WorldWideScience

Sample records for materials btesm progress

  1. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  2. FY2011 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  3. FY2016 Lightweight Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  4. Computerized access to materials data. A progress report

    International Nuclear Information System (INIS)

    Rumble, J. Jr.

    1985-01-01

    As the effort to build a comprehensive computerized materials data system grows, it becomes more obvious that the benefits will be far-reaching. During this workshop, the enthusiasm of the participants grew steadily until the questions became not''What,'' but ''When?''. The engineering community within the United States has banded together many times to advance progress in engineering capability. The computerized materials data system requires such an effort, and the rewards will be substantial. Chapter 3 identifies changes in the use of materials data in the Nuclear Power Industry. Chapter 4 describes the EPRI experience in building computerized materials databases. In Chapter 5, the National Materials Property Data Network is discussed. The next four chapters present summaries of the workshop discussions and its conclusions. Chapter 6 discusses the content of the proposed system, Chapter 7 its size and the data sources, and Chapter 8 the user interfaces and system capabilities. In Chapter 9, ways of making further progress are outlined

  5. Plant Materials Program: progress June 1981-May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam generator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic area: integranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  6. Plant materials program. Progress report, June 1980-May 1981

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.; McIlree, A.

    1981-11-01

    This is the first annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, and steam generator tube denting and cracking. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  7. FY2015 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-30

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  8. Plant Materials Program: progress June 1981 to May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam geerator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  9. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  10. Fusion materials semiannual progress report for period ending December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G.

    2000-03-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components.

  11. Fusion materials semiannual progress report for period ending December 31, 1999

    International Nuclear Information System (INIS)

    Burn, G.

    2000-01-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components

  12. Fusion reactor materials. Semiannual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L. [comps.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  13. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    1991-04-01

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  14. Fusion reactor materials: Semiannual progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    1988-03-01

    This is the third in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development for Irradiation Performances; Damage Analysis and Fundamental Studies; Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  15. Progress on research of materials science and biotechnology by ion beam application

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Research of materials science and biotechnology by ion beam application in Takasaki Establishment was reviewed. Especially, the recent progresses of research on semiconductors in space, creation of new functional materials and topics in biotechnology were reported. (author)

  16. Fusion materials semiannual progress report for the period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This is the sixteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following Progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. The individual papers in this paper have been cataloged separately elsewhere.

  17. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    International Nuclear Information System (INIS)

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  18. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  19. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide.

  20. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    International Nuclear Information System (INIS)

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide

  1. Progress on laboratory studies of the immobilisation of plutonium contaminated materials (pcm)

    International Nuclear Information System (INIS)

    Awmack, A.F.; Hemingway, K.

    1984-09-01

    This report describes progress on laboratory scale investigations into immobilisation of Plutonium Contaminated Materials for the year ending August 1984. The work is a continuation of that previously reported though some new work is also included. The samples tested were shredded plastic materials and latex. Three areas of work are covered (1) ISO Leach Tests (2) Radiolysis and degradation of organic materials (3) Equilibrium Leach Tests. (author)

  2. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately.

  3. Progress Report of the Materials Department. First Quarter 1971. RCN Report

    International Nuclear Information System (INIS)

    Sens, P.F.

    1971-06-01

    A description of the progress in the various projects concerning the materials development of water cooled reactors, sodium cooled fast reactors and gas cooled reactors. Similar reports have been issued regularly with an internal distribution only. (author)

  4. Fusion materials semiannual progress report for the period ending March 31, 1995

    International Nuclear Information System (INIS)

    1995-07-01

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: sm-bullet Alloy Development for Irradiation Performance. sm-bullet Damage Analysis and Fundamental Studies. sm-bullet Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged

  5. Fusion materials semiannual progress report for the period ending March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: {sm_bullet} Alloy Development for Irradiation Performance. {sm_bullet} Damage Analysis and Fundamental Studies. {sm_bullet} Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged.

  6. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    Directory of Open Access Journals (Sweden)

    Jin Min Wang

    2010-11-01

    Full Text Available The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  7. Fusion materials semiannual progress report for period ending June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods.

  8. Fusion materials semiannual progress report for period ending June 30, 1997

    International Nuclear Information System (INIS)

    1997-08-01

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods

  9. A Duration Prediction Using a Material-Based Progress Management Methodology for Construction Operation Plans

    Directory of Open Access Journals (Sweden)

    Yongho Ko

    2017-04-01

    Full Text Available Precise and accurate prediction models for duration and cost enable contractors to improve their decision making for effective resource management in terms of sustainability in construction. Previous studies have been limited to cost-based estimations, but this study focuses on a material-based progress management method. Cost-based estimations typically used in construction, such as the earned value method, rely on comparing the planned budget with the actual cost. However, accurately planning budgets requires analysis of many factors, such as the financial status of the sectors involved. Furthermore, there is a higher possibility of changes in the budget than in the total amount of material used during construction, which is deduced from the quantity take-off from drawings and specifications. Accordingly, this study proposes a material-based progress management methodology, which was developed using different predictive analysis models (regression, neural network, and auto-regressive moving average as well as datasets on material and labor, which can be extracted from daily work reports from contractors. A case study on actual datasets was conducted, and the results show that the proposed methodology can be efficiently used for progress management in construction.

  10. Progress report for 1984/85 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1985-01-01

    The progress report for 1984/5 from the 'Plutonium Contaminated Materials Working Party' is presented. The report is divided into eight main topics, each discussed separately, and include: reduction of arisings, plutonium measurement, sorting and packaging, washing of shredded combustible plutonium contaminated materials (PCM), decommissioning and non-combustible PCM treatment, PCM immobilization, treatment of alpha bearing liquid wastes, and engineering objectives. (U.K.)

  11. Progress of flame gunning materials; Yosha hoshuzai no shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kakuichi [Harima Ceramic Corp., Hyogo (Japan)

    1999-04-01

    This report concerns to progress in the thermal spraying for repairing refractory, to say more precisely the flame-gunning materials. Gunning method using wet-slurry materials, in spite of its simplicity in execution, possesses a shortcoming of forming the porous deposit around spraying spot. Contrarily, the flame-gunning method is becoming popular in Japan because this method provides us with the minutely organized deposit having high tenacity and corrosion-resisting property. Flame is made from propane/oxygen mixture to assure the efficient melting of powdered clay. Magnesia/Dromite/slag system is preferable to converter furnace to produce a deposit layer less than 10% porosity. Materials based on alumina are preferable, although giving a relatively elevated porosity, to vacuum degassing vessel, converter furnace of stainless steel, hot stove for blast furnace, etc. Silca-rich system is characterized by the resistivity to recycled thermal procedure which brings about application to coke furnace. (NEDO)

  12. Fusion Materials Semiannual Progress Report for the Period Ending June 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.

    1999-09-01

    This is the twenty-sixth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and its reported separately.

  13. Progress report for 1982/83 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1983-01-01

    The report falls under the headings: introduction (definitions of plutonium contaminated materials (PCM)); organisation and role of the Plutonium Contaminated Materials Working Party; management practices in relation to PCM; 1982/1983 Progress Report (engineering objectives; reduction of PCM arisings; plutonium measurement; development of treatment processes; decommissioning and non-combustible PCM treatment; washing of shredded combustible PCM; PCM immobilisation; liquid effluent treatment; actinide chemistry); programme management. (U.K.)

  14. Fusion materials semiannual progress report for the period ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. [ed.] [comp.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Fusion materials semiannual progress report for the period ending June 30, 1998

    International Nuclear Information System (INIS)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  16. Progress in the US program to develop low-activation structural materials for fusion

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Jones, R.H.; Bloom, E.E.; Rowcliffe, A.F.; Smith, D.L.; Odette, G.R.; Wiffen, F.W.

    1999-01-01

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current US structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  17. Advances in materials science, Metals and Ceramics Division. Triannual progress report, October 1979-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-31

    Progress is summarized concerning magnetic fusion energy materials, laser fusion energy, aluminium-air battery and vehicle, geothermal research, oil-shale research, nuclear waste management, office of basic energy sciences research, and materials research notes. (FS)

  18. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    International Nuclear Information System (INIS)

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section

  19. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section.

  20. Fusion materials semiannual progress report for the period ending December 31, 1996

    International Nuclear Information System (INIS)

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods

  1. Fusion materials semiannual progress report for the period ending December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.

  2. Plutonium contaminated materials research programme. Progress Report for 1983/84 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1984-01-01

    Plutonium contaminated material (PCM) is a generic term applied to a wide variety of materials which have become contaminated by plutonium compounds, by virtue of their use inside the primary containment of fuel cycle plants, but which generally have low beta gamma content. The report falls under the headings: introduction; organisation and role of the PCMWP; management practices; 1983/84 progress report (a) reduction of arisings; (b) plutonium measurement; (c) treatment of solid PCM; (d) treatment of alpha bearing liquid wastes; (e) actinide chemistry; (f) engineering objectives. (U.K.)

  3. Recent progress in the development of anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cowin, Peter I.; Petit, Christophe T.G.; Lan, Rong; Tao, Shanwen [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2011-05-15

    The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Progress in the U.S. program to develop low-activation structural materials for fusion

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Jones, R.H.; Bloom, E.E.; Rowcliffe, A.F.; Smith, D.L.; Odette, G.R.; Wiffen, F.W.

    2001-01-01

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current U.S. structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  5. Progress report for 1986 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1987-11-01

    The paper covers progress during 1986 under the joint BNFL/MOD/DoE funded PCM Working Party studying the management, treatment and immobilization of plutonium contaminated materials. Development is reported under each of seven main programme headings including reduction of arisings, Pu measurement, decommissioning and non-combustible PCM treatment, liquid effluent treatment, sorting and packaging, PCM immobilisation and engineering objectives. (author)

  6. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Science.gov (United States)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  7. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    International Nuclear Information System (INIS)

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, H.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme’s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  8. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  9. Cladding and structural materials. Semi-annual progress report, July 1975--January 1976

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1976-04-01

    Progress on experimental programs and evaluation of results is given for radiation damage studies to LMFBR cladding and structural materials. The primary material being studied is 316 SS in various conditions of cold work and in the welded condition. Tensile, creep, and swelling property data on unirradiated and irradiated 316 SS cladding and duct specimens at various test conditions are provided. The importance of stress on the properties of 316 SS is highlighted. Results on core dosimetry and damage analysis indicate the increasing value of detailed core characterization. 105 figures, 21 tables

  10. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Dudarev, S.L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gonzalez de Vicente, S.M. [EFDA-Close Support Unit, Garching (Germany); Aktaa, J. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Armstrong, D.E.J. [Department of Materials, University of Oxford (United Kingdom); Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue, de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Basuki, W.W. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Battabyal, M. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Becquart, C.S. [Unite Materiaux et Transformations, UMR 8207, 59655 Villeneuve d' Ascq (France); Blagoeva, D. [NRG, Nuclear Research and consultancy Group, Petten (Netherlands); Boldyryeva, H. [Institute of Plasma Physics, Za Slovankou 3, 18200 Praha (Czech Republic); and others

    2013-01-15

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  11. Progress in materials research and applications of high-Tc Superconductors

    International Nuclear Information System (INIS)

    Tanaka, S.

    1991-01-01

    Research on high-T c superconductivity covers most of the fields of materials science, and therefore, interdisciplinary investigations are necessary by scientists with diverse backgrounds in physics, chemistry, ceramics, metallurgy and so on. At present, after much research on the physical properties of materials, the creation of a theory of high-T c superconductivity is extremely urgent. If a theory can be successfully established, its effects must be very wide and deep. solid state physics may be transformed, and the search for new superconducting materials will be accelerated. Furthermore, many applications will be greatly advanced by understanding the phenomena of high-T c materials, and especially concepts for new electronic devices may be forthcoming. In the past, interactions between science and technology have been very clear. They sometimes resonate with each other and exhibit rapid progress in a very short period and give a big impact on society. The research and developments of high-T c superconductivity will hopefully retrace the brilliant history of the great success of the science and technology of semiconductors in the near future. The author is very optimistic about this

  12. Science of materials. Progress report, July 1, 1977--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Progress is reported in research which includes studies of the deformation, stress corrosion and fracture of alloys and geologic materials with emphasis on hydrogen embrittlement of metals; the mechanism of heat transfer across interfaces; catalytic properties of surfaces; and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on ionic conduction, phase transitions and radiation damage. Ferro- and pyroelectric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence and new semiconductor materials for photovoltaic devices. The electronic properties of crystals are the subject of a continued effort to resolve current problems of magnetic behavior and photon-solid interactions. Specific quantum properties of matter are explored with emphasis on superconductivity, diffusion of hydrogen in metals and the properties of solid helium.

  13. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  14. Fusion materials semiannual progress report for the period ending March 31, 1994

    International Nuclear Information System (INIS)

    1994-09-01

    This is the sixteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. This report is divided into the following areas: (1) irradiation facilities, test matrices, and experimental methods; (2) dosimetry, damage parameters, transmutation, and activation calculations; (3) materials engineering and design requirements; (4) fundamental mechanical behavior; (5) radiation effects, mechanistic studies, theory and modelings; (6) development of structural alloys; (7) solid breeding materials and beryllium; and (8) ceramics. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database

  15. Progress and Strategies for Testing of Materials for Solar Panels

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2017-04-25

    Accelerated testing is key to confident launch of a new product. However, for new products like solar panels, the best approach is not always clear. The challenge for materials manufacturers is that test times can be long. Also, small-coupon testing may not predict the behavior in the full-size module, but testing of the full-size module is too expensive. As a result, solar panel test standards like IEC 61215 are useful, but are not sufficient. Material manufacturers have needed to define their own test protocols. This presentation will review some historical data (e.g., data show that manufacturers are making great progress toward reducing encapsulant discoloration) and describe advances in material testing (for example, new techniques are being demonstrated on how to more quantitatively assess adhesion, detect tendency for delamination, and understand how encapsulant properties affect other properties like cracking of cells). The International PV Quality Assurance Task Force has been researching climate-specific weathering tests toward the goal of defining international standards that would simplify qualification and quality assurance testing for materials. The status of these tests and the strategies for how to organize these standards to best meet the needs of the industry will be discussed.

  16. Fusion materials semiannual progress report for the period ending December 31, 1997

    International Nuclear Information System (INIS)

    Burn, G.

    1998-03-01

    This is the twenty-third in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. A large fraction of this work, particularly in relation to fission reactor experiments, is carried out collaboratively with their partners in Japan, Russia, and the European Union. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  17. Recent Progress in First-Principles Methods for Computing the Electronic Structure of Correlated Materials

    Directory of Open Access Journals (Sweden)

    Fredrik Nilsson

    2018-03-01

    Full Text Available Substantial progress has been achieved in the last couple of decades in computing the electronic structure of correlated materials from first principles. This progress has been driven by parallel development in theory and numerical algorithms. Theoretical development in combining ab initio approaches and many-body methods is particularly promising. A crucial role is also played by a systematic method for deriving a low-energy model, which bridges the gap between real and model systems. In this article, an overview is given tracing the development from the LDA+U to the latest progress in combining the G W method and (extended dynamical mean-field theory ( G W +EDMFT. The emphasis is on conceptual and theoretical aspects rather than technical ones.

  18. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  19. Cladding and structural materials semi-annual progress report, January 1975--July 1975

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1975-10-01

    Theoretical and experimental programs are in progress to determine the effects of fast neutron radiation on the mechanical properties and swelling of 3C4 and 316SS cladding and duct materials. Detailed specimen characterization and detailed test conditions are required in order to provide the 2 to 5 percent accuracy of results at 1γ. Preliminary swelling tests show that swelling in stressed assemblies is much larger than in unstressed structural components. Correlation of swelling data from high exposure cladding (11.4 at. percent burnup) agrees with previous data and with the current design equation for 20 percent CW 316 stainless steel. Improved techniques for TEM specimen preparation are described along with recent results on crack propagation. Initial results are given for the effects of aging on Inconel 718 base and weld materials. Compilations of these design values of materials properties have been issued in the form of the Nuclear Systems Materials Handbook

  20. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    Science.gov (United States)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  1. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1977-09-01

    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described

  2. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  3. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  4. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  5. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo; Capiglia, Claudio

    2014-01-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  6. Controlled thermonuclear materials technology program. Annual progress report for period ending June 30, 1975

    International Nuclear Information System (INIS)

    Scott, J.L.

    1975-10-01

    Detailed descriptions are given of research progress in the following areas: (1) microstructure of irradiated 316 stainless steel containing high helium concentrations, (2) temperature and fluence limitations for a type 316 stainless steel CTR first wall, (3) swelling and microstructural changes in irradiated vanadium alloys, (4) mechanical properties of irradiated V-20 wt percent Ti, (5) radiation damage calculations, (6) evaluation of irradiation facilities for CTR materials development, (7) surface studies, compatibility studies, (8) magnet development, (9) EPR design support, and (10) the influence of structural materials on fusion-reactor blanket response. (MOW)

  7. Progress of research on plasma facing materials in University of Science and Technology Beijing

    International Nuclear Information System (INIS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-01-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting

  8. Quarterly progress report on the evaluation of critical materials for photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Pawlewicz, W.W.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Smith, S.A.; Teeter, R.R.

    1979-09-01

    The scope of the activities included in this program are as follows: (1) characterize new and improved photovoltaic cell designs and production processes for subsequent analysis; (2) review or screen these designs for potential material shortages or other constraints; (3) carry out investigations of the probable costs of new sources of materials potentially in short supply, concentrating on gallium and indium; and (4) identify options for coping with or mitigating the problems identified. The methodology and data base used in the CMAP (Critical Material Analysis Program) computer program were developed as part of a broad scale DOE program to review the potential material constraints of all solar programs. The photovoltaic report screened 13 cells in 15 systems and assumed 100% material utilization (process efficiency) in producing the photovoltaic cells. This study emphasizes the availability of cell fabrication feedstock materials and the effects of process efficiencies on material availability by adding characterizations of photovoltaic production processes. This quarterly report presents the results of work with emphasis on Task I, the characterization of photovoltaic cells and their production processes. Task IIA, CMAP Modification, Data Base Development and Operation has been initiated. Task IIB, Review, Integration, Interpretation and Analysis of Screening will begin once the baseline screening has been completed in Task IIA. Work on Task IIIA, the Assessment of Future Costs and Supplies of Gallium and Indium and Task IIIB, Economics of Coal Derived PV Materials have been initiated. Progress and initial results are reported. (WHK)

  9. Materials testing and requirements for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1974--May 1, 1975

    International Nuclear Information System (INIS)

    Andrade, J.D.; Coleman, D.L.; Leigh, A.; Hufferd, W.L.

    1975-01-01

    Progress on the materials research and development effort for the ERDA-sponsored nuclear-powered artificial heart program is presented. Progress made during the first three years on hydrogel grafting and biological studies is summarized. Progress during the fourth year on studies of implanted artificial hearts, development of albumin surfaces, and in vitro mechanical studies is presented. (U.S.)

  10. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of 239 Pu has been determined by isotope-dilution mass-spectrometric measurement of 235 U grow-in as a function of time

  11. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of /sup 239/Pu has been determined by isotope-dilution mass-spectrometric measurement of /sup 235/U grow-in as a function of time.

  12. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  13. Research progress on organic-inorganic halide perovskite materials and solar cells

    Science.gov (United States)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  14. Metals and ceramics division materials science program. Aunnual progress report for period ending June 30, 1979

    International Nuclear Information System (INIS)

    McHargue, C.J.; b.

    1979-10-01

    Progress is reported concerning theoretical studies of metals and alloys, deformation and mechanical properties, physical properties and transport phenomena, radiation effects, and engineering materials. During this period emphasis was shifted from support of nuclear technologies to support of nonnuclear energy systems

  15. Metals and ceramics division materials science program. Aunnual progress report for period ending June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.

    1979-10-01

    Progress is reported concerning theoretical studies of metals and alloys, deformation and mechanical properties, physical properties and transport phenomena, radiation effects, and engineering materials. During this period emphasis was shifted from support of nuclear technologies to support of nonnuclear energy systems. (FS)

  16. Nuclear measurements and reference materials annual progress report, january - december 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 progress report of the Central Bureau for Nuclear Measurements (CBNM) is presented. The major changes in the role and orientation of the Joint Research Center, of which CBNM is an institute, are included. The main tasks of CBNM, which involve the program on Nuclear Measurements and Reference Materials, are given. Technical activities concerning the GELINA electron beam and Van de Graaff accelerators are reported. The study of transition radiation at linear electron accelerators, and the development of isotope dilution mass spectrometry, for trace analysis and isotope abundance measurements in iron and gallium, are summarized. The scientific and technical support to the commission, work for third parties, and contribution to conferences are presented

  17. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    International Nuclear Information System (INIS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy

  18. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    Science.gov (United States)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  19. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  20. DOE progress in assessing the long term performance of waste package materials

    International Nuclear Information System (INIS)

    Berusch, A.; Gause, E.

    1987-01-01

    Under the Nuclear Waste Policy Act of 1982 (NWPA)[1], the US Dept. of Energy (DOE) is conducting activities to select and characterize candidate sites suitable for the construction and operation of a geologic repository for the disposal of high-level nuclear wastes. DOE is funding three first repository projects: Basalt Waste Isolation Project, BWIP; Nevada Nuclear Waste Isolation Project, NNWSI; and Salt Repository Project Office, SRPO. It is essential in the licensing process that DOE demonstrate to the NRC that the long-term performance of the materials and design will be in compliance with the requirements of 10 CFR 60.113 on substantially complete containment within the waste packages for 300 to 1000 years and a controlled release rate from the engineered barrier system (EBS) for 10,000 years of 1 part in 10 5 per year for radionuclides present in defined quantities 100 years after permanent closure. Obviously, the time spans involved make it impractical to base the assessment of the long term performance of waste package materials on real time, prototypical testing. The assessment of performance will be implemented by the use of models that are supported by real time field and laboratory tests, monitoring, and natural analog studies. Each of the repository projects is developing a plan for demonstrating long-term waste package material performance depending on the particular materials and the package-perturbed, time-dependent environment under which the materials must function. An overview of progress in each of these activities for each of the projects is provided in the following

  1. Supplemental Journal Article Materials: A progress report on an information industry initiative

    Science.gov (United States)

    Schwarzman, A. B.

    2011-12-01

    also intend to address roles and responsibilities of authors, editors, peer reviewers, publishers, libraries, abstracting and indexing services, and official data centers and institutional repositories. Finally, the document is going to contain broad principles and detailed technical implementation related to metadata, linking, packaging, and accessibility of supplemental materials. In this presentation, a co-chair of the NISO/NFAIS Working Group will report on the Group's latest progress in developing the Recommended Practices for Supplemental Journal Article Materials.

  2. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  3. Recent progresses in materials for the direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C; Leger, J M [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1998-12-31

    Research programs are being conducted worldwide to develop a clean, zero emissions electric vehicle. However, even with the most advanced batteries, such as nickel/metal hydride, or lithium ion batteries, the driving range is limited and the recharging time is long. Only fuel cells which can convert chemical energy directly into electrical energy can compete with internal combustion engines. This paper reviewed the recent progress made in the development of a direct methanol fuel cell using the concept developed for the proton exchange membrane fuel cell (PEMFC). It was noted that the electrode materials, at the methanol anode and oxygen cathode need to be improved by using multifunctional electrocatalysts. The development of new temperature resistant proton exchange membranes with good ionic conductivity and low methanol cross-over, which resulted from the need to increase operating temperatures above 100 degrees C was also reviewed. 35 refs., 1 tab., 2 figs.

  4. Annual progress report 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a brief description of the progress made in each section of the Institut. Research activities of the Protection department include, radiation effects on man, radioecology and environment radioprotection techniques. Research activities of the Nuclear Safety department include, reactor safety analysis, fuel cycle facilities safety analysis, safety research programs. The third section deals with nuclear material security including security of facilities, security of nuclear material transport and monitoring of nuclear material management [fr

  5. 1996 Progress report on energies and raw materials; 1996 rapport d`activite energies et matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1996 annual progress report, from the French Department of Energy, reviews the key points of the French policy for energy and raw materials: competitiveness, environmental protection, long term supply safety, and public service. 1996 was marked by positive results for the French energy industry, difficulties for the oil refining industry, and a new impetus for renewable energies. Five surveys are presented: nuclear safety in Eastern Europe, the european directive on electric power domestic market, evolution of the oil market, conditions of refining in France, and restructuring of the Mine bureau (BRGM). 40 prominent facts are briefly reviewed, concerning sustainable energy development, nuclear energy, electric power and gas, coal, oil products, raw materials. Diagrams on energy and raw materials are also included

  6. 1996 Progress report on energies and raw materials; 1996 rapport d`activite energies et matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The 1996 annual progress report, from the French Department of Energy, reviews the key points of the French policy for energy and raw materials: competitiveness, environmental protection, long term supply safety, and public service. 1996 was marked by positive results for the French energy industry, difficulties for the oil refining industry, and a new impetus for renewable energies. Five surveys are presented: nuclear safety in Eastern Europe, the european directive on electric power domestic market, evolution of the oil market, conditions of refining in France, and restructuring of the Mine bureau (BRGM). 40 prominent facts are briefly reviewed, concerning sustainable energy development, nuclear energy, electric power and gas, coal, oil products, raw materials. Diagrams on energy and raw materials are also included

  7. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  8. [Theoretical studies of dynamics and correlations in heavy electron materials:]: Progress report, August 15, 1987-August 15, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This paper discusses progress in heavy electron research and high temperature superconductivity research. Particular topics discussed are: quadrupolar Kondo effect; coherence in the Anderson Lattice; Hall effect in heavy electron systems, suppression of supeconductivity by disorder in strongly correlated electronic materials; and charge transfer mechanisms for high temperature superconductivity

  9. FY2016 Propulsion Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  10. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  11. Recent progress in MBE grown HgCdTe materials and devices at UWA

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  12. Materials Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Horsewell, A.; Hansen, N.

    1994-06-01

    Selected activities of the Materials Department at Risoe National Laboratory during 1993 are described. The work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. (au) (220 refs.)

  13. Materials testing and requirement for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1975--May 30, 1976

    International Nuclear Information System (INIS)

    Andrade, J.D.; Hufferd, W.L.; Lyman, D.J.

    1976-01-01

    The two materials currently being used for the artificial heart fabrication are BIOMER and AVCOTHANE. BIOMER is a polyether urethane polymer. AVCOTHANE is a proprietary polyurethane/polydimethylsiloxane polymer blend. Research progress on the chemical degradation, mechanical strength, and blood compatibility is reported

  14. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  15. Progress in III-V materials technology

    Science.gov (United States)

    Grant, Ian R.

    2004-12-01

    Compound semiconductors, in the form of GaAs and InP have achieved major commercial significance in areas of application such as mobile communications, displays and telecoms and offer a versatility of function beyond the capabilities of Si. III-V compounds, and in particular GaAs, have since their early development been the subject of defence related interest. Support from this sector established the basic materials technologies and nurtured development up until their commercial breakthrough into consumer products. GaAs, for example, now provides essential components for mobile phones and CD / DVD players. An overview is presented of the crystal growth and processing methods used in the manufacture of these materials. Current state of the art characteristics on crystal form and quality are discussed, together with the evolution of single crystal growth techniques. Consideration is given to how these principal compounds together with the minor materials, InSb, GaSb and InAs are employed in diverse applications over a broad spectral range, together with information on markets and future perspectives.

  16. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  17. FY2010 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-01

    The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.

  18. Evaluation of caries progression in dentin treated by fluoride-containing materials using an in-air micro-PIGE and micro-PIXE measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H., E-mail: yhiroko@dent.osaka-u.ac.jp [Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Iwami, Y.; Yagi, K.; Hayashi, M. [Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Komatsu, H.; Okuyama, K.; Matsuda, Y. [Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Yasuda, K. [The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga 914-0192 (Japan)

    2015-04-01

    It is well-known that fluorine (F) is involved in the progression of caries. The evaluation of caries progression has conventionally been based on the change in mineral content using transverse microradiography (TMR). The purpose of this study was to evaluate the progression of dentinal caries by the change in calcium (Ca) content using Particle-Induced Gamma-ray Emission/Particle-Induced X-ray Emission (PIGE/PIXE) techniques at the Wakasa Wan Energy Research Center. We also assessed the relationship between caries progression rate and the concentration of F penetration into dentin from dental fluoride-containing materials (FCMs). Dentin sections of six extracted human teeth were prepared to obtain various amounts of F uptake using three types of FCMs. F and Ca distribution of specimens were obtained using PIGE/PIXE techniques. After evaluation, the specimens were immersed in 10 ml of demineralizing solution (pH 4.5) to simulate caries attack. To estimate caries progression rates, the same portions of the specimens were evaluated after caries attack treatment using PIGE/PIXE. A negative correlation between the F uptake in dentin and the rate of caries progression was observed. Therefore, caries progression in dentin was reduced by increasing the amount of F uptake from FCMs. This demonstrates that PIGE/PIXE techniques are valuable for estimating caries progression rates.

  19. Evaluation of caries progression in dentin treated by fluoride-containing materials using an in-air micro-PIGE and micro-PIXE measurement system

    International Nuclear Information System (INIS)

    Yamamoto, H.; Iwami, Y.; Yagi, K.; Hayashi, M.; Komatsu, H.; Okuyama, K.; Matsuda, Y.; Yasuda, K.

    2015-01-01

    It is well-known that fluorine (F) is involved in the progression of caries. The evaluation of caries progression has conventionally been based on the change in mineral content using transverse microradiography (TMR). The purpose of this study was to evaluate the progression of dentinal caries by the change in calcium (Ca) content using Particle-Induced Gamma-ray Emission/Particle-Induced X-ray Emission (PIGE/PIXE) techniques at the Wakasa Wan Energy Research Center. We also assessed the relationship between caries progression rate and the concentration of F penetration into dentin from dental fluoride-containing materials (FCMs). Dentin sections of six extracted human teeth were prepared to obtain various amounts of F uptake using three types of FCMs. F and Ca distribution of specimens were obtained using PIGE/PIXE techniques. After evaluation, the specimens were immersed in 10 ml of demineralizing solution (pH 4.5) to simulate caries attack. To estimate caries progression rates, the same portions of the specimens were evaluated after caries attack treatment using PIGE/PIXE. A negative correlation between the F uptake in dentin and the rate of caries progression was observed. Therefore, caries progression in dentin was reduced by increasing the amount of F uptake from FCMs. This demonstrates that PIGE/PIXE techniques are valuable for estimating caries progression rates

  20. Special Purpose Materials annual progress report, October 1, 1979

    International Nuclear Information System (INIS)

    1980-04-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (> 10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  1. Recent Progress in Some Amorphous Materials for Supercapacitors.

    Science.gov (United States)

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Yuandong Sun

    2017-01-01

    Full Text Available Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D, compared with bulky silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. In this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs applications is listed and discussed.

  3. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  4. Progress in the materials science of silicene.

    Science.gov (United States)

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-12-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these 'epitaxial silicene' phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials.

  5. Evaluating progressive-rendering algorithms in appearance design tasks.

    Science.gov (United States)

    Jiawei Ou; Karlik, Ondrej; Křivánek, Jaroslav; Pellacini, Fabio

    2013-01-01

    Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.

  6. FY2008 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-01-01

    This program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines providing enabling materials support for combustion, hybrid, and power electronics development.

  7. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  8. Materials testing and requirement for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1975--May 30, 1976. [BIOMER and AVCOTHANE

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J. D.; Hufferd, W. L.; Lyman, D. J.

    1976-01-01

    The two materials currently being used for the artificial heart fabrication are BIOMER and AVCOTHANE. BIOMER is a polyether urethane polymer. AVCOTHANE is a proprietary polyurethane/polydimethylsiloxane polymer blend. Research progress on the chemical degradation, mechanical strength, and blood compatibility is reported. (TFD)

  9. Propulsion System Materials Program semiannual progress report for April 1995 through September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Significant accomplishments in fabricating ceramic components for the DOE, NASA, and DOD advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a 5-year program plan was developed with extensive input from private industry. During the course of the Propulsion System Materials Program, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. To this end, the direction of the Propulsion System Materials Program is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported to include near-term (5--10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  10. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  11. Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2001-01-01

    The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given

  12. FY2010 Annual Progress Report for Lightweighting Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-01-15

    The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  13. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  14. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2000-01-01

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given

  15. Progressively expanded neural network for automatic material identification in hyperspectral imagery

    Science.gov (United States)

    Paheding, Sidike

    The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features

  16. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  17. Recent progress in material technology on RE-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Morita, Mitsuru

    2011-01-01

    The current status of large-grained RE-Ba-Cu-O (RE: Y or rare earth elements) bulk superconductors with excellent superconducting properties is described. Gd-Ba-Cu-O bulk superconductors can trap a very high magnetic field even if they are melt-processed in air. Although the electromagnetic force caused by the trapped field is larger for a larger sample and may break the sample, a large sample of Gd-Ba-Cu-O 46 mm in diameter has the potential of trapped magnetic fields greater than 10 T at around 40 K. In addition, single-grained bulk superconductors as large as 150 mm can be obtained using the RE compositional gradient method. Dy-Ba-Cu-O is an ideal material for current leads because it has low thermal conductivity and high critical current density at 77 K in high magnetic fields. Eu-Ba-Cu-O has low magnetic permeability, and is therefore suitable for bulk NMR applications. Progress in machining technology has made possible various bulk superconductors with complicated shapes such as coils, leading to small and strong electromagnets by stacking several coil-shaped bulk superconductors together. (author)

  18. Progress report 1979

    International Nuclear Information System (INIS)

    1980-12-01

    This progress report deals with technical and research work done at the AAEC Research Establishment in the twelve month period ending September 30, 1979. Work done in the following research divisions is reported: Applied Maths and Computing, Chemical Technology, Engineering Research, Environmental Science, Instrumentation and Control, Isotope, Materials and Physics

  19. Development of small-bore, high-current-density railgun as testbed for study of plasma-materials interaction. Progress report for October 16, 2000 - May 13, 2003

    International Nuclear Information System (INIS)

    Kyekyoon, Kim-Kevin

    2003-01-01

    The present document is a final technical report summarizing the progress made during 10/16/2000 - 05/13/2003 toward the development of a small-bore railgun with transaugmentation as a testbed for investigating plasma-materials interaction

  20. Progress in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania

    International Nuclear Information System (INIS)

    Kurselis, S.; Stadalnikas, A.

    2001-01-01

    Full text: The paper gives a general overview of the progress which has been made in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania. It describes the measures which were taken to strengthen nuclear material accounting and control and physical protection. The current status of the national legislation and the functions of institutions involved in control of nuclear material and combating of illicit trafficking are discussed. Lithuania, similar to many countries, did not avoid a new type of a crime - smuggling of nuclear materials - which was observed in the 1990's. The most serious case in Lithuania happened in 1993 when fresh fuel assembly was stolen from Ignalina NPP. This assembly contains approximately 124 kg of UO 2 (enrichment 2%). 100 kg of the pellets from this assembly was found later in several pieces at different places. This case served as a strong stimulus to strengthen prevention measures of Illicit trafficking. The legal basis was created and governmental institutions were obliged with special duties related with nuclear material. The laws and regulations set the order for the shipment and handling of nuclear material. The penalties for violation of these laws and regulations specified in Penal Code and Administrative Code were made stricter. The State system of accounting for and control of nuclear material (SSAC) is a very important element in prevention of the illicit trafficking. The Regulations of Accounting for and Control of Nuclear Material at Nuclear Facilities and LOFs was issued by the State Nuclear Power Safety Inspectorate (VATESI) on 10 December 1997 following the provisions of the Law on Nuclear Energy. Lithuania extended its international obligations by ratifying the Protocol Additional to the Safeguards Agreement (entered into force on 5 July 2000). The fully computerized nuclear material accountancy system was created at Ignalina NPP. The system gives the possibility to find the

  1. Progressive technologies in furniture design

    OpenAIRE

    Šebková, Martina

    2014-01-01

    Šebková, M. Progressive technologies in furniture design. Diploma thesis, Brno, Mendel University in Brno, 2014 Diploma thesis 'Progressive technologies in furniture design' is focused on the use of modern technologies in furniture production. The theoretical part explains the basic terms, technology and material options. It focuses mainly on the production of 3D printed furniture and possibilities of virtual testing, measurements, scanning and rapid prototyping. Practical part of diploma the...

  2. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  3. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  4. Special purpose materials. Annual progress report, October 1, 1979

    International Nuclear Information System (INIS)

    1980-04-01

    Fusion reactor materials problems other than the first-wall and blanket structural materials are investigated. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, grahite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. Radiation-induced conductivity of three forms of Al 2 O 3 was measured as a function of ionizing dose rate and temperature. Increases observed are large enough to affect performance of insulators under some fusion reactor operating conditions. Single-crystal MgAl 2 O 4 was shown to exhibit zero swelling when irradiated to approx. 2 x 10 26 n/m 2 at 925 and 1100 K. This ceramic is resistant to nucleation and growth of defect aggregates, and is not characterized by those microstructural conditions which lead to void formation and swelling in Al 2 O 3 . Fracture toughness of single-crystal Al 2 O 3 was significantly increased by elevated-temperature irradiation to approx. 2 x 10 26 n/m 2 , while that for MgAl 2 O 4 and Y 3 Al 5 O 12 showed little or no change. These results show that ceramics can retain their original resistance to crack propagation after high-dose neutron irradiation

  5. Study on severe fuel damage and in-vessel melt progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  6. Advanced Industrial Materials Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stooksbury, F. [comp.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  7. Materials Science Division progress report 1986-1988

    International Nuclear Information System (INIS)

    Kumar, Vijay; Vasumathi, D.; Chandra Sekhar, N.V.

    1990-01-01

    This is a report on the various Research and Developmental (R and D) activities carried out in the Materials Science Division during the period 1986-88. Most contributions have been presented in the form of abstracts and wherever possible results of several contributions on a related problem have been consolidated into one. The R and D activities covered the following areas: (1) quasicrystalline phase, (2) high temperature superconducting behaviour in metal oxides, (3) physics of colloidal suspensions, (4) behaviour of materials under high pressure, (5) radiation effects in complex alloy systems, (6) inert gas behaviour in metals, and production of crystals, particularly of volatile semiconducting compounds. The lists of publications by the members of the Division and seminars held during 1986-88 are given at the end of the report. (a uthor)

  8. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    Science.gov (United States)

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1978-01-01

    Development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for plutonium and uranium determinations, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, preparation of certified reference material plutonium metal, measurement of longer plutonium isotope half-lives, and study of ion exchange behavior of elements in various media continued. Gas-solid reaction of carbonyl chloride with uranium-bearing materials at elevated temperature is superior to reaction with chlorine for uranium volatilization and separation. Neither reaction with a variety of nonaqueous solvents nor reaction with molten selenium oxide provides practical dissolution of refractory materials characteristic of nuclear fuel cycle materials. The LASL automated spectrophotometer has been used to determine 0.1-mg amounts without instrumental or procedural changes. A microgram-sensitive spectrophotometric method for uranium has been developed, and the automated spectrophotometer is being modified to its use. A controlled-potential coulometric method has been developed for selective determination of plutonium. An automated analyzer to use this method is being built. Uranium-plutonium mixed oxide powder, for SALE samples, has not remained stable during storage, but high-density pellets have. In a DOE interlaboratory program, the half-life of 239 Pu has been measured, experiments on 241 Pu half-life measurement are in progress, and 240 Pu half-life measurement is planned. Ion exchange distributions for over 50 elements have been measured to determine cation exchange in nitric acid and anion exchange in both hydrobromic and hydriodic acids

  10. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1978-01-01

    Development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for plutonium and uranium determinations, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, preparation of certified reference material plutonium metal, measurement of longer plutonium isotope half-lives, and study of ion exchange behavior of elements in various media continued. Gas-solid reaction of carbonyl chloride with uranium-bearing materials at elevated temperature is superior to reaction with chlorine for uranium volatilization and separation. Neither reaction with a variety of nonaqueous solvents nor reaction with molten selenium oxide provides practical dissolution of refractory materials characteristic of nuclear fuel cycle materials. The LASL automated spectrophotometer has been used to determine 0.1-mg amounts without instrumental or procedural changes. A microgram-sensitive spectrophotometric method for uranium has been developed, and the automated spectrophotometer is being modified to its use. A controlled-potential coulometric method has been developed for selective determination of plutonium. An automated analyzer to use this method is being built. Uranium-plutonium mixed oxide powder, for SALE samples, has not remained stable during storage, but high-density pellets have. In a DOE interlaboratory program, the half-life of /sup 239/Pu has been measured, experiments on /sup 241/Pu half-life measurement are in progress, and /sup 240/Pu half-life measurement is planned. Ion exchange distributions for over 50 elements have been measured to determine cation exchange in nitric acid and anion exchange in both hydrobromic and hydriodic acids.

  11. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  12. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  13. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    Science.gov (United States)

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their

  14. Infrastructures of progress and dispossession

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2016-01-01

    and organizational infrastructural arrangements, it is argued, can open up for understanding how local and beyond-local processes tangle in complex ways and are productive of new subjectivities; how relations are reconfi gured in neoliberal landscapes of progress and dispossession. Such an approach makes evident how...... to reposition small and medium-scale farmers as backward. Th is article analyzes how farmers struggle to fi nd their place within a neoliberal urban ecology where diff erent conceptions of what constitutes progress in contemporary Peru infl uence the landscape. Using an analytical lens that takes material...... and organizational infrastructures and practices into account, and situates these in specifi c historical processes, the article argues that farmers within the urban landscape of Arequipa struggle to reclaim land and water, and reassert a status that they experience to be losing. Such a historical focus on material...

  15. Biosensor. Recent research progress; Baiosensa. Saikin no kenkyu doko

    Energy Technology Data Exchange (ETDEWEB)

    Matsue, T. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Yamada, H. [National Defence Academy, Yokosuka (Japan)

    1995-11-20

    Chemical sensor is made of up transducer that transfers the part and signal recognizing the measurement objects. Biosensor that normally transfers the amount of chemicals into electrical signal is a sensor in which living materials like enzyme, microorganism or antigen, antibody and so forth are used in the recognition part. Recently, the structure or the function of the living materials is clarified gradually with the significant progress in biofeedback, however, the synthesis of artificial material having same function as that of living materials is extremely difficult. Accordingly, it is very practical to develop high degree sensor function by using living materials with developed function in material recognition part, an important element of the sensor. In this report, solid state biosensor using electrode as a transducer is focused, and specially, recent research progress regarding the amperometric measurement which measures oxidation/reduction current is discussed. 35 refs., 8 figs., 1 tab.

  16. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions.

    Science.gov (United States)

    Ono, Luis K; Juarez-Perez, Emilio J; Qi, Yabing

    2017-09-13

    Organic-inorganic halide perovskite materials (e.g., MAPbI 3 , FAPbI 3 , etc.; where MA = CH 3 NH 3 + , FA = CH(NH 2 ) 2 + ) have been studied intensively for photovoltaic applications. Major concerns for the commercialization of perovskite photovoltaic technology to take off include lead toxicity, long-term stability, hysteresis, and optimal bandgap. Therefore, there is still need for further exploration of alternative candidates. Elemental composition engineering of MAPbI 3 and FAPbI 3 has been proposed to address the above concerns. Among the best six certified power conversion efficiencies reported by National Renewable Energy Laboratory on perovskite-based solar cells, five are based on mixed perovskites (e.g., MAPbI 1-x Br x , FA 0.85 MA 0.15 PbI 2.55 Br 0.45 , Cs 0.1 FA 0.75 MA 0.15 PbI 2.49 Br 0.51 ). In this paper, we review the recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis. In the outlook, we outline the future research directions based on the reported results as well as related topics that warrant further investigation.

  17. Evaluation of porewater chemistry in the buffer material for the second progress report H12

    International Nuclear Information System (INIS)

    Oda, Chie; Shibata, Masahiro; Yui, Mikazu

    1999-09-01

    In the safety assessment for geological disposal of high-level radioactive wastes (HLW), porewater chemistry in buffer materials is used to estimate migration of radionuclides and corrosion of overpack materials. For the reference case in the second progress report on research and development for HLW disposal in Japan, entitled H12, porewater chemistry was evaluated by using a chemical model based on an experimental work by Oda and Shibata (1999) under the assumption of a thermodynamic system of groundwater with bentonite and corrosion products of carbon-steel overpack. This report provides the scientific information basis for the porewater chemistry evaluation, and describes the possible variations in porewater composition affected by following factors: - variations in groundwater composition relevant to the alternative geological environments cases and the perturbation scenario, and supplementary variations in groundwater composition. - model/data uncertainties associated with insufficient understanding of important processes with respect to the time-dependent behavior of a geological disposal system: in particular, how the surface reaction of smectite changes with time, how the impurities of bentonite affect porewater, and how the reactions like redox equilibria, kinetics of dissolution of accessory minerals in bentonite and precipitation of secondary minerals (including corrosion products of overpack materials) should be handled in the porewater calculations. - uncertainties of thermodynamic data of the geochemical elements. The results of calculation indicated that porewaters in the buffer material, as far as calcite is not exhausted, may vary within the range of pH from 6 to 11. It was found that important factors on the variations in porewater composition were the change of surface reactions of smectite with time, the degree of soluble impurities dissolution/dispersion and the amount of iron being supplied into the buffer region by corrosion of the overpack

  18. FY2014 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.

  19. FY2013 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    As part of the U.S. Department of Energy’s (DOE’s) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  20. Advanced Industrial Materials (AIM) Program. Annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, C.A.

    1995-05-01

    The Advanced Industrial Materials Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy in the Department of Energy. The mission of the AIM Program is to conduct applied research, development, and applications engineering work, in partnership with industry, to commercialize new or improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. AIM is responsible for identifying, supporting, and coordinating multidisciplinary projects to solve identified industrial needs and transferring the technology to the industrial sector. Program investigators in the DOE National Laboratories are working closely with approximately 100 companies, including 15 partners in Cooperative Research and Development Agreements. Work is being done in a wide variety of materials technologies, including intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The Program supports other efforts in the Office of Industrial Technologies to assist the energy consuming process industries, including forest products, glass, steel, aluminum, foundries, chemicals, and refineries. To support OITs {open_quotes}Industries of the Future{close_quotes} initiatives and to improve the relevance of materials research, assessments of materials needs and opportunities in the process industries are being made. These assessments are being used for program planning and priority setting; support of work to satisfy those needs is being provided. Many new materials that have come into the marketplace in recent years, or that will be available for commercial use within a few more years, offer substantial benefits to society. This document contains 28 reports on advanced materials research. Individual reports have been processed separately for entry onto the Department of Energy databases.

  1. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  2. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1980-September 30, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, 950 and 1050 0 C. Initiation of controlled purity helium creep-rupture testing in the intensive screening test program is discussed. In addition, the results of 1000-hour exposures at 750 and 850 0 C on several experimental alloys are discussed

  3. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  4. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications.

    Science.gov (United States)

    Paredes, J I; Villar-Rodil, S

    2016-08-25

    Direct liquid-phase exfoliation of layered materials by means of ultrasound, shear forces or electrochemical intercalation holds enormous promise as a convenient, cost-effective approach to the mass production of two-dimensional (2D) materials, particularly in the form of colloidal suspensions of high quality and micrometer- and submicrometer-sized flakes. Of special relevance due to environmental and practical reasons is the production of 2D materials in aqueous medium, which generally requires the use of certain additives (surfactants and other types of dispersants) to assist in the exfoliation and colloidal stabilization processes. In this context, biomolecules have received, in recent years, increasing attention as dispersants for 2D materials, as they provide a number of advantages over more conventional, synthetic surfactants. Here, we review research progress in the use of biomolecules as exfoliating and dispersing agents for the production of 2D materials. Although most efforts in this area have focused on graphene, significant advances have also been reported with transition metal dichalcogenides (MoS2, WS2, etc.) or hexagonal boron nitride. Particular emphasis is placed on the specific merits of different types of biomolecules, including proteins and peptides, nucleotides and nucleic acids (RNA, DNA), polysaccharides, plant extracts and bile salts, on their role as efficient colloidal dispersants of 2D materials, as well as on the potential applications that have been explored for such biomolecule-exfoliated materials. These applications are wide-ranging and encompass the fields of biomedicine (photothermal and photodynamic therapy, bioimaging, biosensing, etc.), energy storage (Li- and Na-ion batteries), catalysis (e.g., catalyst supports for the oxygen reduction reaction or electrocatalysts for the hydrogen evolution reaction), or composite materials. As an incipient area of research, a number of knowledge gaps, unresolved issues and novel future

  5. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  6. Cybermaterials: materials by design and accelerated insertion of materials

    Science.gov (United States)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  7. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  8. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  9. Investigation of novel electrode materials for electrochemically based remediation of high and low-level mixed wastes in the DOE complex. 1997 annual progress report

    International Nuclear Information System (INIS)

    Anderson, M.A.; Lewis, N.S.

    1997-01-01

    'This work is focused on the preparation of novel electrode materials for the degradation of toxic wastes in the DOE complex. One of the goals of this work is to characterize whether it is possible to use controlled doping of TiO 2 with species such as Nb in order to create new electrode materials that will facilitate the destruction of undesirable organics and inorganics, without light and instead only with an applied potential, in the waste tanks at the DOE sites. In the first part of this project, the authors have therefore spent an extensive amount of effort characterizing, as a baseline, the chemical and electrochemical behavior of TiO 2 itself, so that they can make robust comparisons to the behavior of the Nb-doped systems in subsequent work on this project. The preparation of these electrode films is being performed by Marc Anderson at Wisconsin, who is preparing a number of different stoichiometries, grain sizes, etc. for investigation of their electrochemical properties by the Lewis group at Caltech. First they report on the progress of the electrode preparation work, and then they describe progress on the electrochemical work.'

  10. FY13 Annual Progress Report for SECA Core Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-31

    This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation.

  11. Applications: Accelerators for new materials

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1990-01-01

    Ion beams bring important benefits to material processing, and the Seventh International Conference on Ion Beam Modification of Materials (IBMM 90), held in Knoxville, Tennessee, in September showed the promising progress being made

  12. Applications: Accelerators for new materials

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, H. H. [Copenhagen (Denmark)

    1990-12-15

    Ion beams bring important benefits to material processing, and the Seventh International Conference on Ion Beam Modification of Materials (IBMM 90), held in Knoxville, Tennessee, in September showed the promising progress being made.

  13. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiang [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2011-01-04

    Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells' absorption profile to match the sun's broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. MSL Progress Report 1981-85

    International Nuclear Information System (INIS)

    Yalsakumar, M.C.; Ananthakrishna, G.; Sahoo, D.; Gopinathan, K.P.

    1987-01-01

    This is the third progress report since the inception of the Materials Science Laboratory in 1974 and covers the period 1981-85. In view of the long period covered by the report, the individual contributions have been kept brief so that the total length of the report is reasonable; however care has been taken to see that brevity has not obscured clarity. Significant contributions include studies of radiation damage and related defect, solid state physics, behaviour of materials under extremely low temperatures on the one hand and under high pressure and high temperatures on the other and light scattering by materials. The Laboratory has played a key role in the indigeneous development and characterisation of superconducting materials. Theoretical studies have concentrated on stochastic processes, nonlinear phenomena and the newly discovered and fascinating quasicrystals. (author)

  15. Theoretical nuclear structure. Progress report for 1997

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Strayer, M.R.

    1997-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops

  16. Recent progress in sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hallett, W. J.

    1963-10-15

    Progress over the past year in U. S. laboratories studying some of the materials and engineering problems that must be resolved in bringing the technology of sodium to an economically and technically attractive point is reviewed. The status of sodium cooled power reactors in the U. S. is described. (P.C.H.)

  17. Plutonium contaminated materials research programme

    International Nuclear Information System (INIS)

    Higson, S.G.

    1986-01-01

    The paper is a progress report for 1985 from the Plutonium Contaminated Materials Working Party (PCMWP). The PCMWP co-ordinates research and development on a national basis in the areas of management, treatment and immobilisation of plutonium contaminated materials, for the purpose of waste management. The progress report contains a review of the development work carried out in eight areas, including: reduction of arisings, plutonium measurement, sorting and packaging, washing of shredded combustible PCM, decommissioning and non-combustible PCM treatment, PCM immobilisation, treatment of alpha bearing liquid wastes, and engineering objectives. (UK)

  18. Skull repair materials applied in cranioplasty: History and progress

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Yu; Lin Chen; Zhiye Qiu; Yuqi Zhang; Tianxi Song; Fuzhai Cui

    2017-01-01

    The skull provides protection and mechanical support, and acts as a container for the brain and its accessory organs. Some defects in the skull can fatally threaten human life. Many efforts have been taken to repair defects in the skull, among which cranioplasty is the most prominent technique. To repair the injury, numerous natural and artificial materials have been adopted by neurosurgeons. Many cranioprostheses have been tried in the past decades, from autoplast to bioceramics. Neurosurgeons have been evaluating their advantages andshortages through clinical practice. Among those prostheses, surgeons gradually prefer bionic ones due to their marvelous osteoconductivity, osteoinductivity, biocompatibility,and biodegradability. Autogeneic bone has been widely recognized as the"gold standard" for renovating large-sized bone defects. However, the access to this technique is restricted by limited availability and complications associated with its use. Many metal and polymeric materials with mechanical characteristics analogous to natural bones were consequently applied to cranioplasty. But most of them were unsatisfactory concerning osteoconductiion and biodegradability owe to their intrinsic properties. With the microstructures almost identical to natural bones, mineralized collagen hasbiological performance nearly identical to autogeneic bone, such as osteoconduction. Implants made of mineralized collagen can integrate themselves into the newly formed bones through a process called"creeping substitution". In this review, the authors retrospect the evolution of skull repair material applied in cranioplasty. The ultimate skull repair material should have microstructure and bioactive qualities that enable osteogenesis induction and intramembranous ossification.

  19. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  20. Metals and Ceramics Division progress report for period ending June 30, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report is divided into: engineering materials, high-temperature materials, materials science, program activities, and collaborative research facilities. Very little hard data is presented. The appendices include listings of seminars, publications, and conference papers

  1. Self-reported levels of education and disability progression in multiple sclerosis

    NARCIS (Netherlands)

    D'hooghe, M. B.; Haentjens, P.; Van Remoortel, A.; De Keyser, J.; Nagels, G.

    2016-01-01

    ObjectivesThe purpose of our study is to investigate whether socioeconomic indicators such as education, financial concerns, employment, and living status are associated with disease progression in relapsing-onset and progressive-onset Multiple Sclerosis (MS). Materials and methodsWe performed a

  2. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  3. Metals and Ceramics Division progress report for period ending June 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This progress report is divided into: engineering materials, high-temperature materials, materials science, program activities, and collaborative research facilities. Very little hard data is presented. The appendices include listings of seminars, publications, and conference papers. (DLC)

  4. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    International Nuclear Information System (INIS)

    1981-11-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  5. Thermomechanical properties of mullitic materials

    Directory of Open Access Journals (Sweden)

    Jan Urbánek

    2017-12-01

    Full Text Available Mechanical tests provide important information about the properties and behaviour of materials. Basic tests include the measurement of flexural strength and in case of refractory materials, the measurement of flexural strength at high temperatures as well. The dependence of flexural strength on the temperature of ceramic materials usually exhibits a constant progression up to a certain temperature, where the material starts to melt and so the curve begins to decline. However, it was discovered that ceramic mullitic material with a 63 wt.% of Al2O3 exhibits a relatively significant maximum level of flexural strength at about 1000 °C and refractory mullitic material with a 60 wt.% of Al2O3 also exhibits a similar maximum level at about 1100 °C. The mentioned maximum is easily reproducible, but it has no connection with the usual changes in structure of material during heating. The maximum was also identified by another measurement, for example from the progression of the dynamic Young’s modulus or from deflection curves. The aim of this work was to analyse and explain the reason for the flexural strength maximum of mullitic materials at high temperatures.

  6. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15{sup th} Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  7. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  8. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1981-September 30, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Work covered in this report includes the activities associated with the status of the simulated reactor helium supply systems and testing equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750 0 , 850 0 , 950 0 , and 1050 0 C (1382 0 , 1562 0 , 1742 0 , and 1922 0 F). The status of controlled purity helium and air creep-rupture testing in the intensive screening test program is discussed. The results of metallographic studies of screening alloys exposed in controlled purity helium for 3000 hours at 750 0 C and 6000 hours at 850 0 C and for weldments exposed in controlled purity helium for 6000 hours at 850 0 and 950 0 C are presented and discussed

  9. Science of materials. Progress report, January 1-December 31, 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The research program includes studies of the microchemistry, microstructure, deformation, corrosion and fracture of metals, ceramics and alloy materials, of the hydrogen embrittlement of metals, the mechanism of heat transfer across interfacts, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on molecular interactions and bonding, on ionic conduction, phase transitions and radiation damage. Ferro- and pyro-electric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence, the design of molecular photoreceptors, and new semiconductor materials for photovoltaic devices

  10. Chemistry and Materials Science progress report, first half FY 1992

    International Nuclear Information System (INIS)

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy

  11. Science of materials. Progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The research program includes studies of the microchemistry, microstructure, deformation, corrosion and fracture of metals, ceramics and alloy materials, of the hydrogen embrittlement of metals, the mechanism of heat transfer across interfacts, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on molecular interactions and bonding, on ionic conduction, phase transitions and radiation damage. Ferro- and pyro-electric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence, the design of molecular photoreceptors, and new semiconductor materials for photovoltaic devices.

  12. Science of materials. Progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The research program is designed to provide information concerning basic properties of materials that are important for the development of energy systems. The emphasis is on the synthesis and characterization of new materials with novel properties for future applications. The research program includes studies of the microchemistry and microstructure; the deformation, corrosion and fracture of metals, ceramics and alloy materials are of particular concern, as is the hydrogen embrittlement of metals; also under investigation are the mechanism of heat transfer across interfaces, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The new materials and materials configurations now being fabricated for research on energy applications include a variety of metastable ceramic, metallic, semi-conducting and molecular assemblies

  13. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  14. New Materials Design

    National Research Council Canada - National Science Library

    Voth, Gregory

    1999-01-01

    Progress has been made on several projects under the Challenge Project award. In the area of high energy density materials, calculations are under way on Al atoms embedded in clusters of H2 molecule...

  15. An overview of recent progress using low-cost and cost-effective composite materials and processes to produce SSC magnet coils and associated non-metallic parts

    International Nuclear Information System (INIS)

    Morena, J.

    1992-01-01

    Thermoplastic and thermoset polymer systems have been used in high-energy physics applications throughout the world for many years. Like other industries and industrial communities, the materials and processes requirements of these polymers have recently taken on new meanings. New accelerators and other machines are pushing all material parameters beyond limits. New polymeric and composite materials are being developed, invented, and formulated, as is new process and application equipment. This is a decade of change. Composite materials are being chosen for performance characteristics and cost-effective processing as well. The information that follows will note some of the recent progress in the development of composite materials and processes for producing low-cost and cost-effective, high-quality, non-metallic composite components for use in SSC magnets and in other accelerators. The materials and methods for making composite molds, tools, and structural parts for magnet coils and other components are demonstrated. New, unique, and innovative approaches for processing thermoset polymers are presented. The formulated polymer systems are used to form semi and structural insulators, spacers, supports, coil end parts, blocks, housings, adhesives, and other composite applications

  16. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses

  17. Functional materials in amperometric sensing polymeric, inorganic, and nanocomposite materials for modified electrodes

    CERN Document Server

    Seeber, Renato; Zanardi, Chiara

    2014-01-01

    Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and

  18. Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods

    Directory of Open Access Journals (Sweden)

    Zhengqi Shi

    2018-05-01

    Full Text Available With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed. The lead toxicity and updated research progress on lead replacement are reviewed to understand the sustainability issues of PSCs. The origin of J-V hysteresis is also briefly discussed. Finally, this review provides a roadmap on the current needs and future research directions to address the main issues of PSCs.

  19. FMIT Test assemblies. Progress report

    International Nuclear Information System (INIS)

    Nygren, R.E.; Opperman, E.K.

    1978-08-01

    This progress report is a reference document for a number of inter-related tasks supporting the Fusion Materials Irradiation Test (FMIT) Facility being developed by the Hanford Engineering Development Laboratory. The report describes the basic configuration of test assemblies and supporting rationale based on the neutron flux distribution. Perturbed and unperturbed flux profiles are discussed as well as heating rates and cooling requirements

  20. On an orthotropic model for progressive degradation

    DEFF Research Database (Denmark)

    Hammer, Velaja B.; Pedersen, Pauli

    1999-01-01

    Progressive degradation in orthotropic materials is modelled from a smear-out point of view, and physical measurable quantities are used as the describing parameters. Evolution of stiffness and evolution of strength are kept uncoupled. For plane problems the stiffness evolution is modelled...

  1. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  2. Progress on resolution of major surety issues

    International Nuclear Information System (INIS)

    Bell, C.R.; Boudreau, J.M.

    1985-01-01

    This paper presents a summary of the major surety issues (safety, environmental protection, sageguards, reliability, quality assurance) that have been identified during Phase I of the SP-100 Program and the progress that has been made in analyzing the most important of these issues in the context of the conceptual design effort. These issues have been identified as inadvertent criticality, toxic material release and dispersion, radiation exposure following end-of-life reentry, potential diversion of special nuclear material, failure to achieve end-of-life neutronic shutdown, and structural predictability for end-of-life re-entry or boost. Because of the complexity of these issues, a simplified conservative approach was taken during Phase I. Progress on these issues has been mainly in the area of increased understanding of the issues, identification of design features to resolve the issues, and quantitative evaluations of the surety characteristics of the various design concepts

  3. Progress towards vertical transport study of proton-irradiated InAs/GaSb type-II strained-layer superlattice materials for space-based infrared detectors using magnetoresistance measurements

    Science.gov (United States)

    Malone, Mitchell C.; Morath, Christian P.; Fahey, Stephen; Klein, Brianna; Cowan, Vincent M.; Krishna, Sanjay

    2015-09-01

    InAs/GaSb type-II strained-layer superlattice (T2SLS) materials are being considered for space-based infrared detector applications. However, an inadequate understanding of the role of carrier transport, specifically the vertical mobility, in the radiation tolerance of T2SLS detectors remains. Here, progress towards a vertical transport study of proton-irradiated, p-type InAs/GaSb T2SLS materials using magnetoresistance measurements is reported. Measurements in the growth direction of square mesas formed from InAs/GaSb superlattice material were performed using two distinct contact geometries in a Kelvin mode setup at variable magnetic fields, ranging from -9 T to 9 T, and temperatures, ranging from 5 K and 300 K. The results here suggested multi-carrier conduction and a field-dependent series resistance from the contact layer were present. The implications of these results and the plans for future magnetoresistance measurements on proton-irradiated T2SLS materials are discussed.

  4. Synchrotron radiation and fusion materials

    International Nuclear Information System (INIS)

    Nielsen, S.F.

    2009-01-01

    The development of fusion energy is approaching a stage where the capabilities of materials will be dictating the further progress and the time scale for the attainment of fusion power. EU has therefore funded the Fusion Energy Materials Science project Coordination Action (FEMaS - CA) with the intension to utilise the know-how in the materials community to help overcome the material science problems with the fusion related materials. The FEMaS project and some of the possible applications of synchrotron radiation for materials characterisation are described in this paper. (au)

  5. Progress in abrasive and grinding technology

    CERN Document Server

    Xu, Xipeng

    2009-01-01

    The grinding and abrasive processing of materials are machining techniques which use bonded or loose abrasives to remove material from workpieces. Due to the well-known advantages of grinding and abrasive processes, advances in abrasive and grinding technology are always of great import in enhancing both productivity and component quality. In order to highlight the recent progress made in this field, the editor invited 21 world-wide contributions with the aim of gathering together all of the achievements of leading researchers into a single publication. The authors of the 21 invited papers, of

  6. Space Power Program Semiannual Progress Report for period ending June 30, 1963

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1963-10-11

    This is a report of progress on the Oak Ridge National Laboratory's research and development program on nuclear power plants for electrical power production in space vehicles. The work is carried out under AEG Reactor Experiments, Fuels, and Materials, and Reactor Component programs. Research and development work is under way on the stainless steel boiling-potassium reactor and the Medium Power Reactor Experiment, boiling alkali metal heat transfer, high-temperature and refractory alloys, fuel material, and space reactor shielding, particularly in connection with SNAP 2, 8, 10, and 50. Many of these OREL efforts are directed toward the development of a specific type of power plant, but they also furnish a significant contribution of scientific and engineering information needed in other programs on advanced SNAP systems. Progress on research and development directly related to the Medium Power Reactor Experiment (MPRE) is presented mostly in Part I of this report. Progress on the MPRE will, in the future, be reported on a quarterly basis. The form of the reporting will alternate from MPRE Quarterly Progress Reports to Space Power Semiannual Progress Reports.

  7. A brief summary of the progress on the EFDA tungsten materials program

    Czech Academy of Sciences Publication Activity Database

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, Hanna; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J.B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M.R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matějíček, Jiří; Mishra, T.P.; Muhammed, M.; Munoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Urena, A.; van der Laan, J.G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M.A.; You, J.H.; Zivelonghi, A.

    2013-01-01

    Roč. 442, 1-3 (2013), S173-S180 ISSN 0022-3115. [Fifteenth International Conference on Fusion Reactor Materials. Charleston, South Carolina, 16.10.2011-22.10.2011] Institutional support: RVO:61389021 Keywords : tungsten * joining * composites * graded materials * fusion materials Subject RIV: JI - Composite Materials Impact factor: 2.016, year: 2013 http://dx.doi.org/10.1016/j.jnucmat.2013.03.062

  8. Fusion materials semiannual progress report for the period ending June 30, 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. It is divided into the following chapters: vanadium alloys; silicon carbide components; ferritic-martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; radiation effects, mechanistic studies, and experimental methods; dosimetry, damage parameters, and activation calculations; and irradiation facilities, test matrices, and experimental methods. There were no papers for the chapters on solid breeding materials and materials engineering and design requirement. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Fusion materials semiannual progress report for the period ending June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. It is divided into the following chapters: vanadium alloys; silicon carbide components; ferritic-martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; radiation effects, mechanistic studies, and experimental methods; dosimetry, damage parameters, and activation calculations; and irradiation facilities, test matrices, and experimental methods. There were no papers for the chapters on solid breeding materials and materials engineering and design requirement. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Neutron scattering (progress report) January - December 1991

    International Nuclear Information System (INIS)

    Buehrer, W.; Fischer, P.; Furrer, A.

    1992-02-01

    Progress made by the Laboratory for Neutron Scattering of the Swiss Federal Institute of Technology during the year 1991 in the fields of high-T c superconductors, materials science, magnetism, structural research, lattice dynamics, phase transitions, instrumental and support activities is reported. figs., tabs., refs

  11. Progress report, Chemistry and Materials Division

    International Nuclear Information System (INIS)

    1981-05-01

    Laser radiation has been used to anneal damage created by implantation of arsenic ions into silicon single-crystal wafers. The threshold for recovery of lattice order, as measured by ion channeling methods, appeared at an energy density of 1.2 J.cm -2 . Deuterium-enriched water has been recovered for the first time in visible amounts from a process based on laser photolysis. High performance liquid chromatography has been applied to the determination of U(VI) in ground water and urine. Results with low ground water concentrations were judged to be successful, while only limited success was achieved with urine. The first analyses in support of the production of (Th,Pu)O 2 fuel elements were completed successfully. Experiments performed during the quarter have shown that cracking of Zr-2.5 percent Nb alloy by gaseous hydrogen is inhibited by traces of oxygen. It was found that there was no inhibition by helium in the absence of trace oxygen. Excellent agreement has been obtained between the growth and creep constants derived from ion-irradiated cantilever beam specimens and those from reactor irradiation of the same materials. (O.T.)

  12. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    International Nuclear Information System (INIS)

    1982-08-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  13. Progression og underviserkompetencer

    Directory of Open Access Journals (Sweden)

    Lene Tortzen Bager

    2014-03-01

    entrepreneurship. The study uses categories such as didactics, working processes in academic courses or courses at university as key themes. Participating teachers’ descriptions of their concepts of entrepreneurship in their teaching practices are used to chart their progress. This material provides an insight into the teachers’ reflections on their development processes, challenges and different modes of teacher authority related to entrepreneurship teaching in universities. Together, the gathered data contribute to discussions on student teacher development by identifying the importance of the teachers’ motivation as a precondition for professional and educational development.

  14. Fusion reactor materials: Semiannual progress report for period ending September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1987-09-01

    These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The major areas of concern covered in this report are irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; radiation effects; development of structural alloys; solid breeding materials; ceramics and superconducting magnet materials. There are 61 reports cataloged separately. (LSP)

  15. Fusion reactor materials: Semiannual progress report for period ending September 30, 1986

    International Nuclear Information System (INIS)

    1987-09-01

    These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The major areas of concern covered in this report are irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; radiation effects; development of structural alloys; solid breeding materials; ceramics and superconducting magnet materials. There are 61 reports cataloged separately

  16. New Comparative Measures of Income, Material Deprivation, and Well-Being

    Science.gov (United States)

    Smeeding, Timothy M.

    2009-01-01

    Most societies, rich and poor, seek to measure progress in reducing poverty and need, as indicated by material deprivation or social exclusion. The yardsticks used to assess progress and policy impact mainly include income-based poverty, but broader measures of poverty based on consumption, wealth, and material deprivation are also now coming into…

  17. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  18. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  19. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  20. Progress and status of fusion technology and materials research in China

    International Nuclear Information System (INIS)

    Xu Zengyu; Liu Xiang; Chen Jiming; Zhang Fu

    2003-01-01

    Fusion technology and materials research in China was included in the National High Technology Project during 1986-2000. Since 2000, the National Natural Science Foundation Committee, the State Development Planning Commission, and the Ministry of Science and Technology have supported this field of research. The research program has covered the topics of tritium engineering, plasma facing materials and structural materials. The Southwestern Institute of Physics has been a leading institute in this research program in the last 15 years in China, and over ten universities and institutes have joined the program. (author)

  1. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    , imitate and articulate the students’ inclusion of materials. This paper particularly discusses the experiences made and ideas generated after the execution of a material science course for second year students, with emphasis on the concept of the material selection matrix as an educational tool......This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe...

  2. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  3. Characterization of the Material Microstructure for Reactive Material Design. 3rd Quarterly Progress Report II/2008

    Science.gov (United States)

    2008-08-05

    metallic) materials, which fragment under certain dynamic loading conditions into small particles, which can chemically react with a suitable ambient ...medium, such as shock heated ambient air or hot detonation products. Such materials could be effectively used to devise new or improved weapons with...test is blue. The impacto conditions of the the center of the the opposite surfa reflection of the w Figure 6.1: Example o specimen. Another aspect

  4. Materials and Molecular Research Division annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Progress in research in structure of materials, mechanical, and physical properties, solid state physics, and materials chemistry, including chemical structure, high temperature and surface chemistry, is reported. (FS)

  5. Review of progress on fusion materials technology, Harwell, December 1980

    International Nuclear Information System (INIS)

    Harries, D.R.

    1981-03-01

    The programme has been aimed specifically at investigating and furthering an understanding of: (a) the evolution of the radiation damage structure, void and gas bubble swelling and surface blistering effects in both model and potential first wall materials for a D-T fusion reactor system of the TOKAMAK type. (b) Radiation effects in inorganic insulator materials. In addition, investigations were carried out into the effects of irradiation on organic insulators and on the performance of rubber seals. The principal achievements to date are summarised and a list of 50 references is given. (author)

  6. Biomass energy: progress in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [CPL Scientific Limited, Newbury (United Kingdom)

    1996-05-01

    A brief overview of the progress in the use of biomass energy in the European Union is presented. Wood fuel, support for renewable energy research, liquid biofuel, wastes and residues, and non-food use of crops such as the production of fuels from lignocellulosic materials are examined. (UK)

  7. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    Directory of Open Access Journals (Sweden)

    Juan L Vivero-Escoto, Ya-Dong Chiang, Kevin C-W Wu and Yusuke Yamauchi

    2012-01-01

    Full Text Available This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  8. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.

    Science.gov (United States)

    Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing

    2017-03-01

    The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Research progress in photolectric materials of CuFeS2

    Science.gov (United States)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  10. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress

    KAUST Repository

    Tang, Jiang

    2010-09-14

    Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells\\' absorption profile to match the sun\\'s broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances. Infrared colloidal quantum dots that absorb most of the solar radiation enable potential efficient and low-cost photovoltaic devices. Careful optimization of quantum dot passivation and device configuration leads to solar cells with AM1.5G efficiency as high as 5.1% Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  12. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    International Nuclear Information System (INIS)

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs

  13. Materials and Molecular Research Division annual report 1983

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  14. Materials and Molecular Research Division annual report 1983

    International Nuclear Information System (INIS)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others

  15. Theoretical nuclear structure and astrophysics. Progress report for 1996

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops

  16. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.

  17. Fusion Reactor Materials semiannual progress report for period ending September 30, 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report contains papers on topic in the following areas of thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials and beryllium; and ceramics. These paper have been index separately elsewhere. (LSP)

  18. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  19. Materials and nanotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. These are achieved through execution of R&D projects in engineering and materials science, cooperative projects with private and public sector companies, universities and other research institutes. Besides technology development, this Program also fosters training and human resource development in association with the University of São Paulo and many industrial sectors. This Program is divided into sub-programs in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials. The sub-programs are further divided into general topics and within each topic, R&D projects. A brief description of progress in each topic during the last three years follows. (author)

  20. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe....... Furthermore the purpose is to initiate a discussion on, how to create educational tools for material awareness creation in the design education e.g. by applying objective and quantitative methods in an otherwise often subjective design process....

  1. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

    1993-09-01

    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC's Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula

  2. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  3. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  4. Milliwatt-generator heat source. Progress report, January-June 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1983-01-01

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality

  5. Present status of fusion reactor materials, 4

    International Nuclear Information System (INIS)

    Nagasaki, Ryukichi; Shiraishi, Kensuke; Watanabe, Hitoshi; Murakami, Yoshio; Takamura, Saburo

    1982-01-01

    Recently, the design of fusion reactors such as Intor has been carried out, and various properties that fusion reactor materials should have been clarified. In the Japan Atomic Energy Research Institute, the research and development of materials aiming at a tokamak type experimental fusion reactor are in progress. In this paper, the problems, the present status of research and development and the future plan about the surface materials and structural materials for the first wall, blanket materials and magnet materials are explained. The construction of the critical plasma testing facility JT-60 developed by JAERI has progressed smoothly, and the operation is expected in 1985. The research changes from that of plasma physics to that of reactor technology. In tokamak type fusion reactors, high temperature D-T plasma is contained with strong magnetic field in vacuum vessels, and the neutrons produced by nuclear reaction, charged particles diffusing from plasma and neutral particles by charge exchange strike the first wall. The PCA by improving 316 stainless steel is used as the structural material, and TiC coating techniques are developed. As the blanket material, Li 2 O is studied, and superconducting magnets are developed. (Koko, I.)

  6. Progress Report. Teilinstitut Nukleare Festkoerperphysik

    International Nuclear Information System (INIS)

    Kaefer, K.

    1978-10-01

    This Progress Report of the Teilinstitut Nukleare Festkoerperphysik covers the work done at the Institute during the period from June 1, 1977 to May 31, 1978. The main research areas presently under investigation are underlined by the arrangement of the report: structure and dynamics of solids, electronic structure and magnetism of solids, and the development and investigation of novel materials. Some technical developments important in carrying out this research are included as well. (orig.) [de

  7. Progress in advanced accelerator concepts

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-08-01

    A review is given of recent progress in this field, drawing heavily upon material presented at the Workshop on Advanced Accelerator Concepts, The Abbey, June 12--18, 1994. Attention is addressed to (1) plasma based concepts, (2) photo-cathodes, (3) radio frequency sources and Two-Beam Accelerators, (4) near and far-field schemes (including collective accelerators), (5) beam handling and conditioning, and (6) exotic collider concepts (such as photon colliders and muon colliders)

  8. Models and correlations of the DEBRIS Late-Phase Melt Progression Model

    International Nuclear Information System (INIS)

    Schmidt, R.C.; Gasser, R.D.

    1997-09-01

    The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission

  9. Progress in photon science basics and applications

    CERN Document Server

    2017-01-01

    This book features chapters based on lectures presented by world-leading researchers of photon science from Russia and Japan at the first “STEPS Symposium on Photon Science” held in Tokyo in March 2015. It describes recent progress in the field of photon science, covering a wide range of interest to experts in the field, including laser-plasma interaction, filamentation and its applications, laser assisted electron scattering, exotic properties of light, ultrafast imaging, molecules and clusters in intense laser fields, photochemistry and spectroscopy of novel materials, laser-assisted material synthesis, and photon technology.

  10. Metals and Ceramics Division progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Brogden, I. (ed.)

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneous Activities.

  11. Metals and Ceramics Division progress report for period ending June 30, 1984

    International Nuclear Information System (INIS)

    Brogden, I.

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneous Activities

  12. 23 CFR 635.122 - Participation in progress payments.

    Science.gov (United States)

    2010-04-01

    ... OPERATIONS CONSTRUCTION AND MAINTENANCE Contract Procedures § 635.122 Participation in progress payments. (a..., based on a request for reimbursement submitted by State transportation departments. When the contract... value of the stockpiled material shall not exceed the appropriate portion of the value of the contract...

  13. Progress on solid breeder TBM at SWIP

    International Nuclear Information System (INIS)

    Feng, K.M.; Pan, C.H.; Zhang, G.S.; Luo, T.Y.; Zhao, Z.; Chen, Y.J.; Ye, X.F.; Hu, G.; Wang, P.H.; Yuan, T.; Feng, Y.J.; Xiang, B.; Zhang, L.; Wang, Q.J.; Cao, Q.X.; Li, Z.X.; Wang, F.

    2010-01-01

    Current progress on the design and R and D of Chinese helium-cooled solid breeder test blanket module, CN HCSB TBM is presented. The updated design on structural, neutronics, thermal-hydraulics and safety analysis has been completed. In order to accommodate the HCSB TBM ancillary system, the design and necessary R and Ds corresponding sub-systems have being developed. Current status on the development of function materials, structure material and the helium test loop are also presented. The Chinese low-activation ferritic/martensitic steels CLF-1, which is the structural material for the HCSB TBM is being manufactured by industry. The neutron multiplier Be and tritium breeder Li 4 SiO 4 pebbles are being prepared in laboratory scale.

  14. Microwave-Assisted Synthesis of Nano-materials in Aqueous

    Science.gov (United States)

    Whether it is termed a revolution or simply a continuous evolution, clearly development of new materials and their understanding on smaller and smaller length scale is at the root of progress in many areas of materials science.1 This is true in developing existing bulk materials...

  15. Progress in fusion technology at SWIP

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X.R., E-mail: duanxr@swip.ac.cn; Chen, J.M.; Feng, K.M.; Liu, X.; Li, B.; Wu, J.H.; Wang, X.Y.; Zheng, P.F.; Wang, Y.Q.; Wang, P.H.; Liu, Yong

    2016-11-01

    Highlights: • Dispersion strengthened CLF-1 steel, vanadium alloys and tungsten alloys are developed. • The HCCB TBM conceptual design, development of functional materials such as Li{sub 4}SiO{sub 4} pebbles and Be pebbles are in progress. • A full size prototype shield block has been fabricated and passed ITER qualification. • Advanced divertor for a new tokamak are designed and analyzed. • GIS and GDC have entered the engineering design phase. - Abstract: The fusion research activities at Southwestern Institute of Physics (SWIP) include the HL-2A & HL-2M tokamak programs, fusion reactor design and materials, along with key fusion technologies including R&D on ITER procurement packages. This paper presents the progress of fusion technology at SWIP, including the ITER first wall and blanket, Chinese helium cooled ceramic breeder test blanket module (HCCB–TBM) for ITER, gas injection system and gas discharge cleaning system, as well as the recent activities on reactor materials and R&D related to advanced divertor. The final design for ITER first wall and blanket shielding blocks allocated to SWIP have been completed, and were validated by recent tests. Major manufacturing technologies, such as forging, deep drilling, explosion bonding and deep laser welding, have been successfully demonstrated. Furthermore, the conceptual design of CN–HCCB–TBM has been completed, the related materials’ preparation, mock-up manufacturing and tests have been implemented. The tungsten divertor has been studied with various bonding and coating technologies. Meanwhile, highlights of functional material for TBM, oxides and carbides dispersion strengthened (ODS, CDS) reduced activation ferritic/martensitic (RAFM) steel, vanadium and tungsten alloys are also presented.

  16. Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials.

    Science.gov (United States)

    Zhang, Qun-Zheng; Zhang, Dian; Miao, Zong-Cheng; Zhang, Xun-Li; Chou, Shu-Lei

    2018-04-30

    With the serious impact of fossil fuels on the environment and the rapid development of the global economy, the development of clean and usable energy storage devices has become one of the most important themes of sustainable development in the world today. Supercapacitors are a new type of green energy storage device, with high power density, long cycle life, wide temperature range, and both economic and environmental advantages. In many industries, they have enormous application prospects. Electrode materials are an important factor affecting the performance of supercapacitors. MnO 2 -based materials are widely investigated for supercapacitors because of their high theoretical capacitance, good chemical stability, low cost, and environmental friendliness. To achieve high specific capacitance and high rate capability, the current best solution is to use MnO 2 and carbon composite materials. Herein, MnO 2 -carbon composite as supercapacitor electrode materials is reviewed including the synthesis method and research status in recent years. Finally, the challenges and future development directions of an MnO 2 -carbon based supercapacitor are summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    International Nuclear Information System (INIS)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-01-01

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications

  18. Propulsion system materials program. Semiannual progress report, October 1995--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1996-07-01

    This portion of the program is identified as program element 1.0 within the work breakdown structure (WBS). It contains five subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, (4) Joining, and (5) Ceramic Machining. Ceramic research conducted within the Monolithics subelement currently includes work activities on low Cost Si{sub 3}N{sub 4} powder, green state ceramic fabrication, characterization, and densification, and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon nitride and oxide-based composites, and low expansion materials. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-based coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong, stable joints between zirconia ceramics and iron-base alloys. As part of an expanded effort to reduce the cost of ceramic components, a new initiative in cost effective machining has been started. A major objective of the research in the Materials and Processing program element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide U.S. companies with new or improved ways for producing economical, highly reliable ceramic components for advanced heat engines.

  19. 1995-1996 progress report

    International Nuclear Information System (INIS)

    1997-09-01

    This progress report is mainly devoted to the scientific activity of the LLB or carried out in collaboration with external laboratories. The activity of the LLB is split in several chapters dealing with: magnetism, superconductivity, structures (including lattice dynamics), phase transitions, C 60 , quasi-crystal systems, disordered systems (amorphous, liquids, crystal solid solutions), biology, soft matter (polymers and colloids), physical metallurgy and materials science. Neutron scattering is the main tool used in all these topics but other techniques are also used such as: polarized neutron reflectivity, cold neutrons diffraction, NMR, synchrotron radiation etc. (J.S.)

  20. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  1. Progress on first-principles-based materials design for hydrogen storage.

    Science.gov (United States)

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  2. Low-density hydrocarbon foams for laser fusion targets: Progress report, 1987

    International Nuclear Information System (INIS)

    Haendler, B.L.; Buckley, S.R.; Chen, C.

    1988-06-01

    This report describes progress made in the development of direct-drive hydrocarbon foam targets for laser inertial confinement fusion during 1987. The foam materials are polystyrene, resorcinol-formaldehyde, carbonized resorcinol-formaldehyde, and cellulose acetate. The processes for making the foams, their properties, characterization techniques, and the relationship of their properties to target specifications are presented. Progress in the creation and testing of prototype targets is also described

  3. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  4. High critical temperature superconductors: Progress achieved after two years

    International Nuclear Information System (INIS)

    Maillard, J.M.; Rammal, R.; Vittorge, M.C.

    1989-01-01

    Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given [fr

  5. FY 2012 Lightweight Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  6. Rate Dependent Multicontinuum Progressive Failure Analysis of Woven Fabric Composite Structures under Dynamic Impact

    Directory of Open Access Journals (Sweden)

    James Lua

    2004-01-01

    Full Text Available Marine composite materials typically exhibit significant rate dependent response characteristics when subjected to extreme dynamic loading conditions. In this work, a strain-rate dependent continuum damage model is incorporated with multicontinuum technology (MCT to predict damage and failure progression for composite material structures. MCT treats the constituents of a woven fabric composite as separate but linked continua, thereby allowing a designer to extract constituent stress/strain information in a structural analysis. The MCT algorithm and material damage model are numerically implemented with the explicit finite element code LS-DYNA3D via a user-defined material model (umat. The effects of the strain-rate hardening model are demonstrated through both simple single element analyses for woven fabric composites and also structural level impact simulations of a composite panel subjected to various impact conditions. Progressive damage at the constituent level is monitored throughout the loading. The results qualitatively illustrate the value of rate dependent material models for marine composite materials under extreme dynamic loading conditions.

  7. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973

    International Nuclear Information System (INIS)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling

  8. Silicon based light-emitting materials and devices

    International Nuclear Information System (INIS)

    Chen Weide

    1999-01-01

    Silicon based light-emitting materials and devices are the key to optoelectronic integration. Recently, there has been significant progress in materials engineering methods. The author reviews the latest developments in this area including erbium doped silicon, porous silicon, nanocrystalline silicon and Si/SiO 2 superlattice structures. The incorporation of these different materials into devices is described and future device prospects are assessed

  9. Progress of scientific researches and project of CSR in IMP

    International Nuclear Information System (INIS)

    Jin Genming

    2004-01-01

    The article reviews the recent progress of the scientific researches including synthesis of new nuclides, investigations of the isospin effects in heavy ion collisions, studies of the nuclear structure in high spin states and the applications of heavy ion beams to other scientific researches, such as biology and material science. It also gives a brief introduction of the development of the design and progress of the new project of heavy ion cooling storage ring (CSR) of Lanzhou. (author)

  10. Progress report, Chemistry and Materials Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    1977-01-01

    A summary is given of research largely centering around radiation effects on materials, radiation and analytical chemistry, surface studies, and materials science, esp. zirconium base alloys and their problems and properties in nuclear service. (E.C.B.)

  11. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1989-01-01

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor

  12. [Research progress on the technique and materials for three-dimensional bio-printing].

    Science.gov (United States)

    Yang, Runhuai; Chen, Yueming; Ma, Changwang; Wang, Huiqin; Wang, Shuyue

    2017-04-01

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

  13. United States Department of Energy Nuclear Materials Stewardship

    International Nuclear Information System (INIS)

    Newton, J. W.

    2002-01-01

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials

  14. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  15. Presentation on the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC): A Working Model and Progress Report

    Science.gov (United States)

    Glesener, G. B.; Vican, L.

    2015-12-01

    Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to

  16. Progress on materials and scaffold fabrications applied to esophageal tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Qiuxiang; Shi, Peina; Gao, Mongna; Yu, Xuechan; Liu, Yuxin; Luo, Ling; Zhu, Yabin, E-mail: zhuyabin@nbu.edu.cn

    2013-05-01

    The mortality rate from esophageal disease like atresia, carcinoma, tracheoesophageal fistula, etc. is increasing rapidly all over the world. Traditional therapies such as surgery, radiotherapy or chemotherapy have been met with very limited success resulting in reduced survival rate and quality of patients' life. Tissue-engineered esophagus, a novel substitute possessing structure and function similar to native tissue, is believed to be an effective therapy and a promising replacement in the future. However, research on esophageal tissue engineering is still at an early stage. Considerable research has been focused on developing ideal scaffolds with optimal materials and methods of fabrication. This article gives a review of materials and scaffold fabrications currently applied in esophageal tissue engineering research. - Highlights: ► Natural and synthesized materials are being developed as scaffold matrices. ► Several technologies have been applied to reconstruct esophagus tissue scaffold. ► Tissue-engineered esophagus is a promising artificial replacement.

  17. Progress in the electrochemical modification of graphene-based materials and their applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Low, C.T.J.; Brandon, N.P.; Yufit, V.; Hashim, M.A.; Irfan, M.F.; Akhtar, J.; Ruiz-Trejo, E.; Hussain, M.A.

    2013-01-01

    Highlights: • Six means of functionalizing graphene electrochemically is reviewed. • Electrochemical functionalization is relatively new to other standard methods. • The technique is expected to improve graphene's application range considerably. -- Abstract: Graphene is a 2D allotrope of carbon with exciting properties such as extremely high electronic conductivity and superior mechanical strength. It has considerable potential for applications in fields such as bio-sensors, electrochemical energy storage and electronics. In most cases, graphene has been functionalized and modified with other materials to prepare composites. This work reviews the electrochemical modification of graphene. Commencing with a brief history, a summary of several different means of modifying graphene to effect diverse applications is provided. This is followed by a discussion on different composite materials that have been prepared with reduced graphene oxide prior to moving onto a detailed consideration of six different methods of electrochemically modifying graphene to prepare composite materials. These methods involve cathodic reduction of graphene oxide, electrophoretic deposition, electro-deposition techniques, electrospinning, electrochemical doping and electrochemical polymerization. Finally a consideration on the applications of electrochemically modified graphene composite materials in various fields is presented prior to discussing some prospects in enhancing the electrochemical process to realize excellent and economic composite materials in bulk

  18. Terrestrial photovoltaic technologies - Recent progress in manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Witt, C. E.; Surek, T.; Mitchell, R. L.; Symko-Davies, M.; Thomas, H. P.

    2000-05-15

    This paper describes photovoltaics (PV) as used for energy generation in terrestrial applications. A brief historical perspective of PV development is provided. Solar-to-electricity conversion efficiencies for various photovoltaic materials are presented, as well as expectations for further material improvements. Recent progress in reducing manufacturing costs through process R&D and product improvements are described. Applications that are most suitable for the different technologies are discussed. Finally, manufacturing capacities and current and projected module manufacturing costs are presented.

  19. Recent progress in supercapacitors: from materials design to system construction.

    Science.gov (United States)

    Wang, Yonggang; Xia, Yongyao

    2013-10-04

    Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  1. Materials and Molecular Research Division annual report 1980

    International Nuclear Information System (INIS)

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management

  2. Materials and Molecular Research Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  3. 1976 scientific progress report. [Fuel and coating materials for HTGR]; Wissenschaftlicher Ergebnisberict 1976

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, H.

    1976-07-01

    Activities at the Institute for Reactor Materials in the production and properties of high temperature gas cooled reactor fuel and coating materials are summarized. Major emphasis was placed on investigations of pyrocarbon, BISO and TRISO coatings, uranium and thorium oxides and carbides, and graphite and matrix materials. A list of publications is included. (HDR)

  4. Fusion reactor materials semiannual progress report for period ending September 30, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report contains papers on the following topics on thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters,and activation calculations; radiation effects, mechanistic studies, theory and modeling; development of structural alloys; solid breeding materials and beryllium; and ceramics. These reports have been index separately elsewhere

  5. The 1988 Leti Division progress report

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the CEA's LETI Division (Division of Electronics, Technology and Instrumentation, France) is presented. The missions of LETI Division involve military and nuclear applications of electronics and fundamental research. The research programs developed in 1988 are the following: materials and components, non-volatile silicon memories, silicon-over-insulator, integrated circuits technologies, common experimental laboratory (opened to the European community), mass memories, photodetectors, micron sensors and flat screens [fr

  6. Progress in nanotechnology for healthcare.

    Science.gov (United States)

    Raffa, V; Vittorio, O; Riggio, C; Cuschieri, A

    2010-06-01

    This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle

  7. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This report contains papers on thermonuclear reactor materials. The general categories of these papers are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; development of structural alloys; solid breeding materials; ceramics; and radiation effects. Selected papers have been processed for inclusion in the energy database

  8. Progressively safer, cheaper demolition of Fernald

    International Nuclear Information System (INIS)

    Nichols, Robert; Pennington, Norman

    2000-01-01

    Fluor Fernald, Inc. has been progressively improving Decontamination and Dismantlement (D and D) at the Department of Energy's Fernald Environmental Management Project by applying new technologies and better methodologies to the work. Demolition issues existed in the past that necessitated new or improved solutions to maintain worker safety, protect the environment and accomplish the work in a cost effective manner. Lessons learned from D and D of 80 structures has led to a systematic approach, which can be implemented in various D and D arenas. When facility production was halted, hold-up material and process residues remained in the process piping and components. Over 500,000 pounds of material was removed by workers who completed the tasks two years ahead of schedule, $7 million under budget and with an excellent safety record. This success was the result of detailed planning and irdision of lessons learned as work progressed from facility to facility. Work sequences were developed that reduced airborne contamination. Demolition of structures has been performed at Fernald by carefully selected and qualified subcontractors. Asbestos and lead abatement, equipment, piping and conduit removal, and structural demolition have been completed to progressively higher performance specifications developed by Fluor Fernald based on lessons learned during execution. Safety continues to be the primary consideration in performing potentially hazardous work. Technologies such as hydraulic shears have been developed and used to keep workers away from danger. A new technology, ''Cool Suits,'' has been demonstrated to help prevent heat stress when anti-contamination clothing is required in elevated temperature working conditions. For tall structures, implosion technologies have been employed with progressively improved results, Several other new technologies have been evaluated by Fluor Fernald and applied by subcontractors. The improved technologies included the oxy-gas torch

  9. Progress report on the accelerator production of tritium materials irradiation program

    International Nuclear Information System (INIS)

    Maloy, S.A.; Sommer, W.F.; Brown, R.D.; Roberts, J.E.

    1997-01-01

    The Accelerator Production of Tritium (APT) project is developing an accelerator and a spoliation neutron source capable of producing tritium through neutron capture on He-3. A high atomic weight target is used to produce neutrons that are then multiplied and moderated in a blanket prior to capture. Materials used in the target and blanket region of an APT facility will be subjected to several different and mixed particle radiation environments; high energy protons (1-2 GeV), protons in the 20 MeV range, high energy neutrons, and low energy neutrons, depending on position in the target and blanket. Flux levels exceed 10 14 /cm 2 s in some areas. The APT project is sponsoring an irradiation damage effects program that will generate the first data-base for materials exposed to high energy particles typical of spallation neutron sources. The program includes a number of candidate materials in small specimen and model component form and uses the Los Alamos Spallation Radiation Effects Facility (LASREF) at the 800 MeV, Los Alamos Neutron Science Center (LANSCE) accelerator

  10. Chemistry and Materials Science. Progress report, first half, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  11. Progress of electromagnetic analysis for fusion reactors

    International Nuclear Information System (INIS)

    Takagi, T.; Ruatto, P.; Boccaccini, L.V.

    1998-01-01

    This paper describes the recent progress of electromagnetic analysis research for fusion reactors including methods, codes, verification tests and some applications. Due to the necessity of the research effort for the structural design of large tokamak devices since the 1970's with the help of the introduction of new numerical methods and the advancement of computer technologies, three-dimensional analysis methods have become as practical as shell approximation methods. The electromagnetic analysis is now applied to the structural design of new fusion reactors. Some more modeling and verification tests are necessary when the codes are applied to new materials with nonlinear material properties. (orig.)

  12. Prognosis of muscle-invasive bladder cancer: difference between primary and progressive tumours and implications for therapy.

    NARCIS (Netherlands)

    Schrier, B.P.; Hollander, M.P.; Rhijn, B.W. van; Kiemeney, L.A.L.M.; Witjes, J.A.

    2004-01-01

    OBJECTIVE: To evaluate the difference in prognosis between progressive and primary muscle-invasive bladder cancer. MATERIALS AND METHODS: From 1986 to 2000, 74 patients with progressive muscle-invasive bladder cancer were identified. Eighty-nine patients with primary muscle-invasive bladder cancer

  13. Research Progress on AgSbTe2-based Thermoelectric Materials

    Institute of Scientific and Technical Information of China (English)

    CAO Qigao; MA Guang; JIA Zhihua; ZHENG Jing; LI Jin

    2012-01-01

    Thermoelectric power generation represents a class of energy conversion technology,which has been used in power supply of aeronautic and astronautic exploring missions,now showing notable advantages to harvest the widely distributed waste heat and convert the abundant solar energy into electricity at lower cost than Si-based photovoltaic technology.Thermoelectric dimensionless figure of merit ZT plays a key role in the conversion efficiency from thermal to electrical energy.Low thermal conductivity and large Seebeck coefficient make the AgSbTe2 compound a very promising candidate for high efficiency p-type thermoelectric applications.The AgSbTe2-based thermoelectric system has been repeatedly studied as prospective thermoelectric materials.In this review,we firstly clarify some fundamental tradeoffs dictating the ZT value through the relationship ZT =S2σT/κ.We also pay special attentions to the recent advances in AgSbTe2-based thermoelectric materials.Finally,we provide an outlook of new directions in this filed.

  14. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  15. Progress and applications of in situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Wang Rongming; Liu Jialong; Song Yuanjun

    2015-01-01

    Recent progress in the application of in situ transmission electron microscopy (TEM) is briefly reviewed. It is emphasized that the development of advanced in situ TEM techniques makes it possible to investigate the evolution of materials under heat, strain, magnetic field, electric field or chemical reaction environments on the atomic scale. The mechanism of the microstructure evolution under various conditions and the relationship between the atomic structures and their properties can be obtained, which is beneficial for the design of new materials with tailored properties. The clarification of the structure-property relationship will help to develop new materials and solve related basic problems in the field of condensed matter physics. (authors)

  16. Recent Progress on Flexible and Wearable Supercapacitors.

    Science.gov (United States)

    Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi

    2017-12-01

    Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Short analysis of a progressive distorsion problem (tension and cyclic torsion)

    International Nuclear Information System (INIS)

    Roche, Roland.

    1978-06-01

    Tests on ratcheting (or progressive distorsion) are in progress in Saclay. A thin tube is subjected to a constant tensile load and to a cyclic twist. The present paper is a short theoretial analysis of that case. A uniform strain and stress field is considered with a constant tensile stress P (primary stress) and a cyclic shearing strain. The shearing strain is known by the corresponding elastic equivalent stress intensity (TRESCA criterion). The cyclic range of the stress intensity is ΔQ (secondary stress range). Are examined the shake down condition and the incremental elongations with different constitutive equations of the material. Special attention is given to perfect plasticity and bilinear kinematic hardening results are presented, but it is believed that these materials mathematical models are simplistic and special experimental tests are proposed [fr

  18. Solid-State Division progress report for period ending March 31, 1983

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials)

  19. Solid-State Division progress report for period ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  20. Dose distribution around ion track in tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng

    2007-01-01

    Objective: To study the energy deposition micro-specialty of ions in body-tissue or tissue equivalent material (TEM). Methods: The water vapor was determined as the tissue equivalent material, based on the analysis to the body-tissue, and Monte Carlo method was used to simulate the behavior of proton in the tissue equivalent material. Some features of the energy deposition micro-specialty of ion in tissue equivalent material were obtained through the analysis to the data from calculation. Results: The ion will give the energy by the way of excitation and ionization in material, then the secondary electrons will be generated in the progress of ionization, these electron will finished ions energy deposition progress. When ions deposited their energy, large amount energy will be in the core of tracks, and secondary electrons will devote its' energy around ion track, the ion dose distribution is then formed in TEM. Conclusions: To know biological effects of radiation , the research to dose distribution of ions is of importance(significance). (authors)

  1. Nanofluidics in two-dimensional layered materials : inspirations from nature

    NARCIS (Netherlands)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-01-01

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and

  2. Progress in DOE high temperature superconductivity electric power applications program

    International Nuclear Information System (INIS)

    Daley, J.G.; Sheahn, T.P.

    1992-01-01

    The Department of Energy (DOE) leads national R and D effort to develop US industry's capability to produce a wide range of advanced energy-efficient electric power products. The immediate need is to make high temperature superconductivity (HTS) wire. Wire developers at the DOE National laboratories are working wit industrial partners toward this objective. In this paper, the authors describe the progress to date, citing both the difficulties associated with making wire from these ceramic materials, and achievements at several organizations. Results for progress over the next five years are stated

  3. [The optimization of a surgical intervention to stabilize progressive myopia].

    Science.gov (United States)

    Gonchar, P A; Dushin, N V; Beliaev, V S; Kravchinina, V V; Barashkov, V I; Frolov, M A

    1999-01-01

    Results of 236 sclera-fortifying surgeries are followed up for more than 25 years. Progressive myopia stabilized in 95.8% cases after bandaging scleroplasty and in 87.03% cases after chondroplasty. Clinical refraction and posteroanterior axis of the eye did not increase after surgery; visual functions stabilized, and brightness sensitivity threshold was lowered. The technique of operation and clinical course of the postoperative period are described. Based on analysis of the clinical material, the authors propose the optimal approach to scleroplastic operations aimed at stabilization of progressive myopia.

  4. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  5. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  6. Proceedings of the 3rd international symposium on material chemistry in nuclear environment (MATERIAL CHEMISTRY '02)

    International Nuclear Information System (INIS)

    2003-03-01

    The volume contains all presented papers during the 3rd International Symposium on Material Chemistry in Nuclear Environment: MATERIAL CHEMISTRY 02 (MC'02), held March 13-15, 2002. The purpose of this symposium is to provide an international forum for the discussion of recent progress in the field of materials chemistry in nuclear environments. This symposium intends to build on the success of the previous symposiums held in Tsukuba in 1992 and 1996. The topics discussed in the symposium MC'02 are Chemical Reaction and Thermodynamics, Degradation Phenomena, New Characterization Technology, Fabrication and New Materials, Composite Materials, Surface Modification, and Computational Science. The 61 of the presented papers are indexed individually. (J.P.N.)

  7. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  8. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  9. A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis

    Science.gov (United States)

    Chillara, Vamshi Krishna

    2017-11-01

    We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.

  10. Magnetic characterisation of recording materials: design, instrumentation and experimental methods

    NARCIS (Netherlands)

    Samwel, E.O.

    1995-01-01

    The progress being made in the field of magnetic recording is extremely fast. The need to keep this progress going, leads to new types of recording materials which require advanced measurement systems and measurement procedures. Furthermore, the existing measurement methods need to be reviewed as

  11. Fission reactors and materials

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions

  12. Progress in target materials for high-efficiency X-ray backlight

    International Nuclear Information System (INIS)

    Du Ai; Zhou Bin; Li Longxiang; Zhu Xiurong; Li Yu'nong; Shen Jun; Gao Guohua; Zhang Zhihua; Wu Guangming

    2012-01-01

    The composition, microstructure and density of the target materials are the key parameters to determinate the photon energy and intensity of the laser-induced X-ray backlight. Thus the classification of backlight targets, the preparation of target materials and the interaction between targets and high power laser were introduced in this paper. Underdense targets were more competitive than traditional dense targets among the backlight targets. Nano-structured foam targets, which could be classified into nanofiber targets and aerogel targets, were regarded as novel high-efficiency underdense targets. Nanofiber, which was commonly prepared via electro spinning and thermal treatment, exhibited good formability and high concentration of emission atoms; while aerogel, which was prepared via sol-gel processes and supercritical fluid drying, possesses the advantages of homogeneous microstructure and theoretically high conversion efficiency, but accompanied with the disadvantages of complex synthetic processes and low concentration of emission atoms. To prepare monolithic aerogels with low density and high concentration of emission atoms via combined sol-gel theories may be the better design for the development of the laser-induced X-ray backlight. (authors)

  13. Design and development of progressive tool for manufacturing washer

    Science.gov (United States)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  14. Progress report of the Teilinstitut Nukleare Festkoerperphysik

    International Nuclear Information System (INIS)

    Heger, G.

    1976-09-01

    This progress report of the Teilinstitut Nukleare Festkoerperphysik covers the period from 1st June 1975 - 31st May 1976. The arrangement has been chosen to emphasis the main areas of research in which the institute is presently involved. These areas are Dynamics of Solids and Liquids, Electronic Structure and Magnetism of Solids and Development of Materials. Some of the technical developments relevant to these topics are also included. (orig.) [de

  15. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  16. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry

  17. Caries progression in non-cavitated fissures after infiltrant application: a 3-year follow-up of a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Camillo ANAUATE-NETTO

    Full Text Available Abstract Objectives To evaluate the efficacy of a conservative treatment to prevent the progression of caries using an infiltrant on non-cavitated pit and fissures. Material and Methods This controlled clinical trial selected 23 volunteers with clinically and radiographically non-cavitated occlusal caries among patients presenting a “rather low” to “very high” caries risk. Eighty-six teeth were randomly divided into two experimental groups: teeth receiving a commercial pit-and-fissure sealant (Alpha Seal-DFL and contralateral teeth receiving Icon infiltrant (DMG. Caries progression was monitored by clinical (laser fluorescence caries detection and radiographic examination at 12-month intervals over a period of 3 years of monitored caries progression. Probing the sealing materials to detect areas of retention was also used to evaluate marginal integrity. Results Statistical analysis showed no difference in caries progression using laser fluorescence caries detection when both materials were compared, regardless of the evaluation times (p>0.05. No significance was observed when the marginal sealant integrity of both materials was compared, regardless of the evaluation time (p0.05. SEM analysis exhibited a more homogeneous sealing for the infiltrant than obtained by the sealant. Conclusions The infiltrant was effective to prevent the caries progression in non-cavitated pit-and-fissures after 3 years of clinical evaluation, comparable with the conventional sealant. The infiltrant also presented better results in terms of caries progression at the 3-year evaluation time using the radiographic analysis.

  18. Caries progression in non-cavitated fissures after infiltrant application: a 3-year follow-up of a randomized controlled clinical trial

    Science.gov (United States)

    ANAUATE-NETTO, Camillo; BORELLI, Laurindo; AMORE, Ricardo; DI HIPÓLITO, Vinicius; D’ALPINO, Paulo Henrique Perlatti

    2017-01-01

    Abstract Objectives To evaluate the efficacy of a conservative treatment to prevent the progression of caries using an infiltrant on non-cavitated pit and fissures. Material and Methods This controlled clinical trial selected 23 volunteers with clinically and radiographically non-cavitated occlusal caries among patients presenting a “rather low” to “very high” caries risk. Eighty-six teeth were randomly divided into two experimental groups: teeth receiving a commercial pit-and-fissure sealant (Alpha Seal-DFL) and contralateral teeth receiving Icon infiltrant (DMG). Caries progression was monitored by clinical (laser fluorescence caries detection) and radiographic examination at 12-month intervals over a period of 3 years of monitored caries progression. Probing the sealing materials to detect areas of retention was also used to evaluate marginal integrity. Results Statistical analysis showed no difference in caries progression using laser fluorescence caries detection when both materials were compared, regardless of the evaluation times (p>0.05). No significance was observed when the marginal sealant integrity of both materials was compared, regardless of the evaluation time (p0.05). SEM analysis exhibited a more homogeneous sealing for the infiltrant than obtained by the sealant. Conclusions The infiltrant was effective to prevent the caries progression in non-cavitated pit-and-fissures after 3 years of clinical evaluation, comparable with the conventional sealant. The infiltrant also presented better results in terms of caries progression at the 3-year evaluation time using the radiographic analysis. PMID:28877284

  19. The civilianisation of ex-combatants of the Niger Delta: Progress and ...

    African Journals Online (AJOL)

    The fourth section analyses the observable progress and challenges in the process of ... reinsertion was defined as 'short-term material and/or financial assistance .... private security firms that would be hired to secure oil pipelines and other.

  20. MPA Materials Matter July 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-21

    This is the newsletter of the Materials Physics and Applications Division of Los Alamos National Laboratory for July 2016. Researcher Nathan Mara is highlighted, the MPA Deputy Division Leader gives a summary of progress within the division, and two different LANL-published studies are detailed.

  1. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  2. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  3. Isotopic power materials development. Quarterly progress report for period ending March 31, 1976

    International Nuclear Information System (INIS)

    Schaffhauser, A.C.

    1976-06-01

    The second in a series of quarterly reports for Technology and Space Applications materials programs conducted by the Metals and Ceramics Division of Oak Ridge National Laboratory for the Nuclear Research and Applications Division of ERDA is presented. These quarterly reports replace the monthly and annual reports previously issued on this work. The areas of research covered include high-temperature alloys for space isotopic heat sources, physical and mechanical metallurgy of heat source containment materials, isotope Brayton system materials support, and space nuclear flight systems hardware

  4. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  5. Assessment and selection of materials for ITER in-vessel components

    Science.gov (United States)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  6. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Moons, F.

    1998-01-01

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  7. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  8. Opening of new field in material science and technology by materials irradiation research

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, Hiroaki [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1998-03-01

    It is believed that high energy particle irradiation causes severe degradation of materials, and great efforts have been made to reveal the underlying mechanism of such degradation. However, recent progress of the developments of irradiation rigs performed in the Japan Materials Testing Reactor (JMTR) and materials fabrication techniques has enabled to change our understanding of radiation effects on materials from the above pessimistic one to the very challenging one, i.e., irradiation has the beneficial effect of producing new phenomena and/or innovative materials that will not be available without irradiation. An example to be noted is that irradiation with neutrons in JMTR greatly improved the ductility of less ductile metals. This ductility improvement due to irradiation is directly opposite to irradiation embrittlement and is called radiation induced ductilization (RIDU). In this presentation the significance of RIDU and its mechanism will be stated. (author)

  9. Potential of Progressive Construction Systems in Slovakia

    Science.gov (United States)

    Kozlovska, Maria; Spisakova, Marcela; Mackova, Daniela

    2017-10-01

    Construction industry is a sector with rapid development. Progressive technologies of construction and new construction materials also called modern methods of construction (MMC) are developed constantly. MMC represent the adoption of construction industrialisation and the use of prefabrication of components in building construction. One of these modern methods is also system Varianthaus, which is based on, insulated concrete forms principle and provides complete production plant for wall, ceiling and roof elements for a high thermal insulation house construction. Another progressive construction system is EcoB, which represents an insulated precast concrete panel based on combination of two layers, insulation and concrete, produced in a factory as a whole. Both modern methods of construction are not yet known and wide-spread in the Slovak construction market. The aim of this paper is focused on demonstration of MMC using potential in Slovakia. MMC potential is proved based on comparison of the selected parameters of construction process - construction costs and construction time. The subject of this study is family house modelled in three material variants - masonry construction (as a representative of traditional methods of construction), Varianthaus and EcoB (as the representatives of modern methods of construction). The results of this study provide the useful information in decision-making process for potential investors of construction.

  10. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    International Nuclear Information System (INIS)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies

  11. Chemistry research and development. Progress report, December 1978-May 1979

    International Nuclear Information System (INIS)

    Miner, F.J.

    1980-01-01

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security

  12. Recent Progress in Nanostructured Oxide TE Materials for Power Generation at High Temperatures

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    Thermoelectric (TE) materials, which can convert waste heat into electricity, could play an important role in a global sustainable energy solution and environmental problems. Metal oxides have been considered as potential TE materials for power generation that can operate at high temperatures...

  13. Materials issues in silicon integrated circuit processing

    International Nuclear Information System (INIS)

    Wittmer, M.; Stimmell, J.; Strathman, M.

    1986-01-01

    The symposium on ''Materials Issues in Integrated Circuit Processing'' sought to bring together all of the materials issued pertinent to modern integrated circuit processing. The inherent properties of the materials are becoming an important concern in integrated circuit manufacturing and accordingly research in materials science is vital for the successful implementation of modern integrated circuit technology. The session on Silicon Materials Science revealed the advanced stage of knowledge which topics such as point defects, intrinsic and extrinsic gettering and diffusion kinetics have achieved. Adaption of this knowledge to specific integrated circuit processing technologies is beginning to be addressed. The session on Epitaxy included invited papers on epitaxial insulators and IR detectors. Heteroepitaxy on silicon is receiving great attention and the results presented in this session suggest that 3-d integrated structures are an increasingly realistic possibility. Progress in low temperature silicon epitaxy and epitaxy of thin films with abrupt interfaces was also reported. Diffusion and Ion Implantation were well presented. Regrowth of implant-damaged layers and the nature of the defects which remain after regrowth were discussed in no less than seven papers. Substantial progress was also reported in the understanding of amorphising boron implants and the use of gallium implants for the formation of shallow p/sup +/ -layers

  14. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recent progresses in application of functionalized graphene sheets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Graphene,a rapidly rising star on the horizon of material science,has a unique two-dimensional nanostructure as well as exceptional mechanical and electronic properties.Despite its short history,graphene has exhibited great potential in various applications.In order to implement the potential applications,functionalization of graphene is necessary to obtain uniform dispersions for good processability.Two kinds are dominant for functionalization such as covalent and non-covalent methods.The former is based on the formation of covalent bonds,and the latter the interaction among molecules.In this review,we summarized briefly the recent progress of functionalized graphene sheets (FGs) in different fields,such as optoelectronic materials,sensors,energy storage materials,catalytic,reinforcing components and so on,and also prospected the development trend of FGs in the future.

  16. Radioelement studies in the oceans. Progress report, April 15, 1981-April 14, 1982

    International Nuclear Information System (INIS)

    Bowen, V.T.; Livingston, H.D.; Cochran, J.K.; Sholkovitz, E.R.; Hess, M.R.

    1981-11-01

    Progress for the report period is reported under the following section headings: bibliographic summary - 1981; cruise reports and sampling activities; abstracts of reports published, submitted, or presented at meetings; and, brief summaries of work in progress. Research in progress includes the following studies: post-depositional chemistry of radionuclides: interstitial water composition and laboratory remobilizaton studies; thorium isotope studies in seawater; radionuclide measurements on samples from ocean weather ship MIKE, in the Norwegian Sea; counting technique optimization for Cs isotopes collected by chemisorption; Pu oxidation states in the Aleutian Trench water column; intercalibrations and standard materials; and radionuclides in deep water bathypelagic biota

  17. Coordination: southeast continental shelf studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, D.W.

    1981-02-01

    The objectives are to identify important physical, chemical and biological processes which affect the transfer of materials on the southeast continental shelf, determine important parameters which govern observed temporal and spatial varibility on the continental shelf, determine the extent and modes of coupling between events at the shelf break and nearshore, and determine physical, chemical and biological exchange rates on the inner shelf. Progress in meeting these research objectives is presented. (ACR)

  18. Latest progress in gallium-oxide electronic devices

    Science.gov (United States)

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  19. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Czech Academy of Sciences Publication Activity Database

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, N.; Boldyryeva, Hanna; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J.B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M.R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, A.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matějíček, Jiří; Mishra, T.P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, Y.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, G.; van der Laan, J.G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M.A.; You, J.H.; Zivelonghi, A.

    2013-01-01

    Roč. 432, 1-3 (2013), s. 482-500 ISSN 0022-3115 Institutional support: RVO:61389021 Keywords : tungsten * joining * composites * graded materials * fusion materials Subject RIV: JF - Nuclear Energetics Impact factor: 2.016, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022311512004278

  20. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lever, W.E.; Kane, V.E.; Scott, D.S.; Shepherd, D.E.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the various educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.

  1. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    International Nuclear Information System (INIS)

    Lever, W.E.; Kane, V.E.; Scott, D.S.; Shepherd, D.E.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the various educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period

  2. Nuclear measurements and reference materials

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the progress of the JRC programs on nuclear data, nuclear metrology, nuclear reference materials and non-nuclear reference materials. Budget restrictions and personnel difficulties were encountered during 1987. Fission properties of 235 U as a function of neutron energy and of the resonances can be successfully described on the basis of a three exit channel fission model. Double differential neutron emission cross-sections were accomplished on 7 Li and were started for the tritium production cross-section of 9 Be. Reference materials of uranium minerals and ores were prepared. Special nuclear targets were prepared. A batch of 250 g of Pu0 2 was characterized in view of certification as reference material for the elemental assay of plutonium

  3. Distillation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Burney, C D

    1918-08-31

    A method of distilling carbonaceous material at low or moderate temperatures is described in which the main supply of gases for heating the material under treatment is generated in a combustion chamber located externally of the retort chamber from which combustion chamber the gases are withdrawn and passed under control through hollow elements located within the retort chamber in such manner as to insure the production of the desired temperature gradient along the length of the retort, the said elements being so constructed that they serve to bring the heating gases into indirect contact with the material undergoing treatment while also moving the material progressively through the retort in the opposite direction to that in which the heating gases flow.

  4. Nanofluidics in two-dimensional layered materials: inspirations from nature.

    Science.gov (United States)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-08-29

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.

  5. The 1989 progress report: theoretical Physics

    International Nuclear Information System (INIS)

    Laval, G.

    1989-01-01

    The 1989 progress report of the laboratory of theoretical Physics of the Polytechnic School (France) is presented. The investigations reported concern the following subjects: the transport of a passive vector by a flow, the conformal field theories, the dynamics of wetting, the electromagnetic properties of composite materials, the neutrino oscillations, the heavy ion collision phenomenology, the laser-plasma interaction, the construction of a code for simulating the evolution of magnetohydrodynamic instabilities in plasmas. The published papers, the conferences and the Laboratory staff are listed [fr

  6. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  7. Photocontrol in Complex Polymeric Materials: Fact or Illusion?

    Science.gov (United States)

    Jerca, Valentin Victor; Hoogenboom, Richard

    2018-06-04

    Photoswitches: Exciting recent progress realized in the field of light-controlled polymeric materials is highlighted. It is discussed how the rational choice of azobenzene molecules and their incorporation into complex materials by making use of physical interactions can lead to genuine photocontrollable polymeric systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Integrating CAD/CAM in Automation and Materials Handling

    Science.gov (United States)

    Deal, Walter F.; Jones, Catherine E.

    2012-01-01

    Humans by their very nature are users of tools, materials, and processes as a part of their survival and existence. As humans have progressed over time, their civilizations and societies have changed beyond imagination and have moved from hunters and gatherers of food and materials for survival to sophisticated societies with complex social and…

  9. Carbon fibre material for tomorrow

    International Nuclear Information System (INIS)

    Kartini Noorsal; Mohd Ariff Baharom

    2010-01-01

    As science and technology continue to cross boundaries of known practices, materials and manufacturing techniques and into the frontiers of new materials, environment and applications, the opportunities for research in materials in general will inevitably increase. The unique properties of carbon fibre which combines low weight and high stiffness, makes it in ever greater demand as substitutes for traditional materials. This is due to the rising costs of raw materials and energy and the necessity to reduce carbon dioxide emission. The carbon fibres produced are particularly of high standard in terms of quality and processing characteristics especially when it is designed in structural components in the aerospace and defence industries. This results in a well structured organisation in producing the fibre starting from its raw material to the final composite products. In achieving this effort, research and communication of the progress takes a fundamental role. (author)

  10. Conversations on Indigenous Education, Progress, and Social Justice in Peru

    Science.gov (United States)

    Huaman, Elizabeth Alva Sumida

    2013-01-01

    This article attempts to contribute to our expanding definitions of Indigenous education within a globalized world. Additionally, the article critiques notions of progress modeled by powerful nation-states due to their histories based on the intended consequences of marginalizing Indigenous populations for the purposes of material gain. Last,…

  11. Progress report 2005-2007 - Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2008-01-01

    This progress report presents the results of the R and D center of IPEN in accordance with the main programs: Radiopharmacy; Application of Ionizing Radiations; Nuclear Science and Technology; Nuclear Reactors and Fuel Cycle; Environmental Science and Technology; Renewable Energies; Materials and Nanotechnology; Biotechnology; Lasers Technology and Education

  12. [Specificities of the logopenic variant of primary progressive aphasia].

    Science.gov (United States)

    Magnin, E; Teichmann, M; Martinaud, O; Moreaud, O; Ryff, I; Belliard, S; Pariente, J; Moulin, T; Vandel, P; Démonet, J-F

    2015-01-01

    The logopenic variant of primary progressive aphasia is a syndrome with neuropsychological and linguistic specificities, including phonological loop impairment for which diagnosis is currently mainly based on the exclusion of the two other variants, semantic and nonfluent/agrammatic primary progressive aphasia. The syndrome may be underdiagnosed due (1) to mild language difficulties during the early stages of the disease or (2) to being mistaken for mild cognitive impairment or Alzheimer's disease when the evaluation of episodic memory is based on verbal material and (3) finally, it is not uncommon that the disorders are attributed to psychiatric co-morbidities such as, for example, anxiety. Moreover, compared to other variants of primary progressive aphasia, brain abnormalities are different. The left temporoparietal junction is initially affected. Neuropathology and biomarkers (cerebrospinal fluid, molecular amyloid nuclear imaging) frequently reveal Alzheimer's disease. Consequently this variant of primary progressive aphasia does not fall under the traditional concept of frontotemporal lobar degeneration. These distinctive features highlight the utility of correct diagnosis, classification, and use of biomarkers to show the neuropathological processes underlying logopenic primary progressive aphasia. The logopenic variant of primary progressive aphasia is a specific form of Alzheimer's disease frequently presenting a rapid decline; specific linguistic therapies are needed. Further investigation of this syndrome is needed to refine screening, improve diagnostic criteria and better understand the epidemiology and the biological mechanisms involved. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Progress Toward Heavy Ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.L.; Callahan-Miller, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  14. Progress toward heavy-ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.-L.; Callahan, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of heavy-ion fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy-ion targets indicates that high gain (60-130) may be possible with a ∼3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy-ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLIFE-II design, which uses an array of flibe jets to protect chamber structures from X-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLIFE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HIF. A target injector experiment capable of >5 Hz operation has been designed and construction will start in 2002. Methods for mass-production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  15. Fusion reactor materials semiannual progress report for the period ending March 31, 1990

    International Nuclear Information System (INIS)

    1990-08-01

    This report mainly discusses topics on the physical effects of radiation on thermonuclear reactor materials. The areas discussed are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; fundamental mechanical behavior; radiation effects; mechanistic studies, theory and modeling; development of structural alloys; solid breeding materials; and ceramics. (FI)

  16. Progress report: Chemistry and Materials Division, 1983 January 1 - June 30

    International Nuclear Information System (INIS)

    1983-08-01

    The research progams in solid state science, analytical and physical chemistry and materials science are outlined for the first half of 1983. Studies are being carried out in the areas of surface science, isotope separation and irradiation effects on zirconium

  17. Communication of nuclear data progress: No.7 (1992)

    International Nuclear Information System (INIS)

    1992-06-01

    This is the seventh issue of communication of Nuclear Data Progress (CNDP), in which the nuclear data progress in china during the last year is presented. It includes 14 MeV neutron activation cross section nuclear decay data inelastic angular distribution integral prompt spontaneous fission neutron spectrum and α spectrum measurements of reaction 40 Ca(n, α); programs UNF-for fast neutron data calculation of structural materials, APCOM and APOM for searching optimal charged particle and neutron optical potential parameters respectively; P + 63 Cu reaction calculation in energy region 3 ∼ 55 MeV; evaluation of 197 Au (n, Zn) 196 Au cross section, progress on nuclear structure and decay data evaluation for A-chain a database on ion-atom collision processes, and evaluation of trapping and desorption data, systematics calculation of nuclear data for radiation damage assessment and related safety aspects, and systematics of (n, t) and (n, 3 He) reaction cross sections at 14 MeV, construction of covariance matrix for experimental data, Spline fit for multi-sets of correlative data etc

  18. Fossil Energy Program semiannual progress report, April 1990-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1991-09-01

    This report covers progress made during the period April 1, 1990, through September 30, 1990, for research and development projects that contribute to the advancement of various fossil energy technologies. Topics discussed include: ceramics and composite materials R&D, new alloys, corrosion and erosion research, coal conversion development, mild gasification. (VC)

  19. Fossil Energy Program semiannual progress report, April 1990-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1991-09-01

    This report covers progress made during the period April 1, 1990, through September 30, 1990, for research and development projects that contribute to the advancement of various fossil energy technologies. Topics discussed include: ceramics and composite materials R D, new alloys, corrosion and erosion research, coal conversion development, mild gasification. (VC)

  20. Progress report of the Teilinstitut Nukleare Festkoerperphysik

    International Nuclear Information System (INIS)

    Geerk, J.; Linker, G.

    1977-10-01

    This progress report of the Teilinstitut Nukleare Festkoerperphysik covers the period from June 1sup(st), 1976 - May 31sup(st), 1977. The arrangement has been chosen to emphasize the main research areas the institute is presently involved. These areas are the Dynamics of Solids and Liquids, the Electronic Structure and Magnetism of Solids, and the Development and Investigation of New Materials. Some of the technical developments relevant to these topics are also included. (orig.) [de

  1. Metabolomic Biomarkers in the Progression to Type 1 Diabetes

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Kaur, Simranjeet; Pociot, Flemming

    2016-01-01

    diabetes has been studied using this technique, although in relatively small cohorts and at limited time points. Overall, three observations have been consistently reported; phospholipids at birth are lower in children developing type 1 diabetes early in childhood, methionine levels are lower in children......Metabolomics is the snapshot of all detectable metabolites and lipids in biological materials and has potential in reflecting genetic and environmental factors contributing to the development of complex diseases, such as type 1 diabetes. The progression to seroconversion to development of type 1...... at seroconversion, and triglycerides are increased at seroconversion and associated to microbiome diversity, indicating an association between the metabolome and microbiome in type 1 diabetes progression....

  2. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  3. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies

  4. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  5. Helium generation in fusion reactor materials. Technical progress report, April--September 1977

    International Nuclear Information System (INIS)

    1978-01-01

    The near-term objectives of this program are to measure the spectrum-integrated helium generation rates and cross sections of a number of pure elements and alloys in several high-intensity neutron sources, and to develop and demonstrate neutron dosimetry procedures using some of these materials. To this end, four neutron irradiation experiments have now been run: one using accelerator-produced d-Be neutrons, two using the accelerator-produced d-T reaction, and one in the neutron field of a mixed-spectrum fission reactor. All of these irradiations have incorporated a large number of helium-generation materials

  6. Silicon ribbon growth by a capillary action shaping technique. Annual report (Quarterly technical progress report No. 9)

    Energy Technology Data Exchange (ETDEWEB)

    Schwuttke, G.H.; Ciszek, T.F.; Kran, A.

    1977-10-01

    Progress on the technological and economical assessment of ribbon growth of silicon by a capillary action shaping technique is reported. Progress in scale-up of the process from 50 mm to 100 mm ribbon widths is presented, the use of vitreous carbon as a crucible material is analyzed, and preliminary tests of CVD Si/sub 3/N/sub 4/ as a potential die material are reported. Diffusion length measurements by SEM, equipment and procedure for defect display under MOS structure in silicon ribbon for lifetime interpretation, and an assessment of ribbon technology are discussed. (WHK)

  7. Research and Application Progress of Silicone Rubber Materials in Aviation

    Directory of Open Access Journals (Sweden)

    HUANG Yanhua

    2016-06-01

    Full Text Available The research progress of heat resistance, cold resistance, electrical conductivity and damping properties of aviation silicone rubber were reviewed in this article. The heat resistance properties of silicone rubber can be enhanced by changing the molecular structure (main chain, end-group, side chain and molecular weight of the gum and adding special heat-resistance filler. The cold resistance of aviation silicone rubber can be enhanced by adjusting the side chain molecular structure of the gum and the content of different gum chain. The electrical conductivity of silicone rubber can be improved by optimizing, blending and dispersing of conductive particles. The damping property of silicone rubber can be improved by designing and synthesizing of high-molecular polysiloxane damping agent. Furthermore, the application of aviation silicone rubber used in high-low temperature seal, electrical conduction and vibration damping technology are also summarized, and the high performance (for example long-term high temperature resistance, ultralow temperature resistance, high electromagnetic shelding, long-term fatigue resistance vibration damping, quasi constant modulus and so on of special silicone rubber is the future direction of aviation silicone rubber.

  8. Materials research at CMAM

    International Nuclear Information System (INIS)

    Zucchiatti, Alessandro

    2013-01-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming

  9. Materials research at CMAM

    Science.gov (United States)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  10. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  11. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study

    Energy Technology Data Exchange (ETDEWEB)

    Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M. [Radiotherapy Centre West, The Hague (Netherlands); Molenaar, R. [Diaconessenhuis, Leiden (Netherlands). Dept. of Neurology; Lycklama a Nijeholt, G. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Radiology; Vecht, C. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Neurology; Struikmans, H. [Radiotherapy Centre West, The Hague (Netherlands); Leiden Univ. Medical Centre (Netherlands). Dept. of Radiotherapy; Kal, H.B.

    2012-08-15

    Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm{sup 3} or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)

  12. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study

    International Nuclear Information System (INIS)

    Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M.; Molenaar, R.; Lycklama a Nijeholt, G.; Vecht, C.; Struikmans, H.; Leiden Univ. Medical Centre; Kal, H.B.

    2012-01-01

    Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm 3 or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)

  13. Recent progress in the melt-process technique of high-temperature superconductors

    CERN Document Server

    Ikuta, H; Mizutani, U

    1999-01-01

    Recently, the performance of high-temperature super conductors prepared by the melt-process technique has been greatly improved. This progress was accomplished by the addition of Ag into the starting materials of the Sm-Ba-CuO $9 system, which prevents the formation of severe macro-sized cracks in the finished samples. The magnetic flux density trapped by this material has now reached 9 T at 25 K, which is comparable to the magnetic flux density produced by $9 ordinary superconducting magnets. The amount of magnetic flux density that can be trapped by the sample is limited by the mechanical strength rather than superconducting properties of the material. The increase in the mechanical $9 strength of the material is important both for further improvement of the material properties and for ensuring reliability of the material in practical applications. (20 refs).

  14. A review of recent progress in heterogeneous silicon tandem solar cells

    Science.gov (United States)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  15. Hanford site pollution prevention plan progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kirkendall, J.R.

    1996-08-26

    This report tracks progress made during 1995 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307,`Plans,` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, `Waste Reduction,` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in- process reuse or reclamation of valuable spent material.

  16. Nuclear-waste management semiannual progress report, April 1982-September 1982

    International Nuclear Information System (INIS)

    Chikalla, T.D.; Powell, J.A.

    1982-12-01

    This document is one of a series of technical progress reports designed to report on radioactive waste management programs at Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste treatment; nuclear waste Materials Characterization Center (MCC); airborne waste management; low-level waste management; waste isolation; remedial actions; and supporting studies

  17. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  18. Biomolecular Materials. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on December 1-3, 1992. Volume 292

    Science.gov (United States)

    1992-12-03

    histological examination demonstrated a dense fibrovascular scar. For the test animals two compositions of bioelastic materials were used, X2 0 -poly... hyperplasia of saphenous vein bypass grafts, graft atherosclerosis, progression of underlying coronary artery disease 6 5 -, prosthetic valve failure

  19. Solid State Division progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    Green, P.H.; Hinton, L.W.

    1991-03-01

    This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials

  20. Solid State Division progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. (eds.)

    1991-03-01

    This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials.

  1. Capillary condensation of adsorbates in porous materials.

    Science.gov (United States)

    Horikawa, Toshihide; Do, D D; Nicholson, D

    2011-11-14

    Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Assessing materialism in Indian urban youth

    Directory of Open Access Journals (Sweden)

    Naseem Abidi

    2015-01-01

    Full Text Available In India, the concept of materialism has shifted from (the Indian philosophical concepts Lokāyata/Cārvāka, from supernaturalism to naturalism, following the development of science and modernism. People, who were predominantly religious and believed in philosophical idealism, as opposed to materialism, have started following philosophical materialism to express their worldview and progress. E.g., living in a big city and owning a car is perceived as an orientation toward material goods and materialism, which may not be true. This study makes an attempt to develop a measure for materialistic orientation, which takes into account the cultural and behavioural distinctions of Indian urban youth. Existing measures of materialism are reviewed to develop a measure that is more attuned to trace the contextual materialism in Indian urban youth. Findings of the study suggest that, in order to measure the level of materialism, three dimensions need to be considered, i.e. significance, individuality and satisfaction.

  3. Solid State Division progress report for period ending March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included

  5. Experimental Physics Division of the Los Alamos Project. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1943-09-01

    Included in this semi-monthly report written in 1943 are progress with neutron beams, neutron absorption in enriched materials, equipment operation and maintenance reports of the cyclotron neutron source facility, and instrumentation maintenance activities of individuals in the cyclotron group. (GHT)

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  7. Experimental investigation on depression mechanism of fly ash on progression of leaching alteration front

    International Nuclear Information System (INIS)

    Yamamoto, Takeshi; Hironaga, Michihiko

    2008-01-01

    An objective of this experimental study is to clarify the depression mechanism of fly ash on leaching alteration in hardened cementitious material. There are two major effects that derived from fly ash, firstly, compacting capillary pore among hydration phase with progression of pozzolanic reaction, secondly, lessen the crystal size and dispersing the location of CH crystal. Progression rate of CH alteration front depends on chain dissolution of CH crystal, so the depression on progressing rate of CH alteration front would be derived from the effects of fly ash as mentioned above. The influences of difference in amount of mixing water and sand on progression rate of CH alteration front in mortar would also be depressed by mixing fly ash. (author)

  8. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    1990-01-01

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  9. Radiation studied on the internet. On-line radiation teaching materials

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi; Yamasaki, Mariko

    2005-01-01

    In order to facilitate scientific understanding of radiation in Japan where social understanding has been already progressed, we developed Internet radiation teaching materials that can be utilized as off-school teaching materials or supplementary materials. The teaching materials of ''atomic structure and radiation'' and ''medical treatment and radiation'' were tried for 160 high school students and 59 junior high school students, respectively. More than 70% of the student answered that these teaching materials were effective when they understand radiation. (author)

  10. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  11. Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications.

    Science.gov (United States)

    Batmunkh, Munkhbayar; Bat-Erdene, Munkhjargal; Shapter, Joseph G

    2016-10-01

    Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next-generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene-based materials are suitable for various applications, including photovoltaics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  13. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  14. Progress in piezo-phototronic effect modulated photovoltaics.

    Science.gov (United States)

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-02

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  15. Process development studies on the bioconversion of cellulose and production of ethanol. Progress report, September 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1978-09-01

    Progress is reported in studies on the pretreatment of cellulosic materials to facilitate enzymatic hydrolysis, sulfuric acid hydrolysis, investigation of the Purdue processing scheme including an economic analysis, and the fermentability of the enzymatic hydrolyzate. Progress is also reported on enzyme fermentation studies, hydrolysis reactor development, and utilization of hemicellulose sugars. (JSR)

  16. Progress in the development of the blanket structural material for fusion reactors

    International Nuclear Information System (INIS)

    Scott, J.L.; Bloom, E.E.; Grossbeck, M.L.; Maziasz, P.J.; Wiffen, F.W.; Gold, R.E.; Holmes, J.J.; Reuther, P.C. Jr.; Rosenwasser, S.N.

    1981-01-01

    The Alloy Development for Irradiation Performance Program has become more focused since the last Fusion Reactor Technology Conference two years ago. Since austenitic stainless steels and ferritic steels are candidate structural materials for the near-term reactors ETF and INTOR and austenitic stainless steel is also the preferred structural material for the steady-state commercial fusion reactor, STARFIRE, a vigorous experimental program is under way to identify the best alloy from each of these alloy classes and to provide the engineering data base in a timely manner. In addition the comprehensive program that includes high-strength Fe-Ni-Cr alloys, reactive and refractory metals, and advanced concepts continues in an orderly fashion

  17. Model-based setup assistant for progressive tools

    Science.gov (United States)

    Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar

    2018-05-01

    In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.

  18. Progress in ultrafast laser processing and future prospects

    Science.gov (United States)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  19. Helium generation in fusion-reactor materials. Progress report, October-December 1982

    International Nuclear Information System (INIS)

    Kneff, D.W.; Farrar, H. IV.

    1982-01-01

    The objectives of this work are to measure helium generation rates of materials for Magnetic Fusion Reactor applications in the Be(d,n) neutron environment, to characterize this neutron environment, and to develop helium accumulation neutron dosimeters for routine neutron fluence and energy spectrum measurements in Be(d,n) and Li(d,n) neutron fields

  20. Numerical study of how creep and progressive stiffening affect the growth stress formation in trees

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, O.; Johansson, M.

    2010-01-01

    It is not fully understood how much growth stresses affect the final quality of solid timber products in terms of e.g. shape stability. It is for example difficult to predict the internal growth stress field within the tree stem. Growth stresses are progressively generated during the tree growth...... and they are highly influenced by climate, biologic and material related factors. To increase the knowledge of the stress formation a finite element model was created to study how the growth stresses develop during the tree growth. The model is an axisymmetric general plane strain model where material for all new...... annual rings is progressively added to the tree during the analysis. The material model used is based on the theory of small strains (where strains refer to the undeformed configuration which is good approximation for strains less than 4%) where so-called biological maturation strains (growth...

  1. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  2. Multiscale experimental mechanics of hierarchical carbon-based materials.

    Science.gov (United States)

    Espinosa, Horacio D; Filleter, Tobin; Naraghi, Mohammad

    2012-06-05

    Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  4. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  5. The 1989 progress report: quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1989-01-01

    The 1989 progress report of the laboratory of Quantum Optics of the Polytechnic School (France) is presented. The main research activity of the Laboratory is the study of processes controlling the behavior of matter under the action of high intensity light fields and under space-time constraints. The reported investigations were performed in the following fields: dynamics and vibrational relaxation modes in dense phases; nonlinear optical properties of composite materials; surface energy transfer and distribution in molecule surface interactions. Techniques relating to femtosecond impulsions, pulsating Raman and nonlinear optics were developed. The published papers, the conferences and the Laboratory staff are listed [fr

  6. The century of nuclear materials

    Science.gov (United States)

    Mansur, Lou; Was, Gary S.; Zinkle, Steve; Petti, David; Ukai, Shigeharu

    2018-03-01

    In the spring of 1959 the well-read metallurgist would have noticed the first issue of an infant Journal, one dedicated to a unique and fast growing field of materials issues associated with nuclear energy systems. The periodical, Journal of Nuclear Materials (JNM), is now the leading publication in the field from which it takes its name, thriving beyond the rosiest expectations of its founders. The discipline is well into the second half-century. During that time much has been achieved in nuclear materials; the Journal provides the authoritative record of virtually all those accomplishments. These pages introduce the 500th volume, a significant measure in the world of publishing. The Editors reflect on the progress in the field and the role of this journal.

  7. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  8. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  9. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  10. Divisional progress reports for period 1 July 1982 to 30 June 1983

    International Nuclear Information System (INIS)

    1984-09-01

    This progress report deals with technical and research work done at the AAEC Research establishment for the period 1 July 1982 to 30 June 1983. Work done in the following divisions is reported: Applied Mathematics and Computing, Applied Physics, Environmental Science, Isotope, Materials, Nuclear Technology

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  13. DNA Copy-Number Control through Inhibition of Replication Fork Progression

    Directory of Open Access Journals (Sweden)

    Jared T. Nordman

    2014-11-01

    Full Text Available Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.

  14. Theoretical nuclear structure and astrophysics. Progress report for 1993-1995

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-01-01

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops

  15. Progress report on fast breeder reactor development in Japan, July - September 1977

    International Nuclear Information System (INIS)

    1978-06-01

    As for the experimental fast breeder reactor ''Joyo'', the low power performance tests have been continued, and the measurements of reactor noise, the reactivity of fuel assemblies, power distribution and Na-void effect have been made. Efforts have been exerted to develop the required maintenance equipments, to manufacture the transfer rotor maintenance facilities, and to construct the spent fuel storing and cooling facilities. The analysis and calculation of the core characteristics have been in progress. The design work on the prototype fast breeder reactor ''Monju'' has been continued, and the development of the computer codes for the design has progressed. Informations have been gathered regarding the technological developments of LMFBRs overseas. The surveys on the site for ''Monju'' have been carried out. The design and research works on the demonstration reactor were started, and the general design factors such as the steam condition and the plant layout have been studied. As for the research and development of reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structural materials, safety, and steam generators, the progresses are reported in detail. High performance neutron detectors for nuclear instrumentation have been under development, and the tagging gas method for fuel failure detection and location system has been tested. (Kako, I.)

  16. Technical progress safeguards future. Technischer Fortschritt sichert die Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    'Technical progress safeguards future', the guiding theme of the 1985 conference of German engineers, calls for discussion. In five lectures representatives of the subdivisions of 'VDI' issued their statements from the viewpoints of their special fields. These lectures were completed by reports on the part of the remaining VDI subdivisions, which are published together with the lectures in this volume. The complex guiding theme is meant to stimulate discussion, which should be conducted also with representatives of other sciences and the public. The volume contains a.o. contributions regarding future prospects, given certain modifications in construction engineering and user behaviour in the sector heating and air-conditioning, regarding the development of new construction techniques to protect the environment, and regarding clean air as an international concern of engineers. For these three contributions separate entries were made. Other presentations relate to: automobile production technology; energy supply as an engineering task; information, invention, innovation as stages of technical progress; progress in materials technology; noise of motor vehicles - current state and future prospects. (orig./HSCH).

  17. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  18. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  19. The Readability of AAOS Patient Education Materials: Evaluating the Progress Since 2008.

    Science.gov (United States)

    Roberts, Heather; Zhang, Dafang; Dyer, George S M

    2016-09-07

    The Internet has become a major resource for patients; however, patient education materials are frequently written at relatively high levels of reading ability. The purpose of this study was to evaluate the readability of patient education materials on the American Academy of Orthopaedic Surgeons (AAOS) web site. Readability scores were calculated for all patient education articles on the AAOS web site using 5 algorithms: Flesch Reading Ease, Flesch-Kincaid Grade Level, SMOG (Simple Measure of Gobbledygook) Grade, Coleman-Liau Index, and Gunning-Fog Index. The mean readability scores were compared across the anatomic categories to which they pertained. Using a liberal measure of readability, the Flesch-Kincaid Grade Level, 3.9% of articles were written at or below the recommended sixth-grade reading level, and 84% of the articles were written above the eighth-grade reading level. Articles in the present study had a lower mean Flesch-Kincaid Grade Level than those available in 2008 (p readability levels of AAOS articles are higher than generally recommended. Although the mean Flesch-Kincaid Grade Level was lower in the present study than it was in 2008, a need remains to improve the readability of AAOS patient education articles. Ensuring that online patient education materials are written at an appropriate reading grade level would be expected to improve physician-patient communication. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  20. Design of POLCA material control systems

    NARCIS (Netherlands)

    Riezebos, J.

    2010-01-01

    POLCA is a material control system designed for make-to-order or engineer-to-order companies. These firms have to cope with a high variety of customised products, and strong pressure to provide short throughput times. POLCA constrains the amount of work in progress on the shop floor in order to

  1. Near-real-time material accountancy - A technical status report

    International Nuclear Information System (INIS)

    Lovett, J.; Ikawa, K.; Sellinschegg, D.; Shipley, J.

    1983-01-01

    Near-Real-time materials accountancy as applied to reprocessing plants involves two major elements, measurement of the in-process physical inventory at frequent intervals, and statistical evaluation of the resulting sequential material balance data. For most reprocessing plants the bulk of the in-process inventory is in measurable intermediate ''buffer'' tanks. The plutonium inventory in the solvent extraction system, which does not appear to be directly measureable, could cause a reduction in sensitivity of the sequential data analysis. Studies are in progress, and it is hoped that an acceptable means for accounting for these variations can be found. Consultants at a meeting in January 1982 agreed that statistical tests for evaluating sequential material balance data will increase both detection timeliness and detection sensitivity. IAEA verification of operator-generated measurement data is an area requiring significantly increased effort, but here too studies are in progress which should help to reduce inspection effort in increased effectiveness

  2. Progress in thin film techniques

    International Nuclear Information System (INIS)

    Weingarten, W.

    1996-01-01

    Progress since the last Workshop is reported on superconducting accelerating RF cavities coated with thin films. The materials investigated are Nb, Nb 3 Sn, NbN and NbTiN, the techniques applied are diffusion from the vapour phase (Nb 3 Sn, NbN), the bronze process (Nb 3 Sn), and sputter deposition on a copper substrate (Nb, NbTiN). Specially designed cavities for sample evaluation by RF methods have been developed (triaxial cavity). New experimental techniques to assess the RF amplitude dependence of the surface resistance are presented (with emphasis on niobium films sputter deposited on copper). Evidence is increasing that they are caused by magnetic flux penetration into the surface layer. (R.P.)

  3. Fuel Chemistry Division annual progress report for 1990

    International Nuclear Information System (INIS)

    Vaidyanathan, R.

    1993-01-01

    The progress report gives brief descriptions of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1990. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Quality Control of Nuclear Fuels, and studies related to Nuclear Materials Accounting. At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 7 figs., 52 tabs

  4. Fuel Chemistry Division: annual progress report for 1988

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1991-01-01

    The progress report gives the brief descriptions of various activites of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1988. The descriptions of activities are arranged under the headings: Fuel Development Chemistry of Actinides, Quality Control of Fuel, and Studies related to Nuclear Material Accounting. At the end of report, a list of publications published in journals and papers presented at various conferences/symposia during 1988 is given. (author). 13 figs., 61 tabs

  5. Progress in FMIT test assembly development

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.; Shen, E.J.; Trego, A.L.

    1983-08-01

    Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10 15 n/cm 2 -s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments called Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations

  6. The progressive tax

    OpenAIRE

    Estrada, Fernando

    2010-01-01

    This article describes the argumentative structure of Hayek on the relationship between power to tax and the progressive tax. It is observed throughout its work giving special attention to two works: The Constitution of Liberty (1959) and Law, Legislation and Liberty, vol3; The Political Order of Free People, 1979) Hayek describes one of the arguments most complete information bout SFP progressive tax systems (progressive tax). According to the author the history of the tax progressive system...

  7. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  8. Progress report chemistry and materials division 1984 January 1 - June 30

    International Nuclear Information System (INIS)

    1984-08-01

    During the first half of 1984 work in the Chemistry and Materials Division of Chalk River Nuclear Laboratories concentrated on studies of ion penetration phenomena, surface phenomena, radiation damage, radiochemical analysis, recycle fuel analysis, gamma spectrometry, mass spectrometry of fuels and moderators, analysis of hydrogen in zirconium alloys, burnup analysis, radiolysis, hydrogen isotope separation, hydrogen adsorption, zirconium corrosion, and metal physics studies of zirconium

  9. Thermal conductivity analysis and applications of nanocellulose materials

    Science.gov (United States)

    Uetani, Kojiro; Hatori, Kimihito

    2017-01-01

    Abstract In this review, we summarize the recent progress in thermal conductivity analysis of nanocellulose materials called cellulose nanopapers, and compare them with polymeric materials, including neat polymers, composites, and traditional paper. It is important to individually measure the in-plane and through-plane heat-conducting properties of two-dimensional planar materials, so steady-state and non-equilibrium methods, in particular the laser spot periodic heating radiation thermometry method, are reviewed. The structural dependency of cellulose nanopaper on thermal conduction is described in terms of the crystallite size effect, fibre orientation, and interfacial thermal resistance between fibres and small pores. The novel applications of cellulose as thermally conductive transparent materials and thermal-guiding materials are also discussed. PMID:29152020

  10. Recent progress in R and D on tungsten alloys for divertor structural and plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, S., E-mail: stefan.wurster@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Baluc, N.; Battabyal, M. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Villigen PSI (Switzerland); Crosby, T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Du, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); García-Rosales, C. [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT), San Sebastián (Spain); Hasegawa, A. [Department of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University (Japan); Hoffmann, A. [Plansee Metall GmbH, Reutte (Austria); Kimura, A. [Institute of Advanced Energy, Kyoto University (Japan); Kurishita, H. [International Research Center for Nuclear Material Science, Institute for Materials Research, Tohoku University (Japan); Kurtz, R.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Li, H. [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Chair of Atomistic Modelling and Design of Materials, University of Leoben, Leoben (Austria); Noh, S.; Reiser, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Setyawan, W. [Pacific Northwest National Laboratory, Richland, WA (United States); Walter, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); and others

    2013-11-15

    Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural materials like steels, knowledge and strategies to improve the properties are still under development. These strategies discussed here, include new alloying approaches and microstructural stabilization by oxide dispersion strengthened as well as TiC stabilized tungsten based materials. The fracture behavior is improved by using tungsten laminated and tungsten wire reinforced materials. Material development is accompanied by neutron irradiation campaigns. Self-passivation, which is essential in case of loss-of-coolant accidents for plasma facing materials, can be achieved by certain amounts of chromium and titanium. Furthermore, modeling and computer simulation on the influence of alloying elements and heat loading and helium bombardment will be presented.

  11. Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect

    Science.gov (United States)

    Kamaruddin, M. A.; Abdullah, M. M. A.; Zawawi, M. H.; Zainol, M. R. R. A.

    2017-11-01

    Plastic associates products based have been considered as the world most consumer packaging solution. However, substantial quantities of plastic consumption have led to exponential increase of plastic derived waste. Recycling of plastic waste as valued added product such as concrete appears as one of promising solution for alternative use of plastic waste. This paper summarized recent progress on the development of concrete mixture which incorporates plastic wastes as partial aggregate replacement during concrete manufacturing. A collection of data from previous studies that have been researched which employed plastic waste in concrete mixtures were evaluated and conclusions are drawn based on the laboratory results of all the mentioned research papers studied.

  12. Progress in MMIC technology for satellite communications

    Science.gov (United States)

    Haugland, Edward J.; Leonard, Regis F.

    1987-01-01

    NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.

  13. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  14. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  15. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  16. Research Progress of GaInAsN Photovoltaic Material%GaInAsN光伏材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    董琛; 韩修训; 孙文华; 高欣

    2016-01-01

    GaInAsN has attracted much attention because the lattice matching can be achieved between GaIn-AsN and several importemt substrates (GaAs,Ge,etc)and the energy-gap requirement of three or four-junction solar cells can be fulfilled as well.Nevertheless the preparation of high-quality GaInAsN material is still a big challenge at present.It is mainly because the low solid solubility of N in GaInAs can leads to the inhomogeneous incorporation,and the resulting N defects can greatly reduce the photoelectric properties of GaInAsN.In this review,recent research progresses of GaInAsN material used in solar cells are summarized,and the basic physical properties of GaInAsN are introduced.Furthermore,the key issues in the GaInAsN material system are analyzed in detail,and the methods of optimizing the quality of GaInAsN material and the performance of related solar cells are discussed as well.Finally, the developing trends of GaInAsN photovoltaic material are prospected.%GaInAsN能与GaAs、Ge等重要衬底晶格匹配,并同时满足三结或四结太阳能电池的带隙要求,因而备受瞩目。但目前制备高质量的GaInAsN材料仍十分困难,主要原因在于N在GaInAs中的固溶度特别低,难以实现均匀并入,由此产生的N缺陷很大程度上降低了该材料体系的光电性能。总结了近年来GaInAsN薄膜材料应用于太阳能电池的研究进展,介绍了GaInAsN材料体系的研究历程和基本物理特性,分析了GaInAsN材料体系存在的关键问题,讨论了目前优化GaInAsN薄膜质量和太阳能电池性能的方法。在此基础之上,对GaInAsN光伏材料的研究发展趋势做了展望。

  17. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  18. An overview of carbon materials for flexible electrochemical capacitors.

    Science.gov (United States)

    He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing

    2013-10-07

    Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.

  19. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1978

    International Nuclear Information System (INIS)

    McHargue, C.J.; Peterson, S.

    1978-09-01

    Topics covered include: structure of materials, theoretical research; x-ray diffraction research; fundamental ceramics studies; preparation and synthesis of high-temperature and special service materials; physical metallurgy; grain boundary segregation and fracture; mechanisms of surface and solid-state reactions; physical properties research; superconducting materials; radiation effects; facility and technique development; nuclear microanalysis; cooperative studies with universities and other research organizations; and fundamentals of welding and joining

  20. Progress in heavy-fermion superconductivity. Ce115 and related materials

    International Nuclear Information System (INIS)

    Thompson, Joe D.; Fisk, Zachary

    2012-01-01

    Ce115 and related Ce compounds are particularly suited to detailed studies of the interplay of antiferromagnetic order, unconventional superconductivity and quantum criticality due to their availability as high quality single crystals and their tunability by chemistry, pressure and magnetic field. Neutron-scattering, NMR and angle-resolved thermodynamic measurements have deepened the understanding of this interplay. Very low temperature experiments in pure and lightly doped CeCoIn 5 have elaborated the FFLO-like magnetic state near the field-induced quantum-critical point. New, related superconducting materials have broadened the phase space for discovering underlying principles of heavy-fermion superconductivity and its relationship to nearby states. (author)

  1. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  2. Progress report on installing DYMCAS in the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Mee, W.T.

    1979-01-01

    A material control and accountability system to assist in detecting diversion of special nuclear materials (SNM) was being considered by the management of the Oak Ridge Y-12 Plant in early 1975. The Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) is the product of these considerations. The evolution of computerized accountability systems for near real-time accounting of SNM will revolutionize the activities for operations and accountability departments in Y-12. The advancement of nondestructive analysis equipment with a capability for real-time input of accounting data is becoming a reality. The progress of installing the DYMCAS in a large plant processing unirradiated enriched uranium is described

  3. Joyo progress report, vol. 8

    International Nuclear Information System (INIS)

    1983-01-01

    Following Joyo Reactor Technology Progress Reports (Vol. 1 to Vol. 7), the name was changed to Joyo Progress Report from this volume, and the activities concerning the fast breeder experimental reactor Joyo as a whole are to be reported as quarterly report. In the fast breeder experimental reactor Joyo, the change to the core for irradiation (MK-2) from the core for breeding (MK-1) was carried out since January, 1982, in order to utilize the reactor as an irradiation facility for the development of fuel and materials. The main work was the construction of the core for irradiation by exchanging 290 fuel elements, and the exchange of upper and lower guide pipes for control rods, the reconstruction of the driving mechanism, the installation of standby neutron detector system, the acceptance and inspection of new fuel, and the transfer of spent fuel between pools were carried out. As scheduled, the core for irradiation attained the initial criticality on November 22, and the works of constructing the core were completed on December 23, 1982. Thereafter, the 100 MW performance test was begun. Various experience and valuable data were obtained in the regular inspection and the maintenance and repair works carried out at the same time, regarding the operation and maintenance of the Joyo facilities. (Kako, I.)

  4. When Progressive Disease Does Not Mean Treatment Failure: Reconsidering the Criteria for Progression

    Science.gov (United States)

    2012-01-01

    Although progression-based endpoints, such as progression-free survival, are often key clinical trial endpoints for anticancer agents, the clinical meaning of “objective progression” is much less certain. As scrutiny of progression-based endpoints in clinical trials increases, it should be remembered that the Response Evaluation Criteria In Solid Tumors (RECIST) progression criteria were not developed as a surrogate for survival. Now that progression-free survival has come to be an increasingly important trial endpoint, the criteria that define progression deserve critical evaluation to determine whether alternate definitions of progression might facilitate the development of stronger surrogate endpoints and more meaningful trial results. In this commentary, we review the genesis of the criteria for progression, highlight recent data that question their value as a marker of treatment failure, and advocate for several research strategies that could lay the groundwork for a clinically validated definition of disease progression in solid tumor oncology. PMID:22927506

  5. Mathematics and Statistics Research Department progress report for period ending June 30, 1979

    International Nuclear Information System (INIS)

    Gardiner, D.A.; Beauchamp, J.J.; Gray, L.J.; Lever, W.E.; Shepherd, D.E.

    1979-09-01

    This is the twenty-second in the series of progress reports of the Mathematics and Statistics Research Department and its predecessor organizations. Part A reports research progress in biomedical and environmental applications, materials science applications, model development and evaluation, moving-boundary problems, multivariate multipopulation classification, numerical linear algebra, risk analysis, and complementary areas. The results of collaboration with other researchers on problems in biology, chemistry, energy, engineering, environmental sciences, geology, health and safety research, information sciences, and material sciences are recorded in Part B. Parts C, D, and E contain short accounts of educational activities, lists of written and oral presentations of research results, and a list of other professional activities in which the staff was engaged. Although a few results are shown, the reports in this volume are only of extended abstract length. One may expect completed research to be reported in the usual channels. 6 figures, 2 tables

  6. Review of progress in quantitative nondestructive evaluation. Volume 8A and Volume 8B

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1989-01-01

    Volume 8 contains the edited papers presented at the 1988 Review of Progress in Quantitative Nondestructive Evaluation meeting. The 288 papers discuss such topics as fundamental techniques as acoustic testing, eddy current testing, and x-ray radiography; advanced techniques using x-ray computed tomography and laser ultrasonics; interpretive signal and image processing using expert systems and adaptive analysis; NDE probes and sensors and NDE systems and instrumentation; materials process control and inspection reliability including human factors. Materials discussed range from electronic circuit materials, coatings, adhesive bonds, smart structures, composite materials, welded joints, ferrous materials, and steels and alloys. Stress, texture, structural and fracture properties of materials are characterized using various NDE techniques. Applications to reactor, aircraft, and space vehicle components are investigated

  7. Recent advances in the development of aerospace materials

    Science.gov (United States)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  8. MHD power generation research, development and engineering. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)

  9. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Science.gov (United States)

    Sablon, Kimberly A.; Sergeev, Andrei; Najmaei, Sina; Dubey, Madan

    2017-03-01

    Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs) with graphene or two-dimensional (2D) semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  10. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Directory of Open Access Journals (Sweden)

    Sablon Kimberly A.

    2017-03-01

    Full Text Available Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs with graphene or two-dimensional (2D semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  11. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  12. Advances in Functionalized Materials Research 2016

    International Nuclear Information System (INIS)

    Predoi, D.; Motelica-Heino, M.; Guegan, R.; Coustumer, L.Ph.

    2016-01-01

    In the last years, due to the rapid progress of technology, new materials at nano metric scale with special properties have become a flourishing field of research in materials science. The unique physicochemical properties of materials induced by various parameters such as mean size, shape, purity, crystallographic structure, and surface can generate effective solutions to challenging environmental and biomedical problems. As a result of this approach a large number of techniques were developed that enable obtaining novel materials at nano metric scale with specific and reproducible properties and parameters. Below will be highlighted studies on promising properties on the applicability of new materials that could lead to innovative applications in the medical field. Therefore, this special issue is focused on expected advances in the area of functionalized materials at nano metric scale. Due to multidisciplinarity of this topic, this special issue is comprised of a wide range of original research articles as well as review papers on the design and synthesis of functionalized nano materials, their structural, morphological, and biological characterization, and their potential uses in medical and environmental applications

  13. Microfibrillated cellulose and new nanocomposite materials: a review

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David

    2010-01-01

    Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject...... in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose....

  14. Progress report 2011-2013 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2014-01-01

    This progress report presents the results of the R&D center of IPEN in accordance with the main programs: Lasers Technology, Applications of Ionizing Radiations, Biotechnology, Renewable Energies, Radiopharmacy, Nuclear Science and Technology, Environmental Science and Technology, Nuclear Reactors and Fuel Cycle, Materials and Nanotechnology, Nuclear Safety, Education, Brazilian Multipurpose Reactor and Scientific and Technical Production

  15. Progress report 2008-2010 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2011-01-01

    This progress report presents the results of the R and D center of IPEN in the areas of: Lasers Technology; Renewable Energies; Nuclear Reactors and Fuel Cycle; Applications of Ionizing Radiations; Nuclear Science and Technology; Materials and Nanotechnology; Environmental Science and Technology; Radiopharmacy; Nuclear Safety; and Education. Also presents the Technical and Scientific Production od the center

  16. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Yusuf Kaynak

    2018-05-01

    Full Text Available This experimental study focuses on various cooling strategies and lubrication-assisted cooling strategies to improve machining performance in the turning process of AISI 4140 steel. Liquid nitrogen (LN2 and carbon dioxide (CO2 were used as cryogenic coolants, and their performances were compared with respect to progression of tool wear. Minimum quantity lubrication (MQL was also used with carbon dioxide. Progression of wear, including flank and nose, are the main outputs examined during experimental study. This study illustrates that carbon dioxide-assisted cryogenic machining alone and with minimum quantity lubrication does not contribute to decreasing the progression of wear within selected cutting conditions. This study also showed that carbon dioxide-assisted cryogenic machining helps to increase chip breakability. Liquid nitrogen-assisted cryogenic machining results in a reduction of tool wear, including flank and nose wear, in the machining process of AISI 4140 steel material. It was also observed that in the machining process of this material at a cutting speed of 80 m/min, built-up edges occurred in both cryogenic cooling conditions. Additionally, chip flow damage occurs in particularly dry machining.

  17. On the path of the progress of science and technology

    International Nuclear Information System (INIS)

    Goloviznin, V.P.

    1984-01-01

    Basic measures aimed at the progress of growth and more intensive production in the field of devising the NPP equipment are considered. A conclusion is drawn that the solution to the problems considered is related to further improvement of the system of planning, financing and material stimulation of works on new technology as well as to expansion of rights of research and industrial centers and institutes

  18. Effective properties of dispersed phase reinforced composite materials with perfect and imperfect interfaces

    Science.gov (United States)

    Han, Ru

    This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.

  19. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  20. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  1. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.

    Science.gov (United States)

    Lee, Sechan; Kwon, Giyun; Ku, Kyojin; Yoon, Kyungho; Jung, Sung-Kyun; Lim, Hee-Dae; Kang, Kisuk

    2018-03-27

    Organic rechargeable batteries, which use organics as electrodes, are excellent candidates for next-generation energy storage systems because they offer design flexibility due to the rich chemistry of organics while being eco-friendly and potentially cost efficient. However, their widespread usage is limited by intrinsic problems such as poor electronic conductivity, easy dissolution into liquid electrolytes, and low volumetric energy density. New types of organic electrode materials with various redox centers or molecular structures have been developed over the past few decades. Moreover, research aimed at enhancing electrochemical properties via chemical tuning has been at the forefront of organic rechargeable batteries research in recent years, leading to significant progress in their performance. Here, an overview of the current developments of organic rechargeable batteries is presented, with a brief history of research in this field. Various strategies for improving organic electrode materials are discussed with respect to tuning intrinsic properties of organics using molecular modification and optimizing their properties at the electrode level. A comprehensive understanding of the progress in organic electrode materials is provided along with the fundamental science governing their performance in rechargeable batteries thus a guide is presented to the optimal design strategies to improve the electrochemical performance for next-generation battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Progress Report

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999.......Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999....

  3. Progress Report

    Science.gov (United States)

    2018-05-16

    This report summarizes the annual progress of EPA’s Clean Air Markets Programs such as the Acid Rain Program (ARP) and the Cross-State Air Pollution Rule (CSAPR). EPA systematically collects data on emissions, compliance, and environmental effects, these data are highlighted in our Progress Reports.

  4. Provisional materials: advances lead to extensive options for clinicians.

    Science.gov (United States)

    Comisi, John C

    2015-01-01

    The progression of provisional materials to bis-acrylics has lead to such improvements as easier handling, improved compressive and tensile strength, less water sorption, and less shrinkage. The end-result is more options for clinicians for high-quality chairside provisional restorations. Newer provisional materials are easy to manipulate and bring increased comfort to the patient. This review of current products affirms that the choices of provisional materials available for the dental professional today are quite extensive and have advanced the quality of interim restorations.

  5. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    1977-07-01

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  6. Department F3. Condensed matter research and materials sciences. Progress report 1989

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.; Lorenzen, R.

    1990-04-01

    The report deals with work done during 1989 in the field of muon spectroscopy, neutron scattering, cryogenic detectors, accelerator mass spectrometry, geochemistry, trace elements, aerosol chemistry, heavy elements, cement products, defect physics, irradiation damages in fusion reactor materials, and superconductivity. 135 figs., 15 tabs. 417 refs

  7. A Study on Changes in Thickness of STS304 Material in the Progressive Drawing Process

    Directory of Open Access Journals (Sweden)

    Lee C.K.

    2017-06-01

    Full Text Available In the drawing process, the roundness of corners in the punch and the die are very important factors in determining the thicknesses of the product. The results clearly revealed that the thickness of a flange was increased and the thickness of body parts reduced when the roundness of the die entrance was small. The material thickness of the top part was decreased when the corner roundness of the punch was large. The smooth inflow of materials was found to have a significant effect on the thickness during the post-process. The compressive strength of STS 304 material exhibited a higher value compared with other processing methods. Moreover, we clearly observed the corner roundness of the punch and the die to be a very important factor for STS 304 materials.

  8. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  9. Theoretical and substantive concept of sustainable close-to-nature managed progress

    Directory of Open Access Journals (Sweden)

    Dušan Plut

    2005-12-01

    Full Text Available Implementation of the principles of sustainability in the economic, social and environmental field means that organisation and (material operation of a society is permanently adapted to the environment. Sustainable close-to-naturemanaged development, or in a broader sense progress, means permanent (sustainable and simultaneous improvement of material, social and environmental quality of life, thus a permanent raise of the welfare in its broader sense of all inhabitants within the capacities (limitations of the environment. The opportunity of geography is to take an active part in the realisation of close-to-nature managed patterns of the spatial organisation of human activity.

  10. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials

    International Nuclear Information System (INIS)

    Feng Chunhua; Wang Xijian; Li Dongxu

    2014-01-01

    Background: The solid-state Nuclear Magnetic Resonance (NMR) is an effective method for the research of cement-based materials. Now it focuses on using solid 29 Si and 27 Al NMR to research the hydration structure of the cement-based materials in cement chemistry. Purpose: A theoretical guidance is proposed for solid 29 Si and 27 Al NMR technology used in cement chemistry research. Methods: We reviewed the application of solid 29 Si and 27 Al NMR in the cement-based materials and analyzed the problem among the researches. Results: This paper introduced an fundamental, relevant-conditions and basic parameters of NMR, and studied the technical parameters of solid 29 Si and 27 Ai NMR together with the relationship among the hydration structure of cement based material. Moreover, this paper reviewed the related domestic and overseas achievements in the research of hydration structure of the cement-based materials using solid 29 Si and 27 Al NMR. Conclusion: There were some problems in the research on cement-based materials by technology of solid 29 Si and 27 Al NMR. NMR will promote the Hydration theory of cement-based material greatly. (authors)

  11. Fuel Chemistry Division annual progress report for 1989

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.

    1993-01-01

    The progress report gives a brief description of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1989. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemical Quality Control, Chemistry of Actinides, Sol-Gel process for the non Nuclear Ceramics and Studies related to Nuclear Material Accounting.At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 69 tabs., 6 figs

  12. [Progressive visual agnosia].

    Science.gov (United States)

    Sugimoto, Azusa; Futamura, Akinori; Kawamura, Mitsuru

    2011-10-01

    Progressive visual agnosia was discovered in the 20th century following the discovery of classical non-progressive visual agnosia. In contrast to the classical type, which is caused by cerebral vascular disease or traumatic injury, progressive visual agnosia is a symptom of neurological degeneration. The condition of progressive visual loss, including visual agnosia, and posterior cerebral atrophy was named posterior cortical atrophy (PCA) by Benson et al. (1988). Progressive visual agnosia is also observed in semantic dementia (SD) and other degenerative diseases, but there is a difference in the subtype of visual agnosia associated with these diseases. Lissauer (1890) classified visual agnosia into apperceptive and associative types, and it in most cases, PCA is associated with the apperceptive type. However, SD patients exhibit symptoms of associative visual agnosia before changing to those of semantic memory disorder. Insights into progressive visual agnosia have helped us understand the visual system and discover how we "perceive" the outer world neuronally, with regard to consciousness. Although PCA is a type of atypical dementia, its diagnosis is important to enable patients to live better lives with appropriate functional support.

  13. Materials Investigation for Power Plants Industry. Seminar

    International Nuclear Information System (INIS)

    Szteke, W.; Wasiak, J.; Bilous, W.; Przyborska, M.; Wagner, T.; Wojciechowska, J.; Zubowski, B.

    2006-01-01

    The Report is an assembly of the papers concerning perspectives of evolution of power in Poland. The material and diagnostic problems occurring the exploitation of power station as well as gas pipelines are discussed. The progress in the accommodation of the Polish technical prescriptions to the European law is described

  14. Y-12 Integrated Materials Management System

    Energy Technology Data Exchange (ETDEWEB)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.

  15. Y-12 Integrated Materials Management System

    International Nuclear Information System (INIS)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-01-01

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system

  16. Computational modeling of the behavior of nuclear materials (2). Molecular simulations for nuclear materials. Current situation and future perspective

    International Nuclear Information System (INIS)

    Okita, Taira; Itakura, Mitsuhiro

    2017-01-01

    Molecular simulations for nuclear materials aim to reproduce atomistic-scale phenomena induced by irradiation and infer the change in material properties. In the present work, recent progress in this field is presented. In particular, the following three topics are explained: (1) Quantification of lattice defects formation process induced by fast neutron collision. (2) Identification of dislocation-channeling mechanism induced by interactions between defect clusters and dislocations. (3) Modeling of the three dimensional movement of defect clusters using molecular dynamics and kinetic Monte Carlo simulations. (author)

  17. Progress of SOFC/SOEC Development at DTU Energy: From Materials to Systems

    DEFF Research Database (Denmark)

    Hagen, Anke; Hendriksen, Peter Vang

    2017-01-01

    DTU Energy has over the past 20 years had a very substantial effort on SOFC/SOEC development. The current project volume corresponds to ~40 man years per year. Activities span over a broad range in the value chain, from materials to cells, stacks and analyses at energy system level. In addition...

  18. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  19. MXene–2D layered electrode materials for energy storage

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2018-04-01

    Full Text Available As promising candidates of power resources, electrochemical energy storage (EES devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field. Keywords: MXene, 2D materials, Electrochemistry, Battery, Supercapacitor

  20. Progress toward determining the potential of ODS alloys for gas turbine applications

    Science.gov (United States)

    Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.

    1983-01-01

    The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.

  1. Development and applications of photosensitive device systems to studies of biological and organic materials. Progress report

    International Nuclear Information System (INIS)

    1984-01-01

    The purpose was to develop and improve appropriate experimental techniques to the point where they could be applied to specific classes of biological problems. Progress is reported in the following areas: (1) area detectors; (2) x-ray diffraction studies of membranes; (3) electron transfer in loosely coupled systems; (4) bioluminescence and fluorescence; and (5) sonoluminescence

  2. Recent progress in the qualification of materials used on geothermal energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento Klapper, Helmuth; Baessler, Ralph; Burkert, Andreas [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2010-07-01

    The present work is focused on the evaluation of long-term corrosion of different metallic materials including the low-alloyed steels API LQ80 and API Q125, the stainless steels alloy 24 and alloy 31, the duplex steel alloy F55 and the nickel-based-alloy 59 in the highly saline North German basin aquifer. Because of instability of the natural geothermal fluid at atmospheric conditions, an artificial fluid with the chemical composition according to the chemical analysis of the original formation fluid was used for laboratory investigations. Using electrochemical and exposure tests at 100 C and 150 C, the suitability of the materials under typical geothermal service conditions were established. (orig.)

  3. Research in space science and technology. Semiannual progress report

    International Nuclear Information System (INIS)

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  4. Nuclear waste management. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  5. Materials and Molecular Research Division. Annual report 1981

    International Nuclear Information System (INIS)

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and β-alumina electrolytes for storage batteries

  6. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    International Nuclear Information System (INIS)

    Krumpolc, M.; Hill, D.; Struhrmann, H.B.

    1990-01-01

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined

  7. The problem of material accountancy. Difference between the international material accountancy and the Japanese material accountancy

    International Nuclear Information System (INIS)

    Ikawa, Koji

    2001-01-01

    It has been 30 years since the development of SSAC (State's system of Accounting for and Control of nuclear material) of Japan began. Moreover, 24 years have been passed after SSAC was employed. The maintenance on the law for carrying out SSAC in the meantime also progressed, and the system of SSAC has also been established favorably. However, new correspondence was internationally called for about the safeguards for reprocessing facilities or uranium enrichment facilities, and innovative safeguards concepts like NRTA or LFUA were developed. The LASCAR (Large Scale Reprocessing Plant Safeguards) forum was held on the safeguards for a large scale reprocessing facility, and international agreement on the safeguards was progressed. When we look back upon the history of such safeguards development in recent years, most people can see little problem on the contents of the national safeguards system itself. As the history shows, however, the passive approach has been taken in developing the Japanese safeguards system. We have always tried to seek a solution on the basis 'What is the minimum requirement in order to receive international safeguards.' Now, the nuclear fuel cycle of Japan has reached the maximum scale in the world. To Japan which promotes commercial use of plutonium, the world community is supervising this severely. Under such a situation it is no doubt that passive safeguards correspondence can no longer be allowed. The author thinks that it is coming when the old nuclear management system completed based on a passive attitude should be improved. What should an active nuclear material management system be? In this presentation, the author wishes to explore the clue to it. (author)

  8. Magnetic spectroscopy and microscopy of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine Ann [Univ. of Mainz (Germany)

    2011-05-01

    Heusler intermetallics Mn2Y Ga and X2MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X2MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn2Y Ga to the logical Mn3Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co2FeSi (Appendix B).

  9. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  10. Recent progress in organic electronics and photonics: A perspective on the future of organic devices

    KAUST Repository

    Bredas, Jean-Luc

    2016-01-01

    The fields of organic electronics and photonics have witnessed remarkable advances over the past few years. This progress bodes well for the increased utilization of organic materials as the active layers in devices for applications as diverse

  11. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  12. Materials Science Division activity report 1991-1993

    International Nuclear Information System (INIS)

    Amarendra, G.; Tiwari, A.M.; Subramanian, N.; Venugopal Rao, G.

    1995-01-01

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  13. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  14. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  15. Realization of radiation-chemical processes in national economy-important stage of scientific and technical progress

    International Nuclear Information System (INIS)

    Breger, A.Kh.

    1975-01-01

    Realization of energy resourses of the atomic power engineering will greatly contribute to the scientific and technological progress. The dominat role play the radiochemical methods of properties modification applied for the well-known materials and for the production of materials with modern operating characteristics necessary for their application in different branches of industry and agriculture. Radiation modeling of products from polyolefine, wood-plastic and concrete-polymer materials are considered as well as the processes in ''thin'' units of agitating systems. The future developments and present state of the art of radiation sources are presented

  16. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  17. Status and progress of the RERTR program

    International Nuclear Information System (INIS)

    Travelli, A.

    1996-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1996 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1995 in collaboration with its many international partners. Significant progress has been made during the past year in each of the three areas that the delegates to last year's RERTR meeting chose to address, in their letter to President Clinton, as requiring special attention. (1) In the area of U.S. acceptance of spent fuel from foreign research reactors, a second shipment of 99 urgent-relief spent fuel elements was completed. The Final Environmental Impact Statement was published in February 1996, and the Record of Decision was published in May 1996. The first shipments under the Record of Decision, containing 280 spent fuel elements, were received at the Savannah River Site in September 1996. (2) In the area of advanced fuel development, adequate funding and guidance were received by the RERTR program in March 1996. Fuel development activities are now in progress, including procurement of equipment, screening of candidate materials, and preparations for the production of a first series of microplates. The first irradiations are planned to begin in the Advanced Test Reactor. in Idaho, during April 1997. (3) In the area of conversion of DOE research reactors, the RERTR program has been tasked by the Department of Energy to assess the feasibility of converting to LEU fuel each of the DOE research reactors which currently use HEU fuel. A preliminary assessment will be presented at this meeting. Significant progress has been made by the Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with excellent results

  18. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  19. Research on human genetics in Iceland. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-31

    Records of the Icelandic Population are being used to investigate the possible inheritance of disabilities and diseases as well as other characters and the effect of environment on man. The progress report of research covers the period 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  20. Psychological functioning in primary progressive versus secondary progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Vleugels, L; Pfennings, L E; Pouwer, F

    1998-01-01

    Psychological functioning in two types of multiple sclerosis (MS) patients is assessed: primary progressive (PP) and secondary progressive (SP) patients. On the basis of differences in clinical course and underlying pathology we hypothesized that primary progressive patients and secondary...... progressive patients might have different psychological functioning. Seventy patients treated in an MS centre were examined cross-sectionally. Forty had an SP course of MS and 30 a PP course. The 33 male and 37 female patients had a mean age of 48.4 years (SD 11.2) and mean age of onset of MS of 30.7 years...... (SD 11.1). Patients completed questionnaires measuring among others the following aspects of psychological functioning: depression (BDI, SCL-90), anxiety (STAI, SCL-90), agoraphobia (SCL-90), somatic complaints (SCL-90), hostility (SCL-90) and attitude towards handicap (GHAS). Patients with a PP...

  1. Materials and Molecular Research Division. Annual report 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  2. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  3. Progress in MPC and A upgrades at Luch

    International Nuclear Information System (INIS)

    Mizin, P.; Chukov, V.; Rogatchev, V.; Curtiss, J.; Erkkila, B.; Goodey, K.; Hembree, D. Jr.; Lowe, D.; Turner, C.

    1997-01-01

    Luch, a MINATOM facility, has been engaged in both scientific research and uranium processing for fifty years. Since the spring of 1996, Luch has participated in a program of US/Russia Cooperation in Nuclear MPC and A Upgrades. The program began with planning for immediate upgrades in MPC and A, with en emphasis on physical protection. In addition, US and Luch experts exchanged technical data during a number of workshops, to establish a common understanding of available MPC and A tools and equipment. Site characterizations and vulnerability assessments were then prepared by Luch, to form the basis for the current program of methodical upgrades in all areas of MPC and A. Access control, alarms and alarm communications are being improved as part of this program. Control of nuclear material is being enhanced through improvements in material monitoring and in transportation security when nuclear material is moved between buildings on the Luch site. A comprehensive, site-wide computer network for Luch was designed during a recent workshop. Acquiring and installing this computer system, complete with COREMAS software, is currently in progress. Nuclear material analysis will be improved through NDA techniques using Canberra InSpector systems. The planned upgrades in nuclear MPC and A will reinforce safeguards over large quantities of HEU at Luch

  4. Advanced reflector materials for solar concentrators

    Science.gov (United States)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  5. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers. Copyright © 2018. Published by Elsevier Ltd.

  6. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  7. Fast neutron dosimetry. Progress report, 30 August 1992--1 September 1993

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-12-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ``white`` source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report.

  8. Material science and neutron scattering

    International Nuclear Information System (INIS)

    1983-01-01

    Neutron scattering experiments complete and extend the condensed matter studies made with X and gamma rays. Then story show a permanent evolution of the instrumentation, methods and experimental techniques to improve the result quality. This is more especially important as neutron sources are weaker than photon and electron sources. Progress in this research domain is due, in most part, to discovery and development of materials for the different measurement device components [fr

  9. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  10. Karlsruhe Nuclear Research Center, Institute of Materials Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute consists of three parts IMF I, IMF II and IMF III. The tasks are divided into applied material physics (IMF I), material and structural mechanics (IMF II) and material process technology (IMF III). IMF I works preferably on the development of metallic, non-metallic and compound materials and on questions of the structure and properties of boundary surfaces and surface protection coatings. The main work of IMF II is the reliability of components, failure mechanics and the science of damage. IMF III examines process technology questions in the context of the manufacture of ceramic materials and fusion materials and the design of nuclear components. The Institute works on various main points of the Kernforschungszentrum in its research work, particularly in nuclear fusion, micro-system technique, nuclear safety research, superconductivity and in processes with little harmful substances and waste. Material and strength problems for future fusion reactors and fission reactors, in powerful micro systems and safety-related questions of nuclear technology are examined. Also, research not bound to projects in the field of metallic, ceramic and polymer materials for high stresses is carried out. (orig.) [de

  11. Progress in Gamma Ray Measurement Information Barriers for Nuclear Material Transparency Monitoring

    International Nuclear Information System (INIS)

    Wolford, J.K.; White, G.K.

    2000-01-01

    Negotiations between technical representatives of the US and the Russian Federation in support of several pending nuclear arms and nuclear material control agreements must take account of the need for assurances against the release of sensitive information. Most of these agreements involve storing nuclear material and in some cases nuclear components from stockpile weapons in specially designed containers. Strategies for monitoring the agreements typically include measuring neutron and gamma radiation from the controlled items to verify declared attributes of plutonium or highly enriched uranium. If accurate enough to be useful, these measurements will contain information about the design of the component being monitored, information considered sensitive by one or both parties to the agreement. Safeguards have evolved to prevent disclosure of this information during inspections. These measures combine hardware, software, and procedural measures to contain the sensitive data, presenting only the results needed for verification. Custom features preserve data security and guard against disclosure in case of failure. This paper summarizes the general problem and discusses currently developing solutions for a high resolution gamma ray detection system. It argues for the simplest possible implementation of several key system components

  12. Progress report: Chemistry and Materials Division, 1982 April 1 - June 30

    International Nuclear Information System (INIS)

    1982-08-01

    The work of the division in the areas of solid state studies, radiation chemistry, isotope separation, analytical chemistry and materials science is described. The solid state science group studied solute atom vacancy trapping in irradiated f.c.c. alloys as well as the rearrangement of atoms in solids bombarded by energetic heavy ions. In radiation chemistry, work was done on the pulse radiolysis of NO in argon. Isotope separation studies were done on fluoroform and uranium. Fuel burnup determination using 148 Nd and 139 La was investigated. Zirconium alloy studies included work on stress corrosion cracking and the Baushinger effect

  13. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Status and strategy of fusion materials development in China

    International Nuclear Information System (INIS)

    Huang, Q.Y.; Wu, Y.C.; Li, J.G.; Wan, F.R.; Chen, J.L.; Luo, G.N.; Liu, X.; Chen, J.M.; Xu, Z.Y.; Zhou, X.G.; Ju, X.; Shan, Y.Y.; Yu, J.N.; Zhu, S.Y.; Zhang, P.Y.; Yang, J.F.; Chen, X.J.; Dong, S.M.

    2009-01-01

    The liquid metal and solid ceramic pebble breeder blankets have become the most promising blankets for ITER-TBMs or DEMO reactors in China and the world due to their potential advantages. In recent years the corresponding research work on fusion reactor materials mainly focuses on structural materials, plasma facing materials and the functional materials for the blanket such as breeder, coating and flow channel insert etc. for the successful application of fusion energy in the near future. The R and D on those materials in the two kinds of blankets is being carried out widely in China, including fabrication and manufacturing techniques, physical/mechanical properties assessment before and after irradiation, joining techniques for structural materials, compatibility evaluation, and the development and verification of the criteria for fusion material designs. The progress on main R and D activities of fusion reactor materials in China is introduced and prospected in the paper.

  15. Materials R&D-student internships

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.B.; Jiles, D.C.; Chumbley, L.S. [Iowa State Univ., Ames, IA (United States)

    1995-05-01

    This program has as an objective the conduct of programmatic research for the Advanced Industrial Concepts Materials Program while training minority graduate students in the process. Well-known demographics indicate that minorities will constitute an increasing fraction of our future work force. Consequently, efforts have been initiated to increase the fraction of minorities and women who choose technical career paths. Included are a wide ranging set of programs beginning with pre-school education, progressing through efforts to retain students in technical paths in grades K-12 and undergraduate education, and ending with encouraging graduate education. The Materials R & D - Student Internships is a unique approach in the latter category. Here, we have focused on a particular area of applied materials research, the Advanced Industrial Concepts Materials Program. Our goal, then, is to educate minority graduate students in the context of this program. The Ames Laboratory was selected as a site for this pilot project since it is a DOE national laboratory, located on the campus of a major research university, which includes in its research interests programs with a strong technological flavor.

  16. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  17. Primary Progressive Aphasia

    Science.gov (United States)

    ... which cause different symptoms. Semantic variant primary progressive aphasia Symptoms include these difficulties: Comprehending spoken or written ... word meanings Naming objects Logopenic variant primary progressive aphasia Symptoms include: Having difficulty retrieving words Frequently pausing ...

  18. Progressive Business

    DEFF Research Database (Denmark)

    Christiansen, Christian O.

    2016-01-01

    Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015.......Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015....

  19. High-temperature gas-cooled reactor base-technology program. Progress report, January 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Kasten, P.R.

    1976-11-01

    Progress is reported in the following areas: PCRV development, studies on structural materials, fission product technology studies, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite.

  20. High-temperature gas-cooled reactor base-technology program. Progress report, January 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Coobs, J.H.; Kasten, P.R.

    1976-11-01

    Progress is reported in the following areas: PCRV development, studies on structural materials, fission product technology studies, kernel migration and irradiated fuel chemistry, coolant chemistry (steam-graphite reactions), fuel qualification, and characterization and standardization of graphite