WorldWideScience

Sample records for materials compatibility considerations

  1. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  2. Compatibility of refractory materials with boiling sodium

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1976-01-01

    The program employed to determine the compatibility of commercially available refractories with boiling sodium is described. The effects of impurities contained within the refractory material, and their relations with the refractory's physical stability are discussed. Also, since consideration of refractories for use as an insulating material within Liquid Metal Fast Breeder Reactor Plants (LMFBR's) is currently under investigation; recommendations, based upon this program, are presented

  3. Is equal moral consideration really compatible with unequal moral status?

    Science.gov (United States)

    Rossi, John

    2010-09-01

    The issue of moral considerability, or how much moral importance a being's interests deserve, is one of the most important in animal ethics. Some leading theorists--most notably David DeGrazia--have argued that a principle of "equal moral consideration" is compatible with "unequal moral status." Such a position would reconcile the egalitarian force of equal consideration with more stringent obligations to humans than animals. The article presents arguments that equal consideration is not compatible with unequal moral status, thereby forcing those who would justify significantly different moral protections for humans and animals to argue for unequal consideration.

  4. High-κ gate dielectrics: Current status and materials properties considerations

    Science.gov (United States)

    Wilk, G. D.; Wallace, R. M.; Anthony, J. M.

    2001-05-01

    Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal-oxide-semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward successful integration into the expected processing conditions for future CMOS technologies, especially due to their tendency to form at interfaces with Si (e.g. silicates). These pseudobinary systems also thereby enable the use of other high-κ materials by serving as an interfacial high-κ layer. While work is ongoing, much research is still required, as it is clear that any material which is to replace SiO2 as the gate dielectric faces a formidable challenge. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.

  5. Integrated Data Collection Analysis (IDCA) Program - Mixing Procedures and Materials Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Olinger, Becky D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Remmers, Daniel L. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Moran, Jesse S. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whipple, Richard E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kashgarian, Michaele [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-14

    Three mixing procedures have been standardized for the IDCA proficiency test—solid-solid, solid-liquid, and liquid-liquid. Due to the variety of precursors used in formulating the materials for the test, these three mixing methods have been designed to address all combinations of materials. Hand mixing is recommended for quantities less than 10 grams and Jar Mill mixing is recommended for quantities over 10 grams. Consideration must also be given to the type of container used for the mixing due to the wide range of chemical reactivity of the precursors and mixtures. Eight web site sources from container and chemical manufacturers have been consulted. Compatible materials have been compiled as a resource for selecting containers made of materials stable to the mixtures. In addition, container materials used in practice by the participating laboratories are discussed. Consulting chemical compatibility tables is highly recommended for each operation by each individual engaged in testing the materials in this proficiency test.

  6. Materials compatibility information data bank

    International Nuclear Information System (INIS)

    Mead, K.E.

    1977-01-01

    A major concern in the design of weapons systems is the compatibility of the materials used with each other and with the enclosed environment. Usually these systems require long term storage with a high reliability for proper function at the end of this storage period. Materials selection is then based on both past experience and laboratory accelerated aging experiments to assure this long term reliability. To assist in the task of materials selection a computerized materials compatibility data bank is being established. This data bank will provide a source of annotated information and references to personnel and documents for both the designer and materials engineer to draw on for guidance in materials selection. The data bank storage and information retrieval philosophy will be discussed and procedures for information gathering outlined. Examples of data entries and search routines will be presented to demonstrate the usefulness and versatility of the proposed system

  7. Physical properties and compatibility with dental stones of current alginate impression materials.

    Science.gov (United States)

    Murata, H; Kawamura, M; Hamada, T; Chimori, H; Nikawa, H

    2004-11-01

    This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material.

  8. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  9. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  10. Development of materials with blood compatibility by radiation processing

    International Nuclear Information System (INIS)

    Roesinger, S.; Fischer, J.P.; Fuhge, P.

    1982-01-01

    Biomedical applications, for example for rendering plastic materials blood compatible, have become a very important problem in recent years. Surface-grafted materials for blood compatibility have attracted attention for intra- and extracorporal applications. Numerous aspects of grafting monomers on to polymer surfaces by different grafting methods have been given. A large amount of work has been done during the last ten years, but nobody has prepared materials with properties that are desirable for long-term medical application in the human body, for example as replacements for small arteries or veins. The evaluation of blood compatibility of different plastic materials, and the search for correlations between blood compatibility and physical properties of the plastic materials surfaces, are well-known problems in the biomedical applications of polymers. This paper briefly reviews an approach to help solving these problems. (author)

  11. Double Retort System for Materials Compatibility Testing

    International Nuclear Information System (INIS)

    V. Munne; EV Carelli

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented

  12. Materials considerations for the National Spallation Neutron Source target

    International Nuclear Information System (INIS)

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility

  13. Fusion-reactor blanket-material safety-compatibility studies

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO 2 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 4 SiO 4 and LiTiO 3 ) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li 7 Pb 2 alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li 17 Pb 83 alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li 17 Pb 83 alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns

  14. Mechanical compatibility and stress analyses in composite materials

    International Nuclear Information System (INIS)

    Schimmoeller, H.; Ruge, J.

    1976-01-01

    This paper gives a short description of the problem of mechanical interactions and mechanical compatibility in composite bodies. The formation of stress-strain states, caused by the mechanical compatibility by bonding of the interfaces, is discussed. The difference between the continuous and discontinuous type of material transition in the interface is described. Flat laminated materials are at first considered. For this type of composite bodies thermal stresses and thermal residual stresses are elastically-plastically calculated. (orig.) [de

  15. Liquid metal current collector applications and material compatibility

    International Nuclear Information System (INIS)

    Carr, S.L.; Stevens, H.O.

    1978-01-01

    The objective of this paper has been to summarize briefly the material considerations involved in the development of liquid metal current collectors for homopolar machinery applications. A significant amount of data in this regard has been obtained over the last several years by individual researchers for NaK exposure conditions. However, NaK material compatibility data over the entire time and temperature range of interest is highly desirable. At DTNSRDC, a 300 kW superconducting homopolar motor and generator are under test, both utilizing free surface tongue-and-groove current collectors with NaK as the working fluid. In addition to demonstrating the feasibility of other aspects of machine design, the intention is to use these machines as vehicles for testing of the several liquid metal current collector concepts which are considered worthwhile candidates for incorporation in future full-scale machines. It is likely that the optimal collector approach for a large low speed motor may be quite different from that for a smaller high speed generator, possibly involving the use of different liquid metals

  16. Effect of Time on Gypsum-Impression Material Compatibility

    Science.gov (United States)

    Won, John Boram

    The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control. Materials and Methods: Testing of materials was conducted in accordance with ANSI/ADA Specification No. 18 for Alginate Impression Materials. Statistical Analysis: The 3-Way ANOVA test was used to analyze measurements between different time points at a significance level of (p Outcome: It was found that there was greater compatibility between gypsum and the alternative materials over time than the traditional irreversible hydrocolloid material that was tested. A statistically significant amount of surface change/incompatibility was found over time with the combination of the dental gypsum products and the control impression material (Jeltrate Plus antimicrobial®).

  17. Energetic materials standards – Chemical compatibility

    NARCIS (Netherlands)

    Tuukkanen, I.M.; Bouma, R.H.B.

    2014-01-01

    Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.

  18. Materials compatibility and corrosion issues for accelerator transmutation of waste

    International Nuclear Information System (INIS)

    Staudhammer, K.

    1992-08-01

    The need to understand the materials issues in an accelerator transmutation of waste (ATW) system is essential. This report focuses on the spallation container material, as this material is exposed to some of the most crucial environmental conditions of simultaneous radiation and corrosion in the system. The most severe design being considered is that of liquid lead. In previous investigations of lead compatibility with materials, the chemistry of the system was derived solely from the corrosion products; however, in an ATW system, the chemistry of the lead changes not only with the derived corrosion products of the material being tested but also with the buildup of the daughter production with time. Daughter production builds up and introduces elements that may have a great effect on the corrosion activity of the liquid lead. Consequently, data on liquid lead compatibility can be regarded only as a guide and must be reevaluated when particular daughter products are added. This report is intended to be a response to specific materials issues and concerns expressed by the ATW design working group and addresses the compatibility/corrosion concerns

  19. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  20. Characterization of materials for waste-canister compatibility studies

    International Nuclear Information System (INIS)

    McCoy, H.E.; Mack, J.E.

    1981-10-01

    Sample materials of 7 waste forms and 15 potential canister materials were procured for compatibility tests. These materials were characterized before being placed in test, and the results are the main topic of this report. A test capsule was designed for the tests in which disks of a single waste form were contacted with duplicate samples of canister materials. The capsules are undergoing short-term tests at 800 0 C and long-term tests at 100 and 300 0 C

  1. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    Science.gov (United States)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  2. Plasmonic Modulator Using CMOS Compatible Material Platform

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.

    2014-01-01

    In this work, a design of ultra-compact plasmonic modulator is proposed and numerically analyzed. The device l ayout utilizes alternative plas monic materials such as tr ansparent conducting oxides and titanium nitride which potentially can be applied for CMOS compatible process. The modulation i...... for integration with existing insulator-metal-insu lator plasmonic waveguides as well as novel photonic/electronic hybrid circuits...

  3. A low-cost MRI compatible keyboard

    DEFF Research Database (Denmark)

    Jensen, Martin Snejbjerg; Heggli, Ole Adrian; Alves da Mota, Patricia

    2017-01-01

    , presenting a challenging environment for playing an instrument. Here, we present an MRI-compatible polyphonic keyboard with a materials cost of 850 $, designed and tested for safe use in 3T (three Tesla) MRI-scanners. We describe design considerations, and prior work in the field. In addition, we provide...

  4. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-01-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  5. Compatibility of materials with liquid metal targets for SNS

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-01-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, ΔT, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to ∼550 degrees C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to ∼650 degrees C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above ∼600 degrees C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150 degrees C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material

  6. Mixed waste chemical compatibility: A testing program for plastic packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1995-01-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the United States have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). The design requirements for both hazardous [49 CFR 173.24 (e)(1)] and radioactive [49 CFR 173.412 (g)] materials packaging specify packaging compatibility, i.e., that the materials of the packaging at sign d any contents be chemically compatible with each other. Furthermore, Type A [49 CFR 173.412 (g)] and Type B (10 CFR 71.43) packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program attempts to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. This program has been described in considerable detail in an internal SNL document, the Chemical Compatibility Test Plan ampersand Procedure Report (Nigrey 1993)

  7. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    International Nuclear Information System (INIS)

    MM Hall

    2006-01-01

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing

  8. Advanced Valve Technology. Volume 2. Materials Compatibility and Liquid Propellant Study

    Science.gov (United States)

    1967-11-01

    the other 300 series stainless steels. Table 1-2 lists those materials considered to be compatible with hydrazine for long-term application. PHYSICAL...Lubricity (1) - Unsatisfactory lubricating performance was found for hydrazine in a series of low-load short duration ball bearing and gear tests at...Continued) MATERIALS TEST TEMP OF CERPAM ICS Rockflux 75 Sauereisen P-i 60 Sauereisen 31 60 Temporall 1500 60 ADHE SI VES Epon 422 80 1-33 PENTABORANE

  9. A low-cost MRI compatible keyboard

    DEFF Research Database (Denmark)

    Jensen, Martin Snejbjerg; Heggli, Ole Adrian; Alves da Mota, Patricia

    2017-01-01

    , presenting a challenging environment for playing an instrument. Here, we present an MRI-compatible polyphonic keyboard with a materials cost of 850 $, designed and tested for safe use in 3T (three Tesla) MRI-scanners. We describe design considerations, and prior work in the field. In addition, we provide...... recommendations for future designs and comment on the possibility of using the keyboard in magnetoencephalography (MEG) systems. Preliminary results indicate a comfortable playing experience with no disturbance of the imaging process....

  10. GROUND WATER ISSUE: NONAQUEOUS PHASE LIQUIDS COMPATIBILITY WITH MATERIALS USED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION.

    Science.gov (United States)

    This issue paper provides a comprehensive literature review regarding the compatibility of NAPLs with a wide variety of materials used at hazardous waste sites. A condensed reference table of compatibility data for 207 chemicals and 28 commonly used well construction and sampling...

  11. Compatibility of Segments of Thermoelectric Generators

    Science.gov (United States)

    Snyder, G. Jeffrey; Ursell, Tristan

    2009-01-01

    A method of calculating (usually for the purpose of maximizing) the power-conversion efficiency of a segmented thermoelectric generator is based on equations derived from the fundamental equations of thermoelectricity. Because it is directly traceable to first principles, the method provides physical explanations in addition to predictions of phenomena involved in segmentation. In comparison with the finite-element method used heretofore to predict (without being able to explain) the behavior of a segmented thermoelectric generator, this method is much simpler to implement in practice: in particular, the efficiency of a segmented thermoelectric generator can be estimated by evaluating equations using only hand-held calculator with this method. In addition, the method provides for determination of cascading ratios. The concept of cascading is illustrated in the figure and the definition of the cascading ratio is defined in the figure caption. An important aspect of the method is its approach to the issue of compatibility among segments, in combination with introduction of the concept of compatibility within a segment. Prior approaches involved the use of only averaged material properties. Two materials in direct contact could be examined for compatibility with each other, but there was no general framework for analysis of compatibility. The present method establishes such a framework. The mathematical derivation of the method begins with the definition of reduced efficiency of a thermoelectric generator as the ratio between (1) its thermal-to-electric power-conversion efficiency and (2) its Carnot efficiency (the maximum efficiency theoretically attainable, given its hot- and cold-side temperatures). The derivation involves calculation of the reduced efficiency of a model thermoelectric generator for which the hot-side temperature is only infinitesimally greater than the cold-side temperature. The derivation includes consideration of the ratio (u) between the

  12. Maintenance, outages and chemistry really can be compatible

    International Nuclear Information System (INIS)

    Roberts, J.G.; Deaconescu, R.

    2006-01-01

    'Full text:' In their address to the Canadian Nuclear Society, Bruce Power's Chemistry Design staff will describe how maintenance and outages can impact negatively on chemistry control and asset protection. Considerations of material impacts and material condition have significant influences on the approach to, and control of, chemistry. This applies equally to operation as it does during unit and/or system outages. Ideas will be presented as to how to facilitate making maintenance, outages and chemistry compatible. It will be shown how the lack of such an approach can lead to disastrous results. (author)

  13. Compatibility of polymeric materials with the radiosterilization of disposable medical products

    International Nuclear Information System (INIS)

    Gonzalez, M.E.

    1990-01-01

    The semiindustrial plant of irradiation located at the Atomic Center of Ezeiza entered into operation 20 years ago. This plant has a nominal activity of 3.7 x 10 16 Bq (10 6 Ci) and is presently operating with 1.78 x 10 16 Bq (4.8 x 10 5 Ci). The facility allows working in pilot plant scale for the study of industrial applications and also performs commercial services, the most important of which considering its volume, economic significance and social function is the radiosterilization of disposable medical products. Approximately 29,000 m 3 have been processed in this period, most of the materials being polymers, as component parts of the products as well as packaging. To validate the process of radiosterilization the materials compatibility with ionizing radiation must be known. In the department that operates the irradiation plant, the polymer laboratory is involved in the development of industrial applications and also in the subject of compatibility of polymers with radiosterilization. The laboratory gives advice on request about selection of materials as well as relevant information for the evaluation of radiation resistance and stability, including exposition doses for the samples and mechanical, physical or chemical tests according to the kind of product. In many occasions this laboratory has had to undertake these tests because local manufacturers of medical products not always have adequate facilities for quality control. Among mechanical tests the area under the stress-strain curve as a measure of the strain the material can undergo without fracture is perhaps the best for the evaluation of degradation. Among physical properties it is important to evaluate discoloration, usual in plastics irradiation, and concerning chemical tests the detection of migration of components from the polymer proves important in some cases. Although the irradiator cannot assume any responsibility concerning compatibility, local experience has shown the importance of having a

  14. Guidance and considerations for the implementation of INFCIRC/225/Rev.4, the physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    2000-05-01

    This publication is intended to provide guidance and considerations for a State's competent authority to better understand and prescribe appropriate requirements, consistent with INFCIRC/225/Rev.4 for the protection of nuclear material and nuclear facilities which are compatible with accepted international practice. This report, together with a more detailed report, Handbook on the Physical Protection of Nuclear Material and Facilities, which addresses to the licencee or designer of physical protection systems who has specific implementation and compliance responsibilities, should be used in conjunction to each other to provide better and comprehensive guidance on physical protection

  15. Guidance and considerations for the implementation of INFCIRC/225/Rev.4, the physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    2002-05-01

    This publication is intended to provide guidance and considerations for a State's competent authority to better understand and prescribe appropriate requirements, consistent with INFCIRC/225/Rev.4 for the protection of nuclear material and nuclear facilities which are compatible with accepted international practice. This report, together with a more detailed report, Handbook on the Physical Protection of Nuclear Material and Facilities, which addresses to the licensee or designer of physical protection systems who has specific implementation and compliance responsibilities, should be used in conjunction to each other to provide better and comprehensive guidance on physical protection

  16. Scalable production of sub-μm functional structures made of non-CMOS compatible materials on glass

    Science.gov (United States)

    Arens, Winfried

    2014-03-01

    Biophotonic and Life Science applications often require non-CMOS compatible materials to be patterned with sub μm resolution. Whilst the mass production of sub μm patterns is well established in the semiconductor industry, semiconductor fabs are limited to using CMOS compatible materials. IMT of Switzerland has implemented a fully automated manufacturing line that allows cost effective mass manufacturing of consumables for biophotonics in substrate materials like D263 glass or fused silica and layer/coating materials like Cr, SiO2, Cr2O5, Nb2O5, Ta2O5 and with some restrictions even gold with sub-μm patterns. The applied processes (lift-off and RIE) offer a high degree of freedom in the design of the consumable.

  17. Maintenance, outages and chemistry really can be compatible

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.G.; Deaconescu, R. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    'Full text:' In their address to the Canadian Nuclear Society, Bruce Power's Chemistry Design staff will describe how maintenance and outages can impact negatively on chemistry control and asset protection. Considerations of material impacts and material condition have significant influences on the approach to, and control of, chemistry. This applies equally to operation as it does during unit and/or system outages. Ideas will be presented as to how to facilitate making maintenance, outages and chemistry compatible. It will be shown how the lack of such an approach can lead to disastrous results. (author)

  18. The constitutive compatibility method for identification of material parameters based on full-field measurements

    KAUST Repository

    Moussawi, Ali

    2013-10-01

    We revisit here the concept of the constitutive relation error for the identification of elastic material parameters based on image correlation. An additional concept, so called constitutive compatibility of stress, is introduced defining a subspace of the classical space of statically admissible stresses. The key idea is to define stresses as compatible with the observed deformation field through the chosen class of constitutive equation. This makes possible the uncoupling of the identification of stress from the identification of the material parameters. As a result, the global cost of the identification is strongly reduced. This uncoupling also leads to parametrized solutions in cases where the solution is non-unique as demonstrated on 2D numerical examples. © 2013 Elsevier B.V.

  19. Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dole, LR

    2004-12-17

    The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

  20. The constitutive compatibility method for identification of material parameters based on full-field measurements

    KAUST Repository

    Moussawi, Ali; Lubineau, Gilles; Florentin, É ric; Blaysat, Benoî t

    2013-01-01

    We revisit here the concept of the constitutive relation error for the identification of elastic material parameters based on image correlation. An additional concept, so called constitutive compatibility of stress, is introduced defining a subspace

  1. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  2. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.

    1979-01-01

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF-BeF 2 , Pb-Li alloys, and solid ceramic compounds such as Li 2 O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies. (orig.)

  3. Study on mechanical properties of the laminated composite materials with compatible heat treatments

    International Nuclear Information System (INIS)

    Pashkov, P.O.; Pektemirov, B.G.; Yaroshenko, A.P.

    1980-01-01

    Considered is the behaviour during axial extension of trilament composite materials, the mechanical properties of which are formed mainly by heat treatment. Application in the composite of the materials with compatible heat treatment is most rational. It is shown that for (ATsMg+N18K8M5T+ATsMg), (KhN78+VKS+KhH78) composites, the constituents of which are relatively plastic and tightly bound with each other, the tensile strength and uniform strain are changed additively

  4. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  5. Considerations in selecting tubing materials for CANDU steam generators

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    1978-01-01

    Corrosion resistance is the major consideration in selecting tubing material for CANDU steam generators. Corrosion, and additional considerations, lead to the following steam generator tubing material recommendations: for CANDU-BPHWR's (boiling pressurized heavy water reactors) low-cobalt Incoloy-800; for CANDU-PHWR's (pressurized, non-boiling, heavy water reactors), low-cobalt Monel-400

  6. Improvement of blood compatibility of polyurethane elastomer by radiation graft copolymerization of 2-hydroxyethyl methacrylate in polymer matrix

    International Nuclear Information System (INIS)

    Li Ximing; Chen Wenming; Yuan Zhijian; Li Song; Lu Mei

    1988-01-01

    The γ-radiation induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto polyurethane-elastomers (PUE) tube by preswelling technique to prepare biomedical materials with blood compatibility is studied. The graft yield can be controlled by regulating the preswelling time and temperature, or by change the irradiation dose and dose rate. After antithrombogenic test in vitro it has been confirmed that the blood compatibility of original polyurethane tube has been considerably improved by grafting

  7. Materials compatibility issues related to thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.

    1986-01-01

    Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.

  8. Compatibility of steels for fast breeder reactor in high temperature sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1981-01-01

    In recent years, considerable progress has been made and experience has been obtained for material applicability in sodium-cooled fast breeder reactors. In this report, materials, principal dimensions and sodium conditions for the reactor system components, which include fuel pin cladding, intermediate heat exchangers, steam generators and pipings, are reviewed with emphasis on the thin-walled, high temperature and high strength components. The corrosion, mechanical and tribological behavior in sodium of important materials used for the reactor components, such as Types 304 and 316 stainless steel and 2 1/4Cr-1Mo steel, are discussed on the basis of characteristic testing results. Furthermore, material requirements concerned with compatibility in sodium are summarized from this review and discussion. (author)

  9. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    Science.gov (United States)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  10. Compatibility of candidate structural materials with static gallium

    International Nuclear Information System (INIS)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-01-01

    Scoping tests were conducted on compatibility of gallium with candidate structural materials, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chronimum. Type 316 stainless steel is least resistant and Nb-5 Mo-1 Zr alloy is most resistant to corrosion in static gallium. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/y for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than does nickel. The corrosion rates at 400 degrees C are ≥90 and 17 mm/y, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution accompanied by formation of metal/gallium intermetallic compounds

  11. COMPATIBILITY OF NAPLS AND OTHER ORGANIC COMPOUNDS WITH MATERIALS UED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION

    Science.gov (United States)

    Structural integrity of well construction, sampling, and remediation materials may be compromised at many hazardous sites by nonaqueous phase liquids (NAPLs) and their dissolved constituents. A literature review of compatibility theory and qualitative field experiences are provid...

  12. Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Songgang Qiu

    2018-03-01

    Full Text Available The suitability of stainless steel 316L and Inconel 625 for use in a latent heat thermal energy storage (TES system was investigated. A NaCl–NaF eutectic mixture with a melting temperature of 680 °C was used as the phase change material (PCM. Containers were filled with the PCM prior to heating to 750 °C, then examined after 100 and 2500 h of high-temperature exposure by analyzing the material surface and cross-section areas. A small amount of corrosion was present in both samples after 100 h. Neither sample suffered significant damage after 2500 h. The undesirable inter-granular grain boundary attack found in SS316L samples was in the order of 1–2 µm in depth. On Inconel 625 sample surface, an oxide complex formed, resisting material dissolution into the PCM. The surface morphology of tested samples remained largely unchanged after 2500 h, but the corrosion pattern changed from an initially localized corrosion penetration to a more uniform type. After 2500 h, the corrosion depth of Inconel 625 remained at roughly 1–2 µm, indicating that the corrosion rate decelerated. Both materials demonstrated good compatibility with the chosen NaF–NaCl eutectic salt, but the low corrosion activity in Inconel 625 samples shows a performance advantage for long term operation.

  13. Materials Lifecycle and Environmental Consideration at NASA

    Science.gov (United States)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  14. Blood compatibility--a perspective.

    Science.gov (United States)

    Ratner, B D

    2000-01-01

    This perspective on blood- materials interactions is intended to introduce the set of papers stemming from the symposium, "Devices and Diagnostics in Contact with Blood: Issues in Blood Compatibility at the Close of the 20th Century," organized on August 4-6, 1999 at the University of Washington by the University of Washington Engineered Biomaterials (UWEB) Engineering Research Center. This article outlines some of the history of blood contacting materials, overviews the work that has originated at the University of Washington over the past 28 years, speculates on the origins of the controversies on blood compatibility and considers the issues that should be addressed in future studies.

  15. Compatibility of gas turbine materials with steam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Desai, V.; Tamboli, D.; Patel, Y. [Univ. of Central Florida, Orlando, FL (United States)

    1995-10-01

    Gas turbines had been traditionally used for peak load plants and remote locations as they offer advantage of low installation costs and quick start up time. Their use as a base load generator had not been feasible owing to their poor efficiency. However, with the advent of gas turbines based combined cycle plants (CCPs), continued advances in efficiency are being made. Coupled with ultra low NO{sub x} emissions, coal compatibility and higher unit output, gas turbines are now competing with conventional power plants for base load power generation. Currently, the turbines are designed with TIT of 2300{degrees}F and metal temperatures are maintained around 1700{degrees}F by using air cooling. New higher efficiency ATS turbines will have TIT as high as 2700{degrees}F. To withstand this high temperature improved materials, coatings, and advances in cooling system and design are warranted. Development of advanced materials with better capabilities specifically for land base applications are time consuming and may not be available by ATS time frame or may prove costly for the first generation ATS gas turbines. Therefore improvement in the cooling system of hot components, which can take place in a relatively shorter time frame, is important. One way to improve cooling efficiency is to use better cooling agent. Steam as an alternate cooling agent offers attractive advantages because of its higher specific heat (almost twice that of air) and lower viscosity.

  16. Materials and processing approaches for foundry-compatible transient electronics

    Science.gov (United States)

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-07-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  17. HLW Flexible jumper materials compatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-13

    H-Tank Farm Engineering tasked SRNL/Materials Science & Technology (MS&T) to evaluate the compatibility of Goodyear Viper® chemical transfer hose with HLW solutions. The hose is proposed as a flexible Safety Class jumper for up to six months service. SRNL/MS&T performed various tests to evaluate the effects of radiation, high pH chemistry and elevated temperature on the hose, particularly the inner liner. Test results suggest an upper dose limit of 50 Mrad for the hose. Room temperature burst pressure values at 50 Mrad are estimated at 600- 800 psi, providing a safety factor of 4.0-5.3X over the anticipated operating pressure of 150 psi and a safety factor of 3.0-4.0X over the working pressure of the hose (200 psi), independent of temperature effects. Radiation effects are minimal at doses less than 10 Mrad. Doses greater than 50 Mrad may be allowed, depending on operating conditions and required safety factors, but cannot be recommended at this time. At 250 Mrad, burst pressure values are reduced to the hose working pressure. At 300 Mrad, burst pressures are below 150 psi. At a bounding continuous dose rate of 57,870 rad/hr, the 50 Mrad dose limit is reached within 1.2 months. Actual dose rates may be lower, particularly during non-transfer periods. Refined dose calculations are therefore recommended to justify longer service. This report details the tests performed and interpretation of the results. Recommendations for shelf-life/storage, component quality verification, and post-service examination are provided.

  18. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  19. The compatibility of various polymeric liner and pipe materials with simulated double-shell slurry feed at 90 degree C

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Hymas, C.R.

    1989-08-01

    The purpose of this study was to evaluate the compatibility of various polymeric liner and pipe materials with a low-level radioactive waste slurry called double-shell slurry feed (DSSF). The evaluation was necessary as part of the permitting process authorized by the Resource Conservation and Recovery Act (RCRA), PL-94-580. Materials that were examined included five flexible membrane liners (Hytrel reg sign polyester, polyurethane, 8130 XR5 reg sign, polypropylene, and high-density polyethylene) and high-density polyethylene (HDPE) pipe. The liner and pipe samples were immersed for 120 days in the synthetic DSSE at 90 degree C, the maximum expected temperature in the waste disposal scenario. Physical properties of the liner and pipe samples were measured before immersion and every 30 days after immersion, in accordance with EPA Method 9090. In addition, some of the materials were exposed to four different radiation doses after 30 days of immersion. Physical properties of these materials were measured immediately after exposure and after an additional 90 days of immersion to determine each material's response to radiation, and whether radiation exposure affected the chemical compatibility of the material. 20 refs., 41 figs., 13 tabs

  20. Doppler ultrasound compatible plastic material for use in rigid flow models.

    Science.gov (United States)

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  1. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1980-01-01

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  2. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    and conclusions The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8...Abstract The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8, SnD4. The...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si - Ge -Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final

  3. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  4. Compatibility of anhydride cured epoxies with hexanitroazobenzene (HNAB) and hexanitrostilbene (HNS)

    International Nuclear Information System (INIS)

    Massis, T.M.; Wischmann, K.B.

    1985-01-01

    The explosives HNAB (hexanitroazobenzene) and HNS (hexanitrostilbene) have compatibility problems with amine-cured epoxy systems. A program was instituted to find compatible polymeric substitutes for use with these explosives. These polymeric materials must have rigid structures after curing for both adhesive and encapsulant applications. A promising class of epoxy materials using anhydride curing agents with various catalysts to trigger the cure reaction were developed. These polymeric systems have very good compatibility with HNS. Of those tested with HNAB, the anhydride epoxy system that used uranyl nitrate as the catalyst was found to be marginally compatible while the others were incompatible. These results indicated further studies are needed. The CRT (chemical reactivity test) was used to evaluate the compatibility of these materials. 6 references, 2 figures, 5 tables

  5. A materials compatibility study in FM-1, a liquid component of a paste extrudable explosive

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Shepodd, T.J.; Mills, B.E. [Sandia National Labs., Livermore, CA (United States); Foster, P. [Mason and Hanger-Silas Mason Co., Inc., Amarillo, TX (United States). Pantex Plant

    1993-09-01

    The chemical compatibility of various metallic and organic containment materials with a constituent of a paste extrudable explosive (PEX) has been examined through a series of long-term exposures. Corrosion coupons and mechanical test specimens (polymers only) were exposed to FM-1, a principal liquid component of PEX, at 74{degree}C. RX-08-FK is the LLNL designator for this formulation. Compatibility was determined by measuring changes in weight, physical dimensions, and mechanical properties, by examining the coupons for discoloration, surface attack, and corrosion products, and by analyzing for dissolved metals in the FM-1. Of the metals and alloys examined, none of the 300 series stainless steels exhibited adequate corrosion resistance after 74 days of exposure. Copper showed evidence of severe uniform surface attack. Monel 400 also exhibited signs of chemical attack. Nickel and tantalum showed less evidence of attack, although neither, was immune to the liquid. Gold coupons developed a ``tarnish`` film. The gold along with an aluminum alloy, 6061 (in the T6 condition) performed the most satisfactorily. A wide range of polymers were tested for 61 days at 74{degree}C. The materials that exhibited the most favorable response in terms of weight change, dimensional stability, and mechanical properties were Kalrez, PTFE Teflon, and polyethylene.

  6. Synthesis of novel liquid crystal compounds and their blood compatibility as anticoagulative materials

    International Nuclear Information System (INIS)

    Tu Mei; Cha Zhenhang; Feng Bohua; Zhou Changren

    2006-01-01

    The objective of this study was to synthesize new types of cholesteric liquid crystal compounds and study the anticoagulative properties of their composite membranes. Three kinds of cholesteric liquid crystal compounds were synthesized and characterized by infrared spectroscopy, differential scanning calorimetry and optical polarizing microscope. The polysiloxane, as a substrate, was blended with three liquid crystal compounds and was then used as membranes. The anticoagulative property of different polysiloxane liquid crystal composite membranes was identified by the blood compatibility tests. Three cholesteryl liquid crystals synthesized in this work contained hydrophilic soft chains and presented iridescent texture owned by cholesteric liquid crystals in the range of their liquid crystal state temperature, but only cholesteryl acryloyl oxytetraethylene glycol carbonate was in the liquid crystal state at body temperature. When liquid crystals were blended with polysiloxane to form polysiloxane/liquid crystal composite membranes, the haemocompatibility of these membranes could be improved to some extent. The blood compatibility of composite membranes whose hydrophilic property was the best was more excellent than that of other composite membranes, fewer platelets adhered and spread, and showed little distortion on the surface of materials

  7. Geotechnical materials considerations for conceptual repository design in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Versluis, W.S.; Balderman, M.A.

    1984-01-01

    The Palo Duro Basin is only one of numerous potential repository locations for placement of a nuclear waste repository. Conceptual designs in the Palo Duro Basin involve considerations of the character and properties of the geologic materials found on several sites throughout the Basin. The first consideration presented includes current basin exploration results and interpretations of engineering properties for the basin geologic sequences. The next consideration presented includes identification of the characteristics of rock taken from the geologic sequence of interest through laboratory and field testing. Values for materials properties of representative samples are obtained for input into modeling of the material response to repository placement. Conceptual designs which respond to these geotechnical considerations are discussed. 4 references, 4 figures, 4 tables

  8. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    International Nuclear Information System (INIS)

    Crowe, Adam J.; Bartlett, Bart M.

    2016-01-01

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg 2+ ), relative to lithium-ion (Li + ) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg 2+ , improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recent advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.

  9. Materials compatibility studies for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; Manneschmidt, E.T.

    1998-01-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R and D programs. In addition, corrosion studies also include evaluation of Inconel 718 because it has been successfully used in previous spallation neutron systems as a window material. Two types of compatibility issues relative to 316 SS/mercury and Inconel 718/mercury are being examined: (1) liquid metal embrittlement (LME) and (2) temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275 C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 C. Inconel 718 also showed no change in room temperature properties when tested in mercury or mercury-gallium. However, there was evidence that the fracture was less ductile. Preliminary evaluation of mass transfer of either type 316 SS or Inconel 718 in mercury or mercury-gallium at 350 C (maximum temperature) did not reveal significant effects. Two 5,000 h thermal convection loop tests of type 316 SS are in progress, with specimens in both hot and cold test regions, at 300 and 240 C, respectively

  10. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  11. Compatibility of copper-electroplated cells with Metal Wrap Through module materials

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Geerligs, L.J.; Olson, C.L.; Goris, M.J.A.A. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    As part of the European FP7 RandD project 'Cu-PV', the compatibility of copper-electroplated metal wrapthrough (MWT) cells with conductive adhesives has been investigated. The objectives of this project include to reduce, by the use of copper plating, the amount of silver utilized in cell manufacturing, and to demonstrate the compatibility of high-power n-type back-contact module technology with copper-plated cells. The overall goal is to reduce the impact on the environment of cell and module manufacture. MWT module technology as developed by ECN uses conductive adhesive to make the interconnection between cells and a conductive backsheet foil. These adhesives have been proved to result in very reliable modules in the case of cells with fired silver metallization. To determine the compatibility of conductive adhesive with copper-plated cells, component tests were performed, followed by the manufacture of modules with copperplated cells and conductive adhesive interconnections. Climate chamber testing of these modules showed that the adhesive is compatible with the copper-plated cells. The next steps include further optimization of the plating process and additional testing at the module level.

  12. Fully CMOS-compatible titanium nitride nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  13. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies

    International Nuclear Information System (INIS)

    2007-01-01

    As part of the development of advanced nuclear systems, including accelerator-driven systems (ADS) proposed for high-level radioactive waste transmutation and generation IV reactors, heavy liquid metals such as lead (Pb) or lead-bismuth eutectic (LBE) are under evaluation as reactor core coolant and ADS neutron target material. Heavy liquid metals are also being envisaged as target materials for high-power neutron spallation sources. The objective of this handbook is to collate and publish properties and experimental results on Pb and LBE in a consistent format in order to provide designers with a single source of qualified properties and data and to guide subsequent development efforts. The handbook covers liquid Pb and LBE properties, materials compatibility and testing issues, key aspects of the thermal-hydraulics and system technologies, existing test facilities, open issues and perspectives. (author)

  14. Studies of waste-canister compatibility

    International Nuclear Information System (INIS)

    McCoy, H.E.

    1983-01-01

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300 0 C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300 0 C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800 0 C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts

  15. Desk-top publishing using IBM-compatible computers.

    Science.gov (United States)

    Grencis, P W

    1991-01-01

    This paper sets out to describe one Medical Illustration Departments' experience of the introduction of computers for desk-top publishing. In this particular case, after careful consideration of all the options open, an IBM-compatible system was installed rather than the often popular choice of an Apple Macintosh.

  16. Compatibility of ITER candidate structural materials with static gallium

    International Nuclear Information System (INIS)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400 degrees C are ≥88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized

  17. The Market Gate of Miletus: damages, material characteristics and the development of a compatible mortar for restoration

    Science.gov (United States)

    Siegesmund, Siegfried; Middendorf, Bernhard

    2008-12-01

    The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.

  18. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials

    International Nuclear Information System (INIS)

    Yan Qilong; Li Xiaojiang; Zhang Laying; Li Jizhen; Li Hongli; Liu Ziru

    2008-01-01

    The compatibility of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), 1,4-dinitropiperazine (DNP), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al, particle size = 13.6 μm) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and polyethylene glycol (PEG), polyoxytetramethylene-co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C 2 ), carbon black (C.B.), aluminum oxide (Al 2 O 3 ), cupric 2,4-dihydroxy-benzoate (β-Cu), cupric adipate (AD-Cu) and lead phthalate (φ-Pb) were used as inert materials. It was concluded that the binary systems of TNAD with NTO-Pb, RDX, PET and Al powder are compatible, and systems of TNAD with DINA and HMX are slightly sensitive, and with 2-NDPA, φ-Pb, β-Cu, AD-Cu and Al 2 O 3 are sensitive, and with PEG, N-100, C 2 and C.B. are incompatible. The impact and friction sensitivity data of the TNAD and TNAD in combination with the other energetic materials under present study was also obtained, and there was no consequential affiliation between sensitivity and compatibility

  19. The high pH chemical and radiation compatibility of various liner materials

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Farnsworth, R.K.

    1990-01-01

    This paper reports on a flexible membrane liner that has been proposed to line a concrete vault in which liquid low-level radioactive waste will be solidified. High-density polyethylene (HDPE) and polypropylene liners were tested at the Pacific Northwest Laboratory in an EPA method 9090 format to determine their chemical compatibility with the waste. Radiation effects were also investigated. The liners were immersed in a highly caustic (pH>14), primarily inorganic solution at 90 degrees C. The liners were subjected to radiation doses up to 38.9 Mrad, which was the expected dose the liner would receive over a 30-year life inside the vault. Recent changes have placed the liner outside the vault. The acceptance criteria for judging the compatibility of the liner with radiation would be different that those used for judging chemical compatibility. The radiation damage over the life of the liner can be simulated in a short-term test. Both HDPE and polypropylene liners were judged to be acceptable from a chemical and radiation standpoint when placed outside of the vault, while several other liners were not compatible. Radiation did not have a significant effect on chemical degradation rates

  20. The high pH chemical and radiation compatibility of various liner materials

    International Nuclear Information System (INIS)

    Whyatt, G.; Farnsworth, R.

    1990-01-01

    A flexible membrane liner has been proposed to line a concrete vault in which liquid low-level radioactive waste will be solidified. High-density polyethylene (HDPE) and polypropylene liners were tested at the Pacific Northwest Laboratory in an EPA method 9090 format to determine their chemical compatibility with the waste. Radiation effects were also investigated. The liners were immersed in a highly caustic (pH>14), primarily inorganic solution at 90 degrees C. The liners were subjected to radiation doses up to 38.9 Mrad, which was the expected dose the liner would receive over a 30-year life inside the vault. Recent changes have placed the liner outside the vault. The acceptance criteria for judging the compatibility of the liner with radiation should be different than those used for judging chemical compatibility. The radiation damage over the life of the liner can be simulated in a short-term test. Both HDPE and polypropylene liners were judged to be acceptable from a chemical and radiation standpoint when placed outside of the vault, while several other liners were not compatible. Radiation did not have a significant effect on chemical degradation rates

  1. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    International Nuclear Information System (INIS)

    Chang H. Oh

    2006-01-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency

  2. Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials

    International Nuclear Information System (INIS)

    Li, Ruguang; Zhu, Jiaoqun; Zhou, Weibing; Cheng, Xiaomin; Li, Yuanyuan

    2016-01-01

    Highlights: • Expanded Perlite/Sodium Nitrate composites hardly reported in thermal storage fields. • The thermal compatibility and adsorption of Expanded Perlite were investigated. • The thermo physic properties of composites were determined. • The thermal stability and long term enthalpy changes of composites were investigated. - Abstract: The present work focused on the preparation and characterization of a new thermal storage material applied in thermal energy management. X-ray diffraction (XRD) results showed that Expanded Perlite (EP) has a good thermal stability varying from 300 °C to 900 °C. Morphology of scanning electron microscopy (SEM) revealed that sodium nitrate is uniformly encapsulated and embedded in the three-dimensional network structure of EP. Fourier transform infrared (FT-IR) spectroscopy indicated that the EP is physically combined with the nitrate salt. Thermo-gravimetric analysis (TGA) and differential Scanning Calorimeter (DSC) indicated that the composites have good thermal stability. The adsorption capacity of loose EP was 213.21%. When the EP mass fraction varying from 10% to 60%, thermal conductivity decreased with the content of EP increased, and the highest thermal conductivity is 1.14 W (m K)"−"1 at 300 °C. SEM revealed the network structure of EP provided thermal conduction paths which enhanced the thermal conductivity of the composites. All results indicated that EP could be a good adsorption material to be applied in the thermal storage fields.

  3. Material and fabrication considerations for the CANDU-PHWR heat transport system

    International Nuclear Information System (INIS)

    Filipovic, A.; Price, E.G.; Barber, D.; Nickerson, J.

    1987-03-01

    CANDU PHWR nuclear systems have used carbon steel material for over 25 years. The accumulated operating experience of over 200 reactor years has proven this unique AECL approach to be both technically and economically attractive. This paper discusses design, material and fabrication considerations for out-reactor heat transport system major components. The contribution of this unique choice of materials and equipment to the outstanding CANDU performance is briefly covered

  4. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  5. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  6. Thermodynamic considerations for the use of vanadium alloys with ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Johnson, I.; Kopasz, J.P.

    1995-01-01

    Fusion energy is considered to be an attractive energy form because of its minimal environmental impact. In order to maintain this favorable status, every effort needs to be made to use low activation materials wherever possible. The tritium breeder blanket is a focal point of system design engineers who must design environmentally attractive blankets through the use of low activation materials. Of the several candidate lithium-containing ceramics being considered for use in the breeder blanket, Li 2 O, Li 2 TiO 3 , are attractive choices because of their low activation. Also, low activation materials like the vanadium alloys are being considered for use as structural materials in the blanket. The suitability of vanadium alloys for containment of lithium ceramics is the subject of this study. Thermodynamic evaluations are being used to estimate the compatibility and stability of candidate ceramic breeder materials (Li 2 O, Li 2 TiO 3 , and Li 2 ZrO 3 ) with vanadium and vanadium alloys. This thermodynamic evaluation will focus first on solid-solid interactions. As a tritium breeding blanket will use a purge gas for tritium recovery, gas-solid systems will also receive attention

  7. Testing of Candidate Polymeric Materials for Compatibility with Pure Alternate Pretreat as Part of the Universal Waste Management System (UWMS)

    Science.gov (United States)

    Wingard, C. D.

    2018-01-01

    The Universal Waste Management System (UWMS) is an improved Waste Collection System for astronauts living and working in low Earth orbit spacecraft. Polymeric materials used in water recovery on International Space Station are regularly exposed to phosphoric acid-treated 'pretreated' urine. Polymeric materials used in UWMS are not only exposed to pretreated urine, but also to concentrated phosphoric acid with oxidizer before dilution known as 'pure pretreat.' Samples of five different polymeric materials immersed in pure pretreat for 1 year were tested for liquid compatibility by measuring changes in storage modulus with a dynamic mechanical analyzer.

  8. Phase change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  9. Compatibility of AlN ceramics with molten lithium

    Energy Technology Data Exchange (ETDEWEB)

    Yoneoka, Toshiaki; Sakurai, Toshiharu; Sato, Toshihiko; Tanaka, Satoru [Tokyo Univ., Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    AlN ceramics were a candidate for electrically insulating materials and facing materials against molten breeder in a nuclear fusion reactor. In the nuclear fusion reactor, interactions of various structural materials with solid and liquid breeder materials as well as coolant materials are important. Therefore, corrosion tests of AlN ceramics with molten lithium were performed. AlN specimens of six kinds, different in sintering additives and manufacturing method, were used. AlN specimens were immersed into molten lithium at 823 K. Duration for the compatibility tests was about 2.8 Ms (32 days). Specimens with sintering additive of Y{sub 2}O{sub 3} by about 5 mass% formed the network structure of oxide in the crystals of AlN. It was considered that the corrosion proceeded by reduction of the oxide network and the penetration of molten lithium through the reduced pass of this network. For specimens without sintering additive, Al{sub 2}O{sub 3} containing by about 1.3% in raw material was converted to fine oxynitride particles on grain boundary or dissolved in AlN crystals. After immersion into lithium, these specimens were found to be sound in shape but reduced in electrical resistivity. These degradation of the two types specimens were considered to be caused by the reduction of oxygen components. On the other hand, a specimen sintered using CaO as sintering additive was finally became appreciably high purity. This specimen showed good compatibility for molten lithium at least up to 823 K. It was concluded that the reduction of oxygen concentration in AlN materials was essential in order to improve the compatibility for molten lithium. (author)

  10. Deformation compatibility control for engineering structures methods and applications

    CERN Document Server

    Zhu, Hanhua; Chen, Mengchong; Deng, Jianliang

    2017-01-01

    This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods’ deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the constructi...

  11. Mixed waste chemical compatibility with packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-01-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals

  12. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  13. Compatible Lie Bialgebras

    International Nuclear Information System (INIS)

    Wu Ming-Zhong; Bai Cheng-Ming

    2015-01-01

    A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra. They can also be regarded as a “compatible version” of Lie bialgebras, that is, a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the “compatible version” of the corresponding properties of Lie bialgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang–Baxter equation in compatible Lie algebras as a combination of two classical Yang–Baxter equations in Lie algebras. Furthermore, a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang–Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang–Baxter equation given by Golubchik and Sokolov. (paper)

  14. Thermodynamic considerations for the use of vanadium alloys with ceramic breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E.; Johnson, I.; Kopasz, J.P.

    1995-12-31

    Fusion energy is considered to be an attractive energy form because of its minimal environmental impact. In order to maintain this favorable status, every effort needs to be made to use low activation materials wherever possible. The tritium breeder blanket is a focal point of system design engineers who must design environmentally attractive blankets through the use of low activation materials. Of the several candidate lithium-containing ceramics being considered for use in the breeder blanket, Li{sub 2}O, Li{sub 2}TiO{sub 3}, are attractive choices because of their low activation. Also, low activation materials like the vanadium alloys are being considered for use as structural materials in the blanket. The suitability of vanadium alloys for containment of lithium ceramics is the subject of this study. Thermodynamic evaluations are being used to estimate the compatibility and stability of candidate ceramic breeder materials (Li{sub 2}O, Li{sub 2}TiO{sub 3}, and Li{sub 2}ZrO{sub 3}) with vanadium and vanadium alloys. This thermodynamic evaluation will focus first on solid-solid interactions. As a tritium breeding blanket will use a purge gas for tritium recovery, gas-solid systems will also receive attention.

  15. Compatibility of heat resistant alloys with boron carbide, 5

    International Nuclear Information System (INIS)

    Baba, Shinichi; Kurasawa, Toshimasa; Endow, Taichi; Someya, Hiroyuki; Tanaka, Isao.

    1986-08-01

    This paper includes an experimental result of out-of-pile compatibility and capsule design for irradiation test in Japan Materials Testing Reactor (JMTR). The compatibility between sheath material and neutron absorber materials for control rod devices (CRD) was examined for potential use in a very high temperature reactor (VHTR) which is under development at JAERI. The purpose of the compatibility tests are preliminary evaluation of safety prior to irradiation tests. Preliminary compatibility evaluation was concerned with three items as follows : 1) Lithium effects on the penetrating reaction of Incoloy 800H alloy in contact with a mixture of boronated graphite and lithium hydroxide powders, 2) Short term tensile properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite and fracture mode analysis, 3) Reaction behavior of both alloys under transient power conditions of a VHTR. It was clear that the reaction rate constant of the Incoloy 800H alloy was accelerated by doping lithium hydroxide into the boron carbide and graphite powder. The mechanical properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite were decreased. Ultimate tensile strength and tensile ductilities at temperatures over 850 deg C were reduced, but there was no change in the proof (yield) stress. Both alloys exhibited a brittle intergranular fracture mode during transient power conditions of a VHTR and also exhibited severe penetration. Irradiation capsules for compatibility test were designed to simulate three irradiation conditions of VHTR: 1) steady state for VHTR, 2) Transient power condition, 3) Service limited life of CRD. Capsule irradiation experiments have been carried out satisfactorily and thus confirm the validity of the capsule design procedure. (author)

  16. Guidance and considerations for the implementation of INFCIRC/225/Rev.4, the physical protection of nuclear material and nuclear facilities; Orientaciones y sugerencias para la aplicacion del documento INFCIRC/225/Rev.4, proteccion fisica de los materiales y las instalaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    This publication is intended to provide guidance and considerations for a State's competent authority to better understand and prescribe appropriate requirements, consistent with INFCIRC/225/Rev.4 for the protection of nuclear material and nuclear facilities which are compatible with accepted international practice. This report, together with a more detailed report, Handbook on the Physical Protection of Nuclear Material and Facilities, which addresses to the licensee or designer of physical protection systems who has specific implementation and compliance responsibilities, should be used in conjunction to each other to provide better and comprehensive guidance on physical protection.

  17. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger Ray

    2002-08-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing an overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  18. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.R.

    2002-05-15

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  19. Entombment Using Cementitious Materials: Design Considerations and International Experience

    International Nuclear Information System (INIS)

    Seitz, R.R.

    2002-01-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective

  20. Major cultural-compatibility complex: considerations on cross-cultural dissemination of patient safety programmes.

    Science.gov (United States)

    Jeong, Heon-Jae; Pham, Julius C; Kim, Minji; Engineer, Cyrus; Pronovost, Peter J

    2012-07-01

    As the importance of patient safety has been broadly acknowledged, various improvement programmes have been developed. Many of the programmes with proven efficacy have been disseminated internationally. However, some of those attempts may encounter unexpected cross-cultural obstacles and may fail to harvest the expected success. Each country has different cultural background that has shaped the behavior of the constituents for centuries. It is crucial to take into account these cultural differences in effectively disseminating these programmes. As an organ transplantation requires tissue-compatibility between the donor and the recipient, there needs to be compatibility between the country where the program was originally developed and the nation implementing the program. Though no detailed guidelines exist to predict success, small-scale pilot tests can help evaluate whether a safety programme will work in a new cultural environment. Furthermore, a pilot programme helps reveal the source of potential conflict, so we can modify the original programme accordingly to better suit the culture to which it is to be applied. In addition to programme protocols, information about the cultural context of the disseminated programme should be conveyed during dissemination. Original programme designers should work closely with partnering countries to ensure that modifications do not jeopardise the original intention of the programme. By following this approach, we might limit barriers originating from cultural differences and increase the likelihood of success in cross-cultural dissemination.

  1. The compatibility approach in the classical theory of thermoelectricity seen from the perspective of variational calculus

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Wolfgang [Institute of Physics, Martin Luther University, Halle-Wittenberg (Germany); Zabrocki, Knud; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany); Snyder, G.J. [California Institute of Technology, Pasadena, California 91125 (United States)

    2010-03-15

    The compatibility approach introduced by Snyder and Ursell opens a new pathway for the improvement of thermoelectric (TE) device performance. It has been shown that sufficient compatibility is - besides an increase of the averaged figure of merit Z - essential for efficient operation of a TE device, and that compatibility will facilitate rational materials selection, device design, and the engineering of functionally graded materials (FGMs). In this paper, the authors give an overview of the fundamental results and present a new approach from the perspective of variational calculus. A particular focus is on the role of ideal self-compatibility, i.e., adjusting compatibility locally at any position along a TE leg. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Incentive Compatibility

    OpenAIRE

    Ledyard, John O.

    1987-01-01

    Incentive compatibility is described and discussed. A summary of the current state of understanding is provided. Key words are: incentive compatibility, game theory, implementation, mechanism, Bayes, Nash, and revelation.

  3. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    International Nuclear Information System (INIS)

    Wang, Zhixun; Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-01-01

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band

  4. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhixun; Cheng, Yongzhi, E-mail: cyz0715@126.com; Nie, Yan; Wang, Xian; Gong, Rongzhou, E-mail: rzhgong@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  5. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  6. A critical review on the tribological compatibility of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2014-01-01

    Highlights: • Biodiesel is creating tribology related new challenges world over. • Tribo-corrosion in biodiesel is yet to be studied in details. • Possible influencing factors for wear, corrosion and tribo-corrosion have been enlisted. • Auto-oxidation, moisture absorption, compositional instability, etc. are the major concerns. - Abstract: Although the compatibility of biodiesel with the key components of automobile engine such as cylinder, pistons, piston rings, connecting rods, bearings, etc. have posed a big challenge to tribologists, they have yet to come up with a solution to reduce tribological degradation of different metals as well as the used fuel. Some efforts have already been given to understand the corrosion and wear of automotive materials in diesel and biodiesel. It was found that though biodiesel is more corrosive than diesel, it provides better lubricity in terms of wear and friction. This finding has led us to the conclusion that the combined effect of wear and corrosion on materials and the consequent effect on biodiesel degradation could be crucial and yet to be investigated. The present study also highlighted some other relevant factors which showed notable implications on wear and corrosion in biodiesel. Those factors including auto-oxidation, moisture absorption, change in fuel properties (e.g. TAN number, viscosity, density, etc.) are found to have important influence for understanding the science behind tribology in biodiesel

  7. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions.

    Science.gov (United States)

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad

    2016-01-01

    This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In

  8. Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms

    Directory of Open Access Journals (Sweden)

    Evert Fuenmayor

    2018-04-01

    Full Text Available Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more of the material control both fluid ingress and disintegration of the dosage form. The bulk properties (powder flow, concentration, and more of the material should also be considered since these properties will influence the ability of the material to be successfully manufactured. Furthermore, there is a limited number of approved materials for the production of solid dosage forms. The present study details the complications that can arise when adopting pharmaceutical grade polymers for fused-filament fabrication in the production of oral tablets. The paper also presents ways to overcome each issue. Fused-filament fabrication is a hot-melt extrusion-based 3D printing process. The paper describes the problems encountered in fused-filament fabrication with Kollidon® VA64, which is a material that has previously been utilized in direct compression and hot-melt extrusion processes. Formulation and melt-blending strategies were employed to increase the printability of the material. The paper defines for the first time the essential parameter profile required for successful 3D printing and lists several pre-screening tools that should be employed to guide future material formulation for the fused-filament fabrication of solid dosage forms.

  9. Compatibility of Pt-3008 with selected components of the selenide isotope generator system

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1979-04-01

    The first in a new generation of radioisotopic thermoelectric generators being built by Teledyne Energy Systems and designated the Selenide Isotope Generator has thermoelectric materials that can be degraded by reaction with O 2 , H 2 O, CO, and other gases. Consequently, for at least the first ground demonstration system a protective xenon atmosphere will be maintained over the thermoelectrics. The high-temperature portion of the atmosphere-retaining structure will be fabricated from the alloy Pt-3008 (Pt--30 wt % Rh--8 wt % W), which was developed at Oak Ridge National Laboratory. For this application Pt-3008 must be compatible with the various insulations and thermoelectric materials. A study of the compatibility of Pt-3008 with these materials and showed that Pt-3008 was embrittled after exposure to some of the insulations that were not adequately outgassed and by one of the thermoelectric materials (Cu 2 Se) in some of the isothermal tests. It is believed that Pt-3008 will be compatible with the Selenide Isotope Generator materials when they are well outgassed and under the temperature gradient conditions of the operating system

  10. Research on Multiple-Split Load Sharing Characteristics of 2-Stage External Meshing Star Gear System in Consideration of Displacement Compatibility

    Directory of Open Access Journals (Sweden)

    Shuai Mo

    2017-01-01

    Full Text Available This paper studies the multiple-split load sharing mechanism of gears in two-stage external meshing planetary transmission system of aeroengine. According to the eccentric error, gear tooth thickness error, pitch error, installation error, and bearing manufacturing error, we performed the meshing error analysis of equivalent angles, respectively, and we also considered the floating meshing error caused by the variation of the meshing backlash, which is from the floating of all gears at the same time. Finally, we obtained the comprehensive angle meshing error of the two-stage meshing line, established a refined mathematical computational model of 2-stage external 3-split loading sharing coefficient in consideration of displacement compatibility, got the regular curves of the load sharing coefficient and load sharing characteristic curve of full floating multiple-split and multiple-stage system, and took the variation law of the floating track and the floating quantity of the center wheel. These provide a scientific theory to determine the load sharing coefficient, reasonable load distribution, and control tolerances in aviation design and manufacturing.

  11. Improvements of material hemo-compatibility in order to obtain: - antithrombotic surfaces by radio-grafting of sulphonamide groups on fluoro-polymers; - or endothelialisable surfaces by chemical grafting of peptides on a model surface: silica

    International Nuclear Information System (INIS)

    Durrieu-Porte, Marie-Christine

    1998-01-01

    This research thesis addresses the elaboration of hemo-compatible polymer materials for the preparation of new vascular substitutes, notably for an application in the treatment of cardio-vascular diseases. After having recalled and described how a thrombosis can appear at the interface between blood and the substitute under the influence of several mechanism, the author more particularly describes two possible strategies for the struggle against thrombosis by treating its origin rather than its effect. Several substrate materials are considered: PVDF and P(VDF-HFP). They are used as a basis for the formation of a substitute to blood vessels due to their high mechanical strength, their good resistance to radiations, and their good chemical inertia. The author reports the transformation of these materials into a heparin-like material by functionalization of radio-grafted polystyrene. She analyses the physical-chemical and morphological characteristics of both materials before and after different treatments, and then reports studies of hemo-compatibility and cyto-compatibility. In a next part, she reports the study of another treatment aimed at increasing the anti-thrombogenic characteristic of the material. This study has been performed on a model material, silica. The same kind of studies as in the first part are performed, but with applying grafting of peptides [fr

  12. Eco-Anthropic Compatibility - a Multidisciplinary Model in Urban Ecology

    Directory of Open Access Journals (Sweden)

    MARIANO L. BIANCA

    2010-01-01

    Full Text Available In this paper I propose a multidisciplinary model of urban development which goes beyond the notion of ecological sustainability, by building on the concept of eco-anthropic compatibility. First of all I will sketch the historical development of human aggregations and I will underline the difference between ancient and modern aggregations. On the basis of this analysis, I will take into consideration the notion of sustainability and its possible application to present conurbations. I will underline several limits of the notion of sustainable development and I will propose a multidisciplinary model grounded on a broader and new notion: the eco-anthropic compatibility. Using this notion, which includes the idea of sustainability, it is possible to handle, within the model, the human factors and human living conditions inside an urban aggregation. Finally, I will state that the actual urban model is decaying and therefore, sooner or later, we will have to face the end of urban civilization; for this reason we can start imagining new future ways for human aggregations on the planet based on the notion of eco-anthropic compatibility.

  13. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  14. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  15. Materials Development in the Colombian Context: Some Considerations About Its Benefits and Challenges

    Directory of Open Access Journals (Sweden)

    Bertha Ramos Holguín

    2014-10-01

    Full Text Available Materials development is a field of study which has recently acquired significant importance in the Colombian context due to the fact that teachers, as materials developers, consider materials development as an area of knowledge that helps them to improve their teaching practices. However, the rationale, the gains as well as the challenges that drive materials designers have not been explored enough in Colombia. This article aims to provide some general considerations about the benefits teachers, as material developers, will obtain and some of the shortcomings which may emerge along this process. Finally, the authors discuss some implications for teachers, students, and teacher education programs.

  16. Gas cooled fast reactor materials: compatibility and reaction kinetics of fuel/matrices couples

    International Nuclear Information System (INIS)

    Lechelle, J.; Aufore, L.; Basini, V.; Belin, R.; Vaudez, S.

    2004-01-01

    Fourth Generation Gas cooled Fast Reactor concept implies a fast neutron spectrum and aims to lead to an iso-generation of minor actinides. Criteria have been defined for these fuels such as: high core filling factor, efficient fuel cooling, low operation temperature, i.e. 400-850 deg C, good fission product retention, burn-ups in the range of 5-8 atom%, Pu content in the range of 15-25%. Materials matching this demand are considered: mixed uranium - plutonium nitrides and carbides as fuels, whereas TiN, TiC, ZrN, ZrC, SiC are investigated as inert matrices. Thermo-chemical compatibility studies have been carried out, mostly for (U,Pu)N/SiC and (U,Pu)N/TiN couples. They have been associated to matching diffusional studies. For the first studies, accidental reactor conditions have been chosen (1600 deg C) so as to select a couple. Results are presented in terms of nature and quantity of resulting phases identified by XRD and SEM for thermodynamical equilibrium experiments. (authors)

  17. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-02-15

    Biodiesel, derived from the transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. In spite of having some application problems, recently it is being considered as one of the most promising alternative fuels in internal combustion engine. From scientific literatures, this paper has collected and analyzed the data on both advantages and disadvantages of biodiesel over conventional diesel. Since the aim of this study is to evaluate the biodiesel feasibility in automobiles, the first section is dedicated to materials compatibility in biodiesel as compared to that in diesel. The highest consensus is related to enhanced corrosion of automotive parts due to its compositional differences. In the subsequent sections, data on performance, emission and engine durability have been analyzed and compared. In this case, the highest consensus is found in reducing emissions as well as in increasing moving parts sticking, injector coking and filter plugging. This paper has also summarized the factors of biodiesel in contributing these technical performances. (author)

  18. Next Generation Solvent - Materials Compatibility With Polymer Components Within Modular Caustic-Side Solvent Extraction Unit (Final Report)

    International Nuclear Information System (INIS)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX(reg s ign)79 and MaxCalix was varied systematically) showed that LIX(reg s ign)79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX(reg s ign)79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX(reg s ign)79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX(reg s ign)79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  19. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  20. Conceptual considerations of evaluate internal erosion phenomenon via no-erosion filter test and continuing erosion filter test

    Directory of Open Access Journals (Sweden)

    Ramos-Rivera Johnatan

    2016-01-01

    Full Text Available Some widely-graded soils may exhibit, under the influence of steady seepage flow, a behaviour in which grains of the finer fraction migrate through the interstices of the matrix formed by the coarser fraction. The migrating fines may accumulate at a downstream location within the soil. Alternatively, and where there is no capacity for retention at the downstream or exit boundary, the behaviour may lead to a washing out and consequent loss of the finer fraction. The phenomenon of erosion is termed internal instability, and the soils are considered internally unstable. Taking into consideration (i the specimen reconstitution by method of compaction, (ii the application of a vertical stress to the specimen, and (iii the use of multi-stage seepage flow with head-control, to measure the origin of a conduit through the coarser fraction, some test devices were conducted by different authors to evaluate this phenomenon, the purpose of this paper is to present some considerations and key aspects about internal erosion in dams and filter compatibility with core material (specimen reconstitution, test procedure, consolidation, seepage flow, test program and its relevance to the reality. The main reason to present this investigation is due to the absence of any specified regulatory or standard test method. Given the importance of filter compatibility of the zoned earth core dam and filter materials, as well the grading stability of each zone in the presence of seepage flow, additional consideration will be given to performing Continuing Erosion Filter (CEF tests on the core-filter interface, using the laboratory permeameter device.

  1. Globalisation and international compatibility - a challenge to ...

    African Journals Online (AJOL)

    The contexts of institutions for higher education are in flux with consequent learning challenges. One of these challenges is that of globalisation and the need for international compatibility. Another challenge is that Mode 2 learning programmes, material and methods need to be relevant to the specific context in which they ...

  2. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Science.gov (United States)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  3. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    Science.gov (United States)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  4. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    Science.gov (United States)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  5. Compatibility of packaging components with simulant mixed waste

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1996-01-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the US have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (US DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). Based on these national requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program provides a basis to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, the authors present the results of the second phase of this testing program. The first phase screened five liner materials and six seal materials towards four simulant mixed wastes. This phase involved the comprehensive testing of five candidate liner materials to an aqueous Hanford Tank simulant mixed waste. The comprehensive testing protocol involved exposing the respective materials a matrix of four gamma radiation doses (∼ 1, 3, 6, and 40 kGy), three temperatures (18, 50, and 60 C), and four exposure times (7, 14, 28, and 180 days). Following their exposure to these combinations of conditions, the materials were evaluated by measuring five material properties. These properties were specific gravity, dimensional changes, hardness, stress cracking, and mechanical properties

  6. New concepts and materials for the manufacturing of MR-compatible guide wires.

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Brack, Alexander; Wasiak, Christian; Schütte, Adrian; Krämer, Nils; Bruhn, Robin

    2014-04-01

    This paper shows the development of a new magnetic resonance imaging (MRI)-compatible guide wire made from fiber-reinforced plastics. The basic material of the developed guide wire is manufactured using a specially developed micro-pullwinding technology, which allows the adjustment of tensile, bending, and torsional stiffness independent from each other. Additionally, the micro-pullwinding technology provides the possibility to vary the stiffness along the length of the guide wire in a continuous process. With the possibilities of this technology, the mechanical properties of the guide wire were precisely adjusted for the intended usage in MRI-guided interventions. The performance of the guide wire regarding the mechanical properties was investigated. It could be shown, that the mechanical properties could be changed independently from each other by varying the process parameters. Especially, the torsional stiffness could be significantly improved with only a minor influence on bending and tensile properties. The precise influence of the variation of the winding angle on the mechanical and geometrical properties has to be further investigated. The usability of the guide wire as well as its visibility in MRI was investigated by radiologists. With the micro-pullwinding technology, a continuous manufacturing technique for highly stressable, MRI-safe profiles is available and can be the trigger for a new class of medical devices.

  7. An MR-compatible neonatal incubator.

    Science.gov (United States)

    Paley, M N J; Hart, A R; Lait, M; Griffiths, P D

    2012-07-01

    To develop a neonatal MR-compatible incubator for transporting babies between a neonatal intensive care unit and an MRI unit that is within the same hospital but geographically separate. The system was strapped to a standard MR-compatible patient trolley, which provides space for resuscitation outside the incubator. A constant-temperature exothermic heat pad was used to maintain temperature together with a logging fluoro-optic temperature monitor and alarm system. The system has been designed to accommodate standard knee-sized coils from the major MR manufacturers. The original incubator was constructed from carbon fibre, but this required modification to prevent radiofrequency shading artefacts due to the conducting properties of the carbon fibre. A high-tensile polyester material was used, which combined light weight with high impact strength. The system could be moved onto the patient bed with the coils and infant in place by one technologist. Studies in eight neonatal patients produced high quality 1.5 T MR images with low motion artefacts. The incubator should also be compatible with imaging in 3 T MR systems, although further work is required to establish this. Images were acquired using both rapid and high-resolution sequences, including three-dimensional volumes, proton spectra and diffusion weighting. The incubator provides a safe, quiet environment for neonates during transport and imaging, at low cost.

  8. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  9. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  10. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  11. δ18O and chemical composition of Libyan Desert Glass, country rocks, and sands: New considerations on target material

    Science.gov (United States)

    Longinelli, Antonio; Sighinolfi, Giampaolo; de Michele, Vincenzo; Selmo, Enricomaria

    2011-02-01

    Oxygen isotope and chemical measurements were carried out on 25 samples of Libyan Desert Glass (LDG), 21 samples of sandstone, and 3 of sand from the same area. The δ18O of LDG samples range from 9.0‰ to 11.9‰ (Vienna Standard Mean Ocean Water [VSMOW]); some correlations between isotope data and typological features of the LDG samples are pointed out. The initial δ18O of a bulk parent material may be slightly increased by fusion due to the loss of isotopically light pore water with no isotope exchange with oxygen containing minerals. Accordingly, the δ18O of the bulk parent material of LDG may have been about 9.0 ± 1‰ (VSMOW). The measured bulk sandstone and sand samples have δ18O values ranging from 12.6‰ to 19.5‰ and are consequently ruled out as parent materials, matching the results of previous studies. However, separated quartz fractions have δ18O values compatible with the LDG values suggesting that the modern surface sand inherited quartz from the target material. This hypothesis fits previous findings of lechatelierite and baddeleyite in these materials. As the age of the parent material reported in previous studies is Pan-African, we measured the δ18O values of bulk rock and quartz from intrusives of Pan-African age and the results obtained were compatible with the LDG values. The main element abundances (Fe, Mg, Ca, K, Na) in our LDG samples conform to previous estimates; Fe, Mg, and K tend to be higher in heterogeneous samples with dark layers. The hypothesis of a low-altitude airburst involving silica-rich surface materials deriving from weathered intrusives of Pan-African age, partially melted and blown over a huge surface by supersonic winds matches the results obtained.

  12. Vacuum compatibility of 3D-printed materials

    OpenAIRE

    Povilus, AP; Wurden, CJ; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2014-01-01

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials. © 2014 American Vacuum Society.

  13. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  14. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  15. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products.

    Science.gov (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael

    2017-11-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  16. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  17. Guidance and considerations for implementation of INFCIRC/225/Rev.3, the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1997-09-01

    The Physical Protection of Nuclear Material, INFCIRC/225/Rev.3, provides recommendations for the physical protection of nuclear material against theft in use, storage and transport, whether national or international and whether peaceful or military, and contains provisions relating to the sabotage of nuclear material or facilities. The recommendations contained in INFCIRC/225/Rev.3 detail the elements that should be included in a State's system of physical protection. It also recognizes the adverse health and safety consequences arising from the theft of nuclear material and the sabotage of nuclear material or facilities. Most industrial and developing countries use these recommendations to some extent in the establishment and operation of their physical protection systems. Although INFCIRC/225/Rev.3 provides recommendations for protecting materials and facilities from theft or sabotage, it does not provide in-depth details for these recommendations. In June 1996, the IAEA convened a consultants meeting to consider this matter. This report is the result of continuing discussions and drafts over a period of nine months. The intent of this guidance is to provide a broader basis for relevant State organizations to prescribe appropriate requirements for the use of nuclear materials which are compatible with accepted international practice

  18. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  19. Interfacial Compatibility in Microelectronics Moving Away from the Trial and Error Approach

    CERN Document Server

    Laurila, Tomi; Paulasto-Kröckel, Mervi; Turunen, Markus; Mattila, Toni T; Kivilahti, Jorma

    2012-01-01

    Interfaces between dissimilar materials are met everywhere in microelectronics and microsystems. In order to ensure faultless operation of these highly sophisticated structures, it is mandatory to have fundamental understanding of materials and their interactions in the system. In this difficult task, the “traditional” method of trial and error is not feasible anymore; it takes too much time and repeated efforts. In Interfacial Compatibility in Microelectronics, an alternative approach is introduced. In this revised method four fundamental disciplines are combined: i) thermodynamics of materials ii) reaction kinetics iii) theory of microstructures and iv) stress and strain analysis. The advantages of the method are illustrated in Interfacial Compatibility in Microelectronics which includes: •solutions to several common reliability issues in microsystem technology, •methods to understand and predict failure mechanisms at interfaces between dissimilar materials and •an approach to DFR based on deep un...

  20. SU-E-T-523: Investigation of Various MR-Compatible Shielding Materials for Direction Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Scanderbeg, D [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: To evaluate various shielding materials such as Gold (Au), Osmium (Os), Tantalum (Ta), and Tungsten (W) based alloys for use with a novel intensity modulation capable direction modulated brachytherapy (DMBT) tandem applicator for image guided cervical cancer HDR brachytherapy. Methods: The novel MRI-compatible DMBT tandem, made from nonmagnetic tungsten-alloy rod with diameter of 5.4 mm, has 6 symmetric peripheral holes of 1.3 mm diameter with 2.05 mm distance from the center for a high degree intensity modulation capacity. The 0.3 mm thickness of bio-compatible plastic tubing wraps the tandem. MCNPX was used for Monte Carlo simulations of the shields and the mHDR Ir-192 V2 source. MC-generated 3D dose matrices of different shielding materials of Au, Os, Ta, and W with 1 mm3 resolution were imported into an in-house-coded inverse optimization planning system to evaluate 19 clinical patient plans. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: In general, the plan qualities for various shielding materials were similar. The OAR D2cc for bladder was very similar for Au, Os, and Ta with 11.64±2.30Gy. For W, it was very close 11.65±2.30Gy. The sigmoid D2cc was 9.82±2.46Gy for Au and Os while it was 9.84±2.48Gy for Ta and W. The rectum D2cc was 7.44±3.06Gy for Au, 7.43±3.07Gy for Os, 7.48±3.05Gy for Ta, and 7.47±3.05Gy for W. The HRCTV D98 and V100 were very close with 16.37±1.87 Gy and 97.37±1.93 Gy, on average, respectively. Conclusion: Various MRI-compatible shielding alloys were investigated for the DMBT tandem applicator. The clinical plan qualities were not significantly different among these various alloys, however. Therefore, the candidate metals (or in combination) can be used to select best alloys for MRI image guided cervical cancer brachytherapy using the novel DMBT applicator that is capable of unprecedented level of intensity modulation.

  1. SU-E-T-523: Investigation of Various MR-Compatible Shielding Materials for Direction Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    International Nuclear Information System (INIS)

    Safigholi, H; Soliman, A; Song, W; Han, D; Meigooni, A Soleimani; Scanderbeg, D

    2015-01-01

    Purpose: To evaluate various shielding materials such as Gold (Au), Osmium (Os), Tantalum (Ta), and Tungsten (W) based alloys for use with a novel intensity modulation capable direction modulated brachytherapy (DMBT) tandem applicator for image guided cervical cancer HDR brachytherapy. Methods: The novel MRI-compatible DMBT tandem, made from nonmagnetic tungsten-alloy rod with diameter of 5.4 mm, has 6 symmetric peripheral holes of 1.3 mm diameter with 2.05 mm distance from the center for a high degree intensity modulation capacity. The 0.3 mm thickness of bio-compatible plastic tubing wraps the tandem. MCNPX was used for Monte Carlo simulations of the shields and the mHDR Ir-192 V2 source. MC-generated 3D dose matrices of different shielding materials of Au, Os, Ta, and W with 1 mm3 resolution were imported into an in-house-coded inverse optimization planning system to evaluate 19 clinical patient plans. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: In general, the plan qualities for various shielding materials were similar. The OAR D2cc for bladder was very similar for Au, Os, and Ta with 11.64±2.30Gy. For W, it was very close 11.65±2.30Gy. The sigmoid D2cc was 9.82±2.46Gy for Au and Os while it was 9.84±2.48Gy for Ta and W. The rectum D2cc was 7.44±3.06Gy for Au, 7.43±3.07Gy for Os, 7.48±3.05Gy for Ta, and 7.47±3.05Gy for W. The HRCTV D98 and V100 were very close with 16.37±1.87 Gy and 97.37±1.93 Gy, on average, respectively. Conclusion: Various MRI-compatible shielding alloys were investigated for the DMBT tandem applicator. The clinical plan qualities were not significantly different among these various alloys, however. Therefore, the candidate metals (or in combination) can be used to select best alloys for MRI image guided cervical cancer brachytherapy using the novel DMBT applicator that is capable of unprecedented level of intensity modulation

  2. Using statistical compatibility to derive advanced probabilistic fatigue models

    Czech Academy of Sciences Publication Activity Database

    Fernández-Canteli, A.; Castillo, E.; López-Aenlle, M.; Seitl, Stanislav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1131-1140 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue models * Statistical compatibility * Functional equations Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Compatibility testing of vitrified waste forms

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1978-01-01

    The compatibility of vitrified radioactive waste with candidate canister materials will be evaluated with both cast and in-can melted vitrified waste. Both real and simulated sludges will be used. In addition, the compatibility of these materials with salt from a possible final storage location will be determined. Cast vitrified waste will be tested with ASTM A 333 and ASTM A 516 low-carbon steels and Type 304L stainless steel at 100, 600 and 800 0 C. Cast vitrified waste that has been devitrified by heat treatment will be tested at 100 0 C. Two types of test specimens will be used with either simulated or real sludges: (1) unsealed capsules made of pieces of mill-finished pipe into which vitrified waste is cast, and (2) sealed capsules containing a small container of vitrified waste identical to the ones in the unsealed capsule. In-can melted vitrified waste will be tested with synthetic sludge only and with ASTM A 333 and ASTM A 516 low-carbon steels, Type 304L stainless steel and Inconel 600. Two types of tests will be carried out: (1) melting vitrified waste in miniature metal canisters and (2) exposure of small (carefully measured) metal coupons to molten glass. The air oxidation rates of candidate canister materials will be determined, and specimens will also be exposed to salt from Drill Hole AEC-8 in Carlsbad, New Mexico. Sealed capsules containing an ASTM A 516 low-carbon steel or Type 304L stainless steel specimen partially embedded in a small block of salt will be heated

  4. Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation

    International Nuclear Information System (INIS)

    Hassinen, Tomi; Ruotsalainen, Teemu; Laakso, Petri; Penttilä, Raimo; Sandberg, Henrik G.O.

    2014-01-01

    We present roll-to-roll printing compatible techniques for manufacturing organic thin film transistors using two separately processed foils that are laminated together. The introduction of heat-assisted lamination opens up possibilities for material and processing combinations. The lamination of two separately processed substrates together will allow usage of pre-patterned electrodes on both substrates and materials with non-compatible solvents. Also, the surface microstructure is formed differently when laminating dry films together compared to film formation from liquid phase. Demonstrator transistors, inverters and ring oscillators were produced using lamination techniques. Finally, a roll-to-roll compatible lamination concept is proposed where also the source and drain electrodes are patterned by laser ablation. The demonstrator transistors have shown very good lifetime in air, which is contributed partly to the good material combination and partly to the enhanced interface formation in heat-assisted lamination process. - Highlights: • A roll-to-roll compatible lamination technique for printed electronics is proposed. • Laser ablation allows highly defined metal top and bottom electrodes. • Method opens up processing possibilities for incompatible materials and solvents. • Shearing forces may enhance molecular orientation and packing. • An air stable polymer transistor is demonstrated with a lifetime of years

  5. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    Science.gov (United States)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  7. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from the coextruded product was modeled from experimental and operational data. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes the manufacturing technologies evaluated and presents the model for tritium retention in aluminum clad, aluminum-lithium alloy tritium production targets

  8. 组织工程材料表面物理化学性质对细胞相容性的影响%Effects of physical and chemical properties of tissue engineered material surface on cell compatibility

    Institute of Scientific and Technical Information of China (English)

    陈宝林; 王东安; 封麟先

    2007-01-01

    目的:从材料表面能、材料表面的亲/疏水性、材料表面的电荷状况、材料表面的化学结构和材料表面负载活性因子5个方面论述了材料表面物理化学性质对细胞相容性的影响.指出材料表面的物理化学性质对材料的细胞相容性有着较大影响,暨从这个方面阐明了组织工程材料的细胞相容性问题.资料来源:应用计算机检索PUBMED 1997-12/2006-12期间的相关文章,检索词为"bio-compatibility,bio-compatibility materials,tissue engineering,tissue engineering materials,cell-compatibility",并限定文章语言种类为English.同时计算机检索万方数据库1997-12/2006-12期间的相关文章,检索词为"生物相容性,生物相容性材料,组织工程,组织工程材料,细胞相容性",并限定文章语言种类为中文.资料选择:对资料进行初审,纳入标准:与生物相容性组织工程材料相关的文章.排除标准:重复研究或Meta分析类文章.资料提炼:共收集到71篇相关文献,33篇文献符合纳入标准,排除的38篇文献为内容陈旧或重复.符合纳入标准的33篇文献中,22篇涉及生物相容性,11篇涉及细胞相容性材料.资料综合:①关于组织工程材料与生物体的相互作用:综述了高分子组织工程材料在与生物体组织接触时发生各种各样的相互作用.指出了材料与生物体的相互作用情况决定了材料组织相容性的程度;材料对组织相容性的影响包含着微观分子水平和宏观尺度水平,而且,宏观大尺度上的效应比分子尺度上发生的化学效应更为重要.②关于材料表面物理化学性质对材料细胞相容性的影响:综述了高分子材料表面的化学性质和结构、表面组成、表面能、表面亲/疏水性、表面的电荷状况、表面负

  9. European structural materials development for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, B. van der E-mail: vanderschaaf@nrg-nl.com; Ehrlich, K.; Fenici, P.; Tavassoli, A.A.; Victoria, M

    2000-09-01

    Leading long term considerations for choices in the European Long Term Technology programme are the high temperature mechanical- and compatibility properties of structural materials under neutron irradiation. The degrees of fabrication process freedom are closely investigated to allow the construction of complex shapes. Another important consideration is the activation behaviour of the structural material. The ideal solution is the recycling of the structural materials after a relatively short 'cooling' period. The structural materials development in Europe has three streams. The first serves the design and construction of ITER and is closely connected to the choice made: water cooled austenitic stainless steel. The second development stream is to support the design and construction of DEMO relevant blanket modules to be tested in ITER. The helium cooled pebble bed and the water cooled liquid lithium concept rely both on RAFM steel. The goal of the third stream is to investigate the potential of advanced materials for fusion power reactors beyond DEMO. The major contending materials: SiCSiC composites, vanadium, titanium and chromium alloys hold the promise of high operating temperatures, but RAFM has also a high temperature potential applying oxide dispersion strengthening. The development of materials for fusion power application requires a high flux 14 MeV neutron source to simulate the fusion power environment.

  10. A review of thermo-mechanical considerations of high temperature materials for synchrotron applications

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1993-01-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source (APS) generate x-ray beams with very high heat load and heat flux levels. Certain front end and beamline components will be required to sustain total heat loads of 3.8 to 15 kW and heat flux levels exceeding 400 W/MM 2 even during the first phase of this project. Grazing geometry and enhanced heat transfer techniques used in the design of such components reduce the heat flux levels below the 30 W/MM 2 level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures are sustainable, the structural stresses and the fatigue issues remain viable concerns. Cyclic thermal loads have a propensity to cause spallation and thermal striping concerns. As such, the steady-state part of the problem is much easier to understand and handle than the time- dependent part. Ease of bonding as well as ultrahigh vacuum and radiation compatibility are additional constraints on material selection for these components. The two copper materials are the traditional OFHC and the newer sintered copper, Glidcop (a trademark product of the SCM Corporation of North Carolina), which are very commonly used in synchrotron components. New materials are also appearing in the form of heat sinks or heat spreaders that are bonded to the base copper in some fashion. These are either partially transparent to x-rays and have engineered volumetric heating and/or very conductive thermally to spread the thermal load in a preferred way. These materials are reviewed critically for high-heat-load or high-heat-flux applications in synchrotrons

  11. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    Science.gov (United States)

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  12. Use of the method of biosphere compatibility for the assessment of environmental protection methods

    Science.gov (United States)

    Vorobyov, Sergey

    2018-01-01

    The article is devoted to the question of using the indicator of biosphere compatibility for assessing the effectiveness of environmental protection methods. The indicator of biosphere compatibility was proposed by the vice-president of RAASN (Russian Academy of Architecture and Building Sciences), Doctor of Technical Sciences, Professor V.I. Ilyichev. This indicator is allows not only qualitatively but also quantitatively to assess the degree of development of urban urban areas, from the standpoint of preserving the biosphere in urban ecosystems while realizing the city’s main functions. The integral indicator of biosphere compatibility is allows us to assess not only the current ecological situation in the territory under consideration, but also to plan the forecast of its changes for building the new construction projects, or for reconstructing existing ones. The indicator of biosphere compatibility, which is a mathematical expression of the tripartite balance (technosphere, biosphere and population of this area), is allows us to quantify the degree of effectiveness of different method of protecting the environment for choose the most effective for these conditions.

  13. Application of Biosphere Compatibility Indicator for Assessment of the Effectiveness of Environmental Protection Methods

    Science.gov (United States)

    Bakaeva, N. V.; Vorobyov, S. A.; Chernyaeva, I. V.

    2017-11-01

    The article is devoted to the issue of using the biosphere compatibility indicator to assess the effectiveness of environmental protection methods. The indicator biosphere compatibility was proposed by the vice-president of RAASN (Russian Academy of Architecture and Building Sciences), Doctor of Technical Sciences, Professor V.I. Ilyichev. This indicator allows one to assess not only qualitatively but also quantitatively the degree of urban areas development from the standpoint of preserving the biosphere in urban ecosystems while performing the city’s main functions. The integral biosphere compatibility indicator allows us to assess not only the current ecological situation in the territory under consideration but also to plan the forecast of its changes for the new construction projects implementation or for the reconstruction of the existing ones. The biosphere compatibility indicator, which is a mathematical expression of the tripartite balance (technosphere, biosphere and population of this area), allows us to quantify the effectiveness degree of different methods for environment protection to choose the most effective one under these conditions.

  14. The ITER EC H and CD upper launcher: Analysis of remote handling compatibility

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Baar, M. de; Chavan, R.; Elzendoorn, B.S.Q.; Goodman, T.; Heemskerk, C.J.M.; Henderson, M.A.; Koning, J.F.; Saibene, G.; Spaeh, P.; Strauss, D.

    2011-01-01

    Research highlights: → RH class 1 requires a full RH compatible design and a detailed maintenance plan that needs to be demonstrated through hardware mockup testing. → RH class 2 requires a full RH compatible design and a detailed and verified maintenance plan. → RH class 3 requires a RH compatible design and a basic maintenance plan. - Abstract: The present design of the ECH (Electron Cyclotron Heating) upper port launcher has been evaluated in light of the ITER remote handling (RH) requirements. Changes to the launcher design associated with the accessibility, maintainability and manageability of replaceable components are presented. Captive bolts were placed along the flange of the Blanket Shielding Module (BSM). A hinge mechanism was integrated to simplify the (dis-)mounting of the BSM and a frame with incorporated cooling and actuation lines was suggested for simplified mounting and replacement of the steerable mirrors. Rotating the upper port plug upside-down improves maintenance access and component handling. Tools are proposed for manipulation of the port plug and its sub-components. The RH compatibility analysis can improve a design. Early consideration of RH requirements and implementation of necessary features is therefore vital.

  15. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  16. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  17. Compatibility of 316L stainless steel with tritium breeders for fusion reactors

    International Nuclear Information System (INIS)

    Broc, M.; Fauvet, P.; Flament, T.; Sannier, J.

    1986-06-01

    Compatibility problems with structural materials are a concern for the choice of the tritium breeder for fusion reactors. In the frame of the European Programme on Fusion Technology, two types of blankets are considered: liquid (eutectic lithium-lead alloy at 0.68 wt % Li: 17Li83Pb) and solid (lithium aluminate or silicate) breeders. This paper is devoted to compatibility studies of 316L stainless steel with 17Li83Pb alloy and γ-LiA10 2 ceramic

  18. Electromagnetic compatibility design and cabling system rules

    International Nuclear Information System (INIS)

    Raimbourg, J.

    2009-01-01

    This report is devoted to establish EMC (Electromagnetic Compatibility) design and cabling system rules. It is intended for hardware designers in charge of designing electronic maps or integrating existing materials into a comprehensive system. It is a practical guide. The rules described in this document do not require enhanced knowledge of advanced mathematical or physical concepts. The key point is to understand phenomena with a pragmatic approach to highlight the design and protection rules. (author)

  19. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  20. Investigating Climate Compatible Development Outcomes and their Implications for Distributive Justice: Evidence from Malawi

    Science.gov (United States)

    Wood, Benjamin T.; Quinn, Claire H.; Stringer, Lindsay C.; Dougill, Andrew J.

    2017-09-01

    Governments and donors are investing in climate compatible development in order to reduce climate and development vulnerabilities. However, the rate at which climate compatible development is being operationalised has outpaced academic enquiry into the concept. Interventions aiming to achieve climate compatible development "wins" (for development, mitigation, adaptation) can also create negative side-effects. Moreover, benefits and negative side-effects may differ across time and space and have diverse consequences for individuals and groups. Assessments of the full range of outcomes created by climate compatible development projects and their implications for distributive justice are scarce. This article develops a framework using a systematic literature review that enables holistic climate compatible development outcome evaluation over seven parameters identified. Thereafter, we explore the outcomes of two donor-funded projects that pursue climate compatible development triple-wins in Malawi using this framework. Household surveys, semi-structured interviews and documentary material are analysed. Results reveal that uneven outcomes are experienced between stakeholder groups and change over time. Although climate compatible development triple-wins can be achieved through projects, they do not represent the full range of outcomes. Ecosystem—and community-based activities are becoming popularised as approaches for achieving climate compatible development goals. However, findings suggest that a strengthened evidence base is required to ensure that these approaches are able to meet climate compatible development goals and further distributive justice.

  1. Interfacial compatibility of polymer-based structures in electronics

    OpenAIRE

    Turunen, Markus P. K.

    2004-01-01

    Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were applied to improve the adhesion. The modified surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements accompanied by surface free energy evaluations. The pull-off test was employed to asses...

  2. Laser Beam Melting of Multi-Material Components

    Science.gov (United States)

    Laumer, Tobias; Karg, Michael; Schmidt, Michael

    First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures. For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated.

  3. An overview of safety and environmental considerations in the selection of materials for fusion facilities

    International Nuclear Information System (INIS)

    Petti, D.A.; Piet, S.J.; Seki, Y.

    1996-01-01

    Safety and environmental considerations can play a large role in the selection of fusion materials. In this paper, we review the attributes of different structural, plasma facing, and breeding materials from a safety perspective and discuss some generic waste management issues as they relate to fusion materials in general. Specific safety concerns exist for each material that must be dealt with in fusion facility design. Low activation materials offer inherent safety benefits compared with conventional materials, but more work is needed before these materials have the requisite certified databases. In the interim, the international thermonuclear experimental reactor (ITER) has selected more conventional materials and is showing that the safety concerns with these materials can be addressed by proper attention to design. In the area of waste management disposal criteria differ by country. However, the criteria are all very strict making disposal of fusion components difficult. As a result, recycling has gained increasing attention. (orig.)

  4. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    International Nuclear Information System (INIS)

    Liu, Pingsheng; Chen, Qiang; Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong; Shen, Jian

    2013-01-01

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical

  5. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pingsheng [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen, Qiang, E-mail: chem100@nju.edu.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); High Technology Research Institute of Nanjing University, Changzhou 213164 (China); Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Shen, Jian, E-mail: shenj1957@yahoo.com.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2013-10-15

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical.

  6. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  7. Extractables and leachables considerations for prefilled syringes.

    Science.gov (United States)

    Jenke, Dennis R

    2014-10-01

    Use of pre-filled syringes as both a packaging and delivery system for pharmaceutical drug products is accelerating. Pre-filled syringes must meet the quality and suitability for use requirements for both systems, including compatibility with the drug product. Relevant incompatibilities between pre-filled syringes and drug products include the safety of syringe-based leachables that accumulate in drug products and the ability of leachables to interact with the drug product's ingredients as such interactions can affect safety, efficacy, stability and physical viability. Relevant suitability considerations for pre-filled syringes are discussed herein and specific examples of suitability for use issues for pre-filled syringes are cited, focusing on extractables associated with pre-filled syringes and leachables derived from such syringes. Aspects considered include the toxicological impact of leachables, their ability to alter the efficacy of drug products and to produce other undesirable outcomes such as aggregation and immunogenic responses. Materials used in pre-filled syringes and the conditions of use minimize the traditional safety risk associated with leachables. However, drug products that use pre-filled syringes are prone to non-traditional interactions such as disruption of protein conformation, leading to potential efficacy, safety and quality issues. In order to qualify pre-filled syringes for use, the traditional approach of measuring extractables and leachables and inferring their effect must be augmented by rigorous compatibility testing. Research into the fundamental relationship between leachables and drug substances will be necessary so the more time- and cost-efficient 'measure and infer' approach can be widely implemented.

  8. Assessment of DUPIC fuel compatibility with CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H B; Roh, G H; Jeong, C J; Rhee, B W; Choi, J W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    The compatibility of DUPIC fuel with the existing CANDU reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will require a quantitative analysis later. (author).

  9. Compatibility evaluation between La 2Mo 2O 9 fast oxide-ion conductor and Ni-based materials

    Science.gov (United States)

    Corbel, Gwenaël; Lacorre, Philippe

    2006-05-01

    The chemical reactivity of La 2NiO 4+δ and nickel metal or nickel oxide with fast oxide-ion conductor La 2Mo 2O 9 is investigated in the annealing temperature range between 600 and 1000 °C, using room temperature X-ray powder diffraction. Within the La 2NiO 4+δ/La 2Mo 2O 9 system, subsequent reaction is evidenced at relatively low annealing temperature (600 °C), with formation of La 2MoO 6 and NiO. The reaction is complete at 1000 °C. At reverse, no reaction occurs between Ni or NiO and La 2Mo 2O 9 up to 1000 °C. Together with a previous work [G. Corbel, S. Mestiri, P. Lacorre, Solid State Sci. 7 (2005) 1216], the current study shows that Ni-CGO cermets might be chemically and mechanically compatible anode materials to work with LAMOX electrolytes in solid oxide fuel cells.

  10. Some safety considerations of liquid lithium as a fusion breeder material

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.

    1986-01-01

    Test results and conclusions are presented for the reaction of steam with a high temperature lithium pool and for the reaction of high temperature lithium spray with a nitrogen atmosphere. The reactions are characterized and evaluated in regard to the potential for mobilization of radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. These evaluations include measured lithium temperature responses, atmosphere temperature and pressure responses, gas consumption and generation, aerosol quantities and particle size characterization, and potentially radioactive species releases. Conclusions are made as to the consequences of these safety considerations for the use of lithium as a fusion reactor breeder material

  11. Annual Report - Compatibility of ZDDP and ionic liquid anti-wear additives with hard coatings for engine lubrications

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Donovan N [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.

  12. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    Science.gov (United States)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  13. Mirror neuron activation as a function of explicit learning: changes in mu-event-related power after learning novel responses to ideomotor compatible, partially compatible, and non-compatible stimuli.

    Science.gov (United States)

    Behmer, Lawrence P; Fournier, Lisa R

    2016-11-01

    Questions regarding the malleability of the mirror neuron system (MNS) continue to be debated. MNS activation has been reported when people observe another person performing biological goal-directed behaviors, such as grasping a cup. These findings support the importance of mapping goal-directed biological behavior onto one's motor repertoire as a means of understanding the actions of others. Still, other evidence supports the Associative Sequence Learning (ASL) model which predicts that the MNS responds to a variety of stimuli after sensorimotor learning, not simply biological behavior. MNS activity develops as a consequence of developing stimulus-response associations between a stimulus and its motor outcome. Findings from the ideomotor literature indicate that stimuli that are more ideomotor compatible with a response are accompanied by an increase in response activation compared to less compatible stimuli; however, non-compatible stimuli robustly activate a constituent response after sensorimotor learning. Here, we measured changes in the mu-rhythm, an EEG marker thought to index MNS activity, predicting that stimuli that differ along dimensions of ideomotor compatibility should show changes in mirror neuron activation as participants learn the respective stimulus-response associations. We observed robust mu-suppression for ideomotor-compatible hand actions and partially compatible dot animations prior to learning; however, compatible stimuli showed greater mu-suppression than partially or non-compatible stimuli after explicit learning. Additionally, non-compatible abstract stimuli exceeded baseline only after participants explicitly learned the motor responses associated with the stimuli. We conclude that the empirical differences between the biological and ASL accounts of the MNS can be explained by Ideomotor Theory. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Thermodynamics of non-bridging oxigen in silica bio-compatible glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Koga, N.; Strnad, Z.; Šesták, Jaroslav; Strnad, J.

    2003-01-01

    Roč. 71, - (2003), s. 927-937 ISSN 1418-2874 R&D Projects: GA AV ČR IAA4010101 Institutional research plan: CEZ:AV0Z1010914 Keywords : bio-compatible * bone-like apatite * glass-ceramics * mimetic material * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.598, year: 2002

  15. Some remarks on the compatibility between determinism and unpredictability.

    Science.gov (United States)

    Franceschelli, Sara

    2012-09-01

    Determinism and unpredictability are compatible since deterministic flows can produce, if sensitive to initial conditions, unpredictable behaviors. Within this perspective, the notion of scenario to chaos transition offers a new form of predictability for the behavior of sensitive to initial condition systems under the variation of a control parameter. In this paper I first shed light on the genesis of this notion, based on a dynamical systems approach and on considerations of structural stability. I then suggest a link to the figure of epigenetic landscape, partially inspired by a dynamical systems perspective, and offering a theoretical framework to apprehend developmental noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  17. Synthetic Fischer-Tropsch (FT) JP-5/JP-8 Aviation Turbine Fuel Elastomer Compatibility

    National Research Council Canada - National Science Library

    Muzzell, Pat; Stavinoha, Leo; Chapin, Rebecca

    2005-01-01

    ... to seal performance may arise, possibly leading to fuel leakage. The key objective of this study was to compare and contrast the material compatibility of nitrile coupons and O-rings with selected petroleum-derived fuels, Fisher-Tropsch (FT...

  18. Fuel System Compatibility Issues for Prometheus-1

    International Nuclear Information System (INIS)

    DC-- Noe; KB Gibbard; MH Krohn

    2006-01-01

    Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO 2 as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO 2 -based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined

  19. Materials for innovative lead alloy cooled nuclear systems: Overview

    International Nuclear Information System (INIS)

    Mueller, Georg; Weisenburger, Alfons; Fetzer, Renate; Heinzel, Annette; Jianu, Adrian

    2015-01-01

    One of the most challenging issues for all future innovative nuclear systems including Gen IV reactors are materials. The selection of the structural materials determines the design which has to consider the properties and the availability of the materials. Beside general requirements for material properties that are common for all fast reactor types specific issues arise from coolant compatibility. The high solubility of steel alloying elements in liquid Pb-alloys at reactor relevant temperatures is clearly detrimental. Therefore, all steels that are considered as structural materials have to be protected by dissolution barriers. The most common barriers for steels under consideration are oxide scales that form in situ during operation. However, increasing the temperature above 500 deg. C will result either in dissolution attack or in enhanced oxidation. For higher temperatures additional barriers like alumina forming surface alloys are discussed and investigated. Mechanical loads like creep stress and fretting will act on the steels. These mechanical loads will interact with the coolant and can increase the negative effects. For a LFR (Lead Fast Reactor) Demonstrator and MYHRRA (ADS) austenitic steels (316L) are selected for most in core components. The 15-15Ti is the choice for the fuel cladding of MYHRRA and a Pb cooled demonstrator. For an industrial LFR (Lead Fast Reactor) the ferritic martensitic steel T91 was selected as fuel clad material due to its improved irradiation resistance. T91 is in both designs the material to be used for the heat exchanger. Surface alloying with alumina forming alloys is considered to assure material functionality at higher temperatures and is therefore selected for fuel cladding of the ELFR and the heat exchanger tubes. This presentation will give an overview on the selected materials for innovative Pb alloy cooled nuclear systems considering, beside pure compatibility, the influence of mechanical interaction like creep and

  20. Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate/Poly(acrylonitrile-co-butadiene Blends

    Directory of Open Access Journals (Sweden)

    Murugan N.

    2017-12-01

    Full Text Available This paper addresses the compatibility, morphological characteristics, crystallization, physico-mechanical properties and thermal stability of the melt mixed EMA/NBR blends. FTIR spectroscopy reveals considerable physical interaction between the polymers that explain the compatibility of the blends. DSC results confirm the same (compatibility and reveals that NBR hinders EMA crystallization. Mechanical and thermal properties of the prepared EMA/NBR blends notably enhance with increasing the fraction of EMA in the blends. Morphology study exhibit the dispersed particles in spherical shape in the nanometer level. Swelling and oil resistance study have also been carried out in details to understand the performance behaviour of these blends at service condition

  1. Role of value compatibility in IT adoption

    DEFF Research Database (Denmark)

    Bunker, Deborah; Kautz, Karlheinz; Nguyen, Anne Luu Thanh

    2007-01-01

    Compatibility has been recognised as an important element in the adoption of IT innovations in organisations but as a concept it has been generally limited to technical or functional factors. Compatibility is also significant, however, with regard to value compatibility between the organisation......, and the adopted IT innovation. We propose a framework to determine value compatibility analysing the organisation's and information system's structure, practices and culture, and explore the value compatibility of an organisation with its adopted self-service computer-based information system. A case study......-service acceptance and training issues experienced by the case organisation. These findings add insight into the problems experienced with value compatibility and the adoption of the information systems, and show the potential use of the proposed framework in the detection of such problems.Journal of Information...

  2. In vitro Blood Compatibility of Polyethylene Terephthalate with Covalently Bounded Hirudin on Surface

    Institute of Scientific and Technical Information of China (English)

    LI Fang; WANG Jin; HUANG San

    2011-01-01

    Polyethylene terephthalate (PET,Dacron) was modified by surface immobilization of hirudin with glutaraldehyde(GA) as coupling reagent to improve the blood compatibility.Hirudin-immobilizcd PETs were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements.The blood compatibility of the PETs was evaluated by platelet adhesion evaluation and fibrinogen conformational change measurements in vitro.The results showed the decrease of platelet adhesion and activation on hirudinimmobilized PET with increasing of glutaraldehyde concentration.Fibrinogen experiment showed that fibrinogen adherence and conformational changes of PET-HRD were less than those of untreated PET,which made the materials difficult to form thrombus.The proper reason of blood compatibility improvement was low interface tension between hirudin-immobilized PETs and blood,as well as blood proteins,and low ratio of dispersive/polar component of the surface energy(γsd/γsp) and high hydrophilicity.

  3. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  4. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  5. Environmental compatibility investigation of the Garzweiler II open cast mine project

    International Nuclear Information System (INIS)

    Oster, A.; Gaertner, D.

    1994-01-01

    Based on an EEC directive, the law on the investigation of ecological compatibility came into force in 1990. With the application of these European directives in national law, investigations to determine the ecological compatibility must now be carried out for projects to exploit brown coal. In this connection and in conjunction with the licensing procedure for Garzweiler II, Rheinbraun in 1992 for the first time compiled data on the investigations carried out to determine the ecological compatibility of an open cast mine. The data on these investigations include information on the necessity of the open cast mine and on alternative projects that have been examined, as well as a description of the project in question as regards its nature and extent. As far as the legally specified protected objects are concerned, i.e. people, water, air, nature (animals and plants, soil, climate and landscape) as well as cultural and other material objects, itemized data are furnished on the development and effects of the project and on countermeasures and the planned traffic and transport concept. (orig.) [de

  6. Socio-compatible energy policies

    International Nuclear Information System (INIS)

    Renn, O.; Albrecht, G.; Kotte, U.; Peters, H.P.; Stegelmann, H.U.

    1985-01-01

    The socio-compatibility project comprises three central analytical elements: 1) The arborescent value analysis: Eminent social groups (such as the trade-unions or the ecological institutes) were questioned on their values and criteria applied to evaluate different energy systems. 2) The energy system and scenario impact analysis: Indicators deduced from the arborescent value analysis serve to approximately cover the value dimensions affected by above criteria. 3) Impact analysis weighing executed by a group of arbitrarily chosen citizens. All reflections considered, it is evident that none of the energy policies discussed may claim the title 'socio-compatible'. The individual, i.e. neither scientist nor politician, cannot decide upon the socio-compatibility of one or the other concept. An altogether socially compatible solution accepted and classified as such by different social groups may only crystallize and be set against different options by the political formation of opinion. The studys' primary concern lies in furnishing information, i.e. aids for politicians having to decide on energy policies. Above all the study aimed at finding out about reactions, social protest, opposition or approval to be coped with by those who, having the say in political matters, want to speak up for one of the energy policies under public discussion. (orig./HSCH) [de

  7. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility.

    Science.gov (United States)

    Liao, Yuzhen; Li, Linhua; Chen, Jiang; Yang, Ping; Zhao, Ansha; Sun, Hong; Huang, Nan

    2017-07-01

    Surfaces with dual functions that simultaneously exhibit good anticoagulant ability and endothelial cell (EC) compatibility are desirable for blood contact materials. However, these dual functions have rarely been achieved by inorganic materials. In this study, titanium dioxide (TiO 2 ) films were treated by sulphuric acid (H 2 SO 4 ) and ultraviolet (UV) irradiation successively (TiO 2 H 2 SO 4 -UV), resulting in good anticoagulant ability and EC compatibility simultaneously. We found that UV irradiation improved the anticoagulant ability of TiO 2 films significantly while enhancing EC compatibility, though not significantly. The enhanced anticoagulant ability could be related to the oxidation of surface-adsorbed hydrocarbons and increased hydrophilicity. The H 2 SO 4 treatment improved the anticoagulant ability of TiO 2 films slightly, while UV irradiation improved the anticoagulant ability strongly. The enhanced EC compatibility could be related to the increased surface roughness and positive charges on the surface of the TiO 2 films. Furthermore, the time-dependent degradation of the enhanced EC compatibility and anticoagulant ability of TiO 2 H 2 SO 4 -UV was observed. In summary, TiO 2 H 2 SO 4 -UV expressed both excellent anticoagulant ability and good EC compatibility at the same time, which could be desirable for blood contact materials. However, the compatibility of TiO 2 H 2 SO 4 -UV with smooth muscle cells (SMCs) and macrophages was also improved. More effort is still needed to selectively improve EC compatibility on TiO 2 films for better re-endothelialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination...

  9. Consideration of materials for aircraft brakes

    Science.gov (United States)

    Peterson, M. B.; Ho, T.-L.

    1974-01-01

    A study has been made of the frictional behavior of several aircraft brake materials using a simple high-temperature Falex-type apparatus. Tests were run at velocities of seven ft/minute; loads to 600 pounds and temperatures to 700 C. The data for these brake materials sliding against a variety of steels and other materials indicate a large reduction in friction due to surface oxidation in the temperature range 250 to 300 C. It also was found that the retention of this oxide was a function of the temperature changes. With increasing temperature the oxide was removed, while with reducing temperature it was retained. Frictional behavior was more characteristic of the steel than the brake material.

  10. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Bjornard, Trond; Hockert, John

    2011-01-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC and A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC and A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC and A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR (Pty) and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC and A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR and D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present

  11. The compatibility of candidate first wall metallic materials with impure helium

    International Nuclear Information System (INIS)

    Noda, T.; Okada, M.; Watanabe, R.

    1979-01-01

    The compatibilities of SUS 316 stainless steels, Nimonic PE 16, Nb-1% Zr, V-25% Mo, Mo, and TZM with the commercial grade helium (> 99.995%) and the helium containing oxygen of 13 vpm at temperatures from 873 to 1273 K were studied. SUS 316 and PE 16 were internally oxidized above 1100 K. The marked depletion of Cr and Mn in SUS 316 specimens was observed in the commercial grade helium above around 1100 K. Nb-1% Zr and V-25% Mo extremely absorbed oxygen and nitrogen from the helium gases and were deteriorated in the range of test temperatures. Mo and TZM appeared not to be affected by the exposure to the commercial grade helium at temperature up to 1273 K. However, Mo and TZM lost ductility at room temperature after exposure to helium above 1100 and 900 K respectively. (orig.)

  12. FLiNaK compatibility studies with Inconel 600 and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Graydon L., E-mail: yodergljr@ornl.gov [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Heatherly, Dennis; Wilson, Dane [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Caja, Mario [Electrochemical Systems, Inc. (ESI), 9320 Collingwood Rd., Knoxville, TN 37922 (United States)

    2016-10-15

    Highlights: • A versatile experimental design has been developed to examine liquid fluoride salt materials compatibility behavior. • Samples of silicon carbide and a grafoil/nickel spiral wound gasket were exposed to FLiNaK salt at 700 °C for 90 days and showed no degradation. • Alloy 600 showed material effects penetrating up to 300 μm below the salt interface after exposure to the salt for 90 days at 700 °C. • Comparison of the Alloy 600 corrosion results with existing data indicated that results were comparable to the few corrosion results available for Alloy 600. • Sapphire viewing windows incorporated in the experiment showed fogging by condensed salt components at the highest test temperatures. - Abstract: A small liquid fluoride salt test apparatus has been constructed and testing has been conducted to examine the compatibility of silicon carbide (SiC), Inconel 600 and a spiral wound gasket material in FLiNaK, the ternary eutectic alkaline metal fluoride salt mixture. These tests were conducted to evaluate materials and sealing systems that could be used in fluoride salt systems. Three months of testing at 700 °C was conducted to assure that these materials and seals would be acceptable when operating under prototypic operating conditions. The SiC specimens showed little or no change over the test period, while the spiral wound gasket material did not show any degradation except that salt might have been seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 μm in depth. Analysis indicated that the salt had leached chrome from the Inconel surface, as was expected for this material.

  13. Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-05-01

    The molten fluoride salt compatibility studies carried out during the period 1974--76 in support of the Molten-Salt Reactor Program are summarized. Thermal-convection and forced-circulation loops were used to measure the corrosion rate of selected alloys. Results confirmed the relationship of time, initial chromium concentration, and mass loss developed by previous workers. The corrosion rates of Hastelloy N and Hastelloy N modified by the addition of 1--3 wt percent Nb were well within the acceptable range for use in an MSBR. 13 figures, 3 tables

  14. Socially compatible technology management

    International Nuclear Information System (INIS)

    Tschiedel, R.

    1989-01-01

    The public has a critical eye on the impacts of technology, and there is a growing awareness of the social impacts in addition to health hazards and economic and ecologic impacts. 'Socially compatible technology management' is the magic formula frequently used which has emerged as a political demand in the course of the social controversy about the hazards of large-scale technology. It marks a position in the conflict between those who declare existing market and policy instruments to be sufficient regulatory tools, and those who understand the incidents ranging from inadequacy to desaster as a warning, and call for more precaution in decisions with an impact on the future. The concept of 'social compatibility' has to be given shape by elaborating criteria and methods for achieving this goal. The book shows that social compatibility cannot sufficiently be defined either as a quality of a technology and of a socio-technical system (acceptability), or as the willingness of the people concerned to accept a technology (acceptance). The investigation explains by means of empirical analysis and examples that participation is the only way to combine acceptability and acceptance into a socially compatibly designed technology. The leading theoretical and political formula developed for this purpose is 'acquisition'. To put it in a provocative way: Man has to learn to manage and master technical systems as if they were an integral part of themselves. Which means, man has to acquire the required knowledge and skill in the changing social structures, and the real power of disposal. Sociology of technology is a branch of research that can and should give support in the process of designing and managing technological systems in a way compatible with social needs. (orig./HP) [de

  15. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    Science.gov (United States)

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inheritance of graft compatibility in Douglas fir.

    Science.gov (United States)

    D.L. Copes

    1973-01-01

    Graft compatibility of genetically related and unrelated rootstock-scion combinations was compared. Scion clones were 75% compatible when grafted on half-related rootstocks but only 56% compatible when grafted on unrelated rootstocks. Most variance associated with graft incompatibility in Douglas-fir appears to be caused by multiple genes.

  17. Developing 2 C-compatible investment criteria

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, Frauke [NewClimate - Institute for Climate Policy and Global Sustainability gGmbH, Bonn (Germany); Weischer, Lutz [Germanwatch e.V., Koeln (Germany); Thomae, Jakob [2degrees Investing Initiative, New York, NY (United States); Hoehne, Niklas; Hagemann, Markus; El Alaoui, Alexander; Bals, Christoph; Eckstein, David; Kreft, Soenke; Rosse, Morten

    2015-11-30

    This report studies the development of criteria for assessing the compatibility of financial investments with the international goal to limit global temperature increase to below 2 C above pre-industrial levels. The findings are intended as a starting point and a key input for a longer term process to develop consensus-based 2 C investing criteria. The focus here is placed on investments in projects and physical assets, in particular of development and climate finance organisations. In order to limit global temperature increase to 2 C, global greenhouse gas (GHG) emissions will have to be reduced significantly, eventually to zero, during the course of this century. This requires shifting capital from high to low carbon investments as well as significant capital mobilisation for investments in 2 C-compatible infrastructure. Given the long lifetime of physical assets, and the urgency of decarbonisation over the coming decades, this needs to begin today. Public financial institutions can play a prominent role in contributing to aligning investment flows with the 2 C limit, as well as in closing the current infrastructure investment gap, responding to their explicit or implicit climate mandates and leadership role in the finance sector. The majority of international financial institutions integrate climate considerations into their finance decisions to some degree, and are familiar with different types of criteria, including positive and negative lists, qualitative and quantitative benchmarks, and the use of shadow carbon pricing. However, current approaches do not link to the 2 C limit. 2 C investment criteria are therefore needed to guide investors in this regard. Such criteria may also support other purposes, including an understanding of climate risks and improved reporting and accountability.

  18. Developing 2 C-compatible investment criteria

    International Nuclear Information System (INIS)

    Roeser, Frauke; Weischer, Lutz; Thomae, Jakob; Hoehne, Niklas; Hagemann, Markus; El Alaoui, Alexander; Bals, Christoph; Eckstein, David; Kreft, Soenke; Rosse, Morten

    2015-01-01

    This report studies the development of criteria for assessing the compatibility of financial investments with the international goal to limit global temperature increase to below 2 C above pre-industrial levels. The findings are intended as a starting point and a key input for a longer term process to develop consensus-based 2 C investing criteria. The focus here is placed on investments in projects and physical assets, in particular of development and climate finance organisations. In order to limit global temperature increase to 2 C, global greenhouse gas (GHG) emissions will have to be reduced significantly, eventually to zero, during the course of this century. This requires shifting capital from high to low carbon investments as well as significant capital mobilisation for investments in 2 C-compatible infrastructure. Given the long lifetime of physical assets, and the urgency of decarbonisation over the coming decades, this needs to begin today. Public financial institutions can play a prominent role in contributing to aligning investment flows with the 2 C limit, as well as in closing the current infrastructure investment gap, responding to their explicit or implicit climate mandates and leadership role in the finance sector. The majority of international financial institutions integrate climate considerations into their finance decisions to some degree, and are familiar with different types of criteria, including positive and negative lists, qualitative and quantitative benchmarks, and the use of shadow carbon pricing. However, current approaches do not link to the 2 C limit. 2 C investment criteria are therefore needed to guide investors in this regard. Such criteria may also support other purposes, including an understanding of climate risks and improved reporting and accountability.

  19. Compatibility of Mating Preferences

    OpenAIRE

    Bingol, Haluk O.; Basar, Omer

    2016-01-01

    Human mating is a complex phenomenon. Although men and women have different preferences in mate selection, there should be compatibility in these preferences since human mating requires agreement of both parties. We investigate how compatible the mating preferences of men and women are in a given property such as age, height, education and income. We use dataset of a large online dating site (N = 44, 255 users). (i) Our findings are based on the "actual behavior" of users trying to find a dat...

  20. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-01-01

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities

  1. Biocompatibility of biomaterials - Lessons learned and considerations for the design of novel materials.

    Science.gov (United States)

    Schmalz, Gottfried; Galler, Kerstin M

    2017-04-01

    Biocompatibility of dental materials has gained increasing interest during recent decades. Meanwhile, legal regulations and standard test procedures are available to evaluate biocompatibility. Herein, these developments will be exemplarily outlined and some considerations for the development of novel materials will be provided. Different aspects including test selection, release of substances, barriers, tissue healing, antibacterial substances, nanoparticles and environmental aspects will be covered. The provided information is mainly based on a review of the relevant literature in international peer reviewed journals, on regulatory documents and on ISO standards. Today, a structured and systematic approach for demonstrating biocompatibility from both a scientific and regulatory point of view is based on a clinical risk assessment in an early stage of material development. This includes the analysis of eluted substances and relevant barriers like dentin or epithelium. ISO standards 14971, 10993, and 7405 specify the modes for clinical risk assessment, test selection and test performance. In contact with breached tissues, materials must not impair the healing process. Antibacterial effects should be based on timely controllable substances or on repellant surfaces. Nanoparticles are produced by intraoral grinding irrespective of the content of nanoparticles in the material, but apparently at low concentrations. Concerns regarding environmental aspects of mercury from amalgam can be met by amalgam separating devices. The status for other materials (e.g. bisphenol-A in resin composites) needs to be evaluated. Finally, the public interest for biocompatibility issues calls for a suitable strategy of risk communication. A wise use of the new tools, especially the clinical risk assessment should aim at preventing the patients, professionals and the environment from harm but should not block the development of novel materials. However, biocompatibility must always be

  2. Materials of construction for silicon crystal growth

    Science.gov (United States)

    Leipold, M. H.; Odonnell, T. P.; Hagan, M. A.

    1980-01-01

    The performance of materials for construction and in contact with molten silicon for crystal growth is presented. The basis for selection considers physical compatibility, such as thermal expansion and strength, as well as chemical compatibility as indicated by contamination of the silicon. A number of new high technology materials are included as well as data on those previously used. Emphasis is placed on the sources and processing of such materials in that results are frequently dependent on the way a material is prepared as well as its intrinsic constituents.

  3. Compatibility of repair concretes in the aggressive environment of the South of Iran

    International Nuclear Information System (INIS)

    Parhizkar, T.; Ramezaniapour, A.A.; Hillemeier, B.; Ghasemi, A.M.R.; Mozafari, N.

    2006-01-01

    Deterioration of reinforced concrete structures, namely due to corrosion of reinforcement, in the south of Iran, on the coasts of the Gulf region has become a major problem in recent years. The high cost involved in repairing and strengthening of deteriorated concrete structures in this region makes it essential that the repair materials used are compatible enough to match the residual service life of the structure. This paper presents the engineering and compatibility-related properties of two repair concretes containing silica fume and styrene butadiene rubber latex (SBR) under simulated hot and humid conditions similar to the aggressive environment of the south of Iran. A normal cement-based repair concrete was used as control. Mechanical properties were assessed and the dimension stability of the repair concrete was also evaluated. The results of this investigation show that the concrete containing silica fume and the polymer-modified concrete are appropriate materials for repair in the severe environmental conditions of the Gulf region. (author)

  4. Application of methodological approach to selection of sportswomen to calisthenics teams for group exercises, considering compatibility factor

    Directory of Open Access Journals (Sweden)

    O.S. Kozhanova

    2015-04-01

    Full Text Available Purpose: motivation of methodological approach to selection of sportswomen to calisthenics teams for group exercises considering compatibility factor. Material: in the research 40 high qualification sportswomen of 17-23 yrs age with sport experience of 11-16 years participated. With cluster analysis 10 gymnasts with morphological indicators, meeting modern standards of group exercises were selected. Results: we found 5 generalized factors, which characterize structure of selection to teams and determines 72% of dispersion. Influence of kinds and connected with them criteria of compatibility on efficiency of gymnasts’ competition functioning were also determined. The authors substantiated methodological approach to selection of sportswomen to calisthenics teams for group exercises, considering compatibility factor. Conclusions: in selection to calisthenics teams for group exercises it is purposeful to realize complex registration of compatibility kinds, considering gymnasts’ similar features by recommended indicators.

  5. Preliminary assessment on compatibility of DUPIC fuel with CANDU-6

    International Nuclear Information System (INIS)

    Choi, Hang-Bok; Roh, G.H.; Jeong, C.J.; Rhee, B.W.; Choi, J.W.; Boss, C.R.

    1997-01-01

    The compatibility of DUPIC fuel with the existing CANDU-6 reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will be qualitatively analyzed later. (author)

  6. Compatibility analysis of 3D printer resin for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-08-30

    The salient features of microfluidics such as reduced cost, handling small sample and reagent volumes and less time required to fabricate the devices has inspired the present work. The incompatibility of three-dimensional printer resins in their native form and the method to improve their compatibility to many biological processes via surface modification are reported. The compatibility of the material to build microfluidic devices was evaluated in three different ways: (i) determining if the ultraviolet (UV) cured resin inhibits the polymerase chain reaction (PCR), i.e. testing devices for PCR compatibility; (ii) observing agglutination complex formed on the surface of the UV cured resin when anti-C-reactive protein (CRP) antibodies and CRP proteins were allowed to agglutinate; and (iii) by culturing human embryonic kidney cell line cells and testing for its attachment and viability. It is shown that only a few among four in its native form could be used for fabrication of microchannels and that had the least effect on biological molecules that could be used for PCR and protein interactions and cells, whereas the others were used after treating the surface. Importance in building lab-on-chip/micrototal analysis systems and organ-on-chip devices is found.

  7. Baja frecuencia de positividad serológica en pacientes con biopsias histológicamente compatibles con enfermedad celiaca en Perú Low serological positivy in patients with histology compatible with celiac disease in Perú

    Directory of Open Access Journals (Sweden)

    F. Arévalo

    2010-06-01

    Full Text Available Objetivo: estudiar la frecuencia de positividad de las pruebas serológicas en pacientes con biopsias compatible con enfermedad celiaca. Material y métodos: estudio transversal. Se incluyeron pacientes con biopsia duodenal histológicamente compatible con enfermedad celiaca y determinación de anticuerpos antigliadina, antiendomisio y antitransglutaminasa IgA. Definimos como caso de enfermedad celiaca a quienes tuvieran biopsia positiva y anticuerpos antiendomisio y/o antitransglutaminasa positivos. Resultados: 31 pacientes fueron incluidos de los cuales 6 fueron antiendomisio positivo, 5 fueron antitransglutaminasa positivo y antigliadina fue positivo en 14. Por lo tanto de 31 pacientes con cambios histológicos compatibles con enfermedad celiaca sólo 10 tuvieron serología diagnóstica. Sólo uno de los pacientes tuvo positividad tanto para antitransglutaminasa como para antiendomisio. Conclusiones: a encontramos que la mayoría de biopsias de duodeno con un cuadro histológico sugerente de enfermedad celiaca no se corresponden con serología diagnóstica de esta enfermedad; b encontramos baja coincidencia en la positividad serológica entre antiendomisio y antitransglutaminasa.Objective: to study the frequency of positive serology for celiac disease (CD in patients with duodenal biopsies suggestive of this disease. Material and methods: cross sectional study. We included patients with duodenal biopsies histologically compatible with CD and antigliadin, antiendomysial and IgA antitransglutaminase antibodies. We defined a "case" of CD if there was a positive biopsy and either antiendomisial or antitransglutaminase positive antibodies. Results: thirty one patients were included in our study. Six were antiendomysial positive and 5 antitransglutaminase positive while the antigliadin was positive in 14 cases. Therefore, out of 31 patients only 10 had a serology compatible with CD and only one had positive both antibodies, antiendomysial and

  8. Compatibility of electrolytically produced sodium hypochlorite solutions on long- term implanted dialysis catheters.

    Science.gov (United States)

    Mishkin, G J

    2007-01-01

    More than 20% of the world's population use a catheter for dialysis, despite guidelines limiting their use. Although the structure and design of the catheters differ by manufacturer, the material used in central venous catheters and peritoneal dialysis catheters are the same across manufacturers. Given the long-term use of these catheters in the dialysis population, the good compatibility of the antiseptics and disinfectants used on the catheters is imperative to prevent failure and cracking of the catheter material. Tensile strengths of commercially available catheters were measured after exposure to commonly used disinfectants. The tensile strength was then compared between the catheters by analyzing the displacement vs. force (N) curves produced during the evaluation. A total of 44 catheter lumens were evaluated. The electrolytically produced sodium hypochlorite solution, Alcavis 50/ExSept Plus, was the only solution shown to be compatible with all three catheter materials resulting in a deviation of less than 10% for each of the different catheter types. Electrolytically produced sodium hypochlorite solutions were the only solutions in this study that did not alter the physical properties of any of the catheters after long-term exposure.

  9. Ion implantation and bio-compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya

    1992-07-01

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).

  10. Materials information data bank

    International Nuclear Information System (INIS)

    Mead, K.E.

    1978-03-01

    A major concern in the design of weapons systems is compatibility of materials with each other and with the enclosed environment. Usually these systems require long-term storage and must have high reliability at the end of this storage period. Materials selection is thus based on past experience and on laboratory-accelerated testing to assure this long-term reliability. To assist in materials selection, a computerized materials data bank has been established. In addition to references on personnel and documents, this data bank provides annotated information on materials so that the designer and materials engineer can draw on it for guidance in selecting materials. The primary purpose of the data bank is to provide materials compatibility data. However, the structure of the system permits the data bank to be used for storage and retrieval of general materials information. The data bank storage and information retrieval philosophy is discussed and procedures for information gathering are outlined. Examples of data entries and a list of search routines are presented to demonstrate the usefulness and versatility of the system

  11. Compatibility problems of canning materials with carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Darras, R.; Loriers, H.

    1964-01-01

    The adoption in France of carbon dioxide under pressure as a heat carrying fluid in advanced reactors of the gas-graphite and gas heavy water types has led to the necessity of finding a canning material capable of replacing magnesium alloys. Actually these latter can no longer be used above about 500 C, because of the proximity to their melting points and of their mechanical properties which become under these conditions insufficient, although their oxidation resistance in the presence of carbon dioxide is still acceptable. Beryllium which is particularly attractive because of its low neutron capture cross-section, has a very big disadvantage, amongst others: its use in the presence of carbon dioxide et 600 C is only possible if the gas is perfectly dry, the water-vapour partial pressure being the determining factor calling for a degree of drying which increases with increasing absolute pressure. In the opposite case after a short incubation period, the oxidation accelerates and leads to an intergranular corrosion which is rapidly destructive. Nevertheless, beryllium-calcium or beryllium-magnesium alloys containing 0,5 p 100 of the addition element make it possible to overcome this difficulty; they may be used in the presence of a few hundred vpm of water vapour up to at least 700 C. The metallurgical problems convected with the applicability of beryllium or its alloys have led however to the consideration of possibly using provisionally austenitic stainless steels These materials are intrinsically very resistant to oxidation, but, as only small thicknesses can be used because of their high capture cross-section, it is necessary to choose the grades which are least prone to oxidation. Above 300 C, the niobium stabilised grades, without addition of molybdenum are the most acceptable. Above 700 C, the 20 Cr - 25 Ni + Nb grade appears more suitable than the conventional 18 Cr - 10 Ni + Nb grade, especially as it is less liable to local oxide penetrations. Beryllium

  12. Industrial wastes solidification and material recovery: prospectives in Italy. Prospettive dell'applicazione delle tecniche di inertizzazione

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G; Balzano, S

    1988-12-01

    This paper focuses on state-of-the-art materials recovery techniques employed in the solidification/stabilization of industrial wastes. Particular consideration is given to the Italian situation. After a review, with reference to waste/matrix compatibility inherent problems, of the presently employed main encapsulation techniques (with matrices based on cement, lime, clay, thermoplastic materials, organic polymers, macroencapsulating compounds), attention is addressed to solidification systems which allow a recovery of the waste material as low-technology by-products. Regarding the most important industrial waste streams: thermoplastic refuse, incinerator ashes, chemical sludges, the paper reviews efforts devoted not only to their chemical fixation in order to fulfill the current land disposal requirements, but mainly to their employment for production of manufactured articles.

  13. Physicochemical compatibility of SrCeO3 with potential SOFC cathodes

    International Nuclear Information System (INIS)

    Tolchard, J.; Grande, T.

    2007-01-01

    The chemical and physical compatibility of SrCeO 3 is investigated with respect to LaMO 3 (M=Mn, Fe, Co) and La 2-x Sr x NiO 4 (x=0, 0.8), via the reaction of fine-grained powder compacts and solid-state diffusion couples. Compositions were chosen so as to give predictive insight into possible candidate materials for all-oxide electrochemical devices. Results show the primary reaction in these systems to be the dissolution of SrO from SrCeO 3 into the LaMO 3 /La 2-x Sr x NiO 4 , and corresponding formation of La-doped CeO 2 . Reaction kinetics are observed to be relatively fast, with element profiles suggesting the diffusion of Sr 2+ in ceria to be surprisingly rapid. It is demonstrated that perovskite starting materials represent poor candidates for use with SrCeO 3 , reacting completely to form Ruddlesden-Popper/K 2 NiF 4 type oxides. Reaction with La 2 NiO 4 is less pronounced, and formation of secondary phases suppressed for the composition La 1.2 Sr 0.8 NiO 4 . It is thus concluded that Ruddlesden-Popper type oxides represent good candidate materials for use with a SrCeO 3 -based electrolytes when doped with appropriate levels of Sr. - Graphical abstract: Assessment of the SrCeO 3 proton conductor shows this material to have poor chemical compatibility with LaMO 3 perovskite systems, but predicts coexistence with Ruddlesden-Popper type oxides

  14. Comparison of shrinkage related properties of various patch repair materials

    Science.gov (United States)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  15. Integration of environmentally compatible soldering technologies for waste minimization

    International Nuclear Information System (INIS)

    Hosking, F.M.

    1992-01-01

    There has been a concentrated effort throughout the international microelectronics industry to phase out chlorofluorocarbon (CFC) materials and alleviate the serious problem of ozone depletion created by the release of CFCS. The development of more environmentally compatible manufacturing technologies is the cornerstone of this effort. Alternative materials and processes for cleaning and soldering have received special attention. Electronic. soldering typically utilizes rosin-based fluxes to promote solder wettability. Flux residues must be removed from the soldered parts when high product reliability is essential. Halogenated or CFC solvents have been the principle chemicals used to clean the residues. With the accelerated push to eliminate CFCs in the US by 1995, CFC-free solvents, aqueous-based cleaning, water soluble or ''no clean'' fluxes, and fluxless soldering technologies are being developed and quickly integrated into manufacturing practice. Sandia's Center for Solder Science and Technology has been ch g a variety of fluxless and alternative soldering technologies for DOE's waste minimization program. The work has focused on controlled atmosphere, laser, and ultrasonic fluxless soldering, protective metallic and organic coatings, and fluxes which have water soluble or low solids-based chemistries. With the increasing concern that Pb will also be banned from electronic soldering, Sandia has been characterizing the wetting, aging, and mechanical properties of Pb-fire solder alloys. The progress of these integrated studies will be discussed. Their impact on environmentally compatible manufacturing will be emphasized. Since there is no universal solution to the various environmental, safety, and health issues which currently face industry, the proposed technologies offer several complementary materials and processing options from which one can choose

  16. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility.

    Science.gov (United States)

    Dawlee, S; Jayabalan, Muthu

    2011-10-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  17. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility

    International Nuclear Information System (INIS)

    Dawlee, S; Jayabalan, Muthu

    2011-01-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  18. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Dawlee, S; Jayabalan, Muthu, E-mail: muthujayabalan@rediffmail.com [Polymer Science Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012 (India)

    2011-10-15

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  19. Compatibility with European law of opt-out legislation

    International Nuclear Information System (INIS)

    Feldmann, U.

    2000-01-01

    Should consensus with the utilities not be reached, Federal Minister for the Environment, Mr. Trittin, repeatedly announced to introduce opt-out legislation 'by dissent'. Both the constitutionality of such legislation and its compatibility with European law are topics of controversial debate in the literature. The decision taken by the Bavarian cabinet on February 8 in this year, to use all political and legal means against shutting down German nuclear power plants and, for this purpose, even to approach the European Commission on grounds of potential violation of European law, are reason enough to deal in more detail with the compatibility of an opt-out law with the Euratom Treaty and the EC Treaty. As the opt-out law does not yet exist, these considerations can only be of a theoretical nature. However, this is the working hypothesis assumed: Reprocessing is banned as of the entry into force of the opt-out law. This ban includes moving nuclear waste abroad for reprocessing. The peaceful use of nuclear power for electricity generation in power reactors operated for thirty years is forbidden. Older reactors may be run only for a transition period of another three years. (This includes abandoning the promotion purpose in the German Atomic Energy Act and a ban on building new power reactors). However, the operating life may be distributed in a flexible way. This contribution indicates that there are sound reasons and interesting approaches, respectively, in the literature for assuming that opting out by means of legislation, coupled with a ban on reprocessing, at least constitutes a violation of the freedom for goods and/or services. However, this cannot be derived unequivocally from either the Euratom Treaty or the EC Treaty or from rulings by the European Court of Justice. Ultimately, compatibility with European law of the ban on reprocessing can be decided only by the European Court of Justice. (orig.) [de

  20. Chemical compatibility study of Cooley L18KU, Herculite, and Elephant Mat with Hanford tank waste

    International Nuclear Information System (INIS)

    Mercado, J.E.

    1998-01-01

    An independent chemical compatibility review of various wrapping and absorbent/padding materials was conducted to evaluate resistance to chemicals and constituents present in liquid waste from the Hanford underground tanks. These materials will be used to wrap long-length contaminated equipment when such equipment is removed from the tanks and prepared for transportation and subsequent disposal or storage. The materials studied were Cooley L18KU, Herculite, and Elephant Mat. The study concludes that these materials are appropriate for use in this application

  1. A review of magnetic resonance imaging compatible manipulators in surgery.

    Science.gov (United States)

    Elhawary, H; Zivanovic, A; Davies, B; Lampérth, M

    2006-04-01

    Developments in magnetic resonance imaging (MRI), coupled with parallel progress in the field of computer-assisted surgery, mean that an ideal environment has been created for the development of MRI-compatible robotic systems and manipulators, capable of enhancing many types of surgical procedure. However, MRI does impose severe restrictions on mechatronic devices to be used in or around the scanners. In this article a review of the developments in the field of MRI-compatible surgical manipulators over the last decade is presented. The manipulators developed make use of different methods of actuation, but they can be reduced to four main groups: actuation transmitted through hydraulics, pneumatic actuators, ultrasonic motors based on the piezoceramic principle and remote manual actuation. Progress has been made concerning material selection, position sensing, and different actuation techniques, and design strategies have been implemented to overcome the multiple restrictions imposed by the MRI environment. Most systems lack the clinical validation needed to continue on to commercial products.

  2. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL; Bunce, Michael [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL

    2011-04-01

    The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.

  3. Compatibility of reduced activation ferritic/martensitic steels with liquid breeders

    International Nuclear Information System (INIS)

    Muroga, T.; Nagasaka, T.; Kondo, M.; Sagara, A.; Noda, N.; Suzuki, A.; Terai, T.

    2008-10-01

    The compatibility of Reduced Activation Ferritic/Martensitic Steel (RAFM) with liquid Li and molten-salt Flibe have been characterized and accessed. Static compatibility tests were carried out in which the specimens were immersed into liquid Li or Flibe in isothermal autoclaves. Also carried out were compatibility tests in flowing liquid Li by thermal convection loops. In the case of liquid Li, the corrosion rate increased with temperature significantly. The corrosion was almost one order larger for the loop tests than for the static tests. Chemical analysis showed that the corrosion was enhanced when the level of N in Li is increased. Transformation from martensitic to ferritic phase and the resulting softening were observed in near-surface area of Li-exposed specimens, which were shown to be induced by decarburization. In the case of Flibe, the corrosion loss was much larger in a Ni crucible than in a RAFM crucible. Both fluorides and oxides were observed on the surfaces. Thus, the key corrosion process of Flibe is the competing process of fluoridation and oxidation. Possible mechanism of the enhanced corrosion in Ni crucible is electrochemical circuit effect. It was suggested that the corrosion loss rate of RAFM by liquid Li and Flibe can be reduced by reducing the level of impurity N in Li and avoiding the use of dissimilar materials in Flibe, respectively. (author)

  4. The Effect of Birth Order on Roommate Compatibility

    Science.gov (United States)

    Schuh, John H.; Williams, Ondre J.

    1977-01-01

    A group of students were matched on the basis of compatible birth order; another was matched on the basis of conflicting birth order. After a month's experience in a residence hall their compatibility was examined. Students with conflicting birth order were more compatible than those with the same birth order. (Author)

  5. [Magnetic resonance compatibility research for coronary mental stents].

    Science.gov (United States)

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  6. Container-content compatibility studies: a pharmaceutical team's integrated approach.

    Science.gov (United States)

    Laschi, Alda; Sehnal, Natacha; Alarcon, Antoine; Barcelo, Beatrice; Caire-Maurisier, François; Delaire, Myriam; Feuilloley, Marc; Genot, Stéphanie; Lacaze, Catherine; Pisarik, Luc; Smati, Christophe

    2009-01-01

    Container-content compatibility studies are required as part of the submission of a new product market authorization file or for a change relating to the primary product-contact packaging. Many regulatory publications and guidances are available in the USA, Europe, and Japan. However these publications and guidances are not sufficiently precise enough to allow for consistent interpretation and implementation of the technical requirements. A working group has been formed by the French Society of Pharmaceutical Science and Technology (SFSTP) in order to propose guidance for container-content interaction studies that meet both European and US requirements, and allows consistent and standardized information to be presented by the industry to the regulators. When a pharmaceutical drug product remains in prolonged contact with a material, the two critical points to consider are the drug product's quality and safety. A pharmaceutical evaluation of the container-content relationship should be done based on the knowledge of the contact material (e.g., type, physicochemical properties), its manufacturing processes (e.g., the type of sterilization that could potentially alter the interactions), and the formulation components involved in contact with this material (e.g., physicochemical properties, pharmaceutical presentation, route of administration). Quality is evaluated using the stability study performed on the product. Safety is partially evaluated with the stability study and is analyzed in conjunction with toxicity testing, specifically with cytotoxicity testing. The toxicity aspect is the key point of the container-content compatibility study and of patient safety. Migration tests are conducted when an interaction is suspected, or found based on previous results, to identify the component responsible for this interaction and to help select a new material if needed. Therefore, such tests are perhaps not the best ones to use for the purpose of safety evaluation

  7. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.S. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Wang, H.J.; Feng, L. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Shao, L.X. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Zou, C.W., E-mail: qingyihaiyanas@163.com [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China)

    2014-08-30

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent.

  8. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    International Nuclear Information System (INIS)

    Tang, X.S.; Wang, H.J.; Feng, L.; Shao, L.X.; Zou, C.W.

    2014-01-01

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent

  9. Thermoelectric materials evaluation program. Quarterly technical task report No. 46

    International Nuclear Information System (INIS)

    Hampl, E.F. Jr.

    1976-02-01

    This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables

  10. Quadratic Poisson brackets compatible with an algebra structure

    OpenAIRE

    Balinsky, A. A.; Burman, Yu.

    1994-01-01

    Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.

  11. Skin compatibility and antimicrobial studies on biofunctionalized polypropylene fabric

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Sadiya [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India); Gupta, Amlan; Sharma, Deepika [Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102 (India); Dalal, Prashansa [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India); Gupta, Bhuvanesh, E-mail: bgupta@textile.iitd.ernet.in [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India)

    2016-12-01

    The aim of this study was the development of antimicrobial fabric which can be used as skin contacting material. The nanosilver loaded bioactive nanogels of polyacrylamide were prepared by gamma irradiation process and the particle size was observed to be in the range of 10–50 nm. In this study, we used polyethylene glycol as carrier for the combination of functional nanogel and essential oils together. Plasma functionalized polypropylene fabric was used as the base material for the bio-immobilization. Bioactive emulsion was coated on the fabric which exhibited excellent antimicrobial activity against Staphylococcus aureus and Escherichia coli. Skin irritation studies were carried out over a period of 3 d on Swiss albino mice. Histopathology studies of the fabric did not show adverse inflammatory response in contact with the skin. The biofunctionalized fabric offers appear to be promising material for skin contacting applications. - Highlights: • Antimicrobial processing of PP fabric for skin contacting material • Polyethylene glycol is used for the carrier of bioactive nanogels. • Synergistic effect of functional nanosilver and essential oil has been investigated. • Skin compatibility and histopathological studies of material have been observed.

  12. ITER plasma facing materials. Some critical considerations

    International Nuclear Information System (INIS)

    Barabash, V.; Dietz, K.J.; Federici, G.; Janeschitz, G.; Matera, R.; Tanaka, S.

    1995-01-01

    The description of current status with the choice of materials for ITER plasma facing components is presented. The main problem with lifetime of divertor elements is the particle and energy-induced erosion of armour materials. A solution for the first operation phase consists in using Be as an armour for the first wall and the divertor, however other possible materials (e.g. W) could be considered. (orig.)

  13. Chemical resistance of valve packing and sealing materials to molten nitrate salt

    International Nuclear Information System (INIS)

    Bradshaw, R.W.

    1986-01-01

    Chemical compatibility between a number of compression packings and sealing materials and molten sodium nitrate-potassium nitrate was evaluated at temperatures of 288 0 C (550 0 F), 400 0 C (750 0 F), and 565 0 C (1050 0 F). The types of packing materials tested included graphite, asbestos, PTFE, aramid, glass and ceramic fibers; perfluoroelastomers, and boron nitride. Several materials were chemically resistant to the molten salt at 288 0 C, but the compatibility of packings at 400 0 C and 565 0 C was not adequate. The chemical and physical phenomena affecting compatibility are discussed and recommendations concerning materials selection are made

  14. Biomedical Nanoparticles: Overview of Their Surface Immune-Compatibility

    Directory of Open Access Journals (Sweden)

    Olimpia Gamucci

    2014-02-01

    Full Text Available Diagnostic- and therapeutic release-aimed nanoparticles require the highest degree of biocompatibility. Some physical and chemical characteristics of such nanomaterials are often at odds with this requirement. For instance, metals with specific features used as contrast agents in magnetic resonance imaging need particular coatings to improve their blood solubility and increase their biocompatibility. Other examples come from the development of nanocarriers exploiting the different characteristics of two or more materials, i.e., the ability to encapsulate a certain drug by one core-material and the targeting capability of a different coating surface. Furthermore, all these “human-non-self” modifications necessitate proofs of compatibility with the immune system to avoid inflammatory reactions and resultant adverse effects for the patient. In the present review we discuss the molecular interactions and responses of the immune system to the principal nanoparticle surface modifications used in nanomedicine.

  15. Tank Farm Waste Transfer Compatibility Program

    International Nuclear Information System (INIS)

    FOWLER, K.D.

    2001-01-01

    The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process

  16. 9 CFR 3.7 - Compatible grouping.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Compatible grouping. 3.7 Section 3.7... Cats 1 Animal Health and Husbandry Standards § 3.7 Compatible grouping. Dogs and cats that are housed...; (c) Puppies or kittens 4 months of age or less may not be housed in the same primary enclosure with...

  17. Tank Farm Waste Transfer Compatibility Program

    International Nuclear Information System (INIS)

    FOWLER, K.D.

    2000-01-01

    The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process

  18. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes

    International Nuclear Information System (INIS)

    Motte, Fabrice; Falcoz, Quentin; Veron, Emmanuel; Py, Xavier

    2015-01-01

    Highlights: • ESEM and XRD characterizations have been performed. • Compatibility of these ceramics with the conventional binary Solar Salt is tested at 500 °C. • Tested ceramics have relevant properties to store thermal energy up to 1000 °C. • Feasibility of using ceramics as filler materials in thermocline is demonstrated. - Abstract: This paper demonstrates the feasibility of using several post-industrial ceramics as filler materials in a direct thermocline storage configuration. The tested ceramics, coming from several industrial processes (asbestos containing waste treatment, coal fired power plants or metallurgic furnaces) demonstrate relevant properties to store thermal energy by sensible heat up to 1000 °C. Thus, they represent at low-cost a promising, efficient and sustainable approach for thermal energy storage. In the present study, the thermo-chemical compatibility of these ceramics with the conventional binary Solar Salt is tested at medium temperature (500 °C) under steady state. In order to determine the feasibility of using such ceramics as filler material, Environmental Scanning Electron Microscopy (ESEM) and X-Ray Diffraction (XRD) characterizations have been performed to check for their chemical and structural evolution during corrosion tests. The final objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as structured filler material. Most of the tested ceramics present an excellent corrosion resistance in molten Solar Salt and should significantly decrease the current cost of concentrated solar thermal energy storage system

  19. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads

    Directory of Open Access Journals (Sweden)

    Igor Rocha

    2018-03-01

    Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  20. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    Science.gov (United States)

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  1. Compatibility of yttria (Y{sub 2}O{sub 3}) with liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Takaaki; Yoneoka, Toshiaki; Terai, Takayuki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Compatibility of Y{sub 2}O{sub 3} sintered specimens with liquid lithium was tested at 773K. No configuration change was observed with a slight increase of thickness for 1419 hr. Lithium-yttrium complex oxide (LiYO{sub 2}) was formed on the surface, and the inner part changed to gray or black nonstoichiometric Y{sub 2}O{sub 3-X} with lower electrical resistibility. It is concluded that Y{sub 2}O{sub 3} has a possibility as a ceramic coating material for liquid blankets if it can be made into a dense coating on the surface of piping materials. (author)

  2. Basic considerations for the preparation of performance testing materials as related to performance evaluation acceptance criteria

    International Nuclear Information System (INIS)

    McCurdy, D.E.; Morton, J.S.

    2001-01-01

    The preparation of performance testing (PT) materials for environmental and radiobioassay applications involves the use of natural matrix materials containing the analyte of interest, the addition (spiking) of the analyte to a desired matrix (followed by blending for certain matrices) or a combination of the two. The distribution of the sample analyte concentration in a batch of PT samples will reflect the degree of heterogeneity of the analyte in the PT material and/or the reproducibility of the sample preparation process. Commercial and government implemented radioanalytical performance evaluation programs have a variety of acceptable performance criteria. The performance criteria should take into consideration many parameters related to the preparation of the PT materials including the within and between sample analyte heterogeneity, the accuracy of the quantification of an analyte in the PT material and to what 'known' value will a laboratory's result be compared. How sample preparation parameters affect the successful participation in performance evaluation (PE) programs having an acceptance criteria established as a percent difference from a 'known' value or in PE programs using other acceptance criteria, such as the guidance provided in ANSI N42.22 and N13.30 is discussed. (author)

  3. NPP control command: Considerations for the future

    International Nuclear Information System (INIS)

    Trapp, J.P.

    1998-01-01

    Recent years have seen considerable improvements in the performance available from instrumentation, computerized data acquisition and processing systems, signal processing and related display processing systems. This progress implies the need for a complete rethink of the approach to future surveillance, control and protection systems for use with nuclear reactors, especially regarding new reactor systems. These new systems will in the future need to ensure full compatibility between safety improvements and the enhanced economic competitively of nuclear power. This paper presents an exercise covering the main functions that can as of now be considered for future applications in this field. (author)

  4. Development of Membrane Contactors Using Phase Change Solvents for CO2 Capture: Material Compatibility Study

    OpenAIRE

    Ansaloni, Luca; Asad, Arif; Çiftja, Arlinda; Knuutila, Hanna K; Deng, Liyuan

    2016-01-01

    Phase change solvents represent a new class of CO2 absorbents with a promising potential to reduce the energy penalty associated with CO2 capture. However, their high volatility is a major concern for their use at the industrial scale. It is believed that membrane absorption offers a solution to overcome this issue, particularly if the membrane can prevent amine evaporation. In the present work a compatibility study is carried out in order to identify suitable membranes in a membrane contacto...

  5. A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy

    Directory of Open Access Journals (Sweden)

    Bingkun Zhu

    2011-03-01

    Full Text Available Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  6. A compatible control algorithm for greenhouse environment control based on MOCC strategy.

    Science.gov (United States)

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  7. The compatibility of basalt and MgO with liquid sodium

    International Nuclear Information System (INIS)

    Jung, J.; Runge, H.

    1984-01-01

    The interaction of commercially available basalt and MgO-ceramics with liquid sodium has been investigated up to 900 0 C. The two basalt qualities even reacted with sodium at low temperatures and short exposure times. Some inserted MgO-ceramics exhibited the expected good sodium compatibility even at 900 0 C for 100 hours. The reaction mechanisms, the volume changes and the mass balance are discussed. In the thermal shock experiments, the basaltic materials were totally disintegrated while the MgO-qualities remained compact. (author)

  8. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  9. Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of 'wild-type Sf ' and new self-compatibility alleles encoding inactive S-RNases.

    Science.gov (United States)

    Bosković, Radovan I; Tobutt, Kenneth R; Ortega, Encarnación; Sutherland, Bruce G; Godini, Angelo

    2007-12-01

    Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele Sf, which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele Sf was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S30, the sequence of which showed it to be the wild-type of Sf so that Sf can be regarded as a stylar part mutant S30 degrees . These findings indicate Sf may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, 'Patalina', had a new self-compatibility allele lacking RNase activity, Sn5, which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.

  10. Mycelial compatibility groups and pathogenicity of Sclerotinia ...

    African Journals Online (AJOL)

    ... was determined by mycelial compatibility grouping (MCG) and isolate aggressiveness comparisons. MCG, host specificity and aggressiveness of S. sclerotiorum isolates were assessed. Isolate pairs were designated compatible when no barrage zone formed at sites of contact. They were designated incompatible when a ...

  11. 47 CFR 76.1622 - Consumer education program on compatibility.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Consumer education program on compatibility. 76... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1622 Consumer education program on compatibility. Cable system operators shall provide a consumer education program on compatibility matters to...

  12. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

    Science.gov (United States)

    Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.

    2018-04-01

    The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

  13. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    Mochizuki, Akira; Ogawa, Tatsuhisa; Okamoto, Keishi; Nakatani, Tatsuyuki; Nitta, Yuki

    2011-01-01

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  14. fMRI-compatible rehabilitation hand device

    Directory of Open Access Journals (Sweden)

    Tzika Aria

    2006-10-01

    Full Text Available Abstract Background Functional magnetic resonance imaging (fMRI has been widely used in studying human brain functions and neurorehabilitation. In order to develop complex and well-controlled fMRI paradigms, interfaces that can precisely control and measure output force and kinematics of the movements in human subjects are needed. Optimized state-of-the-art fMRI methods, combined with magnetic resonance (MR compatible robotic devices for rehabilitation, can assist therapists to quantify, monitor, and improve physical rehabilitation. To achieve this goal, robotic or mechatronic devices with actuators and sensors need to be introduced into an MR environment. The common standard mechanical parts can not be used in MR environment and MR compatibility has been a tough hurdle for device developers. Methods This paper presents the design, fabrication and preliminary testing of a novel, one degree of freedom, MR compatible, computer controlled, variable resistance hand device that may be used in brain MR imaging during hand grip rehabilitation. We named the device MR_CHIROD (Magnetic Resonance Compatible Smart Hand Interfaced Rehabilitation Device. A novel feature of the device is the use of Electro-Rheological Fluids (ERFs to achieve tunable and controllable resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. The device consists of four major subsystems: a an ERF based resistive element; b a gearbox; c two handles and d two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. The smart hand device is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time. Results Laboratory tests of the device indicate that it was able to meet its design objective to resist up to approximately 50% of the maximum handgrip force. The detailed

  15. Material and design considerations of FBGA reliability performance

    International Nuclear Information System (INIS)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M.

    2004-01-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization

  16. Material and design considerations of FBGA reliability performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M

    2004-09-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization.

  17. Technical considerations in materials management policy development

    International Nuclear Information System (INIS)

    Avci, H.; Goldberg, M.

    1996-01-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE's DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized

  18. Materials considerations relative to multibarrier waste isolation

    International Nuclear Information System (INIS)

    McCoy, H.E.; Griess, J.C.

    1981-07-01

    The environmental conditions associated with the storage of radioactive wastes are reviewed, and the corrosion of potential waste containment materials under these conditions is evaluated. The desired service life of about 1000 years is beyond the time period for which existing corrosion data can be extrapolated with certainty; however, titanium alloys seem to offer the most promise. The mechanical requirements for canisters and overpacks are considered and several candidate materials are selected. Designs for a canister and an overpack have been developed, and these are used to estimate the costs for three possible materials of construction

  19. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  20. 47 CFR 76.1621 - Equipment compatibility offer.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Equipment compatibility offer. 76.1621 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1621 Equipment compatibility offer. Cable system... offer to supply each subscriber with special equipment that will enable the simultaneous reception of...

  1. Multiparty Compatibility for Concurrent Objects

    Directory of Open Access Journals (Sweden)

    Roly Perera

    2016-06-01

    Full Text Available Objects and actors are communicating state machines, offering and consuming different services at different points in their lifecycle. Two complementary challenges arise when programming such systems. When objects interact, their state machines must be "compatible", so that services are requested only when they are available. Dually, when objects refine other objects, their state machines must be "compliant", so that services are honoured whenever they are promised. In this paper we show how the idea of multiparty compatibility from the session types literature can be applied to both of these problems. We present an untyped language in which concurrent objects are checked automatically for compatibility and compliance. For simple objects, checking can be exhaustive and has the feel of a type system. More complex objects can be partially validated via test cases, leading to a methodology closer to continuous testing. Our proof-of-concept implementation is limited in some important respects, but demonstrates the potential value of the approach and the relationship to existing software development practices.

  2. Container material and design considerations for storage of low-level radioactive waste

    International Nuclear Information System (INIS)

    Temus, C.J.

    1987-01-01

    With the threat of increased burial site restrictions and increased surcharges; the ease with which waste is sent to the burial site has been reduced. For many generators of waste the only alternative after maximizing volume reduction efforts is to store the waste. Even after working through the difficult decision of deciding what type of storage facility to have, the decision of what type of container to store the waste in has to still be made. This paper explores the many parameters that affect not only the material selection but also the design. The proper selection of materials affect the ability of the container to survive the storage period. The material selection also directly affects the design and utilization of the storage facility. The impacts to the facility include the functional aspects as well as its operational cost and liability as related to such things as fire insurance and active environmental control systems. The advantages and disadvantages of many of the common systems such as carbon steel, various coatings, polyethylene, stainless steel, composites and concrete will be discussed and evaluated. Recognizing that the waste is to be disposed of in the future differentiates it from waste that is shipped directly to the disposal site. The stored waste has to have the capability to be handled not only once like the disposal site waste but potentially several times before ultimate disposal. This handling may be by several different systems both at the storage facility and the burial site. Some of these systems due to ALARA considerations are usually remote requiring various interfaces, while not interfering with handling, transportation or disposal operations

  3. Preliminary study of blood compatibility of PTFE copolymerized with DMAA through gamma rays compared to PET and aflon films

    International Nuclear Information System (INIS)

    Queiroz, A.A.A. de; Higa, O.Z.

    1990-01-01

    The new method developed by Imai and Nosa was used for the evaluation of blood compatibility of poly(tetrafluoroethylene) (PTFE) grafted films with N,N - dimethylacrylamide (DMAA). The amount of the formed thrombus was measured gravimetrically at an appropriate interval of time after calcium chloride being added to the ACD blood in contact to the tested material. It was concluded that the method of modifying the polymeric surface of PTFE by grafting the hydrophilic monomer DMAA improved its blood compatibility. (author)

  4. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  5. Molecular cooperativity and compatibility via full atomistic simulation

    Science.gov (United States)

    Kwan Yang, Kenny

    Civil engineering has customarily focused on problems from a large-scale perspective, encompassing structures such as bridges, dams, and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility -- e.g., how to make disparate material building blocks behave in unison. This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems. Following a macro-scale pattern where the compatibility of deformation plays a vital role in the structural design, novel geometrical cooperativity metrics based on the gyration tensor are derived with the intention to define nano-cooperativity in a generalized way. The metrics objectively describe the general size, shape and orientation of the structure. To validate the derived measures, a pair of ideal macromolecules

  6. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  7. The role of certified reference materials in material control and accounting

    International Nuclear Information System (INIS)

    Turel, S.P.

    1979-01-01

    One way of providing an adequate material control and accounting system for the nuclear fuel cycle is to calculate material unaccounted for (MUF) after a physical inventory and to compare the limit of error of the MUF value (LEMUF) against prescribed criteria. To achieve a meaningful LEMUF, a programme for the continuing determination of systematic and random errors is necessary. Within this programme it is necessary to achieve traceability of all Special Nuclear Material (SNM) control and accounting measurements to an International/National Measurement System by means of Certified Reference Materials. SNM measurements for control and accounting are made internationally on a great variety of materials using many diverse measurement procedures by a large number of facilities. To achieve valid overall accountability over this great variety of measurements there must be some means of relating all these measurements and their uncertainties to each other. This is best achieved by an International/National Measurement System (IMS/NMS). To this end, all individual measurement systems must be compatible to the IMS/NMS and all measurement results must be traceable to appropriate international/national Primary Certified Reference Materials. To obtain this necessary compatibility for any given SNM measurement system, secondary certified reference materials or working reference materials are needed for every class of SNM and each type of measurement system. Ways to achieve ''traceability'' and the various types of certified reference material are defined and discussed in this paper. (author)

  8. Beam energy variability and other system considerations for a deuteron linac materials research neutron source

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    There are many overall system aspects and tradeoffs that must be considered in the design of a deuteron linac based neutron source for materials research, in order to obtain a facility with the best possible response to the user's needs, efficient and reliable operation and maintenance, at the optimum construction and operating cost. These considerations should be included in the facility design from the earliest conceptual stages, and rechecked at each stage to insure consistency and balance. Some of system requirements, particularly that of beam energy variability and its implications, are outlined in this talk. (author)

  9. Common Fixed Points for Weakly Compatible Maps

    Indian Academy of Sciences (India)

    The purpose of this paper is to prove a common fixed point theorem, from the class of compatible continuous maps to a larger class of maps having weakly compatible maps without appeal to continuity, which generalized the results of Jungck [3], Fisher [1], Kang and Kim [8], Jachymski [2], and Rhoades [9].

  10. In the working memory of the beholder: Art appreciation is enhanced when visual complexity is compatible with working memory.

    Science.gov (United States)

    Sherman, Aleksandra; Grabowecky, Marcia; Suzuki, Satoru

    2015-08-01

    What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer's experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer's visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres, and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer's visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder's general visual capacity in shaping art appreciation. (c) 2015 APA, all rights reserved).

  11. Compatibility of Meropenem with Different Commercial Peritoneal Dialysis Solutions.

    Science.gov (United States)

    Wiesholzer, Martin; Winter, Alexandra; Kussmann, Manuel; Zeitlinger, Markus; Pichler, Petra; Burgmann, Heinz; Reznicek, Gottfried; Poeppl, Wolfgang

    ♦ BACKGROUND: Intraperitoneal administration of antimicrobial agents is recommended for the treatment of peritoneal dialysis (PD)-related peritonitis. For home-based antimicrobial therapy it is common to supply patients with PD fluid bags with admixed antibiotic. Thus, the compatibility of meropenem with different PD fluids (PDFs), namely Extraneal, Physioneal 1.36% and Physioneal 2.27% (all Baxter Healthcare Corp., Deerfield, IL, USA), was investigated under varying storage conditions. ♦ METHODS: Meropenem (Venus Pharma, Werne, Germany) was stored at 6°C and 25°C over 14 days and at 37°C over 24 hours. Drug concentration over time was determined using high performance liquid chromatography, drug activity by a diffusion disk method, diluent stability by visual inspection and drug adsorption was calculated. Blank PD fluids and deionized water were used as comparator solutions. ♦ RESULTS: Compared to water, the stability of meropenem was minimally lower in Extraneal but markedly reduced in both Physioneal solutions. No significant drug adsorption was detected for any PDF investigated. ♦ CONCLUSIONS: Meropenem is stable and compatible with Extraneal and might be stored for up to a week at refrigeration temperature (6°C). A loss of ~20% of meropenem after 2 days at room temperature should be considered. Mixed Physioneal appears not suitable for storage at any temperature after meropenem has been admixed. A considerable drug degradation due to the warming up to body temperature through heating plates should further be taken into account in clinical practice. Copyright © 2017 International Society for Peritoneal Dialysis.

  12. Towards water compatible MIPs for sensing in aqueous media.

    Science.gov (United States)

    Horemans, F; Weustenraed, A; Spivak, D; Cleij, T J

    2012-06-01

    When synthesizing molecularly imprinted polymers (MIPs), a few fundamental principles should be kept in mind. There is a strong correlation between porogen polarity, MIP microenvironment polarity and the imprinting effect itself. The combination of these parameters eventually determines the overall binding behavior of a MIP in a given solvent. In addition, it is shown that MIP binding is strongly influenced by the polarity of the rebinding solvent. Because the use of MIPs in biomedical environments is of considerable interest, it is important that these MIPs perform well in aqueous media. In this article, various approaches are explored towards a water compatible MIP for the target molecule l-nicotine. To this end, the imprinting effect together with the MIP matrix polarity is fine-tuned during MIP synthesis. The binding behavior of the resulting MIPs is evaluated by performing batch rebinding experiments that makes it possible to select the most suitable MIP/non-imprinted polymer couple for future application in aqueous environments. One method to achieve improved compatibility with water is referred to as porogen tuning, in which porogens of varying polarities are used. It is demonstrated that, especially when multiple porogens are mixed, this approach can lead to superior performance in aqueous environments. Another method involves the incorporation of polar or non-polar comonomers in the MIP matrix. It is shown that by carefully selecting these monomers, it is also possible to obtain MIPs, which can selectively bind their target in water. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Preformulation compatibility screening of dika fat-drug mixtures ...

    African Journals Online (AJOL)

    Differential scanning calorimetry (DSC) was used as screening technique for assessing compatibility between dika fat and drug substances. Dika fat was found to be compatible with aspirin, ascorbic acid, paracetamol, sulphanilamide, phenylpropanolamine hydrochloride, bromopheniramine maleate, chlorpheniramire ...

  14. Compatibility of polyamide 6.6 and low density polyethylene polymeric blend using electron beam ionizing radiation

    International Nuclear Information System (INIS)

    Feitosa, Marcos Antonio Fernandes

    2008-01-01

    The plastic industry has recognized that mixture of polymers, called polymeric blends, yields new materials with improve properties and better features of those of the polymer blended. In most of the cases, blends are formed by immiscible components presenting separated phases, micro-structures or morphologies. One of the main factors for good mechanical performance is the interfacial adhesion of the blend components. The improvement of miscibility between the polymer components and the enhancement of blend performance is denominated of compatibility. This compatibility can be achieved by chemical methods or using ionizing radiation. The present work has as a main objective the study of the effect of the ionizing radiation from electron beam in the compatibility of the polyamide (PA) 6.6 and low density polyethylene (LDPE) 75%/25% wt blend, in the range of applied doses from 50 to 250 kGy. The compatibility effect was evaluated by mechanical test, which has shown improvement in the tensile strength and hardness properties and a reduction of the impact resistant. This mechanical behavior can be considered as a combination effect of the cross-linking, induced in the molecular structure on the polymers, and the increase of the miscibility of the blend components. The degree of compatibility was evaluated by the behavior of the glass transition temperatures (T g ) for the blend components obtained by dynamic mechanical analysis (DMA) measurements. The results have shown that the values of T g for PA 6.6 and LDPE get near by 8 deg C showing that the ionizing radiation have promoted a compatibility effect on the irradiated blend. (author)

  15. Application of remote handling compatibility on ITER plant

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.; Mills, S.F.; Tesini, A.

    2011-01-01

    The ITER plant will require fully remote maintenance during its operational life. For this to be effective, safe and efficient the plant will have to be developed in accordance with remote handling (RH) compatibility requirements. A system for ensuring RH compatibility on plant designed for Tokamaks was successfully developed and applied, inter alia, by the authors when working at the JET project. The experience gained in assuring RH compatibility of plant at JET is now being applied to RH relevant ITER plant. The methodologies required to ensure RH compatibility of plant include the standardization of common plant items, standardization of RH features, availability of common guidance on RH best practice and a protocol for design and interface review and approval. The protocol in use at ITER is covered by the ITER Remote Maintenance Management System (IRMMS) defines the processes and utilization of management controls including Plant Definition Forms (PDF), Task Definition Forms (TDFs) and RH Compatibility Assessment Forms (RHCA) and the ITER RH Code of Practice. This paper will describe specific examples where the authors have applied the methodology proven at JET to ensure remote handling compatibility on ITER plant. Examples studied are: ·ELM coils (to be installed in-vessel behind the Blanket Modules) - handling both in-vessel, in Casks and at the Hot Cell as well as fully remote installation and connection (mechanical and electrical) in-vessel. ·Neutral beam systems (in-vessel and in the NB Cell) - beam sources, cesium oven, beam line components (accessed in the NB Cell) and Duct Liner (remotely replaced from in-vessel). ·Divertor (in-vessel) - cooling pipe work and remotely operated electrical connector. The RH compatibility process can significantly affect plant design. This paper should therefore be of interest to all parties who develop ITER plant designs.

  16. Psychological compatibility of women's handball team

    Directory of Open Access Journals (Sweden)

    Shalar O.G.

    2010-02-01

    Full Text Available The results of study of psychological compatibility of womanish handball commands are presented. The psychological climate of command is investigational. Certain and adapted methods of estimation of psychological compatibility in the command playing types of sport. Psychological tests allow to expose the strong and weak sides of psychology of sportsmen. These information can be used for more effective program of psychological preparation of sportsmen development. It is necessary to improve determination of separate individual qualities of personality of sportsmen.

  17. Multi-disciplinary System Engineering and the Compatibility Modeling Language (UCML

    Directory of Open Access Journals (Sweden)

    Carolin Eckl

    2009-04-01

    Full Text Available Over time, technical systems such as automobiles or spacecraft have grown more complex due to the incorporation of increasingly more and different components. The integration of these components, which are frequently designed and constructed within separate departments and companies may lead to malfunctioning systems as their interplay cannot be tested within the earlier phases of development. This paper introduces compatibility management as one solution to the problems of late component integration. Compatibility management is carried out on a common crossdomain model of the system and therefore allows to test compatibility early on. We show how compatibility management can be embedded into the phased development of ECSS-M-30A and present the (Unified Compatibility Modeling Language ((UCML, which is used for the underlying cross-domain model. A case study demonstrates the application of (UCML in the development of a small satellite and explains different degrees of compatibility.

  18. Elements of a compatible optimization theory for coupled systems; Elements d'une theorie de l'optimisation compatible de systemes couples

    Energy Technology Data Exchange (ETDEWEB)

    Bonnemay, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [French] La premiere these traite de l'optimalisation compatible des systemes couples. Une theorie du jeu a deux joueurs et a somme non nulle est d'abord developpee. Ses conclusions sont etendues ensuite au jeu a un nombre fini quelconque de joueurs. Apres cette etude essentiellement statique, l'aspect dynamique du probleme est introduit dans les jeux evolutifs. L'application du principe du maximum de PONTRYAGIN permet d'enoncer un theoreme d'optimalite compatible qui constitue une condition necessaire. (auteur)

  19. A distributed incentive compatible pricing mechanism for P2P networks

    Science.gov (United States)

    Zhang, Jie; Zhao, Zheng; Xiong, Xiao; Shi, Qingwei

    2007-09-01

    Peer-to-Peer (P2P) systems are currently receiving considerable interest. However, as experience with P2P networks shows, the selfish behaviors of peers may lead to serious problems of P2P network, such as free-riding and white-washing. In order to solve these problems, there are increasing considerations on reputation system design in the study of P2P networks. Most of the existing works is concerning probabilistic estimation or social networks to evaluate the trustworthiness for a peer to others. However, these models can not be efficient all the time. In this paper, our aim is to provide a general mechanism that can maximize P2P networks social welfare in a way of Vickrey-Clarke-Groves family, while assuming every peer in P2P networks is rational and selfish, which means they only concern about their own outcome. This mechanism has some desirable properties using an O(n) algorithm: (1) incentive compatibility, every peer truly report its connection type; (2) individually rationality; and (3) fully decentralized, we design a multiple-principal multiple-agent model, concerning about the service provider and service requester individually.

  20. New Commitment Options: Compatibility with Emissions Trading

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This paper considers different options for quantitative greenhouse gas emission commitments from the standpoint of their technical compatibility with emissions trading. These are dynamic targets, binding targets with price caps, non-binding targets, sector-wide targets/mechanisms, action targets, allowances and endowments, and long-term permits. This paper considers these options from the standpoint of their compatibility with emissions trading.

  1. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility.

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

  2. Sealing of boreholes using natural, compatible materials: Granular salt

    International Nuclear Information System (INIS)

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-01-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10 -16 m 2 to 10 -18 m 2 (10 -4 darcy to 10 -6 ). The visco-plastic behavior of the host rock coupled with the granular salts ability to ''heal'' or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required

  3. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  4. Compatibility Grab Sampling and Analysis Plan for FY 2000

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements to confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b)

  5. Compatibility and testing of electronic components

    CERN Document Server

    Jowett, C E

    2013-01-01

    Compatibility and Testing of Electronic Components outlines the concepts of component part life according to thresholds of failure; the advantages that result from identifying such thresholds; their identification; and the various tests used in their detection. The book covers topics such as the interconnection of miniature passive components; the integrated circuit compatibility and its components; the semiconductor joining techniques; and the thin film hybrid approach in integrated circuits. Also covered are topics such as thick film resistors, conductors, and insulators; thin inlays for el

  6. Generate tri-directional spectra-compatible time histories using HHT method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Xie, Wei-Chau, E-mail: xie@uwaterloo.ca; Pandey, Mahesh D.

    2016-11-15

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  7. Generate tri-directional spectra-compatible time histories using HHT method

    International Nuclear Information System (INIS)

    Li, Bo; Xie, Wei-Chau; Pandey, Mahesh D.

    2016-01-01

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  8. Assessing materials handling and storage capacities in port terminals

    Science.gov (United States)

    Dinu, O.; Roşca, E.; Popa, M.; Roşca, M. A.; Rusca, A.

    2017-08-01

    Terminals constitute the factual interface between different modes and, as a result, buffer stocks are unavoidable whenever transport flows with different discontinuities meet. This is the reason why assessing materials handling and storage capacities is an important issue in the course of attempting to increase operative planning of logistic processes in terminals. Proposed paper starts with a brief review of the compatibilities between different sorts of materials and corresponding transport modes and after, a literature overview of the studies related to ports terminals and their specialization is made. As a methodology, discrete event simulation stands as a feasible technique for assessing handling and storage capacities at the terminal, taking into consideration the multi-flows interaction and the non-uniform arrivals of vessels and inland vehicles. In this context, a simulation model, that integrates the activities of an inland water terminal and describes the essential interactions between the subsystems which influence the terminal capacity, is developed. Different scenarios are simulated for diverse sorts of materials, leading to bottlenecks identification, performance indicators such as average storage occupancy rate, average dwell or transit times estimations, and their evolution is analysed in order to improve the transfer operations in the logistic process

  9. Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices.

    Science.gov (United States)

    Hridya, V K; Jayabalan, M

    2009-12-01

    Polyurethane potting compound based on aromatic isocyanurate of polymeric MDI, poly propylene glycol (PPG400) and trimethylol propane (TMP) has significant favourable properties, good pot life and setting characteristics. The cured potting compound of this formulation has appreciable thermal stability and mechanical properties. In vitro biostability of cured potting compound has been found to be excellent without any significant degradation in simulated physiological media and chemical environment. Studies on blood-material interaction and cytotoxicity reveal in vitro blood compatibility and compatibility with cells of this potting compound.

  10. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  11. Fertilization compatibility of spawning corals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes experimental results of fertilization assays to characterize genetic compatibility between individual parental genotypes. Targeted species...

  12. How MRI Compatible is 'MRI Compatible'? A Systematic Comparison of Artifacts Caused by Biopsy Needles at 3.0 and 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, Tobias, E-mail: tpenzkofer@ukaachen.de [RWTH Aachen University Hospital, Department of Diagnostic and Interventional Radiology (Germany); Peykan, Nilufar [Klinikum Osnabrueck, Roentgen- und Strahlenklinik (Germany); Schmidt, Katja [RWTH Aachen University Hospital, Department of Diagnostic and Interventional Radiology (Germany); Krombach, Gabriele [Justus-Liebig University Giessen, Department of Radiology (Germany); Kuhl, Christiane K. [RWTH Aachen University Hospital, Department of Diagnostic and Interventional Radiology (Germany)

    2013-12-15

    Purpose: This study was designed to systematically investigate artifacts caused by interventional needles recommended for use in MRI, with focus on field strength, needle/mandrin type, orientation and sequence. Methods: Eight different MRI compatible needles were placed in porcine tissue and examined at 1.5 and 3.0 T with balanced-steady-state-free-precession (B-SSFP) and T1-weighted-spoiled-gradient-echo (T1-SPGR) sequences in different orientations to B{sub 0}. Artifact diameters with regards to the primary, inner, and secondary, outer artifacts were assessed and statistically evaluated. Results: The types and degree of artifacts varied considerably, especially between different mandrin types even for the same needles. Orientation of the needle in the magnetic field was another main contributor to the artifact dimensions. Less important factors were the type of pulse sequence and field strength. Artifacts ranged from 0.7 mm (steel, 0 Degree-Sign , B-SSFP, 3.0 T, inner) to 71.4 mm (nitinol, 90 Degree-Sign , B-SSFP, 1.5 T, outer). Inner artifact diameters in B-SSFP were slightly larger (8.2 {+-} 5.7 mm) than those in T1-SPGR (7.6 {+-} 5.4 mm) and comparable between 1.5 and 3.0 T (e.g., 8.0 vs. 8.4 mm, B-SSFP). Conclusions: Although all were sold as 'MR compatible,' the artifacts differed greatly between needle types, and even more so for different mandrins. The results suggest an empirical approach to the needle choice based on lesion type and approach angle.

  13. Military electronic equipment shelter electrical wiring design of electromagnetic compatibility

    International Nuclear Information System (INIS)

    Yang Xuemei

    2012-01-01

    Electromagnetic compatibility is the military electronics shelter design is an important indicator of the shelter's electrical wiring is the key to the design of electromagnetic compatibility. Introduces the basic concepts of electromagnetic compatibility, and focusing on the shelter layout design problems that need attention, and to solve these problems. (authors)

  14. Compatibility of potential containment materials with molten lithium hydride at 800 C

    International Nuclear Information System (INIS)

    Pawel, S.J.

    1993-01-01

    A series of compatibility experiments has been performed for several stainless steels, carbon steels, and a nickel-base alloy in molten lithium hydride at 800 C for comparison with previous experiments on type 304L stainless steel. The results indicate that the mechanism of corrosion is the same for each of 304L, 304, 316L, and 309 stainless steel and that very similar corrosion in molten LiH is expected for each stainless alloy. Deviation from parabolic kinetics at extended exposure time for each stainless alloy is attributed in part to weight gains associated with lithium penetration. Stabilized (Nb and Ti) low carbon (< 0.06%) steels are observed to be essentially inert in LiH at 800 C with stable carbides and no grain growth. Mild steel (type 1020) is decarburized rapidly and exhibits extensive grain growth in LiH at 800 C. Both steels exhibit weight gains during exposure to molten LiH that are also related in part to lithium penetration. Alloy X (UNS N06002) exhibits extreme corrosion with essentially linear kinetics and dissolution of nickel sufficient to form subsurface voids. (orig.)

  15. Innovative design for FAST divertor compatible with remote handling, electromagnetic and mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, Giuseppe, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Cacace, Maurizio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Crescenzi, Fabio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Labate, Carmelenzo [CREATE, University of Naples Parthenope, Via Acton 38, 80133 Napoli (Italy); Lanzotti, Antonio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Lucca, Flavio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Marzullo, Domenico; Mozzillo, Rocco [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Pagani, Irene [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, Giuseppe; Roccella, Selanna [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Viganò, Fabio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)

    2015-10-15

    Highlights: • The conceptual design of FAST divertor has been carried out through a continuous process of requirements refinement and design optimization (V-model approach), in order to achieve a design suited to the needs, RH compatible and ITER-like. • Thermal, structural and electromagnetic analyses have been performed, resulting in requirements refinement. • FAST divertor is now characterized by more realistic, reliable and functional features, satisfying thermo-mechanical capabilities and the remote handling (RH) compatibility. - Abstract: Divertor is a crucial component in Tokamaks, aiming to exhaust the heat power and particles fluxes coming from the plasma during discharges. This paper focuses on the optimization process of FAST divertor, aimed at achieving required thermo-mechanical capabilities and the remote handling (RH) compatibility. Divertor RH system final layout has been chosen between different concept solutions proposed and analyzed within the principles of Theory of Inventive Problem Solving (TRIZ). The design was aided by kinematic simulations performed using Digital Mock-Up capabilities of Catia software. Considerable electromagnetic (EM) analysis efforts and top-down CAD approach enabled the design of a final and consistent concept, starting from a very first dimensioning for EM loads. In the final version here presented, the divertor cassette supports a set of tungsten (W) actively cooled tiles which compose the inner and outer vertical targets, facing the plasma and exhausting the main part of heat flux. W-tiles are assembled together considering a minimum gap tolerance (0.1–0.5 mm) to be mandatorily respected. Cooling channels have been re-dimensioned to optimize the geometry and the layout of coolant volume inside the cassette has been modified as well to enhance the general efficiency.

  16. 30 CFR 57.6400 - Compatibility of electric detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 57.6400...

  17. 30 CFR 56.6400 - Compatibility of electric detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 56.6400...

  18. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  19. Considerations for Contractile Electroactive Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, Lenore; Schramm, David; Meixler, Lewis D.; Gentile, Charles A.; Ascione, George; Tilson, Carl; Pagdon, Kelsey

    2010-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and now contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input. These recent developments are important attributes in the field of electroactivity because of the ability of contraction and contraction-expansion to produce biomimetric motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to determine the mechanisms during contraction of these EAPs.

  20. Performance of ventilators compatible with magnetic resonance imaging: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Okuda, Nao; Izawa, Masayo; Onodera, Mutsuo; Nishimura, Masaji

    2015-03-01

    Magnetic resonance imaging (MRI) is indispensable for diagnosing brain and spinal cord abnormalities. Magnetic components cannot be used during MRI procedures; therefore, patient support equipment must use MRI-compatible materials. However, little is known of the performance of MRI-compatible ventilators. At commonly used settings, we tested the delivered tidal volume (V(T)), F(IO2), PEEP, and operation of the high-inspiratory-pressure-relief valves of 4 portable MRI-compatible ventilators (Pneupac VR1, ParaPAC 200DMRI, CAREvent MRI, iVent201) and one ICU ventilator (Servo-i). Each ventilator was set in volume control/continuous mandatory ventilation mode. Breathing frequency and V(T) were tested at 10 breaths/min and 300, 500, and 700 mL, respectively. The Pneupac VR1 has fixed V(T) and frequency combinations, so it was tested at V(T) = 300 mL and 20 breaths/min, V(T) = 500 mL and 12 breaths/min, and V(T) = 800 mL and 10 breaths/min. F(IO2) was 0.6 and 1.0. At the air-mix setting, F(IO2) was fixed at 0.5 with the Pneupac VR1, 0.45 with the ParaPAC 200DMRI, and 0.6 with the CAREvent MRI. PEEP was set at 5 and 10 cm H2O, and pressure relief was set at 30 and 40 cm H2O. V(T) error varied widely among ventilators (-28.1 to 25.5%). As V(T) increased, error decreased with the Pneupac VR1, ParaPAC 200DMRI, and CAREvent MRI (P ventilators (-29.2 to 42.5%). Only the Servo-i maintained V(T), F(IO2), and PEEP at set levels. The pressure-relief valves worked in all ventilators. None of the MRI-compatible ventilators maintained V(T), F(IO2), and PEEP at set levels. Vital signs of patients with unstable respiratory mechanics should be monitored during transport and MRI. Copyright © 2015 by Daedalus Enterprises.

  1. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jiang-Jen Lin

    2010-04-01

    Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  2. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Science.gov (United States)

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  3. The in vivo blood compatibility of bio-inspired small diameter vascular graft: effect of submicron longitudinally aligned topography

    Science.gov (United States)

    2013-01-01

    Background Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility. Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which mimicked the tunica intima of the native arterial vessels and were tested in Sprague–Dawley (SD) rats. Methods Vascular grafts with aligned and smooth topography were prepared by electrospinning and were connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively. Results We observed a significant higher patency rate (p = 0.021) and less thrombus formation in vascular graft with aligned topography than vascular graft with smooth topography. However, no significant difference between the adhesion rates on both vascular grafts (smooth/aligned: 0.35‰/0.12‰, p > 0.05) was observed. Moreover, both vascular grafts had few adherent activated platelets on the luminal surface. Conclusion Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography. Therefore, it has considerable potential for using in clinical application. PMID:24083888

  4. Polyurethane Organosilicate Nanocomposites as Blood Compatible Coatings

    Directory of Open Access Journals (Sweden)

    Johnson H. Y. Chung

    2012-02-01

    Full Text Available Polymer clay nanocomposites (NCs show remarkable potential in the field of drug delivery due to their enhanced barrier properties. It is hypothesised that well dispersed clay particles within the polymer matrix create a tortuous pathway for diffusing therapeutic molecules, thereby resulting in more sustained release of the drug. As coatings for medical devices, these materials can simultaneously modulate drug release and improve the mechanical performance of an existing polymer system without introducing additional materials with new chemistries that can lead to regulatory concerns. In this study, polyurethane organosilicate nanocomposites (PUNCs coated onto stainless steel wires were evaluated for their feasibility as blood compatible coatings and as drug delivery systems. Heparin was selected as the model drug to examine the impact of silicate loading and modifier chain length in modulating release. Findings revealed that better dispersion was achieved from samples with lower clay loadings and longer alkyl chains. The blood compatibility of PUNCs as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time (TGT, p = 0.659 or the peak thrombin (p = 0.999 of polyurethane (PU. PUNC coatings fabricated in this research were not cytotoxic as examined by the cell growth inhibition assay and were uniformly intact, but had slightly higher growth inhibition compared to PU possibly due to the presence of organic modifiers (OM. The addition of heparin into PUNCs prolonged the TGT, indicating that heparin was still active after the coating process. Cumulative heparin release profiles showed that the majority of heparin released was from loosely attached residues on the surface of coils. The addition of heparin further prolonged the TGT as compared to coatings without added heparin, but a slight decrease in heparin activity was observed in the NCs

  5. Considerations in the development of subsurface containment barrier performance standards

    International Nuclear Information System (INIS)

    Dunstan, S.; Zdinak, A.P.; Lodman, D.

    1997-01-01

    The U.S. Department of Energy (DOE) is supporting subsurface barriers as an alternative remedial option for management of contamination problems at their facilities. Past cleanup initiatives have sometimes proven ineffective or extremely expensive. Economic considerations coupled with changing public and regulatory philosophies regarding remediation techniques makes subsurface barriers a promising technology for future cleanup efforts. As part of the initiative to develop subsurface containment barriers as an alternative remedial option, DOE funded MSE Technology Applications, Inc. (MSE) to conduct a comprehensive review to identify performance considerations for the acceptability of subsurface barrier technologies as a containment method. Findings from this evaluation were intended to provide a basis for selection and application of containment technologies to address waste problems at DOE sites. Based on this study, the development of performance standards should consider: (1) sustainable low hydraulic conductivity; (2) capability to meet applicable regulations; (3) compatibility with subsurface environmental conditions; (4) durability and long-term stability; (5) repairability; and (6) verification and monitoring. This paper describes the approach for determining considerations for performance standards

  6. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  7. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shizhong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: shizwang@sohu.com; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: meilin.liu@mse.gatech.edu

    2009-06-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  8. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Wang Shizhong; He, Qiong; Liu Meilin

    2009-01-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  9. Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility

    Directory of Open Access Journals (Sweden)

    V. Sedenka

    2013-04-01

    Full Text Available The paper presents a time-domain finite-element solver developed for simulations related to solving electromagnetic compatibility issues. The software is applied as a module integrated into a computational framework developed within a FP7 European project High Intensity Radiated Field – Synthetic Environment (HIRF SE able to simulate a large class of problems. In the paper, the mathematical formulation is briefly presented, and special emphasis is put on the user point of view on the simulation tool-chain. The functionality is demonstrated on the computation of shielding effectiveness of two composite materials. Results are validated through experimental measurements and agreement is confirmed by automatic feature selective algorithms.

  10. Amorphous electron-accepting materials for organic optoelectronics

    NARCIS (Netherlands)

    Ganesan, P.

    2007-01-01

    The importance of organic materials for use in electronic devices such as OLEDs, OFETs and photovoltaic cells has increased significantly over the past decade. Organic materials have been attractive candidates for such electronic devices because of their compatibility with high-throughput,

  11. Introduction of a MR-compatible system for extracorporal perfusion of vital organs for MR-guided procedures. First-experiences

    International Nuclear Information System (INIS)

    Gaffke, Gunnar; Nagel, Stefan; Hegemann, Olaf; Speck, Ulrich; Grosse-Siestrup, Christian; Jungnickel, Kerstin; Stroszczynski, Christian

    2009-01-01

    Purpose:To represent a MRI-compatible perfusion-system for extracorporeal perfusion of vital organs which permits the realisation of realistic experiments in a MR scanner. Material and methods: We performed MR examinations of explanted porcine livers and MR-guided interventions in porcine livers. Explanted organs were hemo-perfused under physiological conditions during the experiments. MR-sequences for diagnostic and interventional examinations were used. Results:The evaluated system was MRI-compatible. The achieved image quality of the used sequences showed excellent anatomical resolution. Planned experiments can be carried out with relatively low expenditure. Diagnostic as well as interventional investigations can be carried out. The used organs showed a stable function within physiological parameters up to 4 hours. Conclusion:It is possible to perform ex vivo experiments under in vivo conditions with this system. With the used MR-compatible system MR-guided experimental interventions and thermal ablations can be carried out in explanted organs under in vivo conditions. (orig.)

  12. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Role of Fabrication on Materials Compatibility in APT Target/Blanket

    International Nuclear Information System (INIS)

    Iyer, N.; Louthan, M.R. Jr.; Dunn, K.; Fisher, D.L.

    1998-09-01

    This paper summarizes several of the options associated with the fabrication of selected target/blanket components. In addition, the materials characterization technologies required to validate these components performance is presented

  14. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  15. Technical considerations for detection of and response to illicit trafficking in radioactive materials

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Arlt, R.; Cunningham, J.; Gayral, J.P.; Kravchenko, N.; Smith, D.; York, R.

    2001-01-01

    it is illicit or 'innocent'. Innocent materials are typically medical radionuclides administered to patient, legal shipments or naturally occurring radioactive materials (NORM). If the radiological hazard is significant, neutron radiation is observed, indicating the presence of nuclear materials or mechanical damage of the item containing the source raises suspicion of contamination, it will be necessary to adopt a tactical response mechanism. A detailed generic model has been developed for a tactical response plan including incident command structures, cordon control areas, casualty handling at the scene, requirements for seizure and temporary storage of radioactive materials, considerations on liaison with the media and incident investigation techniques. Further important information relates to mitigation of health hazards, casualty management, needs for planning, equipment and training, transport arrangements for radioactive materials, decontamination procedures and hints for working with the media. (author)

  16. VARYING DEGREE OF GRAFTING COMPATIBILITY BETWEEN CV. CHARDONNAY, MERLOT AND DIFFERENT GRAPEVINE ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Slavica TODIĆ

    2006-02-01

    Full Text Available Level of affi nity between grapevine rootstock and Vitis vinifera as scion, quality of reproductive materials and technological actions in grapevine rootstock production process determine success in grapevine rootstock production in large extent. Practical training showed that difference in level of compatibility between grapevine rootstock and grafted Vitis vinifera cultivars are existing. Direct effects of these differences are unequal yield of fi rst class grafted grapevine rootlings. In this paper, level of compatibility in nursery between clones of cv. Chardonnay BCL 75, VCR4 and cv. Merlot R18, MCL 519 and grapevine rootstocks Kober 5BB (Vitis berlandieri x V. riparia, SO4 (V. berlandieri x V. riparia and 41B (Chasselas x V.berlandieri were investigated. The trial was conducted in commercial grapevine nursery located in Velika Drenova, Serbia. As an index of compatibility, grade of high quality grapevine grafted rootlings, dry matter in mature shoots and root system development were used. Grafting was done by `tongue grafting` indoor technique. Stratifi cation was done in sand, on temperature of the stratifi cation material of 26-28oC, and humidity of around 90%. Grafted cuttings were waxed twice: before stratifi cation, and before planting in the nursery. Grafted rootlings were classed in two classes according to regulations of quality, (Yugoslav Offi cial Register, 26/79. Grafted rootlings that did not satisfi ed standard criteria were discarded. Both clones of cv. Chardonnay gave the highest percentage of I class grafted rootlings on grapevine rootstock 41B: clone BCL 75 – 60% and clone VCR4 – 61%. In the same combination, those grapevine grafted rootlings had the highest weight of the root system. Lower percentage of obtained I class grafted rootlings was established on rootstock Kober 5BB, while statistically signifi cantly lower yields were obtained on grapevine rootstock SO4: clone BCL75 – 43% and clone VCR4 – 48%. Dry

  17. [Compatible biomass models of natural spruce (Picea asperata)].

    Science.gov (United States)

    Wang, Jin Chi; Deng, Hua Feng; Huang, Guo Sheng; Wang, Xue Jun; Zhang, Lu

    2017-10-01

    By using nonlinear measurement error method, the compatible tree volume and above ground biomass equations were established based on the volume and biomass data of 150 sampling trees of natural spruce (Picea asperata). Two approaches, controlling directly under total aboveground biomass and controlling jointly from level to level, were used to design the compatible system for the total aboveground biomass and the biomass of four components (stem, bark, branch and foliage), and the total ground biomass could be estimated independently or estimated simultaneously in the system. The results showed that the R 2 of the one variable and bivariate compatible tree volume and aboveground biomass equations were all above 0.85, and the maximum value reached 0.99. The prediction effect of the volume equations could be improved significantly when tree height was included as predictor, while it was not significant in biomass estimation. For the compatible biomass systems, the one variable model based on controlling jointly from level to level was better than the model using controlling directly under total above ground biomass, but the bivariate models of the two methods were similar. Comparing the imitative effects of the one variable and bivariate compatible biomass models, the results showed that the increase of explainable variables could significantly improve the fitness of branch and foliage biomass, but had little effect on other components. Besides, there was almost no difference between the two methods of estimation based on the comparison.

  18. Wonderful Things? A Consideration of 3D Modelling of Objects in Material Culture Research

    Directory of Open Access Journals (Sweden)

    Molloy Barry

    2018-04-01

    Full Text Available The role of 3D modelling in archaeology is increasing exponentially, from fieldwork to architecture to material culture studies. For the study of archaeological objects the roles of digital and print models for public engagement has been much considered in recent literature. For model makers, focus has typically been placed on exceptional and visually striking objects with inherent appeal. In contrast, this paper explores some of the potential roles for 3D digital models for routine artefact research and publication. Particular emphasis is placed on the challenges this technology raises for archaeological theory and practice. Following a consideration of how 3D models relate to established illustration and photographic traditions, the paper evaluates some of the unique features of 3D models, focussing on both positive and negative aspects of these. This is followed by a discussion of the role of potential research connections between digital and craft models in experimental research. Our overall objective is to emphasise a need to engage with the ways in which this gradual development has begun to change aspects of longestablished workflows. In turn, the increasing use of this technology is argued to have wider ramifications for the development of archaeology, and material culture studies in particular, as a discipline that requires reflection.

  19. 47 CFR 76.630 - Compatibility with consumer electronics equipment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...

  20. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  1. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition

  2. [Compatibility of family and medical profession].

    Science.gov (United States)

    Bundy, B D; Bellemann, N; Weber, M-A

    2011-09-01

    The compatibility of family and profession is especially difficult for employees in medical professions because of shift work and overtime. It seems that in the future women are going to represent the majority of medical professionals. Hence, with the manifest lack of physicians social aspects will also play a bigger role in the choice of the place of employment. In most families the classic role model prevails although women are well educated and men also set a high value on the compatibility of family and profession and would like to take parental leave and work in flexible working hours. This represents a chance, especially for radiology.

  3. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  4. Considerations for Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  5. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux

  6. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  7. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  8. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1979-01-01

    Objective of the Materials Interaction Test (MIT) is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low level neutron fields. Compatibility, structural properties, and chemical transformations will be studied. The multiple test samples are contained within test capsules connected end-to-end to form a test train. Only passive instrumentation has been used to monitor temperatures and record neutron fluence. The test train contains seven capsules: three to test compatibility, two for structural tests, and two for chemical transformation studies. The materials tested are potential candidates for the spent fuel package canister and repository geologies

  9. DOE handbook: Design considerations

    International Nuclear Information System (INIS)

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline

  10. DOE handbook: Design considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  11. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates.

    Science.gov (United States)

    Wagner, Peter J

    2012-02-23

    Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.

  12. Proliferation Resistance and Material Type considerations within the Collaborative Project for a European Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Renda, Guido; Alim, Fatih; Cojazzi, Giacomo GM.

    2015-01-01

    The collaborative project for a European Sodium Fast Reactor (CP‑ESFR) is an international project where 25 European partners developed Research & Development solutions and concepts for a European sodium fast reactor. The project was funded by the 7. European Union Framework Programme and covered topics such as the reactor architectures and components, the fuel, the fuel element and the fuel cycle, and the safety concepts. Within sub‑project 3, dedicated to safety, a task addressed proliferation resistance considerations. The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Evaluation Methodology has been selected as the general framework for this work, complemented by punctual aspects of the IAEA‑INPRO Proliferation Resistance methodology and other literature studies - in particular for material type characterization. The activity has been carried out taking the GIF PR and PP Evaluation Methodology and its Addendum as the general guideline for identifying potential nuclear material diversion targets. The targets proliferation attractiveness has been analyzed in terms of the suitability of the targets’ nuclear material as the basis for its use in nuclear explosives. To this aim the PR and PP Fissile Material Type measure was supplemented by other literature studies, whose related metrics have been applied to the nuclear material items present in the considered core alternatives. This paper will firstly summarize the main ESFR design aspects relevant for PR following the structure of the GIF PR and PP White Paper template. An analysis on proliferation targets is then discussed, with emphasis on their characterization from a nuclear material point of view. Finally, a high‑level ESFR PR analysis according to the four main proliferation strategies identified by the GIF PR and PP Evaluation Methodology (concealed diversion, concealed misuse, breakout, clandestine production in clandestine facilities) is

  13. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1995-01-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of ∼1 g/m 2 /hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals

  14. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  15. Consideration on the current status and issues of sensitive information management concerning the physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    Inamura, Tomoaki; Madarame, Haruki

    2009-01-01

    The confidentiality system concerning the physical protection of nuclear materials and nuclear facilities was enacted by revision of the Nuclear Reactor Regulation Law in 2005. We made a comparative analysis with the information security in governmental agencies or financial sectors, in order to consider the way the sensitive information management concerning the physical protection of nuclear materials and nuclear facilities should be. The considerations in this paper are as follows. (1) In order to secure a suitable level of security, close cooperation should be achieved among related governmental agencies. (2) A cycle that continuously evaluates whether suitable management is performed should be established. (3) Excessive secretiveness should be eliminated. (4) An information-sharing system among the related persons beyond the frame of governmental agencies and electricity companies should be established. (5) Improvement in the social acceptability of the sensitive information management is important. (6) Although it is important to perform evaluation by the consideration of suitable balance with information disclosure, it is also important that it is positively shown to society. (author)

  16. Compatibility and performance of separators in Li/SOCl(sub 2) cells

    Science.gov (United States)

    Cieslak, Wendy R.

    1988-05-01

    Degradation of many common separator materials, such as polyethylene, excludes their uses in SOCl2 electrolytes. Degradation of the binder in an otherwise chemically-resistant separator may also eliminate it for use in this aggressive environment. We are interested in a separator that does not degrade during more than 10-year storage in either active or reserve cells. Even in reserve configurations, degradation may occur by reaction with Li. Additionally, the separator must be flexible and strong enough for a spiral-wound cell, and it must have the proper thickness and porosity for optimum performance. The properties of three categories of separator materials have been investigated: polymers, glasses and ceramics. We have performed compatibility tests in LiAlCl4/SOCl2 electrolyte and in contact with Li (no electrolyte), and we have assessed electrochemical performance in laboratory cells. The purpose of these tests was to screen a wide variety of materials to identify several candidate separators so that a specific product might readily be chosen on the basis of application requirements.

  17. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  18. Testing of Baker Flo-XS Pipeline Drag-Reducing Additive. Compilation of Tests and Results

    National Research Council Canada - National Science Library

    Guiliano, John

    2000-01-01

    ... 0.8 ppm for errors in injection). Through a CRADA with Buckeye Pipeline Inc, thermal stability testing of the additive was completed. Additionally, low temperature testing, additive/additive compatibility testing and specification testing of additized fuel was also completed. Material compatibility testing was also taken into consideration.

  19. Blood compatibility of magnesium and its alloys.

    Science.gov (United States)

    Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine

    2015-10-01

    Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  20. Analysis and Application of Antagonism Compound Prescription Compatibility

    Science.gov (United States)

    Li, Mengyan; Wang, Can; Bai, Ming; Miao, Mingsan

    2018-01-01

    Deer horn glue is deer family animals deer or red deer horn made of solid plastic animal medicine, according to Chinese medicine “seven emotions together” theory, the antler and other Chinese herbal medicines compatibility can be better play its Medicinal value. In this paper, the chemical composition, pharmacological effects, compatibility analysis, clinical application and classic ancient prescriptions of antler are reviewed in recent years.

  1. A novel multi-level IC-compatible surface microfabrication technology for MEMS with independently controlled lateral and vertical submicron transduction gaps

    Science.gov (United States)

    Cicek, Paul-Vahe; Elsayed, Mohannad; Nabki, Frederic; El-Gamal, Mourad

    2017-11-01

    An above-IC compatible multi-level MEMS surface microfabrication technology based on a silicon carbide structural layer is presented. The fabrication process flow provides optimal electrostatic transduction by allowing the creation of independently controlled submicron vertical and lateral gaps without the need for high resolution lithography. Adopting silicon carbide as the structural material, the technology ensures material, chemical and thermal compatibility with modern semiconductor nodes, reporting the lowest peak processing temperature (i.e. 200 °C) of all comparable works. This makes this process ideally suited for integrating capacitive-based MEMS directly above standard CMOS substrates. Process flow design and optimization are presented in the context of bulk-mode disk resonators, devices that are shown to exhibit improved performance with respect to previous generation flexural beam resonators, and that represent relatively complex MEMS structures. The impact of impending improvements to the fabrication technology is discussed.

  2. A novel multi-level IC-compatible surface microfabrication technology for MEMS with independently controlled lateral and vertical submicron transduction gaps

    International Nuclear Information System (INIS)

    Cicek, Paul-Vahe; Elsayed, Mohannad; Nabki, Frederic; El-Gamal, Mourad

    2017-01-01

    An above-IC compatible multi-level MEMS surface microfabrication technology based on a silicon carbide structural layer is presented. The fabrication process flow provides optimal electrostatic transduction by allowing the creation of independently controlled submicron vertical and lateral gaps without the need for high resolution lithography. Adopting silicon carbide as the structural material, the technology ensures material, chemical and thermal compatibility with modern semiconductor nodes, reporting the lowest peak processing temperature (i.e. 200 °C) of all comparable works. This makes this process ideally suited for integrating capacitive-based MEMS directly above standard CMOS substrates. Process flow design and optimization are presented in the context of bulk-mode disk resonators, devices that are shown to exhibit improved performance with respect to previous generation flexural beam resonators, and that represent relatively complex MEMS structures. The impact of impending improvements to the fabrication technology is discussed. (paper)

  3. 47 CFR 20.19 - Hearing aid-compatible mobile handsets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Hearing aid-compatible mobile handsets. 20.19... COMMERCIAL MOBILE RADIO SERVICES § 20.19 Hearing aid-compatible mobile handsets. (a) Scope of section..., consistent with its own marketing practices. However, if a manufacturer assigns different model device...

  4. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas; Xiao, Kang; Wu, Jinbo; Yi, Xin; Gong, Xiuqing; Foulds, Ian G.; Wen, Weijia

    2013-01-01

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  5. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas

    2013-10-10

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  6. The problem of mechanical compatibility of natural building stones in restoration of monuments. Part I: Composite specimens

    Science.gov (United States)

    Kourkoulis, Stavros K.; Ninis, Nikolaos L.

    2011-12-01

    The mechanical compatibility of natural building stones used in the restoration of ancient monuments as substitutes of the authentic material is studied in this short two-paper series. Attention is focused on the porous oolitic limestone of Kenchreae used in the erection of the monuments at the Epidaurean Asklepieion. In Part I experimental results are presented concerning the mechanical properties and constants of both the authentic (ancient and freshly quarried) material and the various stones proposed so far as possible substitutes. It is concluded that only the Kenchreae stone satisfactorily simulates the behaviour of the material used by ancient Greeks. The other types of stones have a substantially different character and their incorporation in the restoration should be treated with caution. In an effort to quantify the influence of the substitute stone on the authentic one, a series of experiments were carried out using composite specimens made from equal parts of authentic and substitute material with various inclination angles of the adhesion plane with respect to the load. It was concluded that the mechanical properties of the composite specimen are strongly affected by this angle and the dependence is not monotonous. In addition, strong strain discontinuities are recorded in the vicinity of the adhesion plane, which are responsible for the initiation of cracking in either of the two materials. It was pointed out that in some cases the incompatibility causes violation of the basic restoration principle concerning the protection of the ancient material. In this context certain geometrical configurations of the boundaries of the specimens are examined in Part II as a possible means of modifying the mechanical behaviour of the substitute stones, in order to make them as compatible as possible with the authentic material.

  7. Compatibility and kidney transplantation: The way to go.

    Directory of Open Access Journals (Sweden)

    Ilias I.N. eDoxiadis

    2012-05-01

    Full Text Available Long lasting debates in the past questioned the relevance of any sort of compatibility in post mortal kidney transplantation. It is for no say that fully compatible transplants have the highest chances for a long patient and graft survival. In the present report the use of HLA-DR as a representative of the Major Histocompatibility Complex class II genes in the allocation of organs is discussed. The major arguments are the easiness to offer to patients a compatible graft in a relatively short waiting time, an increase in graft survival, the less sensitization during the transplantation period, and the lower waiting time for a retransplant. Even if the number of organ donors remains the same a lowering of the mean waiting time is expected because of the longer period of graft survival.

  8. Elements of a compatible optimization theory for coupled systems; Elements d'une theorie de l'optimisation compatible de systemes couples

    Energy Technology Data Exchange (ETDEWEB)

    Bonnemay, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [French] La premiere these traite de l'optimalisation compatible des systemes couples. Une theorie du jeu a deux joueurs et a somme non nulle est d'abord developpee. Ses conclusions sont etendues ensuite au jeu a un nombre fini quelconque de joueurs. Apres cette etude essentiellement statique, l'aspect dynamique du probleme est introduit dans les jeux evolutifs. L'application du principe du maximum de PONTRYAGIN permet d'enoncer un theoreme d'optimalite compatible qui constitue une condition necessaire. (auteur)

  9. A variable torque motor compatible with magnetic resonance imaging.

    Science.gov (United States)

    Roeck, W W; Ha, S-H; Farmaka, S; Nalcioglu, O

    2009-04-01

    High magnetic fields used in magnetic resonance imaging (MRI) do not allow the employment of conventional motors due to various incompatibility issues. This paper reports on a new motor that can operate in or near high field magnets used for MRI. The motor was designed to be operational with the MRI equipment and could be used in a rotating imaging gantry inside the magnet designed for dual modality imaging. Furthermore, it could also be used for image guided robotic interventional procedures inside a MRI system if so desired. The prototype motor was developed using magnetic resonance (MR) compatible materials, and its functionality with MR imaging was evaluated experimentally by measuring the performance of the motor and its effect on the MR image quality. Since in our application, namely, single photon emission tomography, the motor has to perform precise stepping of the gantry in small angular steps the most important parameter is the start-up torque. The experimental results showed that the motor has a start-up torque up to 1.37 Nm and rotates at 196 rpm when a constant voltage difference of 12 V is applied at a magnetic field strength of 1 T. The MR image quality was quantified by measuring the signal-to-noise of images acquired under different conditions. The results presented here indicate that the motor is MR compatible and could be used for rotating an imaging gantry or a surgical device inside the magnet.

  10. Compatibility Between Electric Components in Wind Farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana Aristi, Iván

    2011-01-01

    The paper describes a method for investigation of the compatibility between electric components in wind farms by identifying critical resonances at different points of an offshore wind farm (OWF), based on systematic variation of critical parameters. In this way, the design of future OWF can...... be improved at a very early stage of the process. It is also revealed what parameters are the most important ones when considering compatibility. It was observed that a change of capacitance in the collection grid shifts the resonance peaks. A change in WT transformer capacitances influences the admittance...

  11. The study on compatibility of polymer matrix resins with liquid oxygen

    International Nuclear Information System (INIS)

    Wang Ge; Li Xiaodong; Yan Rui; Xing Suli

    2006-01-01

    Liquid oxygen (LOX) polymer composite tank is very important in the development of next generation of launch vehicles. To study LOX compatible polymeric matrix resins, three kinds of epoxy resins were studied. LOX impact test was used to evaluate polymers' compatibility with LOX. Thermogravimetric analysis was used to analyze polymers' oxidation. It seemed that polymers with better anti-oxidation properties, characterized by lower oxidation weight gain, lower weight loss and lower flash point, behaved better LOX compatibility. Fourier transform infrared attenuated total reflection spectroscopy confirmed the chemical reactions during the LOX impact process on the surface of polymers were similar to the oxidation reaction in gaseous oxygen (GOX) at high temperatures, which indicated the chemical mechanism of LOX compatibility of polymers was just oxidation reaction. In this way, two new epoxy resins with desirable LOX compatibility were acquired by modification

  12. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Science.gov (United States)

    2010-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...

  13. Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials

    International Nuclear Information System (INIS)

    Soong, Ken

    2011-01-01

    The accelerating gradient in a laser-driven dielectric accelerating structure is often limited by the laser damage threshold of the structure. For a given laser-driven dielectric accelerator design, we can maximize the accelerating gradient by choosing the best combination of the accelerator's constituent material and operating wavelength. We present here a model of the damage mechanism from ultrafast infrared pulses and compare that model with experimental measurements of the damage threshold of bulk silicon. Additionally, we present experimental measurements of a variety of candidate materials, thin films, and nanofabricated accelerating structures.

  14. Dissociating Compatibility Effects and Distractor Costs in the Additional Singleton Paradigm

    Directory of Open Access Journals (Sweden)

    Charles eFolk

    2013-07-01

    Full Text Available The interpretation of identity compatibility effects associated with irrelevant items outside the nominal focus of attention has fueled much of the debate over early versus late selection and perceptual load theory. However, compatibility effects have also played a role in the debate over the extent to which the involuntary allocation of spatial attention (i.e., attentional capture is completely stimulus-driven or whether it is contingent on top-down control settings. For example, in the context of the additional singleton paradigm, irrelevant color singletons have been found to produce not only an overall cost in search performance but also significant compatibility effects. This combination of search costs and compatibility effects has been taken as evidence that spatial attention is indeed allocated in a bottom-up fashion to the salient but irrelevant singletons. However, it is possible that compatibility effects in the additional singleton paradigm reflect parallel processing of identity associated with low perceptual load rather than an involuntary shift of spatial attention. In the present experiments, manipulations of load were incorporated into the traditional additional singleton paradigm. Under low load conditions, both search costs and compatibility effects were obtained, replicating previous studies. Under high load conditions, search costs were still present, but compatibility effects were eliminated. This dissociation suggests that the costs associated with irrelevant singletons may reflect filtering processes rather than the allocation of spatial attention.

  15. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes

    International Nuclear Information System (INIS)

    Karaipekli, Ali; Biçer, Alper; Sarı, Ahmet; Tyagi, Vineet Veer

    2017-01-01

    Highlights: • Expanded perlite/n-eicosane composite for thermal energy storage was prepared. • Addition of CNTs increases considerably the thermal conductivity of the composite. • The composite PCM including 1 wt% CNTs is promising material. - Abstract: Paraffins constitute a class of solid-liquid organic phase change materials (PCMs). However, low thermal conductivity limits their feasibility in thermal energy storage (TES) applications. Carbon nano tubes (CNTs) are one of the best materials to increase the thermal conductivity of paraffins. In this regard, the present study is focus on the preparation, characterization, and improvement of thermal conductivity using CNTs as well as determination of TES properties of expanded perlite (ExP)/n-eicosane (C20) composite as a novel type of form-stable composite PCM (F-SCPCM). It was found that the ExP could retain C20 at weight fraction of 60% without leakage. The SEM and FTIR analyses were carried out to characterize the microstructure and chemical properties of the composite PCM. The TES properties of the prepared F-SCPCM were determined using DSC and TG analyses. The analysis results showed that the components of the composite are in good compatibleness and C20 used as PCM are well-infiltrated into the structure of ExP/CNTs matrix. The DSC analysis indicated that the ExP/C20/CNTs (1 wt%) composite has a melting point of 36.12 °C and latent heat of 157.43 J/g. The TG analysis indicated that the F-SCPCM has better thermal durability compared with pure C20 and also it has good long term-TES reliability. In addition, the effects of CNTs on the thermal conductivity of the composite PCM were investigated. Compared to ExP/C20 composite, the use of CNTs has apparent improving effect for the thermal conductivity without considerably affecting the compatibility of components, TES properties, and thermal stability.

  16. The compatibility between extension aims of staff and their ...

    African Journals Online (AJOL)

    This pilot investigation was done to investigate the compatibility between extension aims of extension staff and those of their employer. It shows that only 50 percent of respondents have an acceptable understanding of the official aims (vision), and that none of the components of the official vision has sufficient compatibility ...

  17. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  18. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  19. A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material

    Institute of Scientific and Technical Information of China (English)

    Bin Niu; Jun Yan

    2016-01-01

    In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional (2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended aver-aging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell. In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellu-lar solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.

  20. Hard tissue compatibility of natural hydroxyapatite/chitosan composite

    International Nuclear Information System (INIS)

    Tang Xiaojun; Gui Lai; Lue Xiaoying

    2008-01-01

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  1. Hard tissue compatibility of natural hydroxyapatite/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xiaojun; Gui Lai [Department of Cranio-maxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 (China)], E-mail: laiguiplastic@tom.com, E-mail: luxy@seu.edu.cn

    2008-12-15

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  2. Radioactive material generator

    International Nuclear Information System (INIS)

    Czaplinski, T.V.; Bolter, B.J.; Heyer, R.E.; Bruno, G.A.

    1975-01-01

    A radioactive material generator includes radioactive material in a column, which column is connected to inlet and outlet conduits, the generator being embedded in a lead casing. The inlet and outlet conduits extend through the casing and are topped by pierceable closure caps. A fitting, containing means to connect an eluent supply and an eluate container, is adapted to pierce the closure caps. The lead casing and the fitting are compatibly contoured such that they will fit only if properly aligned with respect to each other

  3. Surface-micromachined Bragg Reflectors Based on Multiple Airgap/SiO2 Layers for CMOS-compatible Fabry-perot Filters in the UV-visible Spectral Range

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2014-01-01

    In CMOS-compatible optical filter designs, SiO2 is often used as the low-index material, limiting the optical contrast (nHi/nLo) to about 2. Using the air as low-index material improves the optical contrast by about 50%, thus increasing the reflectivity and bandwidth at a given design complexity.

  4. Waste compatibility assessments to support project W-320

    International Nuclear Information System (INIS)

    BLAAK, T.M.

    1999-01-01

    The intent of this internal memo is to provide a recommendation for the transfer of tank 241-C-106 waste, Attachment 2, to tank 241-AY-102. This internal memo also identifies additional requirements which have been deemed necessary for safely receiving and storing the waste documented in Attachment 2 from tank 241-C-106 in tank 241-AY-102. This waste transfer is planned in support of tank 241-C-106 solids sluicing activities. Approximately 200,000 gallons of waste and flush water are expected to be pumped from tank 241-C-106 into tank 241-AY-102. Several transfers will be necessary to complete the sluicing of tank 241-C-106 solids. To assure ourselves that this waste transfer will not create any compatibility concerns, a waste compatibility assessment adhering to current waste compatibility requirements has been performed

  5. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  6. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  7. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  8. Review of the system compatibility and ride-through options for AC and DC drives including multilevel inverters

    Energy Technology Data Exchange (ETDEWEB)

    Jouanne, A. von [Power Electronics Lab. - Elect. and Compt. Engineering Dept. - Oregon State Univ., Corvallis, OR (United States); Ben Banerjee, B. [Electric Power Research Inst. - Power Electronics, Energy Delivery, Palo Alto, CA (United States)

    2000-07-01

    Adjustable speed drive (ASD) compatibility and ride-through issues have caused increased concerns due to the susceptibility of AC and DC drives to power disturbances, and the costly results of process disruptions. These losses can be avoided for critical production processes by using ASDs with ride-through capabilities. This paper assesses industrial ride-through requirements and application issues for AC and DC drives, including medium voltage (2300/4160 V) multi-level inverter topologies. Ride-through alternatives are evaluated based on design, implementation and cost considerations in order to determine the most suitable solutions for various kVA ratings and time duration requirements. (orig.)

  9. Plasma-material interactions

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1984-01-01

    Plasma-interactive components must be resistant to erosion processes, efficient in heat removal, and effective in minimizing tritium inventory and permeation. As long as plasma edge temperatures are 50 eV, no one material can satisfy the diverse requirements imposed by these plasma materials interactions. The only solution is the design of duplex, or even more complicated, structures. The material that faces the plasma should be low atomic number, with acceptable erosion and evaporation characteristics. The substrate material must have high thermal conductivity for heat removal. Finally, materials must be selected judiciously for tritium compatibility. In conclusion, materials play a critical role in the achievement of safe and economical magnetic fusion energy. Improvements in materials have already led to many advances in present day device operation, but additional innovative materials solutions are required for the critical plasma materials interaction issues in future power reactors

  10. Writing about Clients: Ethical Considerations and Options

    Science.gov (United States)

    Sperry, Len; Pies, Ronald

    2010-01-01

    Today, the decision to prepare clinical case material for publication is a decision that cannot be taken lightly. The decision involves reviewing ethical considerations and choosing among various options to safeguard client privacy. Such options include seeking the client's permission, disguising case material, and developing composite case…

  11. Chemistry, materials and related problems in steam generators of power stations

    International Nuclear Information System (INIS)

    Mathur, P.K.

    2000-01-01

    The operational reliability and availability of power plants are considerably influenced by chemical factors. Researches all over the world indicate that several difficulties in power plants can be traced to off-normal or abnormal water chemistry conditions. Whatever the source of energy, be it fossil fuel or nuclear fuel, the ultimate aim is steam generation to drive a turbine. It is, therefore, natural that problems of water chemistry and material compatibility are similar in thermal and nuclear power stations. The present paper discusses various types of problems in the form of corrosion damages, taking place in the boiler-turbine cycles and describes different types of boiler feed water/boiler water treatments that have been in use both in nuclear and thermal power stations. Current positions in relation to requirements of boiler feed water, boiler water and steam quality have been described

  12. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water-reflected (i.e. surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established

  13. Initial integration of accident safety, waste management, recycling, effluent, and maintenance considerations for low-activation materials

    International Nuclear Information System (INIS)

    Piet, S.J.; Herring, J.S.; Cheng, E.T.; Fetter, S.

    1991-01-01

    A true low-activation material should ideally achieve all of the following objectives: 1. The possible prompt dose at the site boundary from 100% release of the inventory should be <2 Sv (200 rem); hence, the design would be inherently safe in that no possible accident could result in prompt radiation fatalities. 2. The possible cancers from realistic releases should be limited such that the accident risk is <0.1%/yr of the existing background cancer risk to local residents. This includes consideration of elemental volatility. 3. The decay heat should be limited so that active mitigative measures are not needed to protect the investment from cooling transients; hence, the design would be passively safe with respect to decay heat. 4. Used materials could be either recycled or disposed of as near- surface waste. 5. Hands-on maintenance should be possible around coolant system piping and components such as the heat exchanger. 6. Effluent of activation products should be minor compared to the major challenge of limiting tritium effluents. The most recent studies in these areas are used to determine which individual elements and engineering materials are low activation. Grades from A (best) to G (worst) are given to each element in the areas of accident safety, recycling, and waste management. Structure/fluid combinations are examined for low-activation effluents and out-of-blanket maintenance. The lowest activation structural materials are silicon carbide, vanadium alloys, and ferritic steels. Impurities and minor alloying constituents must be carefully considered. The lowest activation coolants are helium, water, FLiBe, and lithium. The lowest activation breeders are lithium, lithium oxide, lithium silicate, and FLiBe. Designs focusing on these truly low-activation materials will help achieve the excellent safety and environmental potential of fusion energy

  14. Reaction of yttria-stabilized zirconia with zirconium, silicon and Zircaloy-4 at high temperature: a compatibility study for cermet fuels

    International Nuclear Information System (INIS)

    Arima, T.; Tateyama, T.; Idemitsu, K.; Inagaki, Y.

    2003-01-01

    Compatibility studies for cermet (ceramic and metal) fuels have been completed for a temperature range of 1073-1423 K. A reaction between yttria-stabilized zirconia (YSZ), as a simulated fuel, and Zr, as a candidate for a metallic matrix, has been observed at temperatures ≥1273 K, which means the formation of a metallic reaction layer at the interface between YSZ and Zr and the occurrence of metallic phases inside the YSZ. Similar results were observed for the YSZ-Zry4 (cladding) system. On the other hand, the degree of reaction was relatively large for the YSZ-Si (metallic matrix) system, and Si diffused into the YSZ. However, the maximum fuel center-line temperature can be predicted to be less than ∼1273 K for cermet fuels. Therefore, compatibility between the ceramic fuel and the metallic matrix should be good under normal reactor operational conditions. Furthermore, since the temperature of the fuel-cladding gap is lower, the cermet fuel and the cladding material are compatible

  15. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  16. 16 CFR 1207.4 - Recommended standards for materials of manufacture.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Recommended standards for materials of manufacture. 1207.4 Section 1207.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... materials of manufacture. (a) General. The materials used in swimming pool slides should be compatible with...

  17. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  18. The Construal (In)compatibility Effect

    DEFF Research Database (Denmark)

    Yang, Xiaojing; Ringberg, Torsten; Mao, Huifang

    2011-01-01

    incompatible with their mental construal, while ad claims construed at a level compatible with consumers' mental construal are more effective for those who possess a less creative mindset. We document that such differences in persuasion are driven by the fact that consumers with a creative (less creative) mind...

  19. Direct coordinate-free derivation of the compatibility equation for finite strains

    Science.gov (United States)

    Ryzhak, E. I.

    2014-07-01

    The compatibility equation for the Cauchy-Green tensor field (squared tensor of pure extensionwith respect to the reference configuration) is directly derived from the well-known relation expressing this tensor via the vector field determining the mapping (transformation) of the reference configuration into the actual one. The derivation is based on the use of the apparatus of coordinatefree tensor calculus and does not apply any notions and relations of Riemannian geometry at all. The method is illustrated by deriving the well-known compatibility equation for small strains. It is shown that when the obtained compatibility equation for finite strains is linearized, it becomes the compatibility equation for small strains which indirectly confirms its correctness.

  20. The Compatibility of Hepatocytes with Chemically Modified Porous Silicon with Reference to In Vitro Biosensors

    OpenAIRE

    Alvarez, Sara D.; Derfus, Austin M.; Schwartz, Michael P.; Bhatia, Sangeeta N.; Sailor, Michael J.

    2008-01-01

    Porous Si is a nanostructured material that is of interest for molecular and cell-based biosensing, drug delivery, and tissue engineering applications. Surface chemistry is an important factor determining the stability of porous Si in aqueous media, its affinity for various biomolecular species, and its compatibility with tissues. In this study, the attachment and viability of a primary cell type to porous Si samples containing various surface chemistries is reported, and the ability of the p...

  1. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  2. DOD Offshore Wind Mission Compatibility Assessments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set represents the results of analyses conducted by the Department of Defense to assess the compatibility of offshore wind development with military assets...

  3. R&D for Safety Codes and Standards: Materials and Components Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    San Marchi, Christopher W. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2014-08-01

    A principal challenge to the widespread adoption of hydrogen infrastructure is the lack of quantifiable data on its safety envelope and concerns about additional risk from hydrogen. To convince regulatory officials, local fire marshals, fuel suppliers, and the public at large that hydrogen refueling is safe for consumer use, the risk to personnel and bystanders must be quantified and minimized to an acceptable level. Such a task requires strong confidence in the safety performance of high pressure hydrogen systems. Developing meaningful materials characterization and qualification methodologies in addition to enhancing understanding of performance of materials is critical to eliminating barriers to the development of safe, low-cost, high-performance high-pressure hydrogen systems for the consumer environment.

  4. The Necessity of Qualitative Materiality in Auditing

    OpenAIRE

    Erdoğan, Nurten

    2006-01-01

    Auditors have to make materiality judgments on every audit. Assessing materiality requires careful consideration of all relevant circumstances, both quantitative and qualitative considerations, as well as interaction of these considerations. This process is difficult because both quantitative and qualitative factors must evaluate.Audit standards on materiality do not provide sufficient formal guidance to quantify materiality. As a result, the auditors have been left to assess materiality base...

  5. Considerations for sampling nuclear materials for SNM accounting measurements

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-01-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM accounting purposes are emphasized

  6. Structural materials for fusion reactors

    International Nuclear Information System (INIS)

    Victoria, M.; Baluc, N.; Spaetig, P.

    2001-01-01

    In order to preserve the condition of an environmentally safe machine, present selection of materials for structural components of a fusion reactor is made not only on the basis of adequate mechanical properties, behavior under irradiation and compatibility with other materials and cooling media, but also on their radiological properties, i.e. activity, decay heat, radiotoxicity. These conditions strongly limit the number of materials available to a few families of alloys, generically known as low activation materials. We discuss the criteria for deciding on such materials, the alloys resulting from the application of the concept and the main issues and problems of their use in a fusion environment. (author)

  7. Electromagnetic compatibility methods, analysis, circuits, and measurement

    CERN Document Server

    Weston, David A

    2016-01-01

    Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.

  8. Materials and integration schemes for above-IC integrated optics

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Rangarajan, B.; Kovalgin, Alexeij Y.

    2014-01-01

    A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon

  9. Fatigue load considerations and use of high efficiency materials in the nuclear refurbishment projects: a structural engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mohee, F. M., E-mail: fmm_p@yahoo.com [Univ. of Waterloo, ON (Canada)

    2014-07-01

    For the Darlington refurbishment project in Canada, fatigue load consideration is a very crucial component in the analysis and design of different structures in the nuclear facilities. New and innovative structural materials having much higher ultimate tensile strength and modulus of elasticity, that are free from corrosion, should be considered along with fatigue load during the analysis and design of the nuclear refurbishment projects. The structural analysis should include beam, column and slabs, vibrating, rotating and crane supporting structures, robotic structures, pipe supports, Serapid chain and associated automated gate structures, flask supporting structures, processing unit and lidding unit support structures. (author)

  10. Vehicle compatibility in car-to-car collisions : literature review in the framework of the European research project "Improvement of crash compatibility between cars", Workpackage 1.

    NARCIS (Netherlands)

    Sluis, J. van der

    2000-01-01

    In this report, a literature review is given on the subject of crash compatibility and incompatibility between cars. The study is based on scientific publications on this subject published over the last 15 years. The compatibility problem is described from three points of view: statistical,

  11. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  12. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  13. Electromagnetic compatibility design and cabling system rules; Regles de conception et de cablage des systemes electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Raimbourg, J.

    2009-07-01

    This report is devoted to establish EMC (Electromagnetic Compatibility) design and cabling system rules. It is intended for hardware designers in charge of designing electronic maps or integrating existing materials into a comprehensive system. It is a practical guide. The rules described in this document do not require enhanced knowledge of advanced mathematical or physical concepts. The key point is to understand phenomena with a pragmatic approach to highlight the design and protection rules. (author)

  14. Materials for Consideration in Standardized Canister Design Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  15. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    International Nuclear Information System (INIS)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-01-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated

  16. Rust transformation/rust compatible primers

    Science.gov (United States)

    Emeric, Dario A.; Miller, Christopher E.

    1993-01-01

    Proper surface preparation has been the key to obtain good performance by a surface coating. The major obstacle in preparing a corroded or rusted surface is the complete removal of the contaminants and the corrosion products. Sandblasting has been traditionally used to remove the corrosion products before painting. However, sandblasting can be expensive, may be prohibited by local health regulations and is not applicable in every situation. To get around these obstacles, Industry developed rust converters/rust transformers and rust compatible primers (high solids epoxies). The potential use of these products for military equipment led personnel of the Belvoir Research, Development and Engineering Center (BRDEC) to evaluate the commercially available rust transformers and rust compatible primers. Prior laboratory experience with commercially available rust converters, as well as field studies in Hawaii and Puerto Rico, revealed poor performance, several inherent limitations, and lack of reliability. It was obvious from our studies that the performance of rust converting products was more dependent on the amount and type of rust present, as well as the degree of permeability of the coating, than on the product's ability to form an organometallic complex with the rust. Based on these results, it was decided that the Military should develop their own rust converter formulation and specification. The compound described in the specification is for use on a rusted surface before the application of an organic coating (bituminous compounds, primer or topcoat). These coatings should end the need for sandblasting or the removing of the adherent corrosion products. They also will prepare the surface for the application of the organic coating. Several commercially available rust compatible primers (RCP) were also tested using corroded surfaces. All of the evaluated RCP failed our laboratory tests for primers.

  17. Cavity nonlinear optics with layered materials

    Directory of Open Access Journals (Sweden)

    Fryett Taylor

    2017-12-01

    Full Text Available Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials, have generated significant interest in their utilization in nanophotonic devices. While initial nanophotonic experiments with layered materials primarily focused on light sources, modulators, and detectors, recent efforts have included nonlinear optical devices. In this paper, we review the current state of cavity-enhanced nonlinear optics with layered materials. Along with conventional nonlinear optics related to harmonic generation, we report on emerging directions of nonlinear optics, where layered materials can potentially play a significant role.

  18. The Effects of Different Compatibilities of Qing'e Formula on Scopolamine?induced Learning and Memory Impairment in the Mouse

    Institute of Scientific and Technical Information of China (English)

    Xiao‑Ping Zheng; Fang‑Di Hu; Li Yang; Yu‑Ling Ma; Bo‑Lu Sun; Chang‑Hong Wang; Zheng‑Tao Wang

    2017-01-01

    Background: The Qing'e formula (QEF) is a well?known traditional Chinese prescription that has been clinically employed for treatment of bone disease for hundreds of years. Objective: The present study aims to observe the effects of different compatibilities of QEF on the scopolamine?induced learning and memory impairment in the mouse, and further to explore its action mechanisms and compatibility rationality. Materials and Methods: The learning and memory alterations in the mouse were evaluated using the step?down test and Morris water maze (MWM) test; the acetylcholinesterase (AChE) activity and brain?derived neurotrophic factor (BDNF) expression in the hippocampus were measured using colorimetric method or immunohistochemistry. Results: The results showed that different compatibilities of QEF significantly prolonged latency in the step?down test, shortened escape latency in the navigation test, increased the percentage of residence time, and the percentage of swimming distance in the target quadrant in the probe trial session. In addition, our results also found that different compatibilities of QEF remarkably inhibited AChE activity and increased BDNF expression in the hippocampus of mice. What's more, the group after being treated with whole recipe (QF) showed the highest level of improvement. Conclusions: These findings not only suggest that QEF may effectively ameliorate cognitive deficits through inhibiting AChE activity and increasing BDNF expression in the hippocampus but also elucidate the rationality of QEF.

  19. All-Nitrogen Compounds as High Energy Density Materials

    National Research Council Canada - National Science Library

    Baum, Kurt; Willer, Rodney L; Bottaro, Jeffrey; Petrie, Mark; Penwell, Paul; Dodge, Allen; Malhotra, Ripu

    2005-01-01

    .... Enhanced dissolving power, density and compatibilities with a wide range of propellant ingredients make ionic liquids a very attractive class of materials for advanced state-of-the-art propulsion systems...

  20. Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility

    International Nuclear Information System (INIS)

    El-Sabbagh, Mostafa F.; Ahmad, Ali T.

    2011-01-01

    The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. (general)

  1. Geologic considerations for the subsurface injection of naturally occurring radioactive materials (NORM): A case study

    International Nuclear Information System (INIS)

    Ladle, G.H.

    1995-01-01

    NORM waste consists of naturally occurring radioactive material associated with oil and gas operations as scale deposited in tubulars, surface piping, pumps, and other producing and processing equipment. NORM also occurs as sludge and produced sands at wellheads, transport vessels and tank bottoms. For disposal, NORM scale and sludge are separated from the tubulars and tank bottoms and ground to less than 100 microns and mixed into a slurry at the surface facility for disposal into a deep well injection interval below the Underground Sources of Drinking Water zone. This paper addresses two primary considerations: (1) subsurface geologic investigations which identify specific geologic horizons that have sufficient porosity and permeability to accept NORM slurries containing high total suspended solids concentrations, and (2) surface facility requirements. Generic and specific information, criteria, and examples are included in the paper to allow the application of the geologic principles to other areas or regions

  2. Issues related to the inter-utility transfer of material

    International Nuclear Information System (INIS)

    1993-08-01

    An option that utilities have for obtaining material is to procure the desired item(s) from another utility. There are several reasons utilities choose another utility as the procurement source including item obsolescence, prohibitive cost on the commercial market, and excessive lead time. This document provides information on the technical, quality, and commercial issues which utilities may need to address when selling material to or procuring material from other utilities. This report provides suggested approaches for each of the following technical and quality issues: Design considerations; item acceptability considerations; original supplier considerations; commercial grade item dedication considerations; reportability considerations; packaging, shipping, and storage considerations; documentation considerations; receipt inspection considerations. The information is provided primarily for the inter-utility transfer of safety-related material. Several of the topics, however, may also apply to the transfer of non-safety-related material. The report also provides considerations on commercial issues which may be addressed during the inter-utility transfer of materials

  3. Electromagnetic compatibility in power electronics

    CERN Document Server

    Costa , François; Revol , Bertrand

    2014-01-01

    Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

  4. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  5. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  6. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  7. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, L.; Erickson, Carl J.; Meixler, Lewis D.; Ascione, G.; Gentile, Charles A.; Tilson, C.; Bernasek, Stephen L.; Abelev, E.

    2009-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface

  8. Synthesis of artificial spectrum-compatible seismic accelerograms

    International Nuclear Information System (INIS)

    Vrochidou, E; Alvanitopoulos, P F; Andreadis, I; Mallousi, K; Elenas, A

    2014-01-01

    The Hilbert–Huang transform is used to generate artificial seismic signals compatible with the acceleration spectra of natural seismic records. Artificial spectrum-compatible accelerograms are utilized instead of natural earthquake records for the dynamic response analysis of many critical structures such as hospitals, bridges, and power plants. The realistic estimation of the seismic response of structures involves nonlinear dynamic analysis. Moreover, it requires seismic accelerograms representative of the actual ground acceleration time histories expected at the site of interest. Unfortunately, not many actual records of different seismic intensities are available for many regions. In addition, a large number of seismic accelerograms are required to perform a series of nonlinear dynamic analyses for a reliable statistical investigation of the structural behavior under earthquake excitation. These are the main motivations for generating artificial spectrum-compatible seismic accelerograms and could be useful in earthquake engineering for dynamic analysis and design of buildings. According to the proposed method, a single natural earthquake record is deconstructed into amplitude and frequency components using the Hilbert–Huang transform. The proposed method is illustrated by studying 20 natural seismic records with different characteristics such as different frequency content, amplitude, and duration. Experimental results reveal the efficiency of the proposed method in comparison with well-established and industrial methods in the literature. (paper)

  9. Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants.

    Science.gov (United States)

    Weiss, Agnes; Jérôme, Valérie; Freitag, Ruth

    2007-06-15

    The goal of the project was the extraction of PCR-compatible genomic DNA representative of the entire microbial community from municipal biogas plant samples (mash, bioreactor content, process water, liquid fertilizer). For the initial isolation of representative DNA from the respective lysates, methods were used that employed adsorption, extraction, or precipitation to specifically enrich the DNA. Since no dedicated method for biogas plant samples was available, preference was given to kits/methods suited to samples that resembled either the bioreactor feed, e.g. foodstuffs, or those intended for environmental samples including wastewater. None of the methods succeeded in preparing DNA that was directly PCR-compatible. Instead the DNA was found to still contain considerable amounts of difficult-to-remove enzyme inhibitors (presumably humic acids) that hindered the PCR reaction. Based on the isolation method that gave the highest yield/purity for all sample types, subsequent purification was attempted by agarose gel electrophoresis followed by electroelution, spermine precipitation, or dialysis through nitrocellulose membrane. A combination of phenol/chloroform extraction followed by purification via dialysis constituted the most efficient sample treatment. When such DNA preparations were diluted 1:100 they did no longer inhibit PCR reactions, while they still contained sufficient genomic DNA to allow specific amplification of specific target sequences.

  10. Breeding graft-compatible Douglas-fir rootstocks (Pseudotsuga menziesii (Mirb.) Franco).

    Science.gov (United States)

    D.L. Copes

    1999-01-01

    A study encompassing 24 years was conducted to determine if a breeding program could produce highly graft-compatible rootstocks. Twenty-seven trees of apparent high graft compatibility were selected and crossed to produce 226 control-pollinated families. Seedlings were grown, field planted, and grafted with test scions. Graft unions from field tests were evaluated...

  11. The fundamental supplier in insolvency. Compatibility of security of supply and satisfaction of creditors; Der Grundversorger in der Insolvenz. Vereinbarkeit von Versorgungssicherheit und Glaeubigerbefriedigung

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Alina

    2009-07-01

    Up to the liberalisation of the energy economy, the question of the insolvency of power supply companies was not important due to the monopolistic position. In the case of setting up an insolvency according to the fortune of the basic supplier, the guarantee of security of supply (paragraph paragraph 36, 38 EnWG) and the optimal satisfaction of the creditors (insolvency regulation, InsO) coincide. The author of the contribution under consideration reports on the legal questions in connection with this. The main chapters of this contribution are: (a) Contents, range and purpose of the obligation of fundamental and auxiliary supply; (b) Legal relevance of the question concerning to the compatibility of security of supply and the optimal satisfaction of the creditors; (c) Compatibility of the goals in accordance with paragraph paragraph 36, 38 EnWG and InsO.

  12. Quality assurance and reference material requirements and considerations for environmental sample analysis in nuclear forensics

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.; Perrin, R.E.; Goldberg, S.A.; Cappis, J.

    2002-01-01

    analyses are to be used in legal proceedings and prosecutions, and also in investigative research. From the legal perspective, one must assume that any results obtained would be used as evidence in a court of law for prosecution of criminal acts. Consequently, Quality Assurance requirements are very demanding and unforgiving. For example, forensics analysis results that cannot be independently verified against certified reference materials of known composition and isotopics, may not be accepted in a court of law as reliable evidence. Thus, the ability to provide certified and traceable reference materials used in the analyses are extremely important in nuclear forensics. In addition to nuclear signatures, other signatures such as any organics or plant and animal residue that are also on the intercepted materials, become important in identifying the origin of the intercepted nuclear material, and will require traceable, known standards. This paper will describe the quality assurance requirements and considerations that must be adopted and developed for application and use in nuclear forensics. Recommendations and minimum requirements for standardization of a nuclear forensics quality assurance program that could be internationally accepted will also be presented. (author)

  13. Application of Hilbert-Huang Transform in Generating Spectrum-Compatible Earthquake Time Histories

    OpenAIRE

    Ni, Shun-Hao; Xie, Wei-Chau; Pandey, Mahesh

    2011-01-01

    Spectrum-compatible earthquake time histories have been widely used for seismic analysis and design. In this paper, a data processing method, Hilbert-Huang transform, is applied to generate earthquake time histories compatible with the target seismic design spectra based on multiple actual earthquake records. Each actual earthquake record is decomposed into several components of time-dependent amplitude and frequency by Hilbert-Huang transform. The spectrum-compatible earthquake time history ...

  14. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    Science.gov (United States)

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  15. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  16. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    Science.gov (United States)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  17. Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.

    2013-01-01

    We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of t...

  18. Ceramic materials based on synthetic calcium phosphate for medical uses

    OpenAIRE

    Toropkov, N. E.; Antonkin, N. S.

    2016-01-01

    This article discusses the different methods of synthesis of hydroxyapatite and receiving on its base of ceramic materials in various ways. We have also developed our own technology. The conditions of compatibility and saddle the assumption and the suitability of the material for implantation.

  19. Central Cross-Talk in Task Switching : Evidence from Manipulating Input-Output Modality Compatibility

    Science.gov (United States)

    Stephan, Denise Nadine; Koch, Iring

    2010-01-01

    Two experiments examined the role of compatibility of input and output (I-O) modality mappings in task switching. We define I-O modality compatibility in terms of similarity of stimulus modality and modality of response-related sensory consequences. Experiment 1 included switching between 2 compatible tasks (auditory-vocal vs. visual-manual) and…

  20. Interaction of blood with radiation-grafted materials

    International Nuclear Information System (INIS)

    Ikada, Y.; Suzuki, M.; Taniguchi, M.; Iwata, H.; Taki, W.; Miyake, H.; Yonekawa, Y.; Handa, H.

    1981-01-01

    Extensive works on blood compatibility of polymeric materials have revealed that it is strongly governed by their surface structure and properties. Among them are roughness, hydrophobic-hydrophilic balance, ionic species, and water content in the surface layer. In the present work, low and high density polyethylenes as well as heat-treated poly(vinyl) alcohol are grafted with acrylamide (and acrylic acid for comparison) by a pre-irradiation technique to convert the rigid hydrophobic surface into a soft hydrogel with high water contents. The surface modification of materials with grafted polyacrylamide chains will be confirmed from the contact angle measurement which is one of the best methods for assessing the hydrophilicity of surfaces. Blood compatibility of the resulting surfaces will be evaluated from in vivo experiments by anastomosing the surface-grafted tubes of small diameter with the carotid artery of rat. (author)

  1. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).

    Science.gov (United States)

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

  2. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ

    Science.gov (United States)

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630

  3. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian

    2018-01-01

    -gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance....

  4. Fusion reactor materials research in China

    International Nuclear Information System (INIS)

    Qian Jiapu

    1994-10-01

    The fusion materials research in China is introduced. Many kinds of structural materials (such as Ti-modified stainless steel, ferritic steel, HT-9, HT-7, oxide dispersion strengthening ferritic steel), tritium breeders (lithium, Li 2 O, γ-LiAlO 2 ) and plasma facing materials (PFMs) (graphite with TiC and SiC coatings) have been developed or being developed. A systematic research activities on irradiation effects, compatibility, plasma materials interaction, thermal shock during disruption, tritium production, release and permeation, neutron multiplication in Be and Pb, etc. have been performed. The research activities are summarized and some experimental results are also given

  5. A fibre-coupled UHV-compatible variable angle reflection-absorption UV/visible spectrometer

    Science.gov (United States)

    Stubbing, J. W.; Salter, T. L.; Brown, W. A.; Taj, S.; McCoustra, M. R. S.

    2018-05-01

    We present a novel UV/visible reflection-absorption spectrometer for determining the refractive index, n, and thicknesses, d, of ice films. Knowledge of the refractive index of these films is of particular relevance to the astrochemical community, where they can be used to model radiative transfer and spectra of various regions of space. In order to make these models more accurate, values of n need to be recorded under astronomically relevant conditions, that is, under ultra-high vacuum (UHV) and cryogenic cooling. Several design considerations were taken into account to allow UHV compatibility combined with ease of use. The key design feature is a stainless steel rhombus coupled to an external linear drive (z-shift) allowing a variable reflection geometry to be achieved, which is necessary for our analysis. Test data for amorphous benzene ice are presented as a proof of concept, the film thickness, d, was found to vary linearly with surface exposure, and a value for n of 1.43 ± 0.07 was determined.

  6. Progressive transmission of images over fading channels using rate-compatible LDPC codes.

    Science.gov (United States)

    Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul

    2006-12-01

    In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.

  7. Backward compatibility as a key measure for smooth upgrades to the LHC control system

    International Nuclear Information System (INIS)

    Baggiolini, V.; Csikos, D.; Tarasenko, P.; Zaharieva, Z.; Arruat, M.; Gorbosonov, R.

    2012-01-01

    It is a big challenge to smoothly upgrade the control system of a large operational accelerator such as the LHC without causing unnecessary downtime. We have identified backward compatibility as a key measure to achieve this, because a backward compatible component can be easily upgraded. This document describes the work the CERN Accelerator Controls group does to provide methods and tools supporting backward compatibility. We have identified four areas for which we want to provide tools: (1) dependency analysis to identify incoming dependencies, (2) backward compatibility validation to verify that API (Application Program Interface) changes are really backward compatible, (3) version upgrading with rules to clearly inform the dependent clients if a modification is backward compatible, and (4) API consolidation to clearly specify classes and methods belonging to the API and to enforce their appropriate usage

  8. Requirements for materials of dispersion fuel elements

    International Nuclear Information System (INIS)

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  9. Compatibility of Motion Facilitates Visuomotor Synchronization

    Science.gov (United States)

    Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.

    2010-01-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…

  10. Biomechanical characteristics of single-row repair in comparison to double-row repair with consideration of the suture configuration and suture material

    OpenAIRE

    Baums, M. H.; Buchhorn, G. H.; Spahn, G.; Poppendieck, B.; Schultz, W.; Klinger, H.-M.

    2008-01-01

    The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-...

  11. A JPEG backward-compatible HDR image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2012-10-01

    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression.

  12. A research project to encourage system-compatible design of end-use appliances

    International Nuclear Information System (INIS)

    Dorr, D.; Key, T.; Sitzlar, G.

    1995-01-01

    Cooperative system compatibility research sponsored by the Canadian Electrical Association (CEA) and the Electric Power Research Institute (EPRI) for improving appliance performance deficiencies was described. Power producer and end-user compatibility concerns was addressed through the development of a System Compatibility Research Project. A list of project tasks was provided. The CEA and EPRI initiated a project to establish flicker response of various lighting systems, which included physical tests. Results of this project were presented and discussed. The incentives for developing switch mode power supplies with enhanced immunity to voltage fluctuations and short interruptions was discussed. It was concluded that power quality studies currently underway will provide designers with a profile of the expected utility environment for their products. System compatibility research will identify areas that should be addressed by standards bodies so that designers can apply applicable criteria objectives early in the appliance design process. These efforts were expected to encourage appropriate manufacturer criteria for compatibility by convincing buyers and sellers that there is a real pay back for this investment. 13 refs., 6 figs., 4 tabs

  13. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  14. The Volpe Center GPS Adjacent Band Compatibility Program Plan : GPS Adjacent Band Compatibility Workshop, Volpe Center, Cambridge MA

    Science.gov (United States)

    2014-09-18

    Approach to DOT GPS Adjacent Band Compatibility Assessment. Identify forums and provide public outreach to make sure the progress and work are as open and transparent as possible. Develop an implementation plan that incorporates aspects from the DOT ...

  15. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  16. Mating compatibility in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy

    2014-02-21

    Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both

  17. Raw materials in the manufacture of biotechnology products: regulatory considerations.

    Science.gov (United States)

    Cordoba-Rodriguez, Ruth

    2010-01-01

    The Food and Drug Administration's Pharmaceutical cGMPs for the 21st Century initiative emphasizes science and risk-based approaches in the manufacture of drugs. These approaches are reflected in the International Conference on Harmonization (ICH) guidances ICH Q8, Q9, and Q10 and encourage a comprehensive assessment of the manufacture of a biologic, including all aspects of manufacture that have the potential to affect the finished drug product. Appropriate assessment and management of raw materials are an important part of this initiative. Ideally, a raw materials program should strive to assess and minimize the risk to product quality. With this in mind, risk-assessment concepts and control strategies will be discussed and illustrated by examples, with an emphasis on the impact of raw materials on cell substrates. Finally, the life cycle of the raw material will be considered, including its potential to affect the drug product life cycle. In this framework, the supply chain and the vendor-manufacturer relationship will be explored as important parts of an adequate raw materials control strategy.

  18. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  19. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  20. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  1. Considerations for producing re-usable and sustainable educational streaming materials

    Directory of Open Access Journals (Sweden)

    Gayle Calverley

    2006-02-01

    Full Text Available Useful lifetime of educational materials should be defined by their continuing ability to help meet defined learning objectives. More often lifetime is compromised by changes in the educational environment that do not specifically relate to the capacity of the material to assist learning. Approaches for integration of materials into the learning environment can be designed to maximise useful lifetime of materials against potential barriers created by, for example, instances of technological change. In this study, the impact of different approaches is demonstrated by examining the development of 163 learning objects, based on several licensed collections of streaming video procured for cross-sector educational use by the UK Lifesign project. Constraints relating to sustainability work within the limitations of a short-term project environment are specifically considered.

  2. Compatibility tests of steels in flowing liquid lead-bismuth

    International Nuclear Information System (INIS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-01-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements

  3. Biodegradability of Poly(hydroxyalkanoate Materials

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2009-08-01

    Full Text Available Poly(hydroxyalkanoate (PHA, which is produced from renewable carbon resources by many microorganisms, is an environmentally compatible polymeric material and can be processed into films and fibers. Biodegradation of PHA material occurs due to the action of extracellular PHA depolymerase secreted from microorganisms in various natural environments. A key step in determining the overall enzymatic or environmental degradation rate of PHA material is the degradation of PHA lamellar crystals in materials; hence, the degradation mechanism of PHA lamellar crystals has been studied in detail over the last two decades. In this review, the relationship between crystal structure and enzymatic degradation behavior, in particular degradation rates, of films and fibers for PHA is described.

  4. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  5. Modification of a solid polymer electrolyte (SPE) electrolyser to ensure tritium compatibility

    International Nuclear Information System (INIS)

    Eichelhardt, F.; Cristescu, I.; Michling, R.; Welte, S.

    2010-01-01

    A Water Detritiation System (WDS) is required for the ITER Tritium Plant in order to process tritiated water which is accumulated in various subsystems (e.g. the hall ventilation systems). For the ITER-WDS, the Combined Electrolysis Catalytic Exchange (CECE) process with an electrolyser unit as one of the major components is envisaged. An experimental WDS was built and commissioned at the Tritium Laboratory Karlsruhe (TLK) for the investigation of various subsystems of the CECE process in tritium environment. The TLK-WDS consists of an 8 m Liquid Phase Catalytic Exchange column and two Solid Polymer Electrolyte electrolysers, each with a maximum hydrogen output of 1 m 3 /h. The commercially available Hogen40 electrolyser units from Proton Energy Systems are not tritium compatible concerning materials, joints and quality documentation (e.g. necessary certificates). In order to process tritiated water with tritium concentrations up to 370 GBq/kg, tritium compatibility had to be ensured by appropriate modifications. Up to now, the modified system has been operated with tritiated water for 3500 h, the maximum tritium concentration in the electrolysers being 190 GBq/kg. This contribution reports on the necessary modifications of the electrolyser units and the experiences gained thereby. The results are equally important for the ITER-WDS, where the maximum tritium concentration in the feed water of the electrolyser units will be even higher with 11 TBq/kg.

  6. A 31-channel MR brain array coil compatible with positron emission tomography.

    Science.gov (United States)

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  7. Compatibility grab sampling and analysis plan for fiscal year 1999

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. Analytical requirements are taken from two revisions of the Compatibility data quality objectives (DQOs). Revision 1 of the DQO (Fowler 1995) listed analyses to be performed to meet both safety and operational data needs for the Compatibility program. Revision 2A of the DQO (Mulkey and Miller 1998) addresses only the safety-related requirements; the operational requirements of Fowler (1995) have not been superseded by Mulkey and Miller (1998). Therefore, safety-related data needs are taken from Mulkey and Miller (1998) and operational-related data needs are taken from Fowler (1995). Ammonia and total alpha analyses are also performed in accordance with Fowler (1998a, 1998b)

  8. Elements of a compatible optimization theory for coupled systems

    International Nuclear Information System (INIS)

    Bonnemay, A.

    1969-01-01

    The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [fr

  9. Improvement of crash compatibility between cars

    NARCIS (Netherlands)

    Huibers, J.A.H.M.; Faerber, E.; Cesari, D.; Hobbs, A.C.; Kampen, B. van; Paez, J.; Wykes, N.J.

    1998-01-01

    This paper will provide an overview of the research work of the European Enhanced Vehicle-safety Committee (EEVC) in the field of crash compatibility between passenger cars. Since July 1997 the EC Commission is partly funding the research work of EEVC. The running period of this project will be two

  10. Are Naturalism and Moral Realism Compatible?

    NARCIS (Netherlands)

    Peels, H.D.

    2014-01-01

    In a recent paper, Alvin Plantinga has argued that there is good reason to think that naturalism and moral realism are incompatible. He has done so by arguing that the most important argument for the compatibility of these two theses, which has been provided by Frank Jackson, fails and that any

  11. Career and Family - Are They Compatible?: Results of a Survey of Male and Female Gynaecologists in Germany.

    Science.gov (United States)

    Hancke, K; Toth, B; Igl, W; Ramsauer, B; Bühren, A; Wöckel, A; Jundt, K; Ditsch, N; Gingelmaier, A; Rhiem, K; Vetter, K; Friese, K; Kreienberg, R

    2012-05-01

    Purpose: Nowadays, most gynaecologists are female and the compatibility of job-related career and family life is an upcoming issue. The working group "Gender and Career" of the German Society for Gynaecology and Obstetrics (DGGG) designed a survey to reflect the present situation with a focus on the compatibility of career and family. Material and Methods: A web-based 74-item survey was filled out by members of the DGGG. In total, there were 1037 replies, 75 % female (n = 775) and 25 % male (n = 261) gynaecologists. Results: 62 % of the female and 80 % of the male respondents had already finished their doctoral theses and 2 % female and 13 % male had finished their PhD. Mean number of children was 1.06 (SD 1.08) in female and 1.68 (SD 1.34) in male gynaecologists. The majority of females desired day care for their children, but only 5 to 13 % of employers offer any day care. 88 % of the female and 72 % of the male physicians think that job-related career and family are not compatible. Conclusion: The majority of female gynaecologists wished to have professional child care, but most employers or other institutions do not offer this. This might be one of the reasons why career and family appear incompatible.

  12. Consideration of the Effect according to Variation of Material and Respiration in Cone-Beam CT

    International Nuclear Information System (INIS)

    Na, Jun Young; Kim, Jung Mi; Kim, Dae Sup; Kang, Tae Young; Baek, Geum Mun; Kwon, Gyeong Tae

    2012-01-01

    Image Guided Radiation Therapy (IGRT) has been carried out using On-Board Imager system (OBI) in Asan Medical Center. For this reason, This study was to analyze and evaluate the impact on Cone-Beam CT according to variation of material and respiration. This study was to acquire and analyze Cone-Beam CT three times for two material: Cylider acryl (lung equvalent material, diameter 3 cm), Fiducial Marker (using clinic) under Motion Phantom able to adjust respiration pattern randomly was varying period, amplitude and baseline vis-a-vis reference respiration pattern. First, According to a kind of material, when being showed 100% in the acryl and 120% in the Fiducial Marker under the condition of same movement of the motion phantom. Second, According to the respiratory alteration, when being showed 1.13 in the baseline shift 1.8 mm and 1.27 in the baseline shift 3.3 mm for acryl. when being showed 1.01 in 1 sec of period and 1.045 in 2.5 sec of period for acryl. When being showed 0.86 in 0.7 times the standard of amplitude and 1.43 in 1.7 times the standard of amplitude for acryl. when being showed 1.18 in the baseline shift 1.8 mm and 1.34 in the baseline shift 3.3 mm for Fiducial Marker. when being showed 1.0 in 1 sec of period and 1.0 in 2.5 sec of period for Fiducial Marker. When being showed 0.99 in 0.7 times the standard of amplitude and 1.66 in 1.7 times the standard of amplitude for Fiducial Marker. The effect of image size of CBCT was 20% in the case of Fiducial marker. The impact of changes in breathing pattern was minimum 13% - maximum 43% for Arcyl, min. 18% - max. 66% for Fiducial marker. This difference makes serious uncertainty. So, Must be stabilized breathing of patient before acquiring CBCT. also must be monitored breathing of patient in the middle of acquire. If you observe considerable change of breathing when acquiring CBCT. After Image Guided, must be need to check treatment site using fluoroscopy. If a change is too big, re-acquiring CBCT.

  13. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  14. The Effect of Image Compatibility and Escalation of Commitment on Decision Performance

    Directory of Open Access Journals (Sweden)

    Harris K. Turino

    2012-04-01

    Full Text Available This study aims at empirically examining the extent to which Image Theory, initially developed as a theoretical basis for selecting a strategy or a decision, can be a theoretical basis for predicting a decision performance in two opposite frames: positive and negative. Image compatibility are employed to operationalize such a theory and the decision under study is progress decision represented by escalation of commitment. Thus, this study also empirically examines the connection between image compatibility and escalation of commitment as well as escalation of commitment as a mediator of the relationship between image compatibility and decision performance. The research context is Indonesia Stock Exchange (IDX that suffered from crisis in the past year (negative frame yet has been recovered recently (positive frame. The respondents are 229 individual investors in IDX. They are involved in day-to-day decision making (progress decision making with regard to their investment portofolio. The results of this study show that high image compatibility tends to lead to better decision performance in both frames. However, image compatibility may only positively affect the escalation of commitment in positive frame

  15. Phase boundary in compatible and incompatible polymer blends studied by micro indentation test and microscopic observations

    International Nuclear Information System (INIS)

    Mina, M. F.; Akhtar, F.; Haque, M.E.

    2003-10-01

    The phase boundary of incompatible polymer blends such as poly (methyl methacrylate) (PMMA)/natural rubber (NR) and polyestyrene (PS)/NR as well as compatible blends such as PMMA/NR/epoxidizer NR (compatibilizer) and PS/NR/styrene-butadiene-styrene (SBS) block copolymer (compatibilizer) was studied by means of microhardness (H) technique and microscopy. Solution grown films of neat PMMA, PS and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR and PS/NR/SBS were cast using a common solvent (toluene). While the neat PMMA and PS provide constant hardness values of 178 and 173 MPa, respectively, the binary (incompatible) and the ternary (compatible) blends show a conspicuous H-decrease (PMMA/NR=140 MPa, PS/NR=167 MPa, PMMA/NR/ENR=109 MPa and PS/NR/SBS=127 MPa). Scanning electron microscopy and optical microscopy reveal clear difference of the phase boundary of compatible (smooth boundary) and incompatible (sharp boundary) blends. Besides, the compatibilizer blends are characterised by the thinnest phase boundary (30 μm), which is found about 60 μm in the incompatible blends, showing a final hardness value that demonstrates the compatibilizer to be smoothly distributed in the interface between the two blend components. Results highlight that microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non- or compatibilized polymer blends and other inhomogeneous materials. (author)

  16. Pseudo-stationary separation materials for highly parallel separations.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Palmer, Christopher (University of Montana, Missoula, MT)

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  17. Conflicting Multi-Objective Compatible Optimization Control

    OpenAIRE

    Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik

    2010-01-01

    Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations

  18. Materials requirements for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Bennett, J.W.; Horton, K.E.

    1978-01-01

    Materials requirements for Liquid Metal Fast Breeder Reactors (LMFBRs) are quite varied with requisite applications ranging from ex-reactor components such as piping, pumps, steam generators and heat exchangers to in-reactor components such as heavy section reactor vessels, core structurals, fuel pin cladding and subassembly flow ducts. Requirements for ex-reactor component materials include: good high temperature tensile, creep and fatigue properties; compatibility with high temperature flowing sodium; resistance to wear, stress corrosion cracking, and crack propagation; and good weldability. Requirements for in-reactor components include most of those cited above for ex-reactor components as supplemented by the following: resistance to radiation embrittlement, swelling and radiation enhanced creep; good neutronics; compatibility with fuel and fission product materials; and resistance to mass transfer via flowing sodium. Extensive programs are currently in place in a number of national laboratories and industrial contractors to address the materials requirements for LMFBRs. These programs are focused on meeting the near term requirements of early LMFBRs such as the Fast Flux Test Facility and the Clinch River Breeder Reactor as well as the longer term requirements of larger near-commercial and fully-commercial reactors

  19. Preparation of refractory cermet structures for lithium compatibility testing

    Science.gov (United States)

    Heestand, R. L.; Jones, R. A.; Wright, T. R.; Kizer, D. E.

    1973-01-01

    High-purity nitride and carbide cermets were synthesized for compatability testing in liquid lithium. A process was developed for the preparation of high-purity hafnium nitride powder, which was subsequently blended with tungsten powder or tantalum nitride and tungsten powders and fabricated into 3 in diameter billets by uniaxial hot pressing. Specimens were then cut from the billets for compatability testing. Similar processing techniques were applied to produce hafnium carbide and zirconium carbide cermets for use in the testing program. All billets produced were characterized with respect to chemistry, structure, density, and strength properties.

  20. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques - A European effort to accelerate fusion materials development

    DEFF Research Database (Denmark)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.

    2013-01-01

    as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced...... having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected...

  1. Blood compatibility assessment of graft copolymer (NR-g-DMAA) tubes

    International Nuclear Information System (INIS)

    Razzak, M.T.; Otsuhata, Kazushige; Tabata, Yoneho; Ohashi, Fumio; Takeuchi, Atsuki

    1992-01-01

    Graft copolymer (NR-g-DMAA) tubes have been prepared using simultaneous radiation induced grafting of N,N-dimethyl-acrylamide, (DMAA) onto natural rubber (NR) tubes. The blood compatibility of the NR-g-DMAA tubes was assessed with three methods, namely in vitro test, ex vivo once through test and ex vivo loops test. In the case of the in vitro test, a simple whole blood contacting procedure has been employed. The ex vivo once through test involves the exposing of NR-g-DMAA tubes with once through flow of fresh canine blood and then it was inspected for any evidence of clot. In the case of ex vivo loops test, the NR-g-DMAA tube was implanted at external jugular vein of a mongrel canine and the blood flow in the NR-g-DMAA tube was detected with an ultrasonic flow meter. It was found that the blood compatibility of NR-g-DMAA tubes is improved significantly with the increasing degree of grafting. All the NR-g-DMAA tubes having a degree of grafting of about 30 wt% or more exhibit good blood compatibility. It was found that the blood compatibility of the NR-g-DMAA tube is better than that of a medical grade silicon rubber (SiR) tube. (Author)

  2. On The compatibility and dynamic vulcanization of Pom/Nbr blends

    International Nuclear Information System (INIS)

    Mortezaee, M.; Naveed Family, M.H.; Mehrabzadeh, M.

    2001-01-01

    Polymer blends based on polyacetal butadiene rubber were prepared by melt blending technique. The mixing parameters such ad temperature, time and speed of mixing were varied to obtain a wide range of properties. The mixing parameters were optimized by evaluating the mechanical properties of the blend over a wide range of mixing conditions. The morphology of the blend indicated a two-phase structure. This study describes an attempt to improve the tensile strength of Pom/Nbr blends by means of compatibility and dynamic vulcanization. A commercial compatibility, maleic anhydride (Ma), has been used to control the phase morphology of the blend system. Dicumyl peroxide is used to dynamically vulcanize the Nbr elastomer in the blend. The tensile strength of the compatibility systems showed improvement. Dynamic vulcanization raises elastic recovery and tensile modulus of the blends, but the elongation at break decreases

  3. High-Field MRI-Compatible Needle Placement Robot for Prostate Interventions

    Science.gov (United States)

    SU, Hao; CAMILO, Alex; COLE, Gregory A.; HATA, Nobuhiko; TEMPANY, Clare M.; FISCHER, Gregory S.

    2014-01-01

    This paper presents the design of a magnetic resonance imaging (MRI) compatible needle placement system actuated by piezoelectric actuators for prostate brachytherapy and biopsy. An MRI-compatible modular 3 degree-of-freedom (DOF) needle driver module coupled with a 3-DOF x-y-z stage is proposed as a slave robot to precisely deliver radioactive brachytherapy seeds under interactive MRI guidance. The needle driver module provides for needle cannula rotation, needle insertion and cannula retraction to enable the brachytherapy procedure with the preloaded needles. The device mimics the manual physician gesture by two point grasping (hub and base) and provides direct force measurement of needle insertion force by fiber optic force sensors. The fabricated prototype is presented and an experiment with phantom trials in 3T MRI is analyzed to demonstrate the system compatibility. PMID:21335868

  4. The compatibility heuristic in non-categorical hypothetical reasoning: inferences between conditionals and disjunctions.

    Science.gov (United States)

    Espino, Orlando; Byrne, Ruth M J

    2013-11-01

    A new theory explains how people make hypothetical inferences from a premise consistent with several alternatives to a conclusion consistent with several alternatives. The key proposal is that people rely on a heuristic that identifies compatible possibilities. It is tested in 7 experiments that examine inferences between conditionals and disjunctions. Participants accepted inferences between conditionals and inclusive disjunctions when a compatible possibility was immediately available, in their binary judgments that a conclusion followed or not (Experiment 1a) and ternary judgments that included it was not possible to know (Experiment 1b). The compatibility effect was amplified when compatible possibilities were more readily available, e.g., for 'A only if B' conditionals (Experiment 2). It was eliminated when compatible possibilities were not available, e.g., for 'if and only if A B' bi-conditionals and exclusive disjunctions (Experiment 3). The compatibility heuristic occurs even for inferences based on implicit negation e.g., 'A or B, therefore if C D' (Experiment 4), and between universals 'All A's are B's' and disjunctions (Experiment 5a) and universals and conditionals (Experiment 5b). The implications of the results for alternative theories of the cognitive processes underlying hypothetical deductions are discussed. Copyright © 2013. Published by Elsevier Inc.

  5. High-Field MRI-Compatible Needle Placement Robot for Prostate Interventions

    OpenAIRE

    SU, Hao; CAMILO, Alex; COLE, Gregory A.; HATA, Nobuhiko; TEMPANY, Clare M.; FISCHER, Gregory S.

    2011-01-01

    This paper presents the design of a magnetic resonance imaging (MRI) compatible needle placement system actuated by piezoelectric actuators for prostate brachytherapy and biopsy. An MRI-compatible modular 3 degree-of-freedom (DOF) needle driver module coupled with a 3-DOF x-y-z stage is proposed as a slave robot to precisely deliver radioactive brachytherapy seeds under interactive MRI guidance. The needle driver module provides for needle cannula rotation, needle insertion and cannula retrac...

  6. ENGINEERING SPECIALTY ASSESSMENT OF TANK WASTE COMPATIBILITY REPORTING

    International Nuclear Information System (INIS)

    KNIGHT, M.A.

    2003-01-01

    This Engineering Specialty Assessment was conducted to review the Tank Farm Waste Transfer Compatibility Program to assess whether the program meets the needs of accelerated retrieval and closure and waste feed delivery and to identify areas and methods for streamlining the program. The assessment was conducted in June 2003 and resulted in two findings and thirteen observations. The assessment results indicate that significant opportunities exist for streamlining the program by reducing the number of criteria requiring evaluation from 21 to 11, with only six of the criteria requiring evaluation for the majority of transfers. The assessment identified areas where existing criteria require strengthening to ensure that the risks of undesirable solids precipitation, from either waste mixing or waste transfer, are minimized. The assessment further identified opportunities for using existing engineering tools to simplify the calculations involved with preparation of waste compatibility assessments. The need to ensure that a revision to the waste compatibility program is prepared to align the program criteria with those that will be implemented with the DSA approval was also identified. Finally, the assessment identified that corrective actions are required to implement a tank-by-tank PCB inventory within the Best Basis Inventory and to ensure that sample data from external waste generators is entered into the TWINS database

  7. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    Science.gov (United States)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  8. Screening for attractants compatible with entomopathogenic fungus ...

    African Journals Online (AJOL)

    RACHEL

    2016-04-27

    Apr 27, 2016 ... Several thrips attractants were screened for compatibility with Metarhizium anisopliae (Metchnikoff). Sorokin (Hypocreales: Clavicipitaceae) and a subset of these for attraction to Megalurothrips sjostedti. Trybom (Thysanoptera: Thripidae). Conidial germination and germ tube length of M. anisopliae were.

  9. Selection of Easily Accessible PCR- and Bio-Compatible Materials for Microfluidic Chips

    KAUST Repository

    Xiao, Kang; Kodzius, Rimantas; Wu, Jinbo

    2013-01-01

    Conventional fabrication of microfluidic chip is a complicated and time, effort and material consuming process. Consequently, due to high expenses, it has poor applicability for performing mass biological analysis by microfluidics. In this study, we

  10. The effect of strong intermolecular and chemical interactions on the compatibility of polymers

    International Nuclear Information System (INIS)

    Askadskii, Andrei A

    1999-01-01

    The data on compatibility and on the properties of polymer blends are generalised. The emphasis is placed on the formation of strong intermolecular interactions (dipole-dipole interaction and hydrogen bonding) between the components of blends, as well as on the chemical reactions between them. A criterion for the prediction of compatibility of polymers is described in detail. Different cases of compatibility are considered and the dependences of the glass transition temperatures on the composition of blends are analysed. The published data on the effect of strong intermolecular interactions between the blend components on the glass transition temperature are considered. The preparation of interpolymers is described whose macromolecules are composed of incompatible polymers, which leads to the so-called 'forced compatibility.' The bibliography includes 80 references.

  11. Selection of Easily Accessible PCR- and Bio-Compatible Materials for Microfluidic Chips

    KAUST Repository

    Xiao, Kang

    2013-10-30

    Conventional fabrication of microfluidic chip is a complicated and time, effort and material consuming process. Consequently, due to high expenses, it has poor applicability for performing mass biological analysis by microfluidics. In this study, we repor

  12. Material Usage in High Pressure Oxygen Systems for the International Space Station

    Science.gov (United States)

    Kravchenko, Michael; Sievers, D. Elliott

    2014-01-01

    The Nitrogen/Oxygen Recharge System (NORS) for the International Space Station (ISS) Program was required as part of the Space Shuttle retirement efforts to sustain the ISS life support systems. The system is designed around a 7000 psia Oxygen or Nitrogen Recharge Tank Assembly which is able to be utilized both internally and externally to the ISS. Material selection and usage were critical to ensure oxygen compatibility for the design, while taking into consideration toxicity, weldability, brazability and general fabrication and assembly techniques. The system uses unique hardware items such a composite overwrap pressure vessel (COPV), high pressure mechanical gauges, compact regulators and valves, quick disconnects, metal tubing and flexhoses. Numerous challenges and anomalies were encountered due to the exotic nature of this project which will be discussed in detail. The knowledge gained from these anomalies and failure resolutions can be applied to more than space applications, but can also be applicable to industry pressurized systems.

  13. Consideration of radiation effects in the choice of packaging materials

    International Nuclear Information System (INIS)

    Moore, P.W.

    1985-01-01

    Requirements for food packaging materials include whether there is any interaction between the food and the package during or after the irradiation, and whether as a result of the irradiation, volatile or leachable substances are released from the pack into the food. The performance of cellulose-based materials and plastic films under irradiation are discussed

  14. Alternative Work Schedules: Designing Compatible Work Systems

    Science.gov (United States)

    Steen, Pamela L.

    1977-01-01

    Attempts to improve the quality of working life through changes in environmental factors, such as flexible hours, are likely to bring limited and short-term advantages unless the work process itself is well-designed and compatible with the environmental changes. (Author/LBH)

  15. 77 FR 14461 - Approval of Noise Compatibility Program for W.K. Airport, Battle Creek, MI

    Science.gov (United States)

    2012-03-09

    ....K. Kellogg Airport noise compatibility program. All of the recommendations of the program were... Noise Compatibility Program for W.K. Kellogg Airport is February 16, 2012. FOR FURTHER INFORMATION... the Noise Compatibility Program for W.K. Kellogg Airport, effective February 16, 2012. Under section...

  16. 75 FR 11990 - Chicago Executive Airports Noise Exposure Map Approval and Noise Compatibility Program Review

    Science.gov (United States)

    2010-03-12

    ... meet applicable regulations and which depict non-compatible land uses as of the date of submission of... the Act. These functions are inseparable from the ultimate land use control and planning...-compatible land uses and preventing the introduction of additional non-compatible land uses. Interested...

  17. Overview of materials R and D for fusion and Gen-4

    Energy Technology Data Exchange (ETDEWEB)

    Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan); Tavassoli, F.; Carre, F.; Billot, P. [CEA Saclay, 91 - Gif sur Yvette (France); Zinide, S. [Oak Ridge National Laboratory, Materials Science and Technology Div., AK TN (United States)

    2007-07-01

    Full text of publication follows: In view of the growing need for energy, the risk of exhaustion of fossil fuel and the problem of global warming, the nuclear energy is receiving added attention as a realistic and viable advanced solution. International collaborations on Generation IV (Gen-IV) fission reactors and on ITER and DEMO fusion reactors are developing. This is particularly the case in the sector of materials, where they hold the key to success of these systems. The international community has recognized and planned its materials R and D work for Fusion and Gen-IV reactors with the following considerations: 1- The time allotted to materials R and D is short and may not allow development of totally new materials. 2- Activities required, to cover existing materials variations and service conditions necessary for reactor design, are very time consuming. 3- The work to be done must build upon the existing knowledge of materials and avoid duplications. Although ITER for fusion and Generation four International Forum (GIF) for Gen-IV are important international collaborative programs, they are insufficient to meet all the national energy policies of the participating countries. This paper provides an overview of the materials R and D carried out for fusion and Gen-IV reactors at international and national levels. Materials programs discussed include both cross-cutting and reactor specific actions, where major tasks can be defined as: + Cross-cutting materials tasks: - materials for high temperature service; - materials with neutron damage tolerance; - materials behavior analysis and modeling; - high temperature design methodology. + Reactor specific materials tasks: - very high temperature alloys; - carbon, high temperature ceramics and their composites; - materials compatibilities. Starting with a brief introduction of materials R and D strategies, ITER and Broader Approach (BA), overall activities for fusion and GIF for Gen-IV will be reviewed. Domestic

  18. Compatibility and Marital Satisfaction in Disabled Couples Compared to Healthy Ones

    Directory of Open Access Journals (Sweden)

    Azam Abed

    2015-06-01

    Full Text Available Objectives: The aim of current study was the evaluation and comparison of compatibility and marital satisfaction between handicapped couples and healthy ones. Methods: In this study, 50 handicapped couples and 50 healthy couples were examined with Enrich’s marital satisfaction questionnaire and Bell’s adjustment questionnaire. The data were analyzed, using SPSS 15, correlation tests and ANOVA. Results: The results showed that there was no significant difference between handicapped and healthy couples in compatibility and marital satisfaction. Discussion: It is concluded that people who were handicapped before their marriage and those who decided to marry them were suitably aware of the issue, therefore accepting a handicapped person was not so hard. What is important in marital compatibility is accepting a partner.

  19. Achievement report for fiscal 2000 on research and development of environment compatible next generation supersonic propulsion system. 1/2. Research and development of environment compatible next generation supersonic aircraft engine; 2000 nendo kankyo tekigogata jisedai choonsoku suishin system no kenkyu kaihatsu seika hokokusho. 1/2. Kankyo tekigogata jisedai choonsokukiyo engine kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 in development of an environment compatible next generation supersonic aircraft engine. In reducing noise, discussions were given on noise absorbing materials, jet mixer ejector nozzles, and fans. In order to reduce NOx emission, studies were performed mainly on stable combustion of an HTCE combustor. Reasonability of the AI control was verified by using simulations of a combustor model. Design was made on a fuel AI control system required to avoid such unstable combustion as backfire and spontaneous ignition. A CMC liner for an innovative heat resistant combustor was discussed. In the CO2 emission suppressing technologies, studies were performed on technologies to apply to large structures such three-dimensional fiber reinforced materials as MMC, CMC and TiAl. In developing damage tolerating design technologies for the advanced heat resistant material structures, studies were made on application to turbine structures of micro-structural stabilization for an extended period of time, heat insulation/oxidation resistant coating, micro and macro organization control and crack propagation analysis. The paper also describes an overall demonstration studies on technologies for very fine cooling of pseudo microporous structure, discrete control for CO2 reduction, an environment compatible engine systems and engines. (NEDO)

  20. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  1. Deleterious impact of feto-maternal MHC compatibility on the success of pregnancy in a macaque model.

    Science.gov (United States)

    Aarnink, Alice; Mee, Edward T; Savy, Nicolas; Congy-Jolivet, Nicolas; Rose, Nicola J; Blancher, Antoine

    2014-02-01

    The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.

  2. Automatic kelvin probe compatible with ultrahigh vacuum

    NARCIS (Netherlands)

    Baikie, I.D.; van der Werf, Kees; Oerbekke, H.; Broeze, J.; van Silfhout, Arend

    1989-01-01

    This article describes a new type of in situ ultrahigh‐vacuum compatible kelvin probe based on a voice‐coil driving mechanism. This design exhibits several advantages over conventional mechanical feed‐through and (in situ) piezoelectric devices in regard to the possibility of multiple probe

  3. Design of multichannel counting system for IBM PC and compatibles

    International Nuclear Information System (INIS)

    Majeed, B.; Ahmad, Z.; Osman, A.; Ysain, M.M.

    1995-07-01

    A Multichannel Counting System (MCCS), based on IBM-PC and compatible computer systems have been designed. The MCCS consists of a Multichannel Counting System plug-in interface card (MCCS-PC) for IBM PC and compatibles and a NIM-BIN module (MCCS-NB). The MCCS-PC provides simultaneous monitoring of upto seven independent SCA type inputs. An on board programmable timer provides elapsed time measurement. A menu-driven program for data acquisition and timer control has also been developed. (author) 8 figs

  4. Batch Processing of CMOS Compatible Feedthroughs

    DEFF Research Database (Denmark)

    Rasmussen, F.E.; Heschel, M.; Hansen, Ole

    2003-01-01

    . The feedthrough technology employs a simple solution to the well-known CMOS compatibility issue of KOH by protecting the CMOS side of the wafer using sputter deposited TiW/Au. The fabricated feedthroughs exhibit excellent electrical performance having a serial resistance of 40 mOmega and a parasitic capacitance...... of 2.5 pF. (C) 2003 Elsevier Science B.V. All rights reserved....

  5. Considerations for ceramic inlays in posterior teeth: a review

    Science.gov (United States)

    Hopp, Christa D; Land, Martin F

    2013-01-01

    This review of ceramic inlays in posterior teeth includes a review of the history of ceramic restorations, followed by common indications and contraindications for their use. A discussion on the potential for tooth wear is followed by a review of recommended preparation design considerations, fabrication methods, and material choices. Despite the improved materials available for fabrication of porcelain inlays, fracture remains a primary mode of inlay failure. Therefore, a brief discussion on strengthening methods for ceramics is included. The review concludes with a section on luting considerations, and offers the clinician specific recommendations for luting procedures. In conclusion, inlay success rates and longevity, as reported in the literature, are summarized. PMID:23750101

  6. A review of refractory materials for vapor-anode AMTEC cells

    Science.gov (United States)

    King, Jeffrey C.; El-Genk, M. S.

    2000-01-01

    Recently, refractory alloys have been considered as structural materials for vapor-anode Alkali Metal Thermal-to-Electric Conversion (AMTEC) cells, for extended (7-15 years) space missions. This paper reviewed the existing database for refractory metals and alloys of potential use as structural materials for vapor-anode sodium AMTEC cells. In addition to requiring that the vapor pressure of the material be below 10-9 torr (133 nPa) at a typical hot side temperature of 1200 K, other screening considerations were: (a) low thermal conductivity, low thermal radiation emissivity, and low linear thermal expansion coefficient; (b) low ductile-to-brittle transition temperature, high yield and rupture strengths and high strength-to-density ratio; and (c) good compatibility with the sodium AMTEC operating environment, including high corrosion resistance to sodium in both the liquid and vapor phases. Nb-1Zr (niobium-1% zirconium) alloy is recommended for the hot end structures of the cell. The niobium alloy C-103, which contains the oxygen gettering elements zirconium and hafnium as well as titanium, is recommended for the colder cell structure. This alloy is stronger and less thermally conductive than Nb-1Zr, and its use in the cell wall reduces parasitic heat losses by conduction to the condenser. The molybdenum alloy Mo-44.5Re (molybdenum-44.5% rhenium) is also recommended as a possible alternative for both structures if known problems with oxygen pick up and embrittlement of the niobium alloys proves to be intractable. .

  7. A Zeroth Law Compatible Model to Kerr Black Hole Thermodynamics

    Directory of Open Access Journals (Sweden)

    Viktor G. Czinner

    2017-02-01

    Full Text Available We consider the thermodynamic and stability problem of Kerr black holes arising from the nonextensive/nonadditive nature of the Bekenstein–Hawking entropy formula. Nonadditive thermodynamics is often criticized by asserting that the zeroth law cannot be compatible with nonadditive composition rules, so in this work we follow the so-called formal logarithm method to derive an additive entropy function for Kerr black holes also satisfying the zeroth law’s requirement. Starting from the most general, equilibrium compatible, nonadditive entropy composition rule of Abe, we consider the simplest non-parametric approach that is generated by the explicit nonadditive form of the Bekenstein–Hawking formula. This analysis extends our previous results on the Schwarzschild case, and shows that the zeroth law-compatible temperature function in the model is independent of the mass–energy parameter of the black hole. By applying the Poincaré turning point method, we also study the thermodynamic stability problem in the system.

  8. Coal use in Italy and environmental compatibility

    International Nuclear Information System (INIS)

    1998-01-01

    Fossil fuels have in Italy great importance. In Italy, in terms of environmental protection and for social acceptance, coal has had a real opposition not verified in other countries. Environmental compatibility of coal cycle and related technologies are discussed also consequently at the Kyoto protocol [it

  9. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Chugh, B; Keller, B [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Sahgal, A; Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should

  10. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    International Nuclear Information System (INIS)

    Soliman, A; Chugh, B; Keller, B; Sahgal, A; Song, W

    2016-01-01

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm 2 and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should focus

  11. Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film

    International Nuclear Information System (INIS)

    Nho, Young Chang.; Kwon, Oh Hyun

    2003-01-01

    To improve surface blood compatibility on cellulose film for hemodialysis, acrylic acid, 2-hydroxyethyl methacrylate and three kinds of polyethylene glycol methacrylates were grafted onto the cellulose film surface by radiation grafting technique. Heparin was introduced onto the grafted cellulose film surfaces. The grafting and heparinization were confirmed by Fourier transform infrared spectroscopy in the attenuated total reflectance mode and electron spectroscopy for chemical analysis. The blood compatibility of the modified cellulose film was examined by the determination of platelet adhesion and thrombus formation

  12. The Lattice Compatibility Theory LCT: Physical and Chemical Arguments from the Growth Behavior of Doped Compounds in terms of Bandgap Distortion and Magnetic Effects

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Physical and chemical arguments for the recently discussed materials-related Lattice Compatibility Theory are presented. The discussed arguments are based on some differences of Mn ions incorporation kinetics inside some compounds. These differences have been evaluated and quantified in terms of alteration of bandgap edges, magnetic patterns, and Faraday effect.

  13. Evaluation of compatible mortars to repair 19th century natural cement cast stone from the French Rhône-Alpes region

    Directory of Open Access Journals (Sweden)

    Myriam Bouichou

    2008-01-01

    Full Text Available In France, natural cements were extensively produced in the middle of the 19th century. In the French Alps, due to their ochre color, these cements were massively used, notably to produce cast stone, to simulate natural freestone. A preliminary survey revealed an overall good state of preservation of the buildings of this period. Two kinds of decays mechanisms were however identified : erosion affecting the surface of the majority of the buildings, inducing a gradual disappearance of the initial "fake-stone aspect", and a spalling phenomenon often combined with salts crystallization, observed only on a few buildings. Today, due to a lack of appropriate repair materials, the rehabilitation of these buildings mainly consists in the use of gray Portland-cement-based-mortars combined with a painting finishing, which is not satisfactory considering the conservation deontology, as the original appearance is lost. Therefore, the aim of this project was to develop and to test compatible repair materials to restore the culture heritage of this region. Based on the preliminary characterization of a set of representative ancient buildings, combined to a literature review, specifications concerning the composition and the main properties of repair materials, which could assure a compatibility with the ancient concrete of the region were established. Then, three Prompt-cement and one Portland-cement based mortars were selected, two of them being specifically formulated. Firstly, the appearance, the workability and the mechanical and physical properties of those mortars were characterized. Secondly, to evaluate the compatibility of the selected mortars with ancient concrete, Prompt-cement-based slabs were cast using a 19th century concrete formula, and were artificially eroded. After applying the 4 mortars on the slabs, visual observations and pull-out tests will be carried out before and after artificial aging. Finally, the repair mortar presenting the best

  14. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  15. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  16. Compatibility and economic assessment of sweetpotato and garden ...

    African Journals Online (AJOL)

    ecological zone of Nigeria, to determine the compatibility and economic viability of sweetpotato (Ipomoea batatas) and garden egg (Solanum gelio) intercrop during 2011 and 2012 cropping seasons. Two sweetpotato varieties; NR05/022 and ...

  17. Interface Characterization of Metals and Metal-nitrides to Phase Change Materials

    NARCIS (Netherlands)

    Roy, Deepu; Gravesteijn, Dirk J; Wolters, Robertus A.M.

    2011-01-01

    We have investigated the interfacial contact properties of the CMOS compatible electrode materials W, TiW, Ta, TaN and TiN to doped-Sb2Te phase change material (PCM). This interface is characterized both in the amorphous and in the crystalline state of the doped-Sb2Te. The electrical nature of the

  18. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history.

    Science.gov (United States)

    Cherry, Joshua L

    2017-02-23

    Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand variable nucleotide sites. Run times are several seconds or less. Computational experiments show that maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that, though derived from actual sequence reads, has been identified as likely to be misleading. Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented here rapidly solves fairly large problems of this type, and provides robustness against misleading characters than can pollute large-scale sequencing data.

  19. Electromagnetic compatibility principles and applications

    CERN Document Server

    Weston, David A

    2001-01-01

    This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition

  20. Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae Blastospores with Agricultural Chemicals Used for Management of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2013-11-01

    Full Text Available Biorational insecticides are being increasingly emphasized for inclusion in integrated pest management programs for invasive insects. The entomopathogenic fungus, Isaria fumosorosea, can be used to help manage the Asian citrus psyllid with minimal impact on beneficial arthropods, but its effectiveness may be compromised by agrochemicals used to control concurrent arthropod pests and diseases. We evaluated the compatibility of I. fumosorosea blastospores with a range of spray oils and copper-based fungicides registered for use in citrus groves. Results of laboratory and greenhouse tests showed a range of responses of the fungus to the different materials, including compatibility and incompatibility. Overall, I. fumosorosea growth in vitro was reduced least by petroleum-based materials and most by botanical oils and borax, and some of the copper-based fungicides, suggesting that tank mixing of I. fumosorosea with these latter products should be avoided. However, equivalent negative effects of test materials on fungal pathogenicity were not always observed in tests with adult psyllids. We hypothesize that some oils enhanced adherence of blastospores to the insect cuticle, overcoming negative impacts on germination. Our data show that care should be taken in selecting appropriate agrochemicals for tank-mixing with commercial formulations of entomopathogenic fungi for management of citrus pests. The prospects of using I. fumosorosea for managing the invasive Asian citrus psyllid and other citrus pests are discussed.