, Albert Einstein Allee 45, 89081 Ulm (Germany)

    2006-09-15

    Nanocrystalline diamond is an interesting material for MEMS applications especially due to its outstanding mechanical, electrical and electrochemical properties. The current choice for doping is boron, resulting in p-type conduction. It has two difficulties: firstly, at high concentration (as needed for full activation) the lattice becomes highly stressed and may degrade the material's quality. Secondly, it contaminates the growth chamber, resulting in a memory effect. A recent alternative is n-type nitrogen doping, avoiding these disadvantages. However, nitrogen is mainly incorporated in the grain boundaries and thus inhomogeneously distributed. In turn this may limit the material's stability. Here we present a first trial to use nitrogen-doped nanocrystalline diamond (NCD), grown by hot filament CVD, in a water microjet as heater element. No stability problems were encountered even at high overdrive power. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  4. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S. [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  5. Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Man [Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049 (China); Xing, Ling-Bao, E-mail: lbxing@sdut.edu.cn [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Zhang, Jing-Li; Hou, Shu-Fen; Zhou, Jin; Si, Weijiang; Cui, Hongyou [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Three-dimensional nitrogen-doped graphene hydrogels (NGHs) were prepared. • Carbohydrazide was used as reducing and doping agents. • NGHs exhibited relatively good electrochemical properties in supercapacitor. • NGHs with different doping of N demonstrated different performances in supercapacitors. - Abstract: Three-dimensional (3D) nitrogen-doped graphene hydrogels (NGHs) are designed and synthesized in an efficient and fast way by using a strong reductant of carbohydrazide as reducing and doping agent in an aqueous solution of graphene oxide (GO). The transformation of GO suspension to the hydrogels can be completed in 1 h, which can be confirmed by X-ray powder diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). With adding different amounts of carbohydrazide, the obtained NGHs behave different doping of N and unlike performances in supercapacitors, which can be demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), N{sub 2} sorption experiments, and electrochemical measurements, respectively. According to the network architectures, the NGHs all exhibited high specific capacitance, NGHs-1, NGHs-2, NGHs-5 and NGHs-10 showed specific capacitance at 167.7, 156.8, 140.4 and 119.3 F g{sup −1} at 1 A g{sup −1} in KOH electrolyte. The specific capacitance can still be maintained for 80.5, 79.5, 80.3 and 78.6% with an increase of the discharging current density of 10 A g{sup −1}, respectively. More interestingly, the NGHs-1 based supercapacitor also exhibited good electrochemical stability and high degree of reversibility in the long-term cycling test (81.5% retention after 4000 cycles).

  6. Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor

    International Nuclear Information System (INIS)

    Jiang, Man; Xing, Ling-Bao; Zhang, Jing-Li; Hou, Shu-Fen; Zhou, Jin; Si, Weijiang; Cui, Hongyou; Zhuo, Shuping

    2016-01-01

    Graphical abstract: - Highlights: • Three-dimensional nitrogen-doped graphene hydrogels (NGHs) were prepared. • Carbohydrazide was used as reducing and doping agents. • NGHs exhibited relatively good electrochemical properties in supercapacitor. • NGHs with different doping of N demonstrated different performances in supercapacitors. - Abstract: Three-dimensional (3D) nitrogen-doped graphene hydrogels (NGHs) are designed and synthesized in an efficient and fast way by using a strong reductant of carbohydrazide as reducing and doping agent in an aqueous solution of graphene oxide (GO). The transformation of GO suspension to the hydrogels can be completed in 1 h, which can be confirmed by X-ray powder diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). With adding different amounts of carbohydrazide, the obtained NGHs behave different doping of N and unlike performances in supercapacitors, which can be demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), N_2 sorption experiments, and electrochemical measurements, respectively. According to the network architectures, the NGHs all exhibited high specific capacitance, NGHs-1, NGHs-2, NGHs-5 and NGHs-10 showed specific capacitance at 167.7, 156.8, 140.4 and 119.3 F g"−"1 at 1 A g"−"1 in KOH electrolyte. The specific capacitance can still be maintained for 80.5, 79.5, 80.3 and 78.6% with an increase of the discharging current density of 10 A g"−"1, respectively. More interestingly, the NGHs-1 based supercapacitor also exhibited good electrochemical stability and high degree of reversibility in the long-term cycling test (81.5% retention after 4000 cycles).

  7. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  8. Ultrafast crystallization and thermal stability of In-Ge doped eutectic Sb70Te30 phase change material

    International Nuclear Information System (INIS)

    Lee Meiling; Miao Xiangshui; Ting Leehou; Shi Luping

    2008-01-01

    Effect of In and Ge doping in the form of In 2 Ge 8 Sb 85 Te 5 on optical and thermal properties of eutectic Sb 70 Te 30 alloys was investigated. Crystalline structure of In 2 Ge 8 Sb 85 Te 5 phase change material consists of a mixture of phases. Thermal analysis shows higher crystallization temperature and activation energy for crystallization. Isothermal reflectivity-time measurement shows a growth-dominated crystallization mechanism. Ultrafast crystallization speed of 30 ns is realized upon irradiation by blue laser beam. The use of ultrafast and thermally stable In 2 Ge 8 Sb 85 Te 5 phase change material as mask layer in aperture-type super-resolution near-field phase change disk is realized to increase the carrier-to-noise ratio and thermal stability

  9. Characteristic of doping and diffusion of heavily doped n and p type InP and InGaAs epitaxial layers grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pinzone, C.J.; Dupuis, R.D.; Ha, N.T.; Luftman, H.S.; Gerrard, N.D.

    1990-01-01

    Electronic and photonic device applications of the InGaAs/InP materials system often require the growth of epitaxial material doped to or near the solubility limit of the impurity in the host material. These requirements present an extreme challenge for the crystal grower. To produce devices with abrupt dopant profiles, preserve the junction during subsequent growth, and retain a high degree of crystalline perfection, it is necessary to understand the limits of dopant incorporation and the behavior of the impurity in the material. In this study, N-type doping above 10 19 cm -3 has been achieved in InP and InGaAs using Sn as a dopant. P-type Zn doping at these levels has also been achieved in these materials but p type activation above ∼3 x 10 18 cm -3 in InP has not been seen. All materials were grown by the metalorganic chemical vapor deposition (MOCVD) crystal growth technique. Effective diffusion coefficients have been measured for Zn and Sn in both materials from analysis of secondary ion mass spectra (SIMS) of specially grown and annealed samples

  10. Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material

    International Nuclear Information System (INIS)

    Parker, David; Singh, David J

    2012-01-01

    We analyze the thermoelectric behavior, using first principles and Boltzmann transport calculations, of very heavily electron-doped CrSi 2 and find that at temperatures of 900-1250 K and electron dopings of 1-4 × 10 21 cm -3 , thermopowers as large in magnitude as 200 μV K -1 may be found. Such high thermopowers at such high carrier concentrations are extremely rare, and suggest that excellent thermoelectric performance may be found in these ranges of temperature and doping. (paper)

  11. Magnetic phase investigations on fluorine (F) doped LiFePO4

    Science.gov (United States)

    Radhamani, A. V.

    2018-03-01

    LiFePO4 (LFP) is a very promising cathode material for Li-ion batteries due to its high thermal stability, less toxicity and high theoretical capacity (170 mAh g-1). Anion doping, especially fluorine (F) at the oxygen site is one way to improve the low electronic conductivity of the material. In this line, fluorine doped LFP was prepared at different fluorine concentrations (1 to 40 mol%) to study the structural, spectroscopic and magnetic properties in view of the material property optimization for battery applications. The investigation of the magnetic properties was found to be successful for the determination of small amounts of magnetic impurities which were not noticeably observed from structural characterizations. Determination of conducting magnetic impurities has its own relevance in the current scenario of Li-ion based battery applications. Systematic characterization studies along with the implications of magnetic phases on the material activity of fluorine doped LiFePO4 nanoparticles will be discussed in detail.

  12. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  13. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  14. Boron-doped hydrogenated Al{sub 3} clusters: A material for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Muz, İskender, E-mail: iskender.muz@nevsehir.edu.tr [Faculty of Education, Department of Science Education, Nevsehir Haci Bektas Veli University, 50300, Nevsehir (Turkey); Atiş, Murat [Kayseri Vocational School, Electricity and Energy Department, Erciyes University, 38300, Kayseri (Turkey)

    2016-05-15

    The energetic and structural stabilities of Al{sub 3}BH{sub 2n} (n = 0–6) clusters are investigated using ab initio calculations. Structural isomers are found using the stochastic search method to search for minima structures, followed by B3LYP optimizations; single-point CCSD(T) calculations are performed to compute relative energies. Chemical bonding analysis is also performed using the adaptive natural density partitioning method to investigate the chemical bonding in the clusters and to elucidate their structural evolution. Our results and analyses indicate that the stability of the boron-doped hydrogenated Al{sub 3} clusters increases as more hydrogen molecules are adsorbed, whereas the H{sub 2} loss energy decreases. The results are in good agreement with available theoretical findings. - Highlights: • The boron-doped hydrogenated Al{sub 3} clusters are generated using stochastic search method. • The energetic and structural stabilities are investigated in detail. • The chemical bonding analysis is performed by using AdNDP analysis. • The doping by boron allows development of better aluminum-based metal hydrides.

  15. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    International Nuclear Information System (INIS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-01-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K + )-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K + ion doping caused no change in the phase structure, and highly crystalline K x Cu 1−x O 1−δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K + -doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g −1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g −1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g −1 at 0.1 C and 68.9 mA h g −1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K + ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  16. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Science.gov (United States)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  17. Performance enhancement of polymer Schottky diode by doping pentacene

    International Nuclear Information System (INIS)

    Kang, K.S.; Chen, Y.; Lim, H.K.; Cho, K.Y.; Han, K.J.; Kim, Jaehwan

    2009-01-01

    Schottky diodes have been fabricated using pentacene-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as a semiconducting material. To understand the fundamental properties of the pentacene-doped PEDOT:PSS, ultraviolet visible (UV) absorption spectroscopy was employed. It was found that a significant amount of pentacene can dissolve in n-methylpyrrolidone solvent. No characteristic absorption peak of pentacene was observed in the UV-visible spectra of PEDOT:PSS films doped with pentacene,. However, the absorption intensity of the doped PEDOT:PSS films increased as the pentacene concentration increased in particular in the UV region. The atomic force microscope images show that the surface roughnesses of PEDOT:PSS films increased as the pentacene concentration increased. Three-layer Schottky diodes comprising Al/PEDOT:PSS/Au or Al/PEDOT:PSS-pentacene/Au were fabricated. The maximum forward currents of non-doped and doped Schottky diodes were 4.8 and 440 μA/cm 2 at 3.3 MV/m, respectively. The forward current increased nearly two orders of magnitude for Schottky diode doped with 11.0 wt.% of pentacene.

  18. TiO{sub 2} nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan; Shi Dongqi [Institute for Superconducting and Electronic Materials, University of Wollongong (Australia); Liu Zongwen [University of Sydney, School of Chemical and Biomolecular Engineering (Australia); Liu Huakun; Guo Zaiping, E-mail: zguo@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong (Australia)

    2013-05-15

    Anatase TiO{sub 2} nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized as an anode material for the lithium ion battery. The nanosized TiO{sub 2} particles were homogeneously distributed on the reduced graphene oxide to inhibit the restacking of the neighbouring graphene sheets. The obtained TiO{sub 2}/N-rGO composite exhibits improved cycling performance and rate capability, indicating the important role of reduced graphene oxide, which not only facilitates the formation of uniformly distributed TiO{sub 2} nanocrystals, but also increases the electrical conductivity of the composite material. The introduction of nitrogen on the reduced graphene oxide has been proved to increase the conductivity of the reduced graphene oxide and leads to more defects. A disordered structure is thus formed to accommodate more lithium ions, thereby further improving the electrochemical performance.

  19. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles

  20. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  1. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2017-09-01

    Full Text Available Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3–4 wt % N. Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

  2. Al-doped MgB{sub 2} materials studied using electron paramagnetic resonance and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Albertstr. 19, Freiburg (Germany)

    2016-05-16

    Undoped and aluminum (Al) doped magnesium diboride (MgB{sub 2}) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB{sub 2}. Above a certain level of Al doping, enhanced conductive properties of MgB{sub 2} disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  3. Elementary steps in electrical doping of organic semiconductors

    KAUST Repository

    Tietze, Max Lutz

    2018-03-15

    Fermi level control by doping is established since decades in inorganic semiconductors and has been successfully introduced in organic semiconductors. Despite its commercial success in the multi-billion OLED display business, molecular doping is little understood, with its elementary steps controversially discussed and mostly-empirical-materials design. Particularly puzzling is the efficient carrier release, despite a presumably large Coulomb barrier. Here we quantitatively investigate doping as a two-step process, involving single-electron transfer from donor to acceptor molecules and subsequent dissociation of the ground-state integer-charge transfer complex (ICTC). We show that carrier release by ICTC dissociation has an activation energy of only a few tens of meV, despite a Coulomb binding of several 100 meV. We resolve this discrepancy by taking energetic disorder into account. The overall doping process is explained by an extended semiconductor model in which occupation of ICTCs causes the classically known reserve regime at device-relevant doping concentrations.

  4. Recent Development of Nanomaterial-Doped Conductive Polymers

    Science.gov (United States)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  5. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    D.V. Sridevi

    2017-06-01

    Full Text Available A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP and 2–propanol as a common starting material and the obtained products were calcined at 450˚ C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functional groups of the samples were identified by Fourier transform spectroscopy (FT-IR. The UV-Vis-NIR spectra of cobalt doped TiO2 material shows two absorption peaks in the visible region related to d-d transitions of Co2+ in TiO2 lattice. Compared to un-doped TiO2 nanoparticles, the cobalt doped material show a red shift in the band gap.

  6. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    Science.gov (United States)

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  7. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  8. Influence of small metallic particles on the absorption and emission in amorphous materials doped with rare earths

    International Nuclear Information System (INIS)

    Malta, O.L.; Santa Cruz, P.A.; Sa, G.F. de

    1987-01-01

    The influence of small metallic clusters on the absorption and emission processes in molecular species shows a great interest as well the fundamental as the pratical point of view. This subject, which has been recently developed, covers several aspects related to the kinetics of formation of these chusters and to theirs optical properties in amorphous media. A study of this problem developed by the first time for the case of one volumetric distribution of metallic particles is presented. With this aim, fluoborate glasses doped with Eu 3+ ion which fluorescence is well known in several materials are used. (L.C.) [pt

  9. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    Science.gov (United States)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  10. Pulsed laser induced optical nonlinearities in undoped, copper doped and chromium doped CdS quantum dots

    Science.gov (United States)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-04-01

    Quantum dots (QDs) of CdS, Cu doped and Cr doped CdS were synthesized through chemical co- precipitation method. The synthesized QDs have been characterized by x-ray diffraction, ultraviolet visible absorption spectroscopy. The diameters of QDs were calculated using Debye-Scherrer’s formula and Brus equation. They are found to be in 3.5-3.8 nm range. The nonlinear properties has been studied by the open and closed aperture Z-scan technique using frequency double Nd:YAG laser. The nonlinear refractive index (n2), nonlinear absorption coefficient (β), third order nonlinear susceptibilities (χ3) of QDs has been calculated. It has been found that the values of nonlinear parameters are higher for doped QDs than undoped CdS QDs. Hence they can be regarded as potential material for the development of optoelectronics and photonics devices.

  11. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  12. Doped-carbon composites, synthesizing methods and applications of the same

    Science.gov (United States)

    Viswanathan, Tito

    2017-05-09

    A method of synthesizing a doped carbon composite includes preparing a solution having a carbon source material and a heteroatom containing additive, evaporating the solution to yield a plurality of powders, and subjecting the plurality of powders to a heat treatment for a duration of time effective to produce the doped carbon composite.

  13. Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Reddy, MV

    2014-05-01

    Full Text Available at ScienceDirect Electrochimica Acta jo ur nal ho me p age: www.elsev ier .com/ locate /e lec tac ta Graphical Abstract Electrochimica Acta xxx (2013) xxx–xxx Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries M.V. Reddy... for Lithium ion Batteries M.V. Reddy∗, Thor Wei Jie, Charl J. Jafta, Kenneth I. Ozoemena, Mkhulu K. Mathe, A. Sree Kumaran Nair, Soo Soon Peng, M. Sobri Idris, Geetha Balakrishna, Fabian I. Ezema, B.V.R. Chowdari • Layered compounds, Li...

  14. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    International Nuclear Information System (INIS)

    Syed Draman, Sarifah Fauziah; Daik, Rusli; El-Sheikh, Said M.; Latif, Famiza Abdul

    2013-01-01

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electrical and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level

  15. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Syed Draman, Sarifah Fauziah; Daik, Rusli [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); El-Sheikh, Said M. [Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute,11421 Cairo (Egypt); Latif, Famiza Abdul [Faculty of Applied Sciences, Universiti Teknologi MARA Malaysia 40450 Shah Alam, Selangor (Malaysia)

    2013-11-27

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electrical and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level.

  16. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.

    Science.gov (United States)

    Zhou, Jie; Bao, Li; Wu, Shengji; Yang, Wei; Wang, Hui

    2017-10-01

    Chitin biomass has received much attention as an amino-functional polysaccharide precursor for synthesis of carbon materials. Rich nitrogen and oxygen dual-doped porous carbon derived from cicada slough (CS), a renewable biomass mainly composed of chitin, was synthesized and employed as electrode materials for electrochemical capacitors, for the first time ever. The cicada slough-derived carbon (CSC) was prepared by a facile process via pre-carbonization in air, followed by KOH activation. The weight ratio of KOH and char plays an important role in fabricating the microporous structure and tuning the surface chemistry of CSC. The obtained CSC had a large specific surface area (1243-2217m 2 g -1 ), fairly high oxygen content (28.95-33.78 at%) and moderate nitrogen content (1.47-4.35 at%). The electrochemical performance of the CS char and CSC as electrodes for capacitors was evaluated in a three-electrode cell configuration with 6M KOH as the electrolyte. Electrochemical studies showed that the as-prepared CSC activated at the KOH-to-char weight ratio of 2 exhibited the highest specific capacitance (266.5Fg -1 at a current density of 0.5Ag -1 ) and excellent rate capability (196.2Fg -1 remained at 20Ag -1 ) and cycle durability. In addition, the CSC-2-based symmetrical device possessed the desirable energy density and power density of about 15.97Whkg -1 and 5000Wkg -1 at 5Ag -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Formation of Lithiated Ti-Doped α-Fe2O3 Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    International Nuclear Information System (INIS)

    Widatallah, H. M.; Gismelseed, A. M.; Bouziane, K.; Berry, F. J.; Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E.

    2004-01-01

    The milling of spinel-related Ti-doped Li 0.5 Fe 2.5 O 4 for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped α-Fe 2 O 3 nanocrystalline particles via an intermediate γ-LiFeO 2 -related phase. The role played by the dopant Ti-ion in the process is emphasized.

  18. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Zheng, J.; Li, S.L.

    2006-01-01

    Ti 4+ -doped SnO 2 nano-powders were prepared by the sol-gel process using tin tetrachloride and titanium tetrachloride as the starting materials. The crystallinity and purity of the powders were analyzed by X-ray diffraction (XRD) and the size and distribution of Ti 4+ -doped SnO 2 grains were studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that Ti 4+ has been successfully incorporated into the SnO 2 crystal lattice and the electrical conductivity of the doped materials improves significantly

  19. Bismuth-doped La1.75Sr0.25NiO4+: δ as a novel cathode material for solid oxide fuel cells

    NARCIS (Netherlands)

    Zhu, Zhesheng; Li, Mei; Xia, Changrong; Bouwmeester, Henny J.M.

    2017-01-01

    Bismuth has been doped into mixed ionic-electronic conducting La1.75Sr0.25NiO4+δ (LSN) with the 2D K2NiF4-type structure to evaluate its influence on various properties of the host material, which include its potential use as a SOFC cathode. X-ray powder diffraction indicates that LSN retains its

  20. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells

    International Nuclear Information System (INIS)

    Apriany, Karima; Permadani, Ita; Rahmawati, Fitria; Syarif, Dani G.; Soepriyanto, Syoni

    2016-01-01

    In this research, zirconium dioxide, ZrO 2 , was synthesized from high-grade zircon sand that was founded from Bangka Island, Sumatra, Indonesia. The zircon sand is a side product of Tin mining plant industry. The synthesis was conducted by caustic fusion method with considering definite stoichiometric mole at every reaction step. Yttrium has been doped into the prepared zirconia by solid state reaction. The prepared materials were then being analyzed by X-ray diffraction equipped with Le Bail refinement to study its crystal structure and cell parameters. Electrical conductivity was studied through impedance measurement at a frequency range of 20 Hz- 5 MHz. Morphological analysis was conducted through Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) for elemental analysis. The results show that the prepared yttrium stabilized zirconia, YSZ, was crystallized in the cubic structure with a space group of P42/NMC. The sintered zirconia and yttrium stabilized zirconia at 8 mol% of yttrium ions (8YSZ) show dense surface morphology with a grain size less than 10 pm. Elemental analysis on the sintered zirconia and 8YSZ show that sintering at 1500°C could eliminate the impurities, and the purity became 81.30%. Impedance analysis shows that ZrO 2 provide grain and grain boundary conductivity meanwhile 8YSZ only provide grain mechanism. The yttrium doping enhanced the conductivity up to 1.5 orders. The ionic conductivity of the prepared 8YSZ is categorized as a good material with conductivity reach 7.01 x10 -3 at 700 °C. The ionic conductivities are still lower than commercial 8YSZ at various temperature. It indicates that purity of raw material might significantly contribute to the electrical conductivity. (paper)

  1. Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

    Science.gov (United States)

    Waqar, Moaz; Rafiq, Muhammad Asif; Mirza, Talha Ahmed; Khalid, Fazal Ahmad; Khaliq, Abdul; Anwar, Muhammad Sabieh; Saleem, Murtaza

    2018-04-01

    M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12- x Ni x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol-gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization ( M s) and remnant magnetization ( M r) increased with the addition of Ni, however, coercivity ( H c) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.

  2. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  3. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  4. Mechanical properties of phosphorus-doped polysilicon films

    CERN Document Server

    Lee, S W; Kim, J P; Park, S J; Yi, S W; Cho, D I; Kim, J J

    1998-01-01

    Polysilicon films deposited by low pressure chemical vapor deposition (LPCVD) are the most widely used structural material in microelectromechanical systems (MEMS). However, the structural properties of LPCVD polysilicon films are known to vary significantly, depending on deposition conditions as well as post-deposition processes. This paper investigates the effects of phosphorus doping and texture on Young's modulus of polysilicon films. Polysilicon films are deposited at 585 .deg. C, 605 .deg. C, and 625 .deg. C to a thickness of 2 mu m. Specimens with varying phosphorus doping levels are prepared by the diffusion process at various temperatures and times using both POCl sub 3 and phosphosilicate glass (PSG) source. Texture is measured using an X-ray diffractometer. Young's modulus is estimated from the average values of the resonant frequencies measured from four-different size lateral resonators. Our results show that Young's modulus of diffusion doped polysilicon films decreases with increasing doping co...

  5. Progress in doping of ruthenium silicide (Ru2Si3)

    International Nuclear Information System (INIS)

    Vining, C.B.; Allevato, C.E.

    1992-01-01

    This paper reports that ruthenium silicide (Ru 2 Si 3 ) is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels

  6. Synthesis and characterization of hydroxyapatite-doped silver nanoparticles

    International Nuclear Information System (INIS)

    Andrade, Flavio Augusto Cavadas da Silva; Rollo, Joao Manuel Domingos de Almeida; Rigo, Eliana Cristina da Silva; Vercik, Andres; Vercik, Luci Cristina de Oliveira; Valencia, German Ayala; Ferreira, Leticcia Gaviao

    2012-01-01

    Hydroxyapatite-doped silver nanoparticles was obtained by immersing the powder in increasing dilutions of a solution containing AGNPS which were synthesized in different times and were characterized by UV-vis spectroscopy. The X-ray diffraction (XRD)studies demonstrate no change in the major phase of HA. Scanning Electron Microscopy (SEM) revealed morphological characteristics of powders after doping and the presence of silver was confirmed by energy dispersive X-ray (EDAX) analysis.The antibacterial effect of the doped powders was evaluated using strain of Staphylococcus aureus by disc-diffusion test. The zone of inhibition was found to vary with the amount of silver nanoparticle in the doped powder even for low concentrations of AgNPs. These results indicate that the method of immersion hydroxyapatite in solutions containing AgNPs is promising to obtain bioactive materials with low cytotoxicity and antibacterial effects. (author)

  7. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook, E-mail: jaekook@chonnam.ac.kr

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K{sup +})-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K{sup +} ion doping caused no change in the phase structure, and highly crystalline K{sub x}Cu{sub 1−x}O{sub 1−δ} (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K{sup +}-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g{sup −1} for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g{sup −1} at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g{sup −1} at 0.1 C and 68.9 mA h g{sup −1} at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K{sup +} ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  8. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  9. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  10. Characterization of a gamma radiation dosimeter based of glass doped with copper

    International Nuclear Information System (INIS)

    Laameri, Mohamed Hadi; Ben Mansour, Issam

    2010-01-01

    Commercial sodo-calcic silicate glass was studied by thermo luminescence in order to evaluate its potential like material sensitive to the gamma radiation for dosimetric application. We have examined in particular the effect of doping glass copper ion exchange C U-N A for different concentrations technique and multiple conditions of doping on luminescent thermo sensitivity on a very wide range of doses ranging from 10 mGy up to 100 kGy. We have also tried to explain the origin of thermoluminescence observed by exploiting the doped and non-doped samples EPR spectra.

  11. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    Science.gov (United States)

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  12. Transport properties of a potassium-doped single-wall carbon nanotube rope

    International Nuclear Information System (INIS)

    Lee, R. S.; Kim, H. J.; Fischer, J. E.; Lefebvre, J.; Radosavljevic, M.; Hone, J.; Johnson, A. T.

    2000-01-01

    Four-probe resistance vs temperature and gate voltage are reported for an individual single-wall carbon nanotube rope before and after doping in situ with potassium. All the features in R(T) from unoriented bulk material, before and after doping, are qualitatively reproduced by the rope data. The 5.3 K conductance of the pristine rope decreases with positive gate voltage, while G vs V g becomes featureless after K doping. (c) 2000 The American Physical Society

  13. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng, Youxuan, E-mail: yxzheng@mail.nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zuo, Jinglin; You, Xiaozeng [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-04-15

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium{sup III}-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m{sup 2}, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S R Dhage. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 43-45 Dielectric Materials. Nonlinear – characteristics study of doped SnO2 · S R Dhage V Ravi S K Date · More Details Abstract Fulltext PDF. When tin oxide is doped with ...

  15. Heat treatment effect on the physical properties of cobalt doped TiO{sub 2} sol–gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Samet, L., E-mail: lolwasamet@gmail.com [Institut Préparatoires aux Etudes d' Ingénieurs d' El-Manar, Université Tunis El Manar, Campus Universitaire, 2092 El Manar (Tunisia); Laboratoire de Photovoltaique de Semi-conducteur et de Nanostructure, Centre de Recherches et des Technologies de l' Energie, Technopole borj cedria, Bp 95, hammamm lif 2050 (Tunisia); Ben Nasseur, J.; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteur et de Nanostructure, Centre de Recherches et des Technologies de l' Energie, Technopole borj cedria, Bp 95, hammamm lif 2050 (Tunisia); March, K.; Stephan, O. [Laboratoire de Physique des Solides, UMR 8502 CNRS - Université Paris-Sud, Bât 510, 91405 Orsay cedex (France)

    2013-11-15

    Cobalt doped and undoped TiO{sub 2} powders have been prepared by sol–gel technique and annealed at temperatures ranging from 400 °C to 1000 °C. The effects of annealing temperature on the structural, morphological and optical properties have been characterized by X-ray diffraction, transmission electron microscopy, electron energy-loss spectroscopy and diffuse reflectance spectroscopy. For all doped samples there is a general reduction of the band gap energy, in comparison with undoped samples prepared in the same conditions. More specifically, experimental results indicate that cobalt doping, occurring as Co{sup 2+} ion insertion into the TiO{sub 2} (Ti{sup 4+}) host lattice, inhibits the growth of the crystallites and delays the phase transformation from anatase to rutile. Moreover, at high temperature, a secondary phase (CoTiO{sub 3}) is found to coexist with highly crystalline rutile. These structural characteristics are discussed in relation with the observed general trends for the optical properties. - Highlights: • Cobalt doped and undoped TiO{sub 2} powders have been prepared by sol–gel route. • Doping makes the band gap narrower. • Doping delays the phase transformation from anatase to rutile. • Doping inhibits the growth of the crystallites. • At high annealing temperature a CoTiO{sub 3} phase coexists with highly crystalline rutile.

  16. Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries.

    Science.gov (United States)

    Wu, Tianjing; Hou, Hongshuai; Zhang, Chenyang; Ge, Peng; Huang, Zhaodong; Jing, Mingjun; Qiu, Xiaoqing; Ji, Xiaobo

    2017-08-09

    Antimony represents a class of unique functional materials in sodium-ion batteries with high theoretical capacity (660 mA h g -1 ). The utilization of carbonaceous materials as a buffer layer has been considered an effective approach to alleviate rapid capacity fading. Herein, the antimony/nitrogen-doping porous carbon (Sb/NPC) composite with polyaniline nanosheets as a carbon source has been successfully achieved. In addition, our strategy involves three processes, a tunable organic polyreaction, a thermal annealing process, and a cost-effective reduction reaction. The as-prepared Sb/NPC electrode demonstrates a great reversible capacity of 529.6 mA h g -1 and an outstanding cycling stability with 97.2% capacity retention after 100 cycles at 100 mA g -1 . Even at 1600 mA g -1 , a superior rate capacity of 357 mA h g -1 can be retained. Those remarkable electrochemical performances can be ascribed to the introduction of a hierarchical porous NPC material to which tiny Sb nanoparticles of about 30 nm were well-wrapped to buffer volume expansion and improve conductivity.

  17. Dielectric loss property of strong acids doped polyaniline (PANi)

    Science.gov (United States)

    Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar

    2018-04-01

    In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.

  18. Porous Hierarchical Nitrogen-doped Carbon Coated ZnFe_2O_4 Composites as High Performance Anode Materials for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Yue, Hongyun; Wang, Qiuxian; Shi, Zhenpu; Ma, Chao; Ding, Yanmin; Huo, Ningning; Zhang, Jun; Yang, Shuting

    2015-01-01

    Porous hierarchical and nitrogen-doped carbon coated ZnFe_2O_4 (ZnFe_2O_4@NC) was obtained by combustion method and unique carbon coating technology. Gum Arabic was firstly introduced in the carbon coating process as an additive, which played an important role to control the uniformity of carbon coating layer. The nitrogen-doped carbon layer was obtained through the pyrolysis of glycine. The elemental composition and content of the nitrogen-doped carbon in composites were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and thermal gravimetric analysis (TGA). The galvanostatic charge/discharge cycling was used to test the electrochemical performance of ZnFe_2O_4@NC and pure ZnFe_2O_4. The sub-micro size ZnFe_2O_4@NC with unique porous structure showed an excellent electrochemical performance as an anode material, which was higher than that of pure ZnFe_2O_4. ZnFe_2O_4@NC could maintain the specific discharge capacity of 1477 mAh g"−"1 at 0.1 A g"−"1 after 100 cycles and 705 mAh g"−"1 at 1 A g"−"1 after 1000 cycles, respectively.

  19. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications

    International Nuclear Information System (INIS)

    Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz

    2014-01-01

    Selenium-substituted hydroxyapatites containing selenate SeO 4 2− or selenite SeO 3 2− ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. - Highlights: • We synthesized and analyzed hydroxyapatites doped with selenium oxyanions. • We used various analytical methods, i.e. XRD, TEM, AAS and FT-IR. • We confirmed incorporation of SeO 3 2− and SeO 4 2− into the crystal lattice. • The toxicity of the materials was studied

  20. Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile)

    International Nuclear Information System (INIS)

    Livraghi, S.; Czoska, A.M.; Paganini, M.C.; Giamello, E.

    2009-01-01

    Nitrogen doped TiO 2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO 2 prepared via sol-gel synthesis. Nitrogen doping does not affect the valence band to conduction band separation but, generates intra band gap localized states which are responsible of the on set of visible light absorption. The intra band gap states correspond to a nitrogen containing defect similar but not coincident with that recently reported for N doped anatase. - Graphical abstract: Nitrogen doped TiO 2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO 2 prepared via sol-gel synthesis

  1. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  2. Ca-doped LTO using waste eggshells as Ca source to improve the discharge capacity of anode material for lithium-ion battery

    Science.gov (United States)

    Setiawan, D.; Subhan, A.; Saptari, S. A.

    2017-07-01

    The necessity of high charge-discharge capacity lithium-ion battery becomes very urgent due to its applications demand. Several researches have been done to meet the demand including Ca doping on Li4Ti5O12 for anode material of lithium-ion batteries. Ca-doped Li4Ti5O12 (LTO) in the form of Li4-xCaxTi5O12 (x = 0, 0.05, 0.075, and 0.1) have been synthesized using simple solid state reaction. The materials preparation involved waste eggshells in the form of CaCO3 as Ca source. The structure and capacity of as-prepared samples were characterized using X-Ray Diffractometer and Cyclic Voltametry. X-Ray Diffractometer characterization revealed that all amount of dopant had entered the lattice structure of LTO successfully. The crystalline sizes were obtained by using Scherrer equation. No significant differences are detected in lattice parameters (˜8.35 Å) and crystalline sizes (˜27 nm) between all samples. Cyclic Voltametry characterization shows that Li4-xCaxTi5O12 (x = 0.05) has highest charge-discharge capacity of 177.14 mAh/g and 181.92 mAh/g, respectively. Redox-potentials of samples show no significant differences with the average of 1.589 V.

  3. Doping effects in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hessel Andersen, N.

    1996-11-01

    The purpose of the project has been to study how the superconducting and magnetic properties of the high temperature superconductors change as function of oxygen stoichiometry and cation doping. The primary system of investigation has been YBa{sub 2}Cu{sub 3}O{sub 6+x}, which has been studied as function of oxygen stoichiometry, 0 < x < 1, and cation doping with Al, Co and Fe on the Cu-sites and Nd and Pr on the Y-site. In these materials the hole doping into the CuO{sub 2} planes, that is necessary for superconductivity, is strongly depending on structural ordering. The static properties and the kinetics of the structural ordering process have been studied experimentally by neutron and high energy synchrotron x-ray diffraction, by Raman scattering, and by computer simulation technique. Not only the oxygen stoichiometry but also the cation doping has been shown to influence the magnetic phases, in some cases in an unexpected manner. Thus, by neutron diffraction experiments it has been shown that doping with non-magnetic Al gives rise to a new magnetic phase. A theoretical model, has been developed. The magnetic phases of the Cu and Nd ordering in NdBa{sub 2}Cu{sub 3}O{sub 6+x}, and of the Cu and Pr ordering in PrBa{sub 2}Cu{sub 3}O{sub 6+x} have been studied by neutron diffraction with the main purpose of understanding why PrBa{sub 2}Cu{sub 3}O{sub 6+x} is magnetic and non-superconducting for all oxygen stoichiometries. In NdBa:2Cu{sub 3}O{sub 6+x} studies of the magnetic flux lattice have been carried out by Small Angle Neutron Scattering. Additional structural studies of the superconducting and magnetic phases of related materials, of RENi{sub 2}B{sub 2}C (RE = rare earth), and of oxidized and cation doped materials based on La{sub 2}CuO{sub 4+{delta}} have been carried out. Methods for structural studies and analyses, and equipment for electrical and magnetic characterization have been developed. (EG) 5 tabs., 46 ills., 35 refs.

  4. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g-1 is realized for the optimised case of binary doping over the entire range of 1 A g-1 to 40 A g-1 with stability of 500 cycles at 40 A g-1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  5. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance.

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-12

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  6. Suppression of irradiation effects in gold-doped silicon detectors

    International Nuclear Information System (INIS)

    McPherson, M.; Sloan, T.; Jones, B.K.

    1997-01-01

    Two sets of silicon detectors were irradiated with 1 MeV neutrons to different fluences and then characterized. The first batch were ordinary p-i-n photodiodes fabricated from high-resistivity (400 Ω cm) silicon, while the second batch were gold-doped powder diodes fabricated from silicon material initially of low resistivity (20 Ω cm). The increase in reverse leakage current after irradiation was found to be more in the former case than in the latter. The fluence dependence of the capacitance was much more pronounced in the p-i-n diodes than in the gold-doped diodes. Furthermore, photo current generation by optical means was less in the gold doped devices. All these results suggest that gold doping in silicon somewhat suppresses the effects of neutron irradiation. (author)

  7. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    Science.gov (United States)

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  8. Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method

    Science.gov (United States)

    Putri, Yulia Eka; Said, Suhana Mohd; Refinel, Refinel; Ohtaki, Michitaka; Syukri, Syukri

    2018-04-01

    The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stacking perovskite-type SrTiO3 layers and rock salt SrO layers along the crystallographic c direction. This paper discusses the properties of the Sr2TiO4 and (La, Sm)-doped Sr2TiO4 RP phase synthesized via molten salt method, within the context of thermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficient and low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4 RP phase, in particular, the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In this work, the Sr2TiO4 RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification of its electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermal conductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which is believed to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermal conductivity of Sr2TiO4 RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

  9. Analisis Pengaruh Doping Nitrogen Terhadap Sifat Kapasitif Superkapasitor Berbahan Graphene

    Directory of Open Access Journals (Sweden)

    Diah Ayu Safitri

    2017-03-01

    Full Text Available Kebutuhan manusia akan barang elektronik semakin meningkat, sehingga meningkat pula kebutuhan akan media penyimpan listrik. Salah satu media penyimpan energy yaitu kapasitor. Electric Double Layer Capacitor (EDLC merupakan superkapasitor yang memiliki waktu hidup yang lebih lama, rapat daya dan kecepatan charging-discharging tinggi. Graphene telah banyak dieksplorasi sebagai material untuk EDLC, salah satunya yaitu dengan pendopingan. Penelitian ini bertujuan untuk menganalisis pengaruh doping nitrogen terhadap struktur dan morfologi serta pengaruh doping nitrogen terhadap sifat kapasitif dari elektroda superkapasitor berbahan Graphene. Sintesis graphene diawali dari grafit yang dioksidasi menjadi grafit oksida dengan metode Hummer. Grafit oksida lalu direduksi dengan metode hydrotermal menjadi graphene. Penelitian ini memvariasikan doping nitrogen dengan penambahan NH4OH 0.1 ml, 0.3 ml dan 1 ml. Material yang disintesis ini dikarakterisasi menggunakan XRD(X-Ray Diffraction, SEM (Scanning Electron Microscopy , EDS (Energy Disspersive X-Ray analysis, FPP (Four Point Probe, dan FTIR (Fourier Transform Infrared Spectroscopu. Dari hasil karakterisasi menunjukkan bahwa material yang disintesis adalah graphene. Sifat kapasitif Elektroda diukur dengan melakukan uji Cyclic Voltametry (CV dengan rentang scan rate 5, 10, 50 dan 100 mV/s. Dari hasil penelitian didapatkan doping nitrogen pada graphene yang paling optimal adalah dengan penambahan NH4OH 0.3 ml yaitu 5.2%at dengan nilai kapasitansi sebesar 208.47 F/g.

  10. Water activated doping and transport in multilayered germanane crystals

    International Nuclear Information System (INIS)

    Young, Justin R; Johnston-Halperin, Ezekiel; Chitara, Basant; Cultrara, Nicholas D; Arguilla, Maxx Q; Jiang, Shishi; Fan, Fan; Goldberger, Joshua E

    2016-01-01

    The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe 2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues. (paper)

  11. Diffusion in Intrinsic and Highly Doped III-V Semiconductors

    CERN Multimedia

    Stolwijk, N

    2002-01-01

    %title\\\\ \\\\Diffusion plays a key role in the fabrication of semiconductor devices. The diffusion of atoms in crystals is mediated by intrinsic point defects. Investigations of the diffusion behaviour of self- and solute atoms on the Ga sublattice of gallium arsenide led to the conclusion that in intrinsic and n-type material charged Ga vacancies are involved in diffusion processes whereas in p-type material diffusion if governed by charged Ga self-interstitials. Concerning the As sublattice of gallium arsenide there is a severe lack of reliable diffusion data. The few available literature data on intrinsic GaAs are not mutually consistent. A systematic study of the doping dependence of diffusion is completely missing. The most basic diffusion process - self-diffusion of As and its temperature and doping dependence - is practically not known. For GaP a similar statement holds.\\\\ \\\\The aim of the present project is to perform a systematic diffusion study of As diffusion in intrinsic and doped GaAs and in GaP. P...

  12. Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Chen, Yang; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2018-03-01

    Although heteroatom doping in carbon based catalysts have recently received intensive attentions, the role of the intrinsically porous structure of practical carbon materials and their potential synergy with doping atoms are still unclear. To investigate the complex effects, a range of N-doped single-walled carbon nanotubes (SWCNTs) were used to investigate their potential use for O2 dissociation and the subsequent SO2 oxidation using density functional theory. It is found that graphite N doping can synergize with the outer surface of SWCNTs to facilitate the dissociation of O2. The barrier for the dissociation on dual graphite N-doped SWCNT-(8, 8) is as low as 0.3 eV, and the subsequent SO2 oxidation is thermodynamically favorable and kinetically feasible. These results spotlight on developing promising carboncatalyst via utilization of porous gemometry and heteroatom-doping of carbon materials simultaneously.

  13. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Wang, Lan; Gao, Zhiyong; Chang, Jiuli; Liu, Xiao; Wu, Dapeng; Xu, Fang; Guo, Yuming; Jiang, Kai

    2015-09-16

    Activated N-doped porous carbons (a-NCs) were synthesized by pyrolysis and alkali activation of graphene incorporated melamine formaldehyde resin (MF). The moderate N doping levels, mesopores rich porous texture, and incorporation of graphene enable the applications of a-NCs in surface and conductivity dependent electrode materials for supercapacitor and dye-sensitized solar cell (DSSC). Under optimal activation temperature of 700 °C, the afforded sample, labeled as a-NC700, possesses a specific surface area of 1302 m2 g(-1), a N fraction of 4.5%, and a modest graphitization. When used as a supercapacitor electrode, a-NC700 offers a high specific capacitance of 296 F g(-1) at a current density of 1 A g(-1), an acceptable rate capability, and a high cycling stability in 1 M H2SO4 electrolyte. As a result, a-NC700 supercapacitor delivers energy densities of 5.0-3.5 Wh kg(-1) under power densities of 83-1609 W kg(-1). Moreover, a-NC700 also demonstrates high electrocatalytic activity for I3- reduction. When employed as a counter electrode (CE) of DSSC, a power conversion efficiency (PCE) of 6.9% is achieved, which is comparable to that of the Pt CE based counterpart (7.1%). The excellent capacitive and photovoltaic performances highlight the potential of a-NCs in sustainable energy devices.

  14. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping

    Science.gov (United States)

    Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu

    2015-01-01

    The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809

  15. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Science.gov (United States)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  16. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Institute of Scientific and Technical Information of China (English)

    Qin YANG; Yingying DU; Yifan WANG; Zhiying WANG; Jun MA; Jianglin WANG; Shengmin ZHANG

    2017-01-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites.Here we firstly synthesized a series of hybrid bone composites,silicon-hydroxyapatites/silk fibroin/collagen,based on a specific molecular assembled strategy.Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice.In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs),extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite.More interestingly,we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors.In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect.Consequently,our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system,but also paves a new way for constructing multi-functional composite materials in the future.

  17. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    Science.gov (United States)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than

  18. The charge-transfer property and the performance of dye-sensitized solar cells of nitrogen doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lingyun [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); School of Chemical Engineering, Northeast Dianli University, Jilin 132012 (China); Yang Yulin, E-mail: ylyang@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Fan Ruiqing, E-mail: fanruiqing@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Chen Haiyan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Jia Ruokun [School of Chemical Engineering, Northeast Dianli University, Jilin 132012 (China); Wang Yonghui [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); Ma Liqun; Wang Yazhen [School of Material Science of Engineering, Qiqihar University, Qiqihar 161006 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Two methods (the solution and annealing methods) are used to prepare nitrogen-doped ZnO. Black-Right-Pointing-Pointer The charge-transfer properties of N-doping ZnO are investigated. Black-Right-Pointing-Pointer The overall conversion efficiency of N-doped ZnO-based dye-sensitized solar cells is successfully improved by N doping. - Abstract: In this study two methods, namely the solution and annealing methods, were used to prepare nitrogen-doped ZnO. The X-ray photoelectron spectroscopy (XPS) was performed to identify the composition and chemical states of N-doped ZnO. The N doping by the solution method was found to effectively decrease the acceptor effects. Surface photovoltage measurements (SPS) revealed a redshift of the threshold wavelength for the N-doped ZnO. And the recombination of photoinduced electron-hole pairs in this semiconductor material was obviously suppressed. The N-doped ZnO (solution method) exhibits the best performances among all the materials, even superior to N-doped ZnO (annealing method). Its J{sub sc} and {eta} values (9.35 mA/cm{sup 2} and 2.64%) have enhanced by several times compared with un-doped ZnO (J{sub sc}, 2.85 mA/cm{sup 2}; {eta}, 0.67%). The overall conversion efficiency of ZnO-based dye-sensitized solar cells was successfully improved by the N doping.

  19. The charge-transfer property and the performance of dye-sensitized solar cells of nitrogen doped zinc oxide

    International Nuclear Information System (INIS)

    Zhang Lingyun; Yang Yulin; Fan Ruiqing; Chen Haiyan; Jia Ruokun; Wang Yonghui; Ma Liqun; Wang Yazhen

    2012-01-01

    Highlights: ► Two methods (the solution and annealing methods) are used to prepare nitrogen-doped ZnO. ► The charge-transfer properties of N-doping ZnO are investigated. ► The overall conversion efficiency of N-doped ZnO-based dye-sensitized solar cells is successfully improved by N doping. - Abstract: In this study two methods, namely the solution and annealing methods, were used to prepare nitrogen-doped ZnO. The X-ray photoelectron spectroscopy (XPS) was performed to identify the composition and chemical states of N-doped ZnO. The N doping by the solution method was found to effectively decrease the acceptor effects. Surface photovoltage measurements (SPS) revealed a redshift of the threshold wavelength for the N-doped ZnO. And the recombination of photoinduced electron–hole pairs in this semiconductor material was obviously suppressed. The N-doped ZnO (solution method) exhibits the best performances among all the materials, even superior to N-doped ZnO (annealing method). Its J sc and η values (9.35 mA/cm 2 and 2.64%) have enhanced by several times compared with un-doped ZnO (J sc , 2.85 mA/cm 2 ; η, 0.67%). The overall conversion efficiency of ZnO-based dye-sensitized solar cells was successfully improved by the N doping.

  20. Molecular reorientation of dye doped nematic liquid crystals in the laser illumination

    International Nuclear Information System (INIS)

    San, S. E.; Koeysal, O.; Ecevit, F. N.

    2002-01-01

    In this study it is investigated how dye doped nematic liquid crystals reorient under the illumination of laser beam whose wavelength is appropriate to absorbance characteristics of the doping dye. Nematic liquid crystal E7 is used with anthraquinone dye 1% wt/wt in the preparation of the sample and this material is filled in homegenously aligned measurement cell having 15 μm thickness. Mechanism of molecular reorientation includes the absorbance effects of the energy of laser by doping dye and this reorientation causes the refractive index of the material to be changed. There are potential application possibilities of such molecular reorientation based effects in nonlinear optics such as real time holography whose basis is grating diffraction that is observed and investigated in the frame of fundamentals of molecule light interaction mechanisms. Experimental analyses allowed finding characteristic values of diffraction signals depending on physical parameters of set up for a dye doped liquid crystal system and this system provided a 20 % diffraction efficiency under the optimum circumstances

  1. Crystallization and memory programming characteristics of Ge-doped SbTe materials of varying Sb : Te ratio

    International Nuclear Information System (INIS)

    Jeong, Jeung-hyun; Lee, Hyun Seok; Lee, Suyoun; Lee, Taek Sung; Kim, Won Mok; Wu Zhe; Cheong, Byung-ki; Kim, Seul Cham; Oh, Kyu Hwan

    2009-01-01

    A phase change memory (PCM) utilizes resistivity changes accompanying fast transitions from an amorphous to a crystalline phase (SET) and vice versa (RESET). An investigation was made on the SET characteristics of PCM cells with Ge-doped SbTe (Ge-ST) materials of two different Sb : Te ratios (4.53 and 2.08). For the material of higher Sb : Te (4.53), a SET operation was completed within several tens of nanoseconds via nucleation-free crystallization whereas the material of lower Sb : Te (2.08) rendered a slower SET operation requiring several hundred nanoseconds for a nucleation-mediated crystallization. From measurements of nucleation and growth kinetics via laser-induced crystallization, the observed SET characteristics of the former case were found to derive from a growth time about 10 3 times shorter than the nucleation time and those of the latter from a much shorter nucleation time as well as a longer growth time than in the former case. The measured nucleation kinetics of the lower Sb : Te (2.08) material is unexpected from the existing data, which has led us to advance an interesting finding that there occurs a trend-reversing change in the nucleation kinetics of the Ge-ST materials around the eutectic composition (Sb : Te ∼2.6); nucleation is accelerated with the increase in the Sb : Te ratio above Sb : Te of 2.6, but with a decrease in the Sb : Te ratio below it.

  2. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-01-01

    Graphical abstract: - Highlights: • P-doped g-C 3 N 4 has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C 3 N 4 . • A postannealing treatment further enhanced the activity of P-doped g-C 3 N 4 . • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C 3 N 4 , which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry

  3. Mobility and Device Applications of Heavily Doped Silicon and Strained SILICON(1-X) Germanium(x) Layers

    Science.gov (United States)

    Carns, Timothy Keith

    With the advent of Si molecular beam epitaxy (Si -MBE), a significant amount of research has occurred to seek alternative high conductivity Si-based materials such as rm Si_{1-x}Ge_ {x} and delta-doped Si. These materials have brought improvements in device speeds and current drives with the added advantage of monolithic integration into Si VLSI circuits. The bulk of research in Si-based materials has been devoted to the implementation of strained rm Si_{1-x}Ge_{x} as the base layer of a rm Si_ {1-x}Ge_{x}/Si heterojunction bipolar transistor (HBT). Because of the valence band offset, the rm Si_{1-x}Ge _{x} layer can be heavily doped, leading to lower base sheet resistances and hence, improved speed performances. The Ge content in the base can also be graded to increase the drift field in the base. However, very few hole mobility measurements have been done in these strained layers, leading to limitations in device modeling and in understanding the transport behavior in this important material. In addition to rm Si_{1 -x}Ge_{x}, much potential also exists in using delta-doping in Si for improved conductivities over those of bulk Si. However, as of yet, delta-doped Si has received little attention. Therefore, this dissertation is dedicated to the investigation of both of these Si-based materials (strained rm Si_{1-x}Ge_{x } and delta-doped Si and rm Si_{1-x}Ge_ {x}) for the purpose of obtaining higher conductivities than comparably doped bulk Si. This work is divided into three parts to accomplish this objective. The first part is contained in Chapter 3 and is comprised of a comprehensive characterization of the hole mobility in compressively strained rm Si_{1 -x}Ge_{x}. Few results have been obtained prior to this research which has led to many inaccuracies in device modeling. The second part of this dissertation in Chapters 4 and 5 is devoted to the study of the mobility behavior in both boron and antimony delta-doped Si and rm Si_ {1-x}Ge_{x}. The important

  4. Theoretical insights into the minority carrier lifetime of doped Si—A computational study

    Science.gov (United States)

    Iyakutti, K.; Lavanya, R.; Rajeswarapalanichamy, R.; Mathan Kumar, E.; Kawazoe, Y.

    2018-04-01

    Using density functional theory, we have analyzed the ways and means of improving the minority carrier lifetime (MCL) by calculating the band structure dependent quantities contributing to the MCL. We have computationally modeled silicon doped with different elements like B, C, N, O, P, Ti, Fe, Ga, Ge, As, In, Sn, Sb, and Pt and looked at the effect of doping on MCL. In co-doping, the systems Si-B-Ga, Si-B-Ge, Si-B-2Ge, Si-B-Pt, Si-Ga-Ge, Si-Ga-2Ge, and Si-Ga-Pt are investigated. From our calculation, it is found that by doping and co-doping of Si with suitable elements having "s" and "p" electrons, there is a decrease in the recombination activity. The predicted effective minority carrier lifetime indicates the possibility of significant improvements. Based on the above studies, it is now maybe possible, with suitable choice of dopant and co-dopant material, to arrive at part of a standard production process for solar grade Si material.

  5. Co-doping TiO{sub 2} with boron and/or yttrium elements: Effects on antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzheng [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Wu, Yusheng, E-mail: henanwys@sina.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Yang, He; Xue, Xiangxin; Liu, Zhihua [Institute of Metallurgical Resources and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2016-09-15

    Highlights: • B-Y/TiO{sub 2} nano materials firstly applied to the fields of antibacterial materials. • Systems analysis the existence state of boron and yttrium ion in TiO{sub 2}. • Doping B and Y greatly strengthened the antibacterial activity of TiO{sub 2}. - Abstract: Pure TiO{sub 2}, boron and/or yttrium doped TiO{sub 2} nano-materials were synthesized by a sol–gel method and characterized by XRD, SEM, XPS and PL. XRD analysis indicates that, in the pure TiO{sub 2} and B single doped TiO{sub 2} (B-TiO{sub 2}) nano-materials calcinated at 700 °C, the presence of TiO{sub 2} is a mixture of anatase and rutile; in the Y single doped (Y-TiO{sub 2}), B and Y co-doped TiO{sub 2} nano-materials (B/Y-TiO{sub 2}), the presence of TiO{sub 2} is anatase. SEM image shows the prepared materials have a common round morphology and hexagonal plate morphology caused by the agglomeration of particles. Boron atoms are partially embedded into the TiO{sub 2} interstitial structure or incorporated into the TiO{sub 2} lattice through occupying the position of the oxygen atoms. The results of antimicrobial experiment show that B/Y-TiO{sub 2} material has a remarkable antimicrobial activity. Compared with the visible light irradiation, antimicrobial activity of B/Y-TiO{sub 2} in dark is significant poor.

  6. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  7. Strontium-doped hematite as a possible humidity sensing material for soil water content determination.

    Science.gov (United States)

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-09-10

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800-1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  8. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    Directory of Open Access Journals (Sweden)

    Carlo Grignani

    2013-09-01

    Full Text Available The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  9. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    of the dopants and dopant concentrations, a large power factor was obtainable. The sample with the composition of Zn0.9Cd0.1Sc0.01O obtained the highest zT ∼0.3 @1173 K, ~0.24 @1073K, and a good average zT which is better than the state-of-the-art n-type thermoelectric oxide materials. Meanwhile, Sc-doped Zn......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  10. Synthesis and characterization of Sr- and Mg-doped Lanthanum gallate electrolyte materials prepared via the Pechini method

    International Nuclear Information System (INIS)

    Shi Min; Xu Yudong; Liu Anping; Liu Ning; Wang Can; Majewski, P.; Aldinger, F.

    2009-01-01

    The powders of Sr- and Mg-doped lanthanum gallate (La 0.85 Sr 0.15 Ga 0.80 Mg 0.2 O 2.825 ; LSGM) were synthesized by the Pechini method. The XRD pattern indicates that the main phase (LaGaO 3 ) exists in the uncalcined powders. The LSGM materials are composed of the main phase without secondary phases when calcined at 1400 deg. C. The LSGM materials contain fewer amounts of secondary phases than those prepared by the sol-gel method and solid-state reaction method at the same calcination temperature. TEM image of the powders indicate that the average grain size is about 80 nm. The conductivity increases with the testing temperature increasing. The curve of ln(σT) vs 1/T exists two straight lines intersecting at T* (T* is about 602 deg. C). It indicates that activation energy of oxygen-vacancy motion at lower temperatures is greater than that at higher temperatures

  11. Synthesis and characterization of Sr- and Mg-doped Lanthanum gallate electrolyte materials prepared via the Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Min [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)], E-mail: shimin@mail.hf.ah.cn; Xu Yudong; Liu Anping; Liu Ning; Wang Can [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Majewski, P.; Aldinger, F. [Max-Planck-Institut fur Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart (Germany)

    2009-03-15

    The powders of Sr- and Mg-doped lanthanum gallate (La{sub 0.85}Sr{sub 0.15}Ga{sub 0.80}Mg{sub 0.2}O{sub 2.825}; LSGM) were synthesized by the Pechini method. The XRD pattern indicates that the main phase (LaGaO{sub 3}) exists in the uncalcined powders. The LSGM materials are composed of the main phase without secondary phases when calcined at 1400 deg. C. The LSGM materials contain fewer amounts of secondary phases than those prepared by the sol-gel method and solid-state reaction method at the same calcination temperature. TEM image of the powders indicate that the average grain size is about 80 nm. The conductivity increases with the testing temperature increasing. The curve of ln({sigma}T) vs 1/T exists two straight lines intersecting at T* (T* is about 602 deg. C). It indicates that activation energy of oxygen-vacancy motion at lower temperatures is greater than that at higher temperatures.

  12. VOx effectively doping CVD-graphene for transparent conductive films

    Science.gov (United States)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  13. Characterization of carboxy methylcellulose doped with DTAB as ...

    Indian Academy of Sciences (India)

    Characterization of carboxy methylcellulose doped with DTAB as new types of biopolymer electrolytes ... (CMC) is creating opportunity for new types of electrochemical devices, which may themselves, ... Bulletin of Materials Science | News.

  14. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    Science.gov (United States)

    Wang, Shanyu; Zheng, Gang; Luo, Tingting; She, Xiaoyu; Li, Han; Tang, Xinfeng

    2011-11-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ~4.7 × 1019 cm-3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ~1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ~1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ~70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  15. Synthesis and characterization of gadolinia-doped ceria-silver cermet cathode material for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    A series of Ce 0.9 Gd 0.1 O 2-δ -Ag cermets with different Ag contents were prepared by conventional sintering process aiming at assessing the suitability of using them as cathode material for solid oxide fuel cell (SOFC) with Gadolinia-doped ceria electrolyte. The chemical compatibility between Ce 0.9 Gd 0.1 O 2-δ (CGO) and Ag was investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Thermal expansion coefficients of the cermets were measured as a function of Ag content and were found to increase with metallic content. Although oxygen adsorption at the surface of the cermets could be detected, no reaction or solid solubility between CGO and Ag was found

  16. Aluminum doping of CuInSe{sub 2} synthesized by solution process and its effect on structure, morphology, and bandgap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhi; Deng, Weizhi; Zhang, Xia; Yuan, Qian; Deng, Peiran; Sun, Lei [Material Engineering College, Shanghai University of Engineering Science (China); Liang, Jun [School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen University Town (China)

    2014-11-15

    Al-doped CuInSe{sub 2} material is prepared by a low-cost wet chemical process. The key properties of Al-doped CuInSe{sub 2} as a successful solar cell material are investigated, such as crystal structure, morphology, optical properties, and bandgap. In situ X-ray diffraction measurements indicate that the doping of Al has induced noticeable lattice distortion. The material shows excellent thermal stability up to 600 C annealing temperature. By increasing the Al-doping concentration, the crystal unit-cell parameter of the material becomes smaller and the change of crystal structure leads to an increase of the grain size and surface roughness. The bandgap of Al-doped CuInSe{sub 2} can be continuously tuned in a range of 1.07-1.67 eV as Al/(Al + In) content ratio varies from 0 to 0.49. Finally, the effect mechanism on the properties of CuInSe{sub 2} after Al doping is discussed based on the ionic radius, crystal structure, and bonding state. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Heavily nitrogen doped, graphene supercapacitor from silk cocoon

    International Nuclear Information System (INIS)

    Sahu, Vikrant; Grover, Sonia; Tulachan, Brindan; Sharma, Meenakshi; Srivastava, Gaurav; Roy, Manas; Saxena, Manav; Sethy, Niroj; Bhargava, Kalpana; Philip, Deepu; Kim, Hansung; Singh, Gurmeet; Singh, Sushil Kumar; Das, Mainak; Sharma, Raj Kishore

    2015-01-01

    Doping of graphene with nitrogen is of much interest, since it improves the overall conductivity and supercapacitive properties. Besides conductivity, nitrogen doping also enhances the pseudo-capacitance due to fast and reversible surface redox processes. In this work, we have developed a cheap and easy process for synthesizing heavily nitrogen doped graphene (15% nitrogen) from non-mulberry silk cocoon membrane (Tassar, Antheraea mylitta) by pyrolyzing the cocoon at 400 °C in argon atmosphere. Further we have investigated the performance of this heavily ‘nitrogen doped graphene’ (NDG) in a supercapacitor device. Our results suggest that NDG obtained from cocoon has improved supercapacitor performance. The improved performance is due to the high electronegativity of nitrogen that forms dipoles on the graphene surface. These dipoles consequently enhance the tendency of graphene to attract charged species to its surface. This is a green and clean synthesis approach for developing electronic materials for energy applications

  18. Application of pristine and doped SnO2 nanoparticles as a matrix for agro-hazardous material (organophosphate) detection

    Science.gov (United States)

    Khan, Naushad; Athar, Taimur; Fouad, H.; Umar, Ahmad; Ansari, Z. A.; Ansari, S. G.

    2017-02-01

    With an increasing focus on applied research, series of single/composite materials are being investigated for device development to detect several hazardous, dangerous, and toxic molecules. Here, we report a preliminary attempt of an electrochemical sensor fabricated using pristine Ni and Cr-doped nano tin oxide material (SnO2) as a tool to detect agro-hazardous material, i.e. Organophosphate (OP, chlorpyrifos). The nanomaterial was synthesized using the solution method. Nickel and chromium were used as dopant during synthesis. The synthesized material was calcined at 1000 °C and characterized for morphological, structural, and elemental analysis that showed the formation of agglomerated nanosized particles of crystalline nature. Screen-printed films of powder obtained were used as a matrix for working electrodes in a cyclic voltammogram (CV) at various concentrations of organophosphates (0.01 to 100 ppm). The CV curves were obtained before and after the immobilization of acetylcholinesterase (AChE) on the nanomaterial matrix. An interference study was also conducted with hydroquinone to ascertain the selectivity. The preliminary study indicated that such material can be used as suitable matrix for a device that can easily detect OP to a level of 10 ppb and thus contributes to progress in terms of desired device technology for the food and agricultural-industries.

  19. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  20. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    International Nuclear Information System (INIS)

    Marzik, James V.

    2005-01-01

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  1. To dope or not to dope

    DEFF Research Database (Denmark)

    Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula

    2013-01-01

    tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43......%) representing 40 sports completed aweb-based questionnaire. Participants were asked to imagine themselves in a situation in which theyhad to decide whether to dope or not to dope and then evaluate how different circumstances would affecttheir decisions.Results: Multiple circumstances had an effect on athletes......’ hypothetical decisions. The most effective deter-rents were related to legal and social sanctions, side-effects and moral considerations. Female athletesand younger athletes evaluated more reasons as deterrents than older, male athletes. When confrontedwith incentives to dope, the type of sport was often...

  2. Simultaneous thermal stability and phase change speed improvement of Sn15Sb85 thin film through erbium doping

    Science.gov (United States)

    Zou, Hua; Zhu, Xiaoqin; Hu, Yifeng; Sui, Yongxing; Sun, Yuemei; Zhang, Jianhao; Zheng, Long; Song, Zhitang

    2016-12-01

    In general, there is a trade off between the phase change speed and thermal stability in chalcogenide phase change materials, which leads to sacrifice the one in order to ensure the other. For improving the performance, doping is a widely applied technological process. Here, we fabricated Er doped Sn15Sb85 thin films by magnetron sputtering. Compared with the pure Sn15Sb85, we show that Er doped Sn15Sb85 thin films exhibit simultaneous improvement over the thermal stability and the phase change speed. Thus, our results suggest that Er doping provides the opportunity to solve the contradiction. The main reason for improvement of both thermal stability and crystallization speed is due to the existence of Er-Sb and Er-Sn bonds in Er doped Sn15Sb85 films. Hence, Er doped Sn15Sb85 thin films are promising candidates for the phase change memory application, and this method could be extended to other lanthanide-doped phase change materials.

  3. Half-metallic ferromagnetism in Fe-doped Zn3P2 from first-principles calculations

    International Nuclear Information System (INIS)

    Jaiganesh, G.; Jaya, S. Mathi

    2014-01-01

    Using the first-principles calculations based on the density functional theory, we have studied the magnetism and electronic structure of Fe-doped Zinc Phosphide (Zn 3 P 2 ). Our results show that the half-metallic ground state and ferromagnetic stability for the small Fe concentrations considered in our study. The stability of the doped material has been studied by calculating the heat of formation and analyzing the minimum total energies in nonmagnetic and ferromagnetic phases. A large value of the magnetic moment is obtained from our calculations and our calculation suggests that the Fe-doped Zn 3 P 2 may be a useful material in semiconductor spintronics

  4. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  5. First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene

    Science.gov (United States)

    Luan, Zhaohui; Zhao, Lei; Chang, Hao; Sun, Dan; Tan, Changlong; Huang, Yuewu

    2017-11-01

    The structural, electronic and magnetic properties of Eu-doped phosphorene with different doping concentrations were investigated by first-principles calculations for the first time. The calculations show that Eu-doped phosphorene systems are stable and have the large magnetic moments of more than 6 μB by 2.7, 6.25 and 12.5 at.% doping concentrations. The major contribution to the magnetic moment stems from the 4f states of Eu-doped atom. Meanwhile, Eu-doped atom introduces the impurity bands which can be changed by different doping concentrations. In order to determine the magnetic interaction, the different configurations for two Eu atoms doping in 3 × 3 × 1 phosphorene supercell were studied, which reveals that all of the configurations tend to form ferromagnetic. These results can provide references for inducing large magnetism of two-dimensional phosphorene, which are valuable for their applications in spintronic devices and novel semiconductor materials.

  6. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  7. The origin of current blocking in interfacial conduction in Sr-doped lanthanum gallates

    Science.gov (United States)

    Park, Hee Jung

    2018-02-01

    The grain boundary transport of lanthanum gallate has been studied with various doping concentrations, and the origins of blocking on the grain boundary are compared. La1-xSrxGaO3 samples (x = 0.005, 0.01, 0.05 and 0.1) have been prepared and their bulk (grain) and grain boundary resistances been experimentally measured as a function of temperature (T: 200-550 °C) and oxygen partial pressure (Po2) using ac-impedance measurements. In addition, Hebb-Wagner polarization measurements have been conducted to investigate the electrical conductivity of minor charge carriers in the lanthanum gallates. The grain boundary resistance in the low-doped materials (x = 0.005 and 0.01) increases with increasing Po2 while in the highly-doped materials (x = 0.05, 0.1) it hardly depended on Po2. At lower concentrations conduction is mixed and at higher concentrations is found to be predominantly ionic conductivity. The space charge model successfully describes the mixed conduction at the grain boundary at low-doping, but does not explain the predominant ionic conductivity at high-doping. The origin of blocking at high-doping is explained by the crystallographic asymmetry of the grain boundary with respect to the bulk and/or Sr-segregation.

  8. The Formation of Lithiated Ti-Doped {alpha}-Fe{sub 2}O{sub 3} Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hisham@ictp.trieste.it [Khartoum University, Department of Physics (Sudan); Gismelseed, A. M.; Bouziane, K. [Sultan Qaboos University, Department of Physics (Oman); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E. [Sultan Qaboos University, Department of Physics (Oman)

    2004-12-15

    The milling of spinel-related Ti-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped {alpha}-Fe{sub 2}O{sub 3} nanocrystalline particles via an intermediate {gamma}-LiFeO{sub 2}-related phase. The role played by the dopant Ti-ion in the process is emphasized.

  9. Thermoelectric Performance of Na-Doped GeSe

    NARCIS (Netherlands)

    Shaabani, Laaya; Aminorroaya-Yamini, Sima; Byrnes, Jacob; Akbar Nezhad, Ali; Blake, Graeme R

    2017-01-01

    Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized

  10. Nitrogen doped graphene - Silver nanowire hybrids: An excellent anode material for lithium ion batteries

    Science.gov (United States)

    Nair, Anju K.; Elizabeth, Indu; S, Gopukumar; Thomas, Sabu; M. S, Kala; Kalarikkal, Nandakumar

    2018-01-01

    We present an in-situ polyol assisted synthesis approach for the preparation of silver nanowires (AgNW) over the nitrogen doped graphene (NG) sheets and has been tested as a viable LIBs anode material for the first time. The use of NG serves as nucleation sites, thereby facilitating the growth of AgNWs. The specific material design of the as-prepared NG-AgNW hybrids involves some advantages, including a continuous AgNW-graphene conducting network. Since AgNWs are electrically conductive, it provides an electrical contact with NG sheets which can effectively help the charge transport process and limit the variations in volume during the lithiation/de-lithiation processes. Apart from this, the insertion of metallic Ag nanowires into a percolated NG network increases the interlayer distance of NG sheets and prevent its restacking. Moreover, the more porous nature of the hybrid structure accommodating the large volume changes of AgNWs. As an anode material for LIBs, the NG-AgNW hybrid displays a remarkable initial discharge capacity of 1215 mAh g-1 and attains a stable capacity of 724 mAh g-1 at a current density of 100 mA g-1 after 50 cycles. The electrode exhibits a stable reversible capacity of 714, 634, 550 and 464 mA h g-1 at 0.1, 0.2, 0.5, 1 Ag-1 respectively. The reversible capacity (710 mAh g-1) at 0.1 Ag-1 is recovered after the cycling at various current densities confirming outstanding rate performance of the material. In addition, the coulombic efficiency, the NG-AgNW anode retains nearly 99% after the second cycle, further indicating its excellent reversibility. The hybrid material exhibits better cycling stability, greater rate capability, capacity retention and superior reversible capacity than that of bare AgNW and NG sheets. Our smart design will pave way for the development of efficient electrode materials for high capacity and long cycle life LIBs.

  11. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  12. Photoluminescence decay kinetics of doped ZnS nanophosphors

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Bhatti, H S

    2007-01-01

    Doped nanophosphor samples of ZnS:Mn, ZnS:Mn, Co and ZnS:Mn, Fe were prepared using a chemical precipitation method. Photoluminescence (PL) spectra were obtained and lifetime studies of the nanophosphors were carried out at room temperature. To the best of our knowledge, there are very few reports on the photoluminescence investigations of Co-doped or Fe-doped ZnS:Mn nanoparticles in the literature. Furthermore, there is no report on luminescence lifetime shortening of ZnS:Mn nanoparticles doped with Co or Fe impurity. Experimental results showed that there is considerable change in the photoluminescence spectra of ZnS:Mn nanoparticles doped with X (X = Co, Fe). The PL spectra of the ZnS:Mn, Co nanoparticle sample show three peaks at 410, 432 and 594 nm, while in the case of the ZnS:Mn, Fe nanoparticle sample the peaks are considerably different. The lifetimes are found to be in microsecond time domain for 594 nm emission, while nanosecond order lifetimes are obtained for 432 and 411 nm emission in ZnS:Mn, X nanophosphor samples. These lifetimes suggest a new additional decay channel of the carrier in the host material

  13. The effect of Bi3+ and Li+ co-doping on the luminescence characteristics of Eu3+-doped aluminum oxide films

    International Nuclear Information System (INIS)

    Padilla-Rosales, I.; Martinez-Martinez, R.; Cabañas, G.; Falcony, C.

    2015-01-01

    The incorporation of Bi 3+ and Li + as co-dopants in Eu 3+ -doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi 3+ and Li + do not introduce new luminescence features but affect the luminescence intensity of the Eu 3+ related emission spectra as well as the excitation spectra. The introduction of Bi 3+ generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li + and Bi 3+ co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al 2 O 3 host. • Li was incorporated as a co-activator

  14. Ni-O4 species anchored on N-doped graphene-based materials as molecular entities and electrocatalytic performances for oxygen reduction reaction

    Science.gov (United States)

    Jang, Dawoon; Lee, Seungjun; Shin, Yunseok; Ohn, Saerom; Park, Sunghee; Lim, Donggyu; Park, Gilsoo; Park, Sungjin

    2017-12-01

    The generation of molecular active species on the surface of nano-materials has become promising routes to produce efficient electrocatalysts. Development of cost-effective catalysts with high performances for oxygen reduction reaction (ORR) is an important challenge for fuel cell and metal-air battery applications. In this work, we report a novel hybrid produced by room-temperature solution processes using Ni-based organometallic molecules and N-doped graphene-based materials. Chemical and structural characterizations reveal that Ni-containing species are well-dispersed on the surface of graphene network as molecular entity. The hybrid shows excellent electrocatalytic performances for ORR in basic medium with an onset potential of 0.87 V (vs. RHE), superior durability and good methanol tolerance.

  15. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    Science.gov (United States)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  16. Synthesis and spectroscopic characterization of palladium-doped ...

    Indian Academy of Sciences (India)

    Pd-doped TiO2 nanoparticles; gelatin; hydrogen evolution reaction. 1. Introduction ... sol–gel methods16 have been used for production of TiO2 thin films. Besides the ... ports reduced the cost of anode materials in the industrial applications.

  17. Electronic structure and optical properties of Al and Mg co-doped GaN

    International Nuclear Information System (INIS)

    Ji Yan-Jun; Du Yu-Jie; Wang Mei-Shan

    2013-01-01

    The electronic structure and optical properties of Al and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotential method. The results show that the optimal form of p-type GaN is obtained with an appropriate Al:Mg co-doping ratio rather than with only Mg doping. Al doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of Al—Mg co-doped GaN photoelectric materials

  18. Development of bioconjugated dye-doped poly(styrene-co-maleimide) nanoparticles as a new bioprobe

    CSIR Research Space (South Africa)

    Swanepoel, A

    2015-02-01

    Full Text Available -1 Journal of Materials Chemistry B Development of bioconjugated dye-doped poly(styrene-co- maleimide) nanoparticles as a new bioprobe A. Swanepoel, I. du Preez, T. Mahlangu, A. Chetty and B. Klumperman Abstract Fluorescent dye-doped poly...

  19. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  20. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  1. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  2. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kolmas, Joanna, E-mail: joanna.kolmas@wum.edu.pl [Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw (Poland); Oledzka, Ewa; Sobczak, Marcin [Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw (Poland); Nałęcz-Jawecki, Grzegorz [Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, ul. Banacha 1, 02-097 Warsaw (Poland)

    2014-06-01

    Selenium-substituted hydroxyapatites containing selenate SeO{sub 4}{sup 2−} or selenite SeO{sub 3}{sup 2−} ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. - Highlights: • We synthesized and analyzed hydroxyapatites doped with selenium oxyanions. • We used various analytical methods, i.e. XRD, TEM, AAS and FT-IR. • We confirmed incorporation of SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} into the crystal lattice. • The toxicity of the materials was studied.

  3. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    International Nuclear Information System (INIS)

    Davoisne, C.; Stennett, M.C.; Hyatt, N.C.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 x 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  4. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    Science.gov (United States)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  5. Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2016-02-01

    Full Text Available Solid-state dye-sensitized solar cells (ssDSSC constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2 electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.

  6. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Venkataramanan, Natarajan Sathiyamoorthy; Belosludov, Rodion Vladimirovich; Note, Ryunosuke; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-01-01

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H 2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H 2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H 2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li 6 B 36 N 36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li 6 B 36 N 36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  7. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material

    International Nuclear Information System (INIS)

    Guo, Donglin; Hu, Chenguo; Zhang, Cuiling

    2013-01-01

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi 2 S 3 depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value. ► By doping and temperature tuning, Bi 2 S 3 is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi 2 S 3 are investigated. The electron and hole effective mass of Bi 2 S 3 is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi 2 S 3 crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi 2 S 3 , the optimal doping concentration is found in the range of (1.0–5.0) × 10 19 cm −3 , in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant

  8. The Anti-Doping Movement.

    Science.gov (United States)

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Doping effects in high-Tc superconductors

    International Nuclear Information System (INIS)

    Hessel Andersen, N.

    1996-11-01

    The purpose of the project has been to study how the superconducting and magnetic properties of the high temperature superconductors change as function of oxygen stoichiometry and cation doping. The primary system of investigation has been YBa 2 Cu 3 O 6+x , which has been studied as function of oxygen stoichiometry, 0 2 planes, that is necessary for superconductivity, is strongly depending on structural ordering. The static properties and the kinetics of the structural ordering process have been studied experimentally by neutron and high energy synchrotron x-ray diffraction, by Raman scattering, and by computer simulation technique. Not only the oxygen stoichiometry but also the cation doping has been shown to influence the magnetic phases, in some cases in an unexpected manner. Thus, by neutron diffraction experiments it has been shown that doping with non-magnetic Al gives rise to a new magnetic phase. A theoretical model, has been developed. The magnetic phases of the Cu and Nd ordering in NdBa 2 Cu 3 O 6+x , and of the Cu and Pr ordering in PrBa 2 Cu 3 O 6+x have been studied by neutron diffraction with the main purpose of understanding why PrBa 2 Cu 3 O 6+x is magnetic and non-superconducting for all oxygen stoichiometries. In NdBa:2Cu 3 O 6+x studies of the magnetic flux lattice have been carried out by Small Angle Neutron Scattering. Additional structural studies of the superconducting and magnetic phases of related materials, of RENi 2 B 2 C (RE = rare earth), and of oxidized and cation doped materials based on La 2 CuO 4+δ have been carried out. Methods for structural studies and analyses, and equipment for electrical and magnetic characterization have been developed. (EG) 5 tabs., 46 ills., 35 refs

  10. Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 Nano materials

    CSIR Research Space (South Africa)

    Palaniyandy, Nithyadharseni

    2017-09-01

    Full Text Available In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn-Sn...

  11. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  12. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Doping of GaN{sub 1-x}As{sub x} with high As content

    Energy Technology Data Exchange (ETDEWEB)

    Levander, A.X.; Novikov, S.V.; Liliental-Weber, Z.; dos Reis, R.; Dubon, O.D.; Wu, J.; Foxon, C.T.; Yu, K.M.; Walukiewicz, W.

    2011-09-22

    Recent work has shown that GaN{sub 1-x}As{sub x} can be grown across the entire composition range by low temperature molecular beam epitaxy with intermediate compositions being amorphous, but control of the electrical properties through doping is critical for functionalizing this material. Here we report the bipolar doping of GaN{sub 1-x}As{sub x} with high As content to conductivities above 4 S/cm at room temperature using Mg or Te. The carrier type was confirmed by thermopower measurements. Doping requires an increase in Ga flux during growth resulting in a mixed phase material of polycrystalline GaAs:N embedded in amorphous GaN{sub 1-x}As{sub x}.

  14. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  15. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    International Nuclear Information System (INIS)

    Wang Shanyu; Zheng Gang; Luo Tingting; She Xiaoyu; Li Han; Tang Xinfeng

    2011-01-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ∼4.7 × 10 19 cm -3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ∼1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ∼1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ∼70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  16. Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors

    Science.gov (United States)

    Huo, Silu; Liu, Mingquan; Wu, Linlin; Liu, Mingjie; Xu, Min; Ni, Wei; Yan, Yi-Ming

    2018-05-01

    Nitrogen and sulfur co-doped carbons are considered as electrode materials for high performance supercapacitors, while their further development is still limited by complicated synthesis procedure, unsatisfied structure and low energy density. Developing a simple synthetic strategy to obtain rationally structured carbon materials and high supercapacitor performance is remaining a grand challenge. Herein, we describe the synthesis of nitrogen and sulfur co-doped hierarchical porous carbons as high performance supercapacitors electrode by a methanesulfonic acid-assisted one-step carbonization and activation of the freeze-dried precursors mixture. The as-prepared carbon material not only exhibits ideally hierarchical pores, but also realizes uniform nitrogen and sulfur co-doping. In 6.0 M KOH electrolyte, the material can achieve a high specific capacitance of 272 F g-1 at 1.0 A g-1 and a promising rate performance retaining 172 F g-1 even at 100 A g-1. Moreover, a fabricated symmetric supercapacitor based on as-prepared nitrogen and sulfur co-doped hierarchical porous carbon delivers high energy densities of 12.4 W h kg-1 and 8.0 W h kg-1 in 6.0 M KOH liquid and KOH/PVA solid-state electrolytes, respectively. This work presents a simple and effective methanesulfonic acid-assisted approach for mass production of heteroatomic doping hierarchical porous carbons for future energy storage applications.

  17. Doping Control Via Molecularly Engineered Surface Ligand Coordination

    KAUST Repository

    Yuan, Mingjian; Zhitomirsky, David; Adinolfi, Valerio; Voznyy, Oleksandr; Kemp, Kyle W.; Ning, Zhijun; Lan, Xinzheng; Xu, Jixian; Kim, Jin Young; Dong, Haopeng; Sargent, Edward H.

    2013-01-01

    A means to control the net doping of a CQD solid is identified via the design of the bidentate ligand crosslinking the material. The strategy does not rely on implementing different atmospheres at different steps in device processing, but instead is a robust strategy implemented in a single processing ambient. We achieve an order of magnitude difference in doping that allows us to build a graded photovoltaic device and maintain high current and voltage at maximum power-point conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Doping Control Via Molecularly Engineered Surface Ligand Coordination

    KAUST Repository

    Yuan, Mingjian

    2013-08-05

    A means to control the net doping of a CQD solid is identified via the design of the bidentate ligand crosslinking the material. The strategy does not rely on implementing different atmospheres at different steps in device processing, but instead is a robust strategy implemented in a single processing ambient. We achieve an order of magnitude difference in doping that allows us to build a graded photovoltaic device and maintain high current and voltage at maximum power-point conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method

    Science.gov (United States)

    Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen

    2018-03-01

    The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.

  20. Strain engineering of magnetic state in vacancy-doped phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Zhang, Chunxiao, E-mail: zhangchunxiao@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Li, Jin [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Guo, Zhixin [Department of Physics, Xiangtan University, Xiangtan 411105, Hunan (China); Xiao, Huaping, E-mail: hpxiao@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Zhong, Jianxin [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China)

    2016-09-23

    Inducing and manipulating the magnetism in two-dimensional materials play an important role for the development of the next-generation spintronics. In this letter, the effects of the biaxial strain on magnetic properties of vacancy-doped phosphorene are investigated using first-principles calculation. We find although only SV956 doping induces magnetism for unstrained phosphorene, the biaxial strain induces nonzero magnetic moment for SV5566 and DVa doped phosphorene. The biaxial strain also modulates the magnetic state for SV956, SV5566 and DVa doped phosphorene. The local magnetic moment derives from the spin polarization of the dangling bonds near the vacancy. The biaxial strain influences the local bonding configuration near the vacancy which determines the presence of dangling bonds, and then modulates the magnetic state. Our findings promise the synergistic effect of strain engineering and vacancy decoration is an effective method for the operation of phosphorene-based spintronic devices. - Highlights: • Investigation of the magnetic moment of vacancy-doped phosphorene by DFT calculation. • The modulation of the magnetic moment by the biaxial strain. • The analysis of the bonding configuration with the biaxial strain. • The analysis of the electronic structures to explain the evolution of the magnetic moment. • The effects of the biaxial strain on the band gap and doping levels.

  1. Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN

    International Nuclear Information System (INIS)

    Zhong Guohua; Zhang Kang; He Fan; Ma Xuhang; Lu Lanlan; Liu Zhuang; Yang Chunlei

    2012-01-01

    Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce-Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin-orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.

  2. Optical spectroscopy of Eu3+ doped Th(MoO4)2

    International Nuclear Information System (INIS)

    Keskar, Meera; Phatak, Rohan; Gupta, Santhosh; Natarajan, V.

    2014-01-01

    Eu 3+ is often used as a structural probe, because of the relative simplicity of its energy-level structure and dependence on its site symmetry in the host material. The phonon energy of the host for rare-earth ions is a crucial factor to be considered for developing luminescent materials.Thorium molybdate can satisfy both low phonon energy environment for rare-earth ions and good chemical and mechanical stabilities for practical use. Thus Eu 3+ doped Th(MoO 4 ) 2 are expected to be a good promising optical materials. To the best of our knowledge, there is no report on optical spectroscopy of Eu 3+ doped thorium molybdate and thus work has been carried out and discussed in this paper

  3. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    Science.gov (United States)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  4. Novel materials for high-efficiency solar cells

    Science.gov (United States)

    Kojima, Nobuaki; Natori, Masato; Suzuki, Hidetoshi; Inagaki, Makoto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2009-08-01

    Our Toyota Technological Institute group has investigated various novel materials for solar cells from organic to III-V compound materials. In this paper, we report our recent results in conductivity control of C60 thin films by metal-doping for organic solar cells, and mobility improvement of (In)GaAsN compounds for III-V tandem solar cells. The epitaxial growth of Mg-doped C60 films was attempted. It was found that the epitaxial growth of Mg-doped C60 film was enabled by using mica (001) substrate in the low Mg concentration region (Mg/C60 molar ratio defects leads this improvement.

  5. VO{sub x} effectively doping CVD-graphene for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qinghua; Shi, Liangjing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Qinghong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Wang, Weiqi; Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Yuzhi [The Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2016-11-30

    Highlights: • Doping process operated easily. • Sheet resistance decreased efficiently after doping. • Sheet resistance of doped graphene is stable after exposed in the air. • Mechanism of doping process is studied. - Abstract: Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VO{sub x} doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86–90%. The optimized VO{sub x}-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VO{sub x} can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VO{sub x} species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VO{sub x} doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  6. Preparation of nanometer sized Mn doped Zn based oxides powder for DMS applications

    CSIR Research Space (South Africa)

    Das, J

    2009-01-01

    Full Text Available In order to study the size dependent DMS (Diluted Magnetic Semiconductor) behavior of Mn doped ZnO, the authors have systematically prepared a series of nanosized green powder based on Mn doped ZnO (Zn 1-x Mn x O, where x=0.02 - 0.1) materials using...

  7. Gene doping in sport - perspectives and risks.

    Science.gov (United States)

    Brzeziańska, E; Domańska, D; Jegier, A

    2014-12-01

    In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients' management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS), growth hormone (GH), insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO), which could have therapeutic application. Unfortunately, genetic methods developed for therapeutic purposes are increasingly being used in competitive sports. Some new substances (e.g., antibodies against myostatin or myostatin blockers) might be used in gene doping in athletes. The use of these substances may cause an increase of body weight and muscle mass and a significant improvement of muscle strength. Although it is proven that uncontrolled manipulation of genetic material and/or the introduction of recombinant proteins may be associated with health risks, athletes are increasingly turning to banned gene doping. At the same time, anti-doping research is undertaken in many laboratories around the world to try to develop and refine ever newer techniques for gene doping detection in sport. Thanks to the World Anti-Doping Agency (WADA) and other sports organizations there is a hope for real protection of athletes from adverse health effects of gene doping, which at the same time gives a chance to sustain the idea of fair play in sport.

  8. The effect of intentional potassium co-doping on the luminescent properties of Yb3+ and Tm3+ doped α-NaYF4 core and core–shell nanoparticles

    International Nuclear Information System (INIS)

    Misiak, Małgorzata; Stręk, Wiesław; Arabasz, Sebastian; Bednarkiewicz, Artur

    2016-01-01

    Simple and effective ways to circumvent limited luminescence efficiency of up-converting nanoparticles (UCNPs) are sought. One of the methods relays on distorting the crystallographic structure of host material by co-doping the nanocrystals with optically inactive co-dopants. Here we study the influence of K + doping and surface passivation on the up-converting properties of the α-NaYF 4 nanocrystals co-doped with 20% Yb 3+ and 0.1 or 2% Tm 3+ . The intentionally chosen concentrations of K + ions, which were meant to replaced sodium ions were fixed to 0, 5, 10, 20 to 30%. Potassium ions modified the spectroscopic properties of both core and core–shell NPs, but the differences were noticed between samples doped with 0.1% Tm 3+ and 2% Tm 3+ ions. Replacement of sodium by potassium ions decreased up-conversion luminescence intensity as well as shortened thulium excited states lifetimes in the samples doped with 0.1% Tm 3+ , while the opposite behavior was found in the samples co-doped with higher 2% thulium concentration. - Highlights: • We studied the influence of K + doping on luminescent properties of α-NaYF 4 :YbTm. • The 0.1 and 2% Tm doped core and core–shell samples were investigated. • K + -doping influence on UC properties was different in low and highly Tm doped NPs. • The explanations of the observed variations were proposed.

  9. Preparation of Nano-sized Bismuth-Doped Fe3O4 as an Excellent Magnetic Material for Supercapacitor Electrodes

    Science.gov (United States)

    Aghazadeh, Mustafa; Karimzadeh, Isa; Ganjali, Mohammad Reza

    2018-03-01

    Nano-sized Bi3+-doped iron oxide (n-Bi-IO) particles were prepared through a one-pot electrochemical procedure, and the product was evaluated using x-ray diffraction, field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy. Based on the analyses, the average size of the n-Bi-IO was determined to be 10 nm. Galvanostatic charge-discharge (GCD) evaluations revealed that the specific capacitance of the material reached 235 F g-1 at a discharge condition of 0.2 A g-1. n-Bi-IO had a 94.2% capacity retention after 2000 GCD cycles. Further vibrating sample magnetometery analyses showed that the product has enhanced superparamagnetic qualities (i.e. M r = 0.15 emu g-1 and H Ci = 2.71 G) in comparison to iron oxide nanoparticles (i.e. M r = 0.95 emu g-1 and H Ci = 14.62 G). Given the results, the product is considered to be a promising material for developing high performance supercapacitor electrodes.

  10. Structural characterization of pure and doped calcium phosphate bioceramics prepared by simple solid state method

    International Nuclear Information System (INIS)

    Ahmed, S.; Kabir, H.; Nigar, F.

    2011-01-01

    Calcium Phosphate based bioceramic materials, in pure and doped forms have been successfully synthesized from egg shells by using solid-state method for the first time. Considering the diverse role of zinc and fluoride in biological functions, these two ions were chosen to develop the substituted bioceramic materials. Structural characterizations of these developed bioceramics were performed by using FTIR, XRD, SEM and EDS techniques. The results revealed that the fluoride doped apatite was formed in single phase containing hydroxyapatite while pure and Zinc doped apatites contained -TCP with hydroxyapatite. Experimental results and the crystallographic parameters matched well with the literature values indicating that the present experimental protocol favoured the formation of the desired bioceramics. However, to synthesize the (Ca (PO)) based bioceramic materials, such a simple solid-state approach would obviously be very helpful, not only in making the process economically feasible, but also in creating an effective material recycling technology for waste-management. (author)

  11. Synthesis of nitrogen-doped graphene via solid microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhangli379@sohu.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Ji, Bingcheng, E-mail: debbo.jee@outlook.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Wang, Kai [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Song, Jinyan [School of Information Engineering, Dalian Ocean University, Dalian, Liaoning 116024 (China)

    2014-07-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy.

  12. Synthesis of nitrogen-doped graphene via solid microwave method

    International Nuclear Information System (INIS)

    Zhang, Li; Ji, Bingcheng; Wang, Kai; Song, Jinyan

    2014-01-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy

  13. Effect of iron doping on Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Abd Halim Shaari; Mansor Hashim; Sidek Hj Abd Aziz; Laily Rafiah Abdullah

    1991-01-01

    Study on the effect of iron doping at different values of doping percentage (0.00< x<0.06) and hence the influence of magnetic iron on Y-Ba-Cu-O superconductor has been carried out. The conventional technique of sintering is used in preparing the ceramic materials. The crystal structure and their lattice parameters are determined from X-ray diffraction measurements. Observation on the dependence of resistance on temperature is made between room temperature to the boiling point of liquid nitrogen, using four-probe techniques. Magnetisation properties namely the Meissner Effect is also observed by levitating a small piece of permanent magnet on the cooled sample. The X-ray diffraction data show that the phase transitions have been observed; from orthorhombic to tetragonal when the iron doping exceeded ∼0.02. Transition temperature, Tc decrease from ∼87.7K to ∼83K. Meissner Effect is observed for sample doped up to 2% only

  14. Crystal growth and properties of PbI2 doped with Fe and Ni

    International Nuclear Information System (INIS)

    Rybak, O.V.; Lun', Yu.O.; Bordun, I.M.; Omelyan, M.F.

    2005-01-01

    A procedure is described for doping PbI 2 monocrystals with Fe and Ni during vapor-phase growth in a closed system in the presence of excess iodine. The rate of mass transfer in the system and the doping level of the crystals are shown to be governed by the dopant content in the source material and the source temperature. The effect of Fe and Ni doping on the low-temperature (5 K) exciton photoluminescence spectrum of PbI 2 is discussed [ru

  15. Implicit versus explicit attitude to doping: Which better predicts athletes' vigilance towards unintentional doping?

    Science.gov (United States)

    Chan, Derwin King Chung; Keatley, David A; Tang, Tracy C W; Dimmock, James A; Hagger, Martin S

    2018-03-01

    This preliminary study examined whether implicit doping attitude, explicit doping attitude, or both, predicted athletes' vigilance towards unintentional doping. A cross-sectional correlational design. Australian athletes (N=143;M age =18.13, SD=4.63) completed measures of implicit doping attitude (brief single-category implicit association test), explicit doping attitude (Performance Enhancement Attitude Scale), avoidance of unintentional doping (Self-Reported Treatment Adherence Scale), and behavioural vigilance task of unintentional doping (reading the ingredients of an unfamiliar food product). Positive implicit doping attitude and explicit doping attitude were negatively related to athletes' likelihood of reading the ingredients table of an unfamiliar food product, and positively related to athletes' vigilance towards unintentional doping. Neither attitude measures predicted avoidance of unintentional doping. Overall, the magnitude of associations by implicit doping attitude appeared to be stronger than that of explicit doping attitude. Athletes with positive implicit and explicit doping attitudes were less likely to read the ingredients table of an unknown food product, but were more likely to be aware of the possible presence of banned substances in a certain food product. Implicit doping attitude appeared to explain athletes' behavioural response to the avoidance of unintentional doping beyond variance explained by explicit doping attitude. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  17. Study of cerium doped magnetite (Fe 3O 4:Ce)/PMMA nanocomposites

    Science.gov (United States)

    Padalia, Diwakar; Johri, U. C.; Zaidi, M. G. H.

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3O 4) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3O 4) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature ( Tg). The magnetic results suggest that coercivity ( HC) and squareness ( Mr/ Ms) of the loop increases with increasing doping percent of cerium.

  18. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    Science.gov (United States)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  19. Electrodeposition of Zn-doped {alpha}-nickel hydroxide with flower-like nanostructure for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    You Zheng [Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China); Shen Kui; Wu Zhicheng [Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Wang Xiaofeng [Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China); Kong Xianghua, E-mail: kongxh@ustb.edu.cn [Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-08-01

    Zn-doped {alpha}-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is {alpha}-Ni(OH){sub 2} with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH){sub 2} includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g{sup -1}, suggesting its potential application in electrochemical capacitors.

  20. Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors

    Science.gov (United States)

    You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua

    2012-08-01

    Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.

  1. Current Status of Doping in Japan Based on Japan Anti-Doping Disciplinary Panels of the Japan Anti-Doping Agency (JADA): A Suggestion on Anti-Doping Activities by Pharmacists in Japan.

    Science.gov (United States)

    Imanishi, Takashi; Kawabata, Takayoshi; Takayama, Akira

    2017-01-01

    In 2009, the Japan Anti-Doping Agency (JADA) established the "Sports Pharmacist Accreditation Program" to prevent doping in sports. Since then, anti-doping activities in Japan have been attracting attention. In this study, we investigated research about the current status of doping from 2007 to 2014 in Japan to make anti-doping activities more concrete, and we also discussed future anti-doping activities by pharmacists. In Japan, bodybuilding was the sporting event with the highest number and rate of doping from 2007 to 2014. Many of the positive doping cases were detected for class S1 (anabolic agents), S5 (diuretics and masking agents), and S6 (stimulants). Within class S1, supplements were the main cause of positive doping. Within class S5, medicines prescribed by medical doctors were the main cause of positive doping. Within class S6, non-prescription medicines (e.g., OTC) were the main cause of positive doping. When we looked at the global statistics on doping, many of the positive doping cases were detected for class S1. On comparing the Japanese statistics with the global statistics, the rate of positive doping caused by class S1 was significantly lower, but that caused by classes S5 and S6 was significantly higher in Japan than in the world. In conclusion, pharmacists in Japan should pay attention to class S1, S5, and S6 prohibited substances and to the sport events of bodybuilding. Based on this study, sports pharmacists as well as common pharmacists should suggest new anti-doping activities to prevent doping in the future.

  2. Superconductivity in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr

    2015-07-15

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  3. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  4. From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption

    Science.gov (United States)

    Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li

    2018-05-01

    Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.

  5. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    Science.gov (United States)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-01

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current-voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of

  6. Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications

    International Nuclear Information System (INIS)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz; Ferrier, Alban; Goldner, Philippe; Gonçalves, Rogéria R.

    2016-01-01

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu 3+ and Er 3+ -doped Nb 2 O 5 prepared by sol–gel method. The Eu 3+ ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu 3+ -doped Nb 2 O 5 nanocrystalline powders were annealed at different temperatures to verify how the different Nb 2 O 5 crystalline phases affect the structure and the luminescence properties. Er 3+ -doped Nb 2 O 5 was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb 2 O 5 . • Eu 3+ -doped Nb 2 O 5 as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb 2 O 5 . • Potential application as biological markers. • Broad band NIR emission.

  7. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent

    Science.gov (United States)

    Du, Yongxu; Liu, Libin; Xiang, Yu; Zhang, Qiang

    2018-03-01

    The development of novel energy storage devices with high power density and energy density is highly desired. However, as a promising material, the strong π-π interaction of graphene inhibits its applications. Herein, we provide a new approach that amino-functionalized silica are used as both templates to prevent the restacking of the graphene sheets and doping agents simultaneously. The microstructures, porous properties and chemical composition of the resulted N-doped reduced graphene oxide (RGO) aerogels, characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller measurement, indicate that the amount of SiO2-NH2 has profound effects on the surface area and carbon activity of the graphene sheets. Benefiting from the large specific surface area of 481.8 m2 g-1, low series resistances and high nitrogen doping content (4.4 atom%), the as-fabricated 3D hierarchical porous N-doped RGO aerogel electrode exhibits outstanding electrochemical performance in aqueous and organic electrolyte, such as ultrahigh specific capacitances of 350 F g-1 at a current density of 1 A g-1 and excellent reversibility with a cycling efficiency of 88% after 10000 cycles. In addition, the N-doped RGO aerogels possess high oil-absorbability with long recyclability.

  8. Photocatalytic activity of TiO2 doped with boron and vanadium

    International Nuclear Information System (INIS)

    Bettinelli, M.; Dallacasa, V.; Falcomer, D.; Fornasiero, P.; Gombac, V.; Montini, T.; Romano, L.; Speghini, A.

    2007-01-01

    Boron (B)- and vanadium (V)-doped TiO 2 photocatalysts were synthesized using modified sol-gel reaction processes and characterized by X-ray diffraction (XRD), Raman spectroscopy and N 2 physisorption (BET). The photocatalytic activities were evaluated by monitoring the degradation of methylene blue (MB). The results showed that the materials possess high surface area. The addition of B favored the transformation of anatase to rutile, while in the presence of V, anatase was the only phase detected. The MB degradation on V-doped TiO 2 was significantly affected by the preparation method. In fact while the presence of V in the bulk did not influence strongly the photoreactivity under visible irradiation, an increase of surface V doping lead to improved photodegradation of MB. The degradation of MB dye indicated that the photocatalytic activities of TiO 2 increased as the boron doping increased, with high conversion efficiency for 9 mol% B doping

  9. Detonation nanodiamonds for doping Kevlar.

    Science.gov (United States)

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  10. Structural and plasmonic properties of noble metal doped ZnO nanomaterials

    Science.gov (United States)

    Pathak, Trilok K.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Noble metal doped ZnO has been synthesized by the combustion method and the effect of different metals (Ag, Au, Pd) on the structural, morphological, optical, photoluminescence and localized surface plasmon resonance (LSPR) properties has been investigated. X-ray diffraction analysis revealed that the ZnO had a hexagonal wurtzite structure and the crystallite sizes were affected by the doping. The formation of noble metal nanoparticles (NPs) was investigated using transmission electron microscopy and diffuse reflectance spectra. The LSPR of the metallic NPs was predicted using Mie theory calculations. The absorption spectra were calculated using the Kubelka-Munk function and the optical bandgap varied from 3.06 to 3.18 eV for the different doping materials. The experimental results suggest that the origin of enhanced emission was due to direct interaction between the laser photons and the noble material NPs which in turn leads to photoemission transfer of electrons from the noble metals NPs to the conduction band of ZnO.

  11. Tantalum-doped hydroxyapatite thin films: Synthesis and characterization

    International Nuclear Information System (INIS)

    Ligot, S.; Godfroid, T.; Music, D.; Bousser, E.; Schneider, J.M.; Snyders, R.

    2012-01-01

    To achieve a good bioactivity, magnetron-sputtered (MS) hydroxyapatite (HA) coatings have to be stoichiometric and crystalline. It has also been suggested that doping HA with metallic elements improves its bioactivity but frequently reduces its Young’s modulus. Therefore, efforts are still necessary to identify adequate growth conditions, good doping elements and finally to grow doped HA films. In a first attempt, HA films have been synthesized by MS. Our conditions enabled us to grow at ∼10 nm min −1 stoichiometric and crystallized HA coatings that presented a strong texture. The latter is discussed in view of the competitive growth of the material under the strong electron and ion bombardments used here. Based on ab initio calculations identifying Ta as a promising doping element, we then investigated the growth of Ta-doped hydroxyapatite (HA:Ta) by magnetron co-sputtering. The HA:Ta films were in situ crystallized. Our data reveals that for Ta contents <4.5 at.%, Ta could substitute Ca in the HA cell. For higher doping contents, a deviation from the stoichiometric compound is observed and CaO appears. By nanoindentation, we have measured an elastic modulus of 120 ± 9 GPa for a Ta content of 3 at.%. This value is very close to the value of 110 GPa calculated by ab initio calculations, supporting the substitution scenario. The elasticity drop may be understood by screening of the ionic interaction between constituents in HA upon Ta incorporation.

  12. Boron-doped manganese dioxide for supercapacitors.

    Science.gov (United States)

    Chi, Hong Zhong; Li, Yuwei; Xin, Yingxu; Qin, Haiying

    2014-11-11

    The addition of boron as a dopant during the reaction between carbon fiber and permanganate led to significant enhancement of the growth-rate and formation of the porous framework. The doped MnO2 was superior to the pristine sample as electrode materials for supercapacitors in terms of the specific capacitance and rate capability.

  13. Efficient photocatalytic activity with carbon-doped SiO2 nanoparticles

    KAUST Repository

    Zhang, Dongen

    2013-01-01

    Photocatalysis provides a \\'green\\' approach to completely eliminate various kinds of contaminants that are fatal for current environmental and energy issues. Semiconductors are one of the most frequently used photocatalysts as they can absorb light over a wide spectral range. However, it is also well known that naked SiO2 is not an efficient photocatalyst due to its relatively large band gap, which could only absorb shortwave ultraviolet light. In this report, nanoscale particles of carbon-doped silicon dioxide (C-doped SiO2) for use in photocatalysis were successfully prepared by a facile one-pot thermal process using tetraethylorthosilicate (TEOS) as the source of both silicon and carbon. These particles were subsequently characterized by thermogravimetric analysis, X-ray diffraction, standard and high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The C-doped SiO2 displayed outstanding photocatalytic properties, as evidenced by its catalysis of Rhodamine B degradation under near-UV irradiation. We propose that carbon doping of the SiO2 lattice creates new energy states between the bottom of the conduction band and the top of the valence band, which narrows the band gap of the material. As a result, the C-doped SiO2 nanoparticles exhibit excellent photocatalytic activities in a neutral environment. The novel synthesis reported herein for this material is both energy efficient and environmentally friendly and as such shows promise as a technique for low-cost, readily scalable industrial production. © 2013 The Royal Society of Chemistry.

  14. The characterization of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Huang, Y.S.; Tiong, K.K.; Liang, C.H.; Chen, C.H.

    2007-01-01

    Single crystals of WS 2 doped with gold (WS 2 :Au) have been grown by the chemical vapour transport method using iodine as a transporting agent. Hall measurements indicate that the samples are p-type in nature. The doping effect of the materials are characterized by conductivity, surface photovoltage and piezo reflectance measurements. The higher conductivity respect to that of the undoped one suggests that more charge carriers are available for conduction in the doped compound. The surface photovoltage spectrum reveals an impurity level located below the A exciton. The direct band-edge excitonic transition energies for WS 2 :Au show redshifts and the broadening parameters of the excitonic transition features increase due to impurity scattering. (authors)

  15. Synthesis and Electrochemical Properties of Ni Doped Spinel LiNixMn2-xO4 (0 ≤ x ≤ 0.5) Cathode Materials for Li-Ion Battery

    CSIR Research Space (South Africa)

    Kebede, M

    2013-11-01

    Full Text Available Spherical pristine LiMn2O4 and Ni doped LiNixMn2-xO4 (x=0.1, 0.2, 0.3, 0.4, 0.5) cathode materials for lithium ion battery with high first cycle discharge capacity and excellent cycle performance were synthesized using the solution...

  16. PHYSICAL AND ELECTRICAL PROPERTIES ENHANCEMENT OF RARE-EARTH DOPED-POTASSIUM SODIUM NIOBATE (KNN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Akmal Mat Harttat Maziati

    2015-06-01

    Full Text Available Alkaline niobate mainly potassium sodium niobate, (KxNa1-x NbO3 (abreviated as KNN has long attracted attention as piezoelectric materials as its high Curie temperature (Tc and piezoelectric properties. The volatility of alkaline element (K, Na is, however detrimental to the stoichiometry of KNN, contributing to the failure to achieve high-density structure and lead to the formation of intrinsic defects. By partially doping of several rare-earth elements, the inherent defects could be improved significantly. Therefore, considerable attempts have been made to develop doped-KNN based ceramic materials with high electrical properties. In this paper, these research activities are reviewed, including dopants type and doping role in KNN perovskite structure.

  17. XPS studies of nitrogen doping niobium used for accelerator applications

    Science.gov (United States)

    Yang, Ziqin; Lu, Xiangyang; Tan, Weiwei; Zhao, Jifei; Yang, Deyu; Yang, Yujia; He, Yuan; Zhou, Kui

    2018-05-01

    Nitrogen doping study on niobium (Nb) samples used for the fabrication of superconducting radio frequency (SRF) cavities was carried out. The samples' surface treatment was attempted to replicate that of the Nb SRF cavities, which includes heavy electropolishing (EP), nitrogen doping and the subsequent EP with different amounts of material removal. The surface chemical composition of Nb samples with different post treatments has been studied by XPS. The chemical composition of Nb, O, C and N was presented before and after Gas Cluster Ion Beam (GCIB) etching. No signals of poorly superconducting nitrides NbNx was found on the surface of any doped Nb sample with the 2/6 recipe before GCIB etching. However, in the depth range greater than 30 nm, the content of N element is below the XPS detection precision scope even for the Nb sample directly after nitrogen doping treatment with the 2/6 recipe.

  18. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  19. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  20. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  1. Antibacterial Activity of Hydrophobic Composite Materials Containing a Visible-Light-Sensitive Photocatalyst

    Directory of Open Access Journals (Sweden)

    Kentaro Yamauchi

    2011-01-01

    Full Text Available The conventional superhydrophobic surface offered by PTFE provides no sterilization performance and is not sufficiently repellent against organic liquids. These limit PTFE's application in the field of disinfection and result a lack of durability. N-doped TiO2 photocatalyst added PTFE composite material was developed to remedy these shortcomings. This paper reports the surface characteristics, and the bactericidal and self-cleaning performance of the newly-developed composite material. The material exhibited a contact angle exceeding 150 degrees consistent with its hydrophobicity despite the inclusion of the hydrophilic N-doped TiO2. The surface free energy obtained for this composite was 5.8 mN/m. Even when exposed to a weak fluorescent light intensity (100 lx for 24 hours, the viable cells of gram-negative E. coli on the 12% N-doped TiO2-PTFE film were reduced 5 logs. The higher bactericidal activity was also confirmed on the gram-positive MRSA. Compared with the N-doped TiO2 coating only, the inactivation rate of the composite material was significantly enhanced. Utilizing the N-doped TiO2 with the PTFE composite coating could successfully remove, by UV illumination, oleic acid adsorbed on its surface. These results demonstrate the potential applicability of the novel N-doped TiO2 photocatalyst hydrophobic composite material for both indoor antibacterial action and outdoor contamination prevention.

  2. Cu-Doped-CdS/In-Doped-CdS Cosensitized Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS quantum dot solar cells (QDSCs are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion, open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.

  3. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    Science.gov (United States)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  4. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com [Young Researchers and Elite Club, Kermanshah Br anch, Islamic Azad University, P.O. Box: 6718997551, Kermanshah (Iran, Islamic Republic of); Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir [Physics Department, Faculty of Science, Kharazmi University, University Square, P.O. Box: 3197937551, Karaj (Iran, Islamic Republic of)

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  5. Application of lanthanide ions doped in different glasses

    International Nuclear Information System (INIS)

    Dhondiyal, Charu Chandra

    2015-01-01

    The transfer of optical excitation energy from one ion/molecule to another ion/molecule has proved to be of potential importance in industrial application as well as research. Rare earth elements (RE) although not as rare as some of them occur more prevalently then other well known material (e.g. silver, tin, tungsten) are special group of elements of the periodic table comprising lanthanide series (from lanthanum to lutetium) and actinide series (from actinium to lawrencium). Most of the actinides are highly radioactive hence their uses are limited. Fluorescence is the particular optical property of lanthanide (RE) ions. The narrow absorption and emission lines exhibited by the RE ions in crystals, glasses and solutions have always made these ions attractive as sensitive probes of solids and liquid state and also makes them useful in laser technology, CRT displays, UV to visible converters and optical communications etc. In recent years there has been a special interest to study the properties and applications of rare earth doped in glasses. Lanthanide ions in glasses play an important role, especially by retaining their emission capabilities, in the host matrix. Glass as a dielectric material plays an important role in science and industry. Its chemical, physical and particular optical properties make it suitable for applications such as opto-electronic materials, laboratory equipment, laser gain media, etc. Photoluminescence from rare earth doped glasses are of major interest in the research area of optoelectronic device applications like phosphors, display monitors, lasers and amplifiers for communication systems. Now a days, development of optical devices based on rare-earth ions doped materials is one of the interesting fields of research. Rare earth doped glasses are widely used as laser materials, optical amplifiers, optical memory devices, magneto-optical devices, medical lasers, eye safe lasers, flat panel displays, fluorescent lamps, white LED's etc

  6. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  7. Itinerant magnetism in doped semiconducting β-FeSi₂ and CrSi₂.

    Science.gov (United States)

    Singh, David J; Parker, David

    2013-12-17

    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi₂ and CrSi₂ at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds.

  8. First-Row Transition Metal Doping in Calcium Phosphate Bioceramics: A Detailed Crystallographic Study

    Directory of Open Access Journals (Sweden)

    Guillaume Renaudin

    2017-01-01

    Full Text Available Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca10(PO46(OH2 and β-TCP (Ca3(PO42 present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used to tune the biological properties of these ceramics. This paper presents a general overview of the doping mechanisms of BCP samples using cations from the first-row transition metals (from manganese to zinc, with respect to the applied sintering temperature. The results enable the preparation of doped synthetic BCP that can be used to tailor biological properties, in particular by tuning the release amounts upon interaction with biological fluids. Intermediate sintering temperatures stabilize the doping elements in the more soluble β-TCP phase, which favors quick and easy release upon integration in the biological environment, whereas higher sintering temperatures locate the doping elements in the weakly soluble HAp phase, enabling a slow and continuous supply of the bio-inspired properties. An interstitial doping mechanism in the HAp hexagonal channel is observed for the six investigated cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+ with specific characteristics involving a shift away from the center of the hexagonal channel (Fe3+, Co2+, cationic oxidation (Mn3+, Co3+, and also cationic reduction (Cu+. The complete crystallochemical study highlights a complex HAp doping mechanism, mainly realized by an interstitial process combined with calcium substitution for the larger cations of the series leading to potentially calcium deficient HAp.

  9. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  10. Enhanced supercapacitor performances using C-doped porous TiO{sub 2} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Juanrong [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Qiu, Fengxian, E-mail: fxqiuchem@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Ying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Liang, Jianzheng [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhu, Huijun, E-mail: H.Zhu@cranfieldac.uk [School of Energy, Environmental Technology and Agrifood, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Cao, Shunsheng [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-11-30

    Graphical abstract: - Highlights: • A facile, cost-effective strategy was reported to prepare porous anatase TiO{sub 2} materials. • C-doped porous TiO{sub 2} (C/TiO{sub 2}) was in situ synthesized without the addition of carbon precursors. • C/TiO{sub 2} manifested an enhanced capacitance than the commercial P25. - Abstract: Considerable efforts have been paid to develop electrochemical capacitors with energy storage capability in order to meet the demands of multifunctional electronics. Here we report a facile method to fabricate C-doped porous anatase TiO{sub 2}. This technique involves the preparation of monodisperse cationic polystyrene nanoparticles (CPN), following sequential deposition of tetrabutylorthotitanate (TBT), and directly carbonizing of CPN. Interestingly, during the process of carbonizing CPN, a phase transition of TiO{sub 2} will be happened and whist C-doped porous anatase TiO{sub 2} is in situ formed. When this porous C-doped TiO{sub 2} is used as electrode material to prepare electrochemical capacitor, it manifests a higher capacitance than the commercial P25, effectively broadening it potential for many practical applications.

  11. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Baojiang [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China); Tian Chungui; Wang Lei; Sun Li; Chen Chen; Nong Xiaozhen [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China); Qiao Yingjie, E-mail: qiaoyingjie@hrbeu.edu.cn [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Fu Honggang, E-mail: fuhg@vip.sina.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, Heilongjiang University, Harbin (China)

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 Degree-Sign C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  12. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    Science.gov (United States)

    Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  13. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    Science.gov (United States)

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Thermoluminescence in some copper-doped compounds

    International Nuclear Information System (INIS)

    Patil, R.R.; Moharil, S.V.; Dhopte, S.M.; Muthal, P.L.; Kondawar, V.K.

    2003-01-01

    Thermoluminescence (TL) in various Cu + -doped materials is studied. A good correlation between the presence of copper in the Cu + form and TL sensitivity is observed. Correlation between TL emission spectra and photoluminescence suggests that Cu + acts as the emission center in the TL process. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrović, Svetlana, E-mail: svetlana8@vin.bg.ac.rs [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia); Nikolić, Marko G.; Jelenković, Branislav [University of Belgrade, Institute of Physics (Serbia); Prekajski, Marija [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia); Rabasović, Mihailo [University of Belgrade, Institute of Physics (Serbia); Zarubica, Aleksandra [University of Niš, Department of Chemistry, Faculty of Science and Mathematics (Serbia); Branković, Goran [University of Belgrade, Institute for Multidisciplinary Research, Department of Material Science (Serbia); Matović, Branko [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia)

    2017-02-15

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO{sub 3}){sub 3}) and ammonium hydroxide (NH{sub 4}OH). Depending on the relationship between Ce{sup 3+} ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  16. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    International Nuclear Information System (INIS)

    Dmitrović, Svetlana; Nikolić, Marko G.; Jelenković, Branislav; Prekajski, Marija; Rabasović, Mihailo; Zarubica, Aleksandra; Branković, Goran; Matović, Branko

    2017-01-01

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO_3)_3) and ammonium hydroxide (NH_4OH). Depending on the relationship between Ce"3"+ ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  17. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  18. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  19. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  20. Application of neutron activation to the characterization of silicon doping technological procedures

    International Nuclear Information System (INIS)

    Jourdain, Daniel.

    1976-01-01

    Neutron activation techniques (examples of reactions, emission spectra) are recalled. Autoradiography is studied in detail: a theoretical study of the phenomena involved and the parameters that have an effect on the resolution, is made. Concentration profiles of doping impurities are analyzed in the case of ion implantation and deep diffusion. Autoradiography was applied to the study of the following technological problems: phosphorus and gold deep diffusion, phosphorus and arsenic ion implantation, deposition and diffusion of phosphorus-doped oxides. Correlations between doping material concentration and electric parameters such as recovering time and surface resistance were looked for [fr

  1. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Narayanan, N. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 place Jussieu, 75005 Paris (France)

    2011-10-17

    Highlights: {yields} Al, Mg and Cu doped MnO{sub 2} as cathode in Li-ion batteries. {yields} Pure phase MnO{sub 2} for virgin and doped MnO{sub 2} were obtained. {yields} Doping elements improve the electrical conductivity of MnO{sub 2}. {yields} Electrochemical behaviour of MnO{sub 2} improved after doping by Al, Mg and Cu. - Abstract: Pure and doped manganese dioxides were prepared by wet-chemical method using fumaric acid and potassium permanganate as raw materials. X-ray diffraction patterns show that pure and Al, Cu and Mg doped manganese dioxides (d-MnO{sub 2}) crystallized in the cryptomelane-MnO{sub 2} structure. Thermal analysis show that, with the assistance of potassium ions inside the 2 x 2 tunnel, the presence of Al, Cu and Mg doping elements increases the thermal stability of d-MnO{sub 2}. The electrical conductivity of d-MnO{sub 2} increases in comparison with pure MnO{sub 2}, while Al-doped MnO{sub 2} exhibits the lower resistivity. As shown in the magnetic measurements, the value of the experimental effective magnetic moment of Mn ions decreases with introduction of dopants, which is attributed to the presence of a mixed valency of high-spin state Mn{sup 4+}/Mn{sup 3+}. Doped MnO{sub 2} materials show good capacity retention in comparison with virgin MnO{sub 2}. Al-doped MnO{sub 2} shows the best electrochemical results in terms of capacity retention and recharge efficiency.

  2. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes

    Science.gov (United States)

    Liu, Zhisen; Li, Dehao; Li, Zesheng; Liu, Zhenghui; Zhang, Zhiyuan

    2017-11-01

    A facile strategy for the fabrication of a nitrogen-doped 3D reduced graphene oxide (N-3D-rGO) macroporous structure is proposed in this paper. The proposed strategy used polystyrene microspheres as the templates and melamine as the nitrogen source. Using β-MnO2 as the oxidant, the as-prepared N-3D-rGO was then composited with polyaniline (PANI) nanowires (denoted as N-3D-rGO/PANI-B). The structure, morphology, and electrochemical properties of the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, charge-discharge test, and electrochemical impedance spectroscopy. Results revealed that the N-3D-rGO/PANI-B composite has a better specific capacity than the composites prepared with 3D-rGO as the support material and peroxydisulfate as the oxidant. These results suggested that N-3D-rGO/PANI-B has potential applications in supercapacitors.

  3. Nonlinear Optical Properties of Aluminum Doped Zinc Oxide

    Science.gov (United States)

    Otieno, Calford O.

    Nonlinear optical (NLO) materials are crucial to future progress in industrial and technological applications that involve intense light-matter interaction. While ZnO-related materials are known to possess good NLO properties, existing results on ZnO and AZO (Al-doped ZnO) are mostly available at a single wavelength or limited ranges. Therefore, NLO dispersions (wavelength dependences) are not entirely studied, especially at longer wavelengths far below the bandgap. It is important to explore wavelength dependences since doping can induce a drastic change in the NLO responses at varied spectral ranges via doping-induced subgap-state contributions. We present results of our studies on nonlinear harmonic generation from our samples, which include 1) second harmonic generation and 2) third harmonic generation precisely characterized by Maker fringes as a function of both Al doping and wavelength. We exhaustively discuss the possible cause for the modified optical nonlinearities observed in our AZO thin films and give detailed comparisons of our observations with the previous studies. We also present the results of open- and close-aperture Z-scans to characterize the two-photon absorption coefficient (TPA) and the nonlinear refractive index (NLR), respectively, of the AZO films. There was no clearcut evidence of monotonic dependence of TPA and NLR on doping. This presumably indicates that the overall effect is nontrivial and should be understood in terms of combined effects of bandgap shift and crystallinity upon varying the doping level. Most intriguingly, we found that NLR values from the closed-aperture Z-scan are very large by orders of magnitude when compared with the bulk counterparts. Similar observation was made for TPA values from the open-aperture Z-scan. To countercheck very large NLO absorption, we conducted simple intensity scan by varying the incident photon number on each sample but fixing the beam area to eliminate any possible errors related to optical

  4. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus

    2008-10-15

    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  5. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    Science.gov (United States)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  6. Electron irradiation response on Ge and Al-doped SiO2 optical fibres

    International Nuclear Information System (INIS)

    Yaakob, N.H.; Wagiran, H.; Hossain, I.; Ramli, A.T.; Bradley, D.A; Hashim, S.; Ali, H.

    2011-01-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  7. Luminescent properties of Mn2+ doped apatite nanophosphors

    Science.gov (United States)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    2016-05-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn2+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn2+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn2+ doped CLHA nanophosphors.

  8. Luminescent properties of Mn"2"+ doped apatite nanophosphors

    International Nuclear Information System (INIS)

    Ravindranadh, K.; Rao, M. C.; Ravikumar, R. V. S. S. N.

    2016-01-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn"2"+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn"2"+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn"2"+ doped CLHA nanophosphors.

  9. Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown threshold

    Science.gov (United States)

    Konorov, S. O.; Fedotov, A. B.; Ivanov, A. A.; Alfimov, M. V.; Zabotnov, S. V.; Naumov, A. N.; Sidorov-Biryukov, D. A.; Podshivalov, A. A.; Petrov, A. N.; Fornarini, L.; Carpanese, M.; Ferrante, G.; Fantoni, R.; Zheltikov, A. M.

    2003-09-01

    Second- and third-harmonic generation processes are shown to allow the detection of absorptive agglomerates of nanocrystals in transparent materials and the visualization of optical breakdown in nanocomposite materials. Correlations between laser-induced breakdown and the behavior of the second- and third-harmonic signals produced in SiC/PMMA nanocomposite films are studied. The potential of second- and third-harmonic generation for the on-line visualization of laser breakdown in nanocomposite polymer materials is revealed, with the ablative material removal being monitored by the decay of the second- and third-harmonic signals. The second and third harmonics generated around the optical breakdown threshold by 75-fs pulses of 1.25-μm Cr:forsterite laser radiation are respectively more than two and four orders of magnitude more intense than the second and third harmonics produced under identical conditions by 40-ps pulses of a Nd:YAG laser. The breakdown threshold for PMMA films doped with 10-20-nm SiC nanocrystals forming absorptive agglomerates are demonstrated to be more than an order of magnitude lower than the breakdown threshold for crystalline SiC and about an order of magnitude lower than that for nondoped PMMA films.

  10. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite

    International Nuclear Information System (INIS)

    Radovanović, Željko; Jokić, Bojan; Veljović, Djordje; Dimitrijević, Suzana; Kojić, Vesna; Petrović, Rada; Janaćković, Djordje

    2014-01-01

    Hydroxyapatite (HAp) powders doped with Ag + or Cu 2+ were synthesized by a hydrothermal method in order to obtain biomaterial with an antimicrobial effect. The synthesis was performed with two contents of dopant (Ag + or Cu 2+ ) by considering both the antimicrobial activities and biocompatibility of the powders. The doped HAp was annealed at 1200 °C for 2 h with the intention of investigating the influence of doping with Ag + and Cu 2+ on the creation of the biphasic HAp/α-tricalcium phosphate (HAp/α-TCP) and determining the antimicrobial activity and biocompatibility of the obtained biphasic powders. Analyses of all powders, undoped and doped HAp and HAp/α-TCP, were performed by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and energy-dispersive X-ray spectroscopy (EDS). The in vitro antibacterial activities of the powders were evaluated against: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. All powders showed good antimicrobial activity but generally the powders of doped HAp/α-TCP had more uniform results against all pathogenic microorganisms than the powders of doped HAp. In vitro biocompatibility tests, MTT and DET, were used to evaluate the biocompatibility of Ag + - and Cu 2+ -doped HAp/α-TCP with MRC-5 human fibroblast cells. These tests confirmed that powders do not have a cytotoxic effect. The HAp/α-TCP powders doped with the lower content of Ag + and Cu 2+ showed especially good biocompatibility. Antimicrobial and biocompatibility tests recommend the Ag + - and Cu 2+ -doped HAp/α-TCP as promising material for use in reconstructive surgery of bone.

  11. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  12. Effects of Co{sup 2+} doping on physicochemical behaviors of hierarchical NiO nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Caihua [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Gao, WenChao [College of Engineering, Peking University, Beijing, 100871 (China); Zhao, Yongjie, E-mail: zhaoyjpeace@gmail.com [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Zhao, Yuzhen; Zhou, Heping [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Li, Jingbo; Jin, Haibo [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China)

    2016-12-30

    Highlights: • A series of Co{sup 2+} doped NiO materials were synthesized by a facile hydrothermal method. • Co{sup 2+} doping would bring about a series influence to the as-obtained NiO products. • Hierarchical NiO nanostructure transformed from nanosheets to nanoneedles with Co{sup 2+} doping. • The catalytic properties of NiO were significantly improved via the introduction of Co{sup 2+}. • Excellent catalytic activity was ascribed to the synergistic effect between Co{sup 2+} and NiO. - Abstract: A series of Co{sup 2+} doped NiO materials (Ni{sub 1−x}Co{sub x}O with x = 0, 0.125, 0.25 and 0.5) were synthesized using a facile hydrothermal method followed by a calcination process. The effects of Co{sup 2+} doping on the structural, morphological, magnetic and catalytic properties of NiO were systematically investigated. The results indicated that Co{sup 2+} doping would bring about a series influence to the as-obtained NiO product. The XRD results indicated that within the region of 0 ≤ x ≤ 0.25 the doped products revealed a pure NiO phase. The elementary unit for the hierarchy NiO gradually transformed from nanosheets to nanoneedles with the increase of Co{sup 2+} doping content. As-obtained Co{sup 2+} doped NiO products showed ferromagnetism at room temperature and the magnetization value was increased with the increase of Co{sup 2+} doping content. The catalytic properties of NiO concerning the thermal decomposition of ammonium perchlorate (AP) were significantly improved via the introduction of Co{sup 2+}. The Ni{sub 1−x}Co{sub x}O products with x = 0.25 showed the best catalytic performance to AP, which could decrease the beginning and ending decomposition temperature of AP by 44 and 108 °C. The change of morphology, enhancement of electrical conductivity and the synergistic effect between Co{sup 2+} and NiO were the main factors responsible for the improvement of physicochemical behaviors.

  13. GENE DOPING IN SPORT – PERSPECTIVES AND RISKS

    Science.gov (United States)

    Brzeziańska, E; Domańska, D

    2014-01-01

    In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients’ management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS), growth hormone (GH), insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO), which could have therapeutic application. Unfortunately, genetic methods developed for therapeutic purposes are increasingly being used in competitive sports. Some new substances (e.g., antibodies against myostatin or myostatin blockers) might be used in gene doping in athletes. The use of these substances may cause an increase of body weight and muscle mass and a significant improvement of muscle strength. Although it is proven that uncontrolled manipulation of genetic material and/or the introduction of recombinant proteins may be associated with health risks, athletes are increasingly turning to banned gene doping. At the same time, anti-doping research is undertaken in many laboratories around the world to try to develop and refine ever newer techniques for gene doping detection in sport. Thanks to the World Anti-Doping Agency (WADA) and other sports organizations there is a hope for real protection of athletes from adverse health effects of gene doping, which at the same time gives a chance to sustain the idea of fair play in sport. PMID:25435666

  14. GENE DOPING IN SPORT – PERSPECTIVES AND RISKS

    Directory of Open Access Journals (Sweden)

    E Brzeziańska

    2014-10-01

    Full Text Available In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients’ management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS, growth hormone (GH, insulin-like growth factor-1 (IGF-1 and erythropoietin (EPO, which could have therapeutic application. Unfortunately, genetic methods developed for therapeutic purposes are increasingly being used in competitive sports. Some new substances (e.g., antibodies against myostatin or myostatin blockers might be used in gene doping in athletes. The use of these substances may cause an increase of body weight and muscle mass and a significant improvement of muscle strength. Although it is proven that uncontrolled manipulation of genetic material and/or the introduction of recombinant proteins may be associated with health risks, athletes are increasingly turning to banned gene doping. At the same time, anti-doping research is undertaken in many laboratories around the world to try to develop and refine ever newer techniques for gene doping detection in sport. Thanks to the World Anti-Doping Agency (WADA and other sports organizations there is a hope for real protection of athletes from adverse health effects of gene doping, which at the same time gives a chance to sustain the idea of fair play in sport.

  15. The origin of magnetism in transition metal-doped ZrO2 thin films: Experiment and theory

    KAUST Repository

    Hong, Nguyenhoa

    2013-10-04

    We have investigated the magnetic properties of Fe/Co/Ni-doped ZrO 2 laser ablated thin films in comparison with the known results of Mn-doped ZrO2, which is thought to be a promising material for spintronics applications. It is found that doping with a transition metal can induce room temperature ferromagnetism in \\'fake\\' diamond. Theoretical analysis based on density functional theory confirms the experimental measurements, by revealing that the magnetic moments of Mn- and Ni-doped ZrO2 thin films are much larger than that of Fe- or Co-doped ZrO2 thin films. Most importantly, our calculations confirm that Mn- and Ni-doped ZrO2 show a ferromagnetic ground state in comparison to Co- and Fe-doped ZrO 2, which favor an antiferromagnetic ground state. © 2013 IOP Publishing Ltd.

  16. High temperature mechanical tests performed on doped fuels

    International Nuclear Information System (INIS)

    Dugay, C.; Mocellin, A.; Dehaudt, P.; Sladkoff, M.

    1998-01-01

    The high-temperature compressive deformation of large-grained UO 2 doped with metallic oxides has been investigated and compared with that of pure UO 2 with a standard microstructure. All the specimens are made from a single batch of UO 2 powder. Tests with constant applied strain rate of 20μm.min -1 show that Cr 2 O 3 additions cause a decrease in the flow stress of about 15 MPa compared with the reference material. When reduced in hydrogen at 1500 deg. C the specimens present a peak stress close to the flow stress of the pure UO 2 . Measurements of creep rates are made at 1500 deg. C at applied stresses varying from 20 to 70 MPa. Cr 2 O 3 additions increase the creep-rate, up to several orders of magnitude-change from the pure material to a doped one. All the doped materials exhibit power-law creep with exponents in the range of 4.9 to 6.3. The activation energy varies from 466 to 451 kJ/mol depending on the dopant concentration. The creep of the undoped material is divided into three regimes of deformation depending on stress. At low stresses the strain rate shows a second power dependence on stress. At high stress levels a higher stress dependence is observed. The creep power-law breaks down and an exponential law holds true at higher stresses. The activation energies are found to be 410 and 560 kJ/mol in the low- and high-stress regions respectively. The former value is in good agreement with the grain boundary diffusion energy in stoichiometric polycrystalline uranium dioxide and the latter corresponds to that found for self-diffusion energy of uranium. Creep behaviours are discussed in terms of deformation mechanisms. (author)

  17. Health-enhancing doping controls

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest

    2010-01-01

    Editorial published at International Network of Humanistic Doping Research (INHDR) website: http://www.doping.au.dk/en/online-resources/editorials/......Editorial published at International Network of Humanistic Doping Research (INHDR) website: http://www.doping.au.dk/en/online-resources/editorials/...

  18. Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites

    International Nuclear Information System (INIS)

    Padalia, Diwakar; Johri, U.C.; Zaidi, M.G.H.

    2012-01-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3 O 4 ) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3 O 4 ) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2 ) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T g ). The magnetic results suggest that coercivity (H C ) and squareness (M r /M s ) of the loop increases with increasing doping percent of cerium.

  19. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    Directory of Open Access Journals (Sweden)

    Hanxu Ji

    2016-05-01

    Full Text Available Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors.

  20. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yayapao, Oranuch [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-11-05

    Highlights: •Undoped and Dy-doped ZnO used as photocatalysts. •They were synthesized by sonochemistry. •The promising materials for treatment of organic pollutants. -- Abstract: Dy-doped ZnO nanostructures were synthesized by a sonochemical method. The concentration effect of Dy on their phase, morphology, optical properties and photocatalytic activities was investigated. XRD patterns indicated that the as-synthesized 0–3% Dy-doped ZnO was hexagonal wurtzite structure. SEM and TEM show that the products were nanorods with their growth direction along the c axis. The photoluminescence spectrum of 3% Dy-doped ZnO, applied by Gaussian analysis, consists of three emission peaks at 376 nm, 448 nm and 487 nm. The photocatalytic activities of the as-synthesized products were determined from the degradation of methylene blue (C{sub 16}H{sub 18}N{sub 3}SCl) by UV radiation. In this research, the 3% Dy-doped ZnO showed the highest photocatalytic activity.

  1. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yayapao, Oranuch; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-01-01

    Highlights: •Undoped and Dy-doped ZnO used as photocatalysts. •They were synthesized by sonochemistry. •The promising materials for treatment of organic pollutants. -- Abstract: Dy-doped ZnO nanostructures were synthesized by a sonochemical method. The concentration effect of Dy on their phase, morphology, optical properties and photocatalytic activities was investigated. XRD patterns indicated that the as-synthesized 0–3% Dy-doped ZnO was hexagonal wurtzite structure. SEM and TEM show that the products were nanorods with their growth direction along the c axis. The photoluminescence spectrum of 3% Dy-doped ZnO, applied by Gaussian analysis, consists of three emission peaks at 376 nm, 448 nm and 487 nm. The photocatalytic activities of the as-synthesized products were determined from the degradation of methylene blue (C 16 H 18 N 3 SCl) by UV radiation. In this research, the 3% Dy-doped ZnO showed the highest photocatalytic activity

  2. White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.

    Science.gov (United States)

    Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T

    2017-06-01

    Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material

    International Nuclear Information System (INIS)

    Lin, Chih-Yuan; Jhan, Yi-Ruei; Duh, Jenq-Gong

    2011-01-01

    Highlights: → By using a simple one-step solid-state reactions method synthesizes Li 4 Ru 0.01 Ti 4.99 O 12 /C anode material. → Combining the Ru-doped and carbon-coated techniques to fabricate Li 4 Ru 0.01 Ti 4.99 O 12 /C effectively enhance the diffusion rate of Li + and significantly reduce surface electronic resistance of Li 4 Ti 5 O 12 . → Li 4 Ru 0.01 Ti 4.99 O 12 /C delivers 120 and 110 mAh g -1 at 5 and 10 C charge/discharge rate, respectively, after 100 charge/discharge cycles. - Abstract: Pure Li 4 Ti 5 O 12 , modified Li 4 Ti 5 O 12 /C, Li 4 Ru 0.01 Ti 4.99 O 12 and Li 4 Ru 0.01 Ti 4.99 O 12 /C were successfully prepared by a modified solid-state method and its electrochemical properties were investigated. From the XRD patterns, the added sugar or doped Ru did not affect the spinel structure. The results of electrochemical properties revealed that Li 4 Ru 0.01 Ti 4.99 O 12 /C showed 120 and 110 mAh/g at 5 and 10 C rate after 100 charge/discharge cycles. Li 4 Ru 0.01 Ti 4.99 O 12 /C exhibited the best rate capability and the highest capacity at 5 and 10 C charge/discharge rate owing to the increase of electronic conductivity and the reduction of interface resistance between particles of Li 4 Ti 5 O 12 .It is expected that the Li 4 Ru 0.01 Ti 4.99 O 12 /C will be a promising anode material to be used in high-rate lithium ion battery.

  4. Effect of pressure and doping on lattice structure of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zolfaghari, Mahmoud, E-mail: mzolfaghari@phys.usb.ac.ir

    2017-01-15

    The semiconductor ZnO belongs to the IIb-VI binary compound. It has a high exciton binding energy of 60 meV. The bonding in these materials is covalent with some ionic character. Induced changes on the physical properties of Mn doped ZnO samples due to different dopant concentrations and pressure were evaluated. The results obtained showed higher solubility limit for Mn doped ZnO due to pressure. The trend of XRD results for higher Mn concentration (9 at%) as pressure increases, was towards doping improvement. The XRD, SEM and UV–vis study of the samples also revealed that there were variations in the lattice parameters, nanoparticle size and bandgap energy of the doped and pressurized doped samples. Further, the directions of variation of bandgap energy values and calculated particle size, as well as SEM values of the doped samples due to pressure variation were found to be the same i.e. all of them together either increase or decrease as pressure varies. However, these variations were found to be opposite to that of lattice constants (all a and most c values) variation for both Mn dopant concentrations (3 at% and 9 at%). These physical variations of unpressurized doped samples can be attributed to the change in the polar bonding of the elemental constitutions in the lattice. While for the pressurized doped samples, the variations attributed to repulsion of lone pairs as well as change in the electronegativity of the system.

  5. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    Science.gov (United States)

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  6. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles

    International Nuclear Information System (INIS)

    Kozlov, V.A.; Kozlovski, V.V.

    2001-01-01

    One of the modern methods for modifying semiconductors using beams of protons and alpha particles is analyzed; this modification is accomplished by the controlled introduction of radiation defects into the semiconductor. It is shown that doping semiconductors with radiation defects produced by irradiation with light ions opens up fresh opportunities for controlling the properties of semiconducting materials and for the development of new devices designed for optoelectronics, microelectronics, and nanoelectronics based on these materials; these devices differ favorably from those obtained by conventional doping methods, i.e., by diffusion, epitaxy, and ion implantation

  7. Biodegradable electroactive materials for tissue engineering applications

    Science.gov (United States)

    Guimard, Nathalie Kathryn

    This dissertation focuses on the development of biomaterials that could be used to enhance the regeneration of severed peripheral nerves. These materials were designed to be electroactive, biodegradable, and biocompatible. To render the materials electroactive the author chose to incorporate conducting polymer (CP) units into the materials. Because CPs are inherently non-degradable, the key challenge was to create a CP-based material that was also biodegradable. Two strategies were explored to generate a biodegradable CP-based material. The first strategy centered around the incorporation of both electroactive and biodegradable subunits into a copolymer system. In the context of this approach, two bis(methoxyquaterthiophene)-co-adipic acid polyester (QAPE) analogues were successfully synthesized, one through polycondensation (giving undoped QAPE) and the second through oxidative polymerization (giving doped QAPE-2). QAPE was found to be electroactive by cyclic voltammetry, bioerodible, and cytocompatible with Schwann cells. QAPE was doped with ferric perchlorate, although only a low doping percentage was realized (˜8%). Oxidative polymerization of a bis(bithiophene) adipate permitted the direct synthesis of doped QAPE-2, which was found to have a higher doping level (˜24%). The second strategy pursued with the goal of generating an electroactive biodegradable material involved covalently immobilizing low molecular weight polythiophene chains onto the surface of crosslinked hyaluronic acid (HA) films. HA films are not only biodegradable and biocompatible, but they also provide mechanical integrity to bilayer systems. Dicyclocarbodiimide coupling of carboxylic acids to HA alcohol groups was used to functionalize HA films. The HA-polythiophene composite is still in the early stages of development. However, to date, thiophene has been successfully immobilized at the surface of HA films with a high degree of substitution. The author has also shown that thiophene

  8. A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size

    International Nuclear Information System (INIS)

    Kunaseth, Manaschai; Mudchimo, Tanabat; Namuangruk, Supawadee; Kungwan, Nawee; Promarak, Vinich; Jungsuttiwong, Siriporn

    2016-01-01

    Graphical abstract: The relationship between charge difference and adsorption strength demonstrates that charge migration from Pd_n-SDG to AsH_x significantly enhanced adsorption strength, the Pd_6 clusters doped SDG with a steep slope is recommended as a superior adsorbent material for AsH_3 removal from gas stream. - Highlights: • Pd atom and Pd clusters bind strongly onto the defective graphene surface. • Larger size of Pd cluster adsorbs arsine and its hydrogenated products stronger. • Order of adsorption strength on Pd_n doped graphene: As > AsH > AsH_2 > > AsH_3. • Charge migration characterizes the strong adsorption of AsH_2, AsH, and As. • Pd cluster doped graphene is thermodynamically preferable for arsine removal. - Abstract: In this study, we have investigated the size effects of palladium (Pd) doped single-vacancy defective graphene (SDG) surface to the adsorption of AsH_3 and its dehydrogenated products on Pd using density functional theory calculations. Here, Pd cluster binding study revealed that Pd_6 nanocluster bound strongest to the SDG surface, while adsorption of AsH_x (x = 0–3) on the most stable Pd_n doped SDG showed that dehydrogenated arsine compounds adsorbed onto the surface stronger than the pristine AsH_3 molecule. Charge analysis revealed that considerable amount of charge migration from Pd to dehydrogenated arsine molecules after adsorption may constitute strong adsorption for dehydrogenated arsine. In addition, study of thermodynamic pathways of AsH_3 dehydrogenation on Pd_n doped SDG adsorbents indicated that Pd cluster doping on SDG adsorbent tends to be thermodynamically favorable for AsH_3 decomposition than the single-Pd atom doped SDG. Hence, our study has indicated that Pd_6 clusters doped SDG is more advantageous as adsorbent material for AsH_3 removal.

  9. Effect of CdS/Mg-Doped CdSe Cosensitized Photoanode on Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Yingxiang Guan

    2015-01-01

    Full Text Available Quantum dots have emerged as a material platform for low-cost high-performance sensitized solar cells. And doping is an effective method to improve the performance of quantum dot sensitized solar cells (QDSSCs. Since Kwak et al. from South Korea proved the incorporation of Mg in the CdSe quantum dots (QDs in 2007, the Mg-doped CdSe QDs have been thoroughly studied. Here we report a new attempt on CdS/Mg-doped CdSe quantum dot cosensitized solar cells (QDCSSC. We analyzed the performance of CdS/Mg-doped CdSe quantum dot cosensitized solar cells via discussing the different doping concentration of Mg and the different SILAR cycles of CdS. And we studied the mechanism of CdS/Mg-doped CdSe QDs in detail for the reason why the energy conversion efficiency had been promoted. It is a significant instruction on the development of Mg-doped CdSe quantum dot sensitized solar cells (QDSSCs.

  10. Newly Developed Biocompatible Material: Dispersible Titanium-Doped Hydroxyapatite Nanoparticles Suitable for Antibacterial Coating on Intravascular Catheters.

    Science.gov (United States)

    Furuzono, Tsutomu; Okazaki, Masatoshi; Azuma, Yoshinao; Iwasaki, Mitsunobu; Kogai, Yasumichi; Sawa, Yoshiki

    2017-01-01

    Thirteen patients with chlorhexidine-silver sulfadiazine-impregnated catheters have experienced serious anaphylactic shock in Japan. These adverse reactions highlight the lack of commercially available catheters impregnated with strong antibacterial chemical agents. A system should be developed that can control both biocompatibility and antibacterial activity. Hydroxyapatite (HAp) is biocompatible with bone and skin tissues. To provide antibacterial activity by using an external physical stimulus, titanium (Ti) ions were doped into the HAp structure. Highly dispersible, Ti-doped HAp (Ti-HAp) nanoparticles suitable as a coating material were developed. In 3 kinds of Ti-HAp [Ti/(Ca + Ti) = 0.05, 0.1, 0.2], the Ti content in the HAp was approximately 70% of that used in the Ti-HAp preparation, as determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). ICP-AES and X-ray diffraction showed Ti ions were well substituted into the HAp lattice. The nanoparticles were almost uniformly coated on a polyethylene (PE) sheet in a near-monolayer with a surface coverage ratio >95%. The antibacterial activity of the Ti-HAp nanoparticles containing 7.3% Ti ions and coating the sheet was evaluated by calculating the survival ratio of Pseudomonas aeruginosa on the coated sheet after ultraviolet (UV) irradiation. The Ti-HAp-coated sheet showed a 50% decrease in the number of P. aeruginosa compared with that on an uncoated control PE sheet after UV irradiation for 30 s. Key Messages: A system of biocompatibility and antibacterial activity with an on/off switch controlled by external UV stimulation was developed. The system is expected to be applicable in long-term implanted intravascular catheters. © 2017 S. Karger AG, Basel.

  11. Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors

    Science.gov (United States)

    Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi

    2017-10-01

    Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PA