WorldWideScience

Sample records for materials accounting system

  1. Modernizing computerized nuclear material accounting systems

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Claborn, J.

    1995-01-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems

  2. Integrated material accountancy system

    International Nuclear Information System (INIS)

    Calabozo, M.; Buiza, A.

    1991-01-01

    In this paper we present the system that we are actually using for Nuclear Material Accounting and Manufacturing Management in our UO 2 Fuel Fabrication Plant located at Juzbado, Salamanca, Spain. The system is based mainly on a real time data base which gather data for all the operations performed in our factory from UO 2 powder reception to fuel assemblies shipment to the customers. The accountancy is just an important part of the whole integrated system covering all the aspects related to manufacturing: planning, traceability, Q.C. analysis, production control and accounting data

  3. Automated accounting systems for nuclear materials

    International Nuclear Information System (INIS)

    Erkkila, B.

    1994-01-01

    History of the development of nuclear materials accounting systems in USA and their purposes are considered. Many present accounting systems are based on mainframe computers with multiple terminal access. Problems of future improvement accounting systems are discussed

  4. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  5. Nuclear material statistical accountancy system

    International Nuclear Information System (INIS)

    Argentest, F.; Casilli, T.; Franklin, M.

    1979-01-01

    The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase

  6. U.S. national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Taylor, S; Terentiev, V G

    1998-01-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968

  7. Optimal interface between principal deterrent systems and material accounting

    International Nuclear Information System (INIS)

    Deiermann, P.J.; Opelka, J.H.

    1983-01-01

    The purpose of this study is to find an optimal blend between three safeguards systems for special nuclear material (SNM), the material accounting system and the physical security and material control systems. The latter two are denoted as principal deterrent systems. The optimization methodology employed is a two-stage decision algorithm, first an explicit maximization of expected diverter benefits and subsequently a minimization of expected defender costs for changes in material accounting procedures and incremental improvements in the principal deterrent systems. The probability of diverter success function dependent upon the principal deterrents and material accounting system variables is developed. Within the range of certainty of the model, existing material accounting, material control and physical security practices are justified

  8. Accounting systems for special nuclear material control. Technical report

    International Nuclear Information System (INIS)

    Korstad, P.A.

    1980-05-01

    Nuclear material accounting systems were examined and compared to financial double-entry accounting systems. Effective nuclear material accounting systems have been designed using the principles of double-entry financial accounting. The modified double-entry systems presently employed are acceptable if they provide adequate control over the recording and summarizing of transactions. Strong internal controls, based on principles of financial accounting, can help protect nuclear materials and produce accurate, reliable accounting data. An electronic data processing system can more accurately maintain large volumes of data and provide management with more current, reliable information

  9. Operational advanced materials control and accountability system

    International Nuclear Information System (INIS)

    Malanify, J.J.; Bearse, R.C.; Christensen, E.L.

    1980-01-01

    An accountancy system based on the Dynamic Materials Accountability (DYMAC) System has been in operation at the Plutonium Processing Facility at the Los Alamos Scientific Laboratory (LASL) since January 1978. This system, now designated the Plutonium Facility/Los Alamos Safeguards System (PF/LASS), has enhanced nuclear material accountability and process control at the LASL facility. The nondestructive assay instruments and the central computer system are operating accurately and reliably. As anticipated, several uses of the system have developed in addition to safeguards, notably scrap control and quality control. The successes of this experiment strongly suggest that implementation of DYMAC-based systems should be attempted at other facilities. 20 refs

  10. Nuclear material accountability system in DUPIC facility (I)

    International Nuclear Information System (INIS)

    Ko, W. I.; Kim, H. D.; Byeon, K. H.; Song, D. Y.; Lee, B. D.; Hong, J. S.; Yang, M. S.

    1999-01-01

    KAERI(Korea Atomic Energy Research Institute) has developed a nuclear material accountability system for DUPIC(Direct Use of Spent PWR Fuel in CANDU) fuel cycle process. The software development for the material accountability started with a general model software, so-called CoreMAS(Core Material Accountability System), at the beginning of 1998. The development efforts have been focused on the DUPIC safeguards system, and in addition, improved to meet Korean safeguards requirements under domestic laws and regulations. The software being developed as a local area network-based accountability system with multi-user environment is able to track and control nuclear material flow within a facility and inter-facility. In addition, it could be operated in a near-real time manner and also able to generate records and reports as necessary for facility operator and domestic and international inspector. This paper addresses DMAS(DUPIC Material Accountability System) being developed by KAERI and simulation in a small-scale DUPIC process for the verification of the software performance and for seeking further works

  11. Computerized real-time materials accountability system for safeguards material control

    International Nuclear Information System (INIS)

    Spencer, W.F.; Affel, R.G.; Austin, H.C.; Nichols, J.P.; Stoutt, B.H.; Wachter, J.W.

    1975-01-01

    A real-time, computer-based system is described which provides safeguards material control at the Oak Ridge National Laboratory. Originally installed in 1972 to provide computerized real-time fissile materials accountability for criticality control purposes, the system has been expanded to provide accountability of all source and nuclear materials (SNM) and to utilize the on-line inventory files in support of the Laboratory physical protection and surveillance procedures. (auth)

  12. Hungarian national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Lendvai, O.

    1985-01-01

    The Hungarian system for nuclear materials control and accounting is briefly described. Sections include a historical overview, a description of nuclear activities and an outline of the organizational structure of the materials management system. Subsequent sections discuss accounting, verification and international relations

  13. 48 CFR 252.242-7004 - Material management and accounting system.

    Science.gov (United States)

    2010-10-01

    ... CLAUSES Text of Provisions And Clauses 252.242-7004 Material management and accounting system. As prescribed in 242.7204, use the following caluse: Material Management and Accounting System (JUL 2009) (a) Definitions. As used in this clause— (1) Material management and accounting system (MMAS) means the Contractor...

  14. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  15. Workshop on materials control and accounting system design

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1989-01-01

    The chapter describes the workshop aimed at reinforcing, through participation in the design exercise, the concepts of nuclear materials control and accountability. Topics include: workshop format; key elements of a materials management and accounting (MC and A) system; and MC and A system design including safeguards organization and management, material access areas, key measurement points, nuclear materials measurements, physical inventory, material balance closings, and internal controls. Appended to this chapter is a detailed description of a facility that produces metallic plutonium and the safeguards requirements for this facility

  16. System analysis for material control and accountancy technology

    International Nuclear Information System (INIS)

    Persiani, P.J.; Daly, T.A.; Bucher, R.G.; Rothman, A.B.; Cha, B.C.; Trevorrow, L.E.; Seefeldt, W.B.

    1987-01-01

    The systems analysis for material control and accountancy technology (SAMCAT) program involves a working group structured to ensure that direct operating measurements, accountancy experience, and knowledge of the processes and flows of nuclear material in the total US Department of Energy (DOE) complex of production fuel cycles would be the major bases for developing and implementing a plan of action. This working group consists of facility operators, DOE Office of Safeguards Security headquarters and field offices, and government laboratories. The program focus is to develop a system for decision support in validating the material control and accountancy (MC ampersand A) aspects of the masters safeguards and security agreements effectiveness and in evaluating proposed MC ampersand A upgrades. This paper is a status report on the current capabilities of the system

  17. Outline of material accountancy system for Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Kitamura, Touko; Yamazaki Yoshihiro; Ai, Hironobu

    2004-01-01

    In January 2004, Facility Attachment (FA) for Rokkasho Reprocessing Plant (RRP) was entered into force and the safeguards has been implemented in accordance with the FA. So operator must carry out the effectual material accountancy on the basis of facility operation. RRP is large and complex facility and operated based on automatic and remote system. For efficient material accounting viewpoint, the system especially automatic data collection is established using RRP computer network. The paper describes the outline of material accountancy system, the structure of RRP computer network including how to collect the source data, to convert the batch data and the reporting. (author)

  18. US national material control and accounting system

    International Nuclear Information System (INIS)

    Smith, C.N.

    1984-01-01

    The State System of Accounting and Control (SSAC) for fuel cycle facilities in the licensed, commercial sector of the US nuclear community, and details of the material control and accounting measures dealing with the national safeguards program are discussed. The concept and role of the Fundamental Nuclear Material Control (FNMC) Plan is discussed. Also, the relationship between the national safeguards program and the international safeguards program of the US SSAC are described

  19. Dynamic material accountancy in an integrated safeguards system

    International Nuclear Information System (INIS)

    Murrell, J.S.

    1979-01-01

    The nuclear material safeguards system at the Portsmouth Gaseous Diffusion Plant is currently being improved. A new material control system will provide computerized monitoring and accountability, and a new physical protection system will provide upgraded perimeter and portal entry monitoring. The control system incorporates remote computer terminals at all processing, transfer and storage areas throughout the plant. Terminal equipment is interfaced to a computer through teletype equipment. A typical terminal transaction would require verification that the particular activity (material movement or process operation) is authorized, identifying the container involved, weighing the container, and then verifying the enrichment with non-destructive assay instrumentation. The system, when fully operational, will provide near real-time accountability for each eight-hour work shift for all items in process. (author)

  20. Dynamic material accountancy in an integrated safeguards system

    International Nuclear Information System (INIS)

    Murrell, J.S.

    1978-01-01

    The nuclear material safeguards system at the Portsmouth Gaseous Diffusion Plant is currently being improved. A new material control system will provide computerized monitoring and accountability, and a new physical protection system will provide upgraded perimeter and portal entry monitoring. The control system incorporates remote computer terminals at all processing, transfer, and storage areas throughout the plant. Terminal equipment is interfaced to a computer through teletype equipment. A typical terminal transaction would require verification that the particular activity (material movement or process operation) is authorized, identifying the container involved, weighing the container, and then verifying the enrichment with non-destructive assay instrumentation. The system, when fully operational, will provide near real-time accountability for each eight-hour work shift for all items in process

  1. Safeguards Accountability Network accountability and materials management

    International Nuclear Information System (INIS)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is a computerized on-line accountability system for the safeguards accountability control of nuclear materials inventories at Rocky Flats Plant. SAN is a dedicated accountability system utilizing source documents filled out on the shop floor as its base. The system incorporates double entry accounting and is developed around the Material Balance Area (MBA) concept. MBA custodians enter transaction information from source documents prepared by personnel in the process areas directly into the SAN system. This provides a somewhat near-real time perpetual inventory system which has limited interaction with MBA custodians. MBA custodians are permitted to inquire into the system and status items on inventory. They are also responsible for the accuracy of the accountability information used as input to the system for their MBA. Monthly audits by the Nuclear Materials Control group assure the timeliness and accuracy of SAN accountability information

  2. Safeguards Accountability Network accountability and materials management

    International Nuclear Information System (INIS)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an on-line accountability system used by Rocky Flats Plant to provide accountability control of its nuclear material inventory. The system is also used to monitor and evaluate the use of the nuclear material inventory against programmatic objectives for materials management. The SAN system utilizes two Harris 800 Computers as central processing units. Enhancement plans are currently being formulated to provide automated data collection from process operations on the shop floor and from non-destructive analysis safeguards instrumentation. SAN, discussed in this paper, is an excellent system for basic accountability control of nuclear materials inventories and is a quite useful tool in evaluating the efficient use of nuclear materials inventories at Rocky Flats Plant

  3. Security features of a nuclear material accounting system

    International Nuclear Information System (INIS)

    Erkkila, B.H.

    1988-01-01

    The Los Alamos Nuclear Material Accounting and Safeguards System (MASS) is a near-real-time accountability system for bulk materials, discrete items, and materials undergoing dynamic processing. MASS has evolved from a 80-column, card-based process control system to a very sophisticated computer system. Recently, the computer hardware was upgraded to a modern transaction oriented central computer system designed to accommodate extensive growth in the foreseeable future. The security of the MASS computer system is provided through various access controls. There are two kinds of access controls to be addressed. They are physical access control to the hardware which make up the system and access control to the software. There are many features which provide a measure of security to the hardware that are discussed. Access to the software is controlled by a security password. Access to various transaction activities in the system is controlled through the level of MASS under privilege. Details of MASS user privilege are discussed

  4. Safeguards research: assessing material control and accounting systems

    International Nuclear Information System (INIS)

    Maimoni, A.

    1977-01-01

    The Laboratory is working for the Nuclear Regulatory Commission to improve the safeguarding of special nuclear material at nuclear fuel processing facilities, to provide a basis for improved regulations for material control and accounting systems, and to develop an assessment procedure for verifying compliance with these regulations. Early work included setting up a hierarchy of safeguard objectives and a set of measurable parameters with which systems performance to meet those objectives can be measured. Present work has focused on developing a computerized assessment procedure. We have also completed a test bed (based on a plutonium nitrate storage area) to identify and correct problems in the procedure and to show how this procedure can be used to evaluate the performance of an applicant's material control and accounting system

  5. The establishment of computer system for nuclear material accounting

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Park, Ho Joon

    1988-01-01

    Computer based nuclear material accountancy system will not only increase the credibility of KOREA-IAEA safeguards agreement and bilateral agreements but also decrease the man-power needed to carry out the inspection activity at state level and at facility level. Computer software for nuclear material accounting for and control has been materialized the application to both item and bulk facilities and software for database at state level has been also established to maintain up -to-date status of nation-wide nuclear material inventory. Computer recordings and reporting have been realized to fulfill the national and international commitments to nuclear material accounting for and control. The exchange of information related to nuclear material accounting for has become possible by PC diskettes. (Author)

  6. Overview of DYMCAS, the Y-12 Material Control And Accountability System

    International Nuclear Information System (INIS)

    Alspaugh, D. H.

    2001-01-01

    This paper gives an overview of DYMCAS, the material control and accountability information system for the Y-12 National Security Complex. A common misconception, even within the DOE community, understates the nature and complexity of material control and accountability (MC and A) systems, likening them to parcel delivery systems tracking packages at various locations or banking systems that account for money, down to the penny. A major point set forth in this paper is that MC and A systems such as DYMCAS can be and often are very complex. Given accountability reporting requirements and the critical and sensitive nature of the task, no MC and A system can be simple. The complexity of site-level accountability systems, however, varies dramatically depending on the amounts, kinds, and forms of nuclear materials and the kinds of processing performed at the site. Some accountability systems are tailored to unique and highly complex site-level materials and material processing and, consequently, are highly complex systems. Sites with less complexity require less complex accountability systems, and where processes and practices are the same or similar, sites on the mid-to-low end of the complexity scale can effectively utilize a standard accountability system. In addition to being complex, a unique feature of DYMCAS is its integration with the site production control and manufacturing system. This paper will review the advantages of such integration, as well as related challenges, and make the point that the effectiveness of complex MC and A systems can be significantly enhanced through appropriate systems integration

  7. Development of data base system for nuclear material accountancy data at PNC

    International Nuclear Information System (INIS)

    Hirosawa, N.; Akiba, Mitsunori; Nakagima, Kiyoshi; Usui, Shinichi; Tosa, Kiyofumi; Hashimoto, Kazuyuki.

    1993-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty(NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to inquiries from STA can be carried out by the data base system which has free item searching procedure. The present paper introduces 'Development of Data Base System for Nuclear Material Accountancy Data at PNC'. (author)

  8. Development of a comprehensive nuclear materials accountancy system at JAEA

    International Nuclear Information System (INIS)

    Takeda, Hideyuki; Usami, Masayuki; Hirosawa, Naonori; Fujita, Yoshihisa; Kodani, Yoshiki; Komata, Kazuhiro

    2007-01-01

    The Japan Atomic Energy Agency (JAEA) is submitting various types of accounting reports of international controlled materials to the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) based on domestic laws and regulations. JAEA developed a comprehensive Nuclear Material Accountancy System to achieve uniform management of the data of each facility by using a company-wide database. Personal computers in each facility are connected throughout the company using an in-house network to create the comprehensive Nuclear Material Accountancy System. This System uses personal computers to facilitate timely communication and for easy maintenance and operation. Efficient data processing and quality control functions for accountancy reporting are also realized by this System. In addition, the System has the ability to extract and summarize data about Plutonium Management in the company for public announcement. This report introduces and describes the details and functions of this System. (author)

  9. The development of nuclear material accountability system - software user's manual

    International Nuclear Information System (INIS)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig

  10. Local Area Network Material Accounting System (LANMAS) Functions and Features Overview

    International Nuclear Information System (INIS)

    Robichaux, J.J.

    1998-07-01

    The Local Area Network Material Accounting System (LANMAS) application is a standardized approach to comply with the DOE Order 5633.3B, control and Accountability of Nuclear Material, material accounting requirements. This paper provides a general overview of the functions and features included in the LANMAS application

  11. Outline of a computerized nuclear material accounting system applicable to nuclear power reactors

    International Nuclear Information System (INIS)

    Handshuh, J.W.

    1975-01-01

    A computerized nuclear material accounting system is described which enables a utility to account for its material throughout the entire fuel cycle. From input of transactions, the system records and reports inventories and transactions by accounts which the user may establish for discrete locations, item control areas, further subdivisions, and material types. Account numbers are designed so that accounts and records are automatically sorted in the order desired. The system also generates the Material Status Reports for the Nuclear Regulatory Commission

  12. Basic concepts of materials accounting

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    The importance of accounting for nuclear materials to the efficient, safe, and economical operation of nuclear facilities is introduced, and the following topics are covered: material balance equation; item control areas; material balance uncertainty; decision procedures for materials accounting; conventional and near-real-time accounting; regulatory requirements of the US Department of Energy and the Nuclear Regulatory Commission; and a summary related to the development of a materials accounting system to implement the basic concepts described. The summary includes a section on each of the following: problem definition, system objectives, and system design

  13. The users manual and concepts of nuclear materials accounting system

    International Nuclear Information System (INIS)

    Lee, Byung Du; Jeon, In

    1996-03-01

    This report is to describe the concepts, operation status and user's manuals of nuclear materials accounting system which was developed to not only make out, report and manage the IAEA accounting reports but also maintain the accounting information. Therefore, facility operator could effectively make use of the accounting system without a special training by using this report. 3 tabs., 15 figs., (Author) .new

  14. A system of nuclear material accountancy in the JAERI

    International Nuclear Information System (INIS)

    Kase, Toshio; Nishizawa, Satoshi; Takahashi, Yoshindo

    1983-05-01

    Pursuant to the domestic law and regulations revised in 1978 as to be conformed to the requirements specified in the Safeguards Agreement under the Non-Proliferation Treaty (NPT), the JAERI's system of nuclear material accountancy has been effectively developed. The system of accountancy in the JAERI is based on the information treatment by the computer. The data of nuclear material are retained batchwisely together with their complicate history reflected the inventory changes and other transactions. The reports represented these data are prepared and submitted to the IAEA through the Government every month. The inspections are frequently conducted to the JAERI to verify the material appeared in the reports. Item counting, item identification and non-destructive assay technique are brought to the verification. In some cases, seals of the Government and the IAEA are applied to the nuclear material at the inspections, as their containment measures. The surveillance camera is also installed in the facility to look whole view of reactor room and spent fuel pond. In this paper, the general safeguards application and its corresponding accountancy system on JAERI's nuclear facility are described. (author)

  15. Development and operation of nuclear material accounting system of JAERI

    International Nuclear Information System (INIS)

    Obata, Takashi; Numata, Kazuyoshi; Namiki, Shinji; Yamauchi, Takahiro

    2003-01-01

    For the nuclear material accounting system, the mainframe computer had been used in Japan Atomic Energy Research Institute (JAERI). For the purpose of more flexible use and easy operation, the PC base accounting system has been developed since 1999, and operation started from October, 2002. This system consists of the server with the database software and the client PC with original application software. The functions of this system are the input and edit of data, the creation of inspection correspondence data, and creation of a report to the states. Furthermore, it is also possible to create the Web application which used accounting data on a user level by using the programming language. Now, this system is being specialized in JAERI, but it is during a plan to develop as a system which can be also used at other institutions and organization. In the paper, the outline and operating situation of the nuclear material accounting system of JAERI are presented. (author)

  16. Modelling adversary actions against a nuclear material accounting system

    International Nuclear Information System (INIS)

    Lim, J.J.; Huebel, J.G.

    1979-01-01

    A typical nuclear material accounting system employing double-entry bookkeeping is described. A logic diagram is used to model the interactions of the accounting system and the adversary when he attempts to thwart it. Boolean equations are derived from the logic diagram; solution of these equations yields the accounts and records through which the adversary may disguise a SSNM theft and the collusion requirements needed to accomplish this feat. Some technical highlights of the logic diagram are also discussed

  17. Role of materials accounting in integrated safeguards systems for reprocessing plants

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.

    1981-01-01

    Integration of materials accounting and containment/surveillance techniques for international safeguards requires careful examination and definition of suitable inspector activities for verification of operator's materials accounting data. The inspector's verification procedures are designed to protect against data falsification and/or the use of measurement uncertainties to conceal missing material. Materials accounting activities are developed to provide an effective international safeguards system when combined with containment/surveillance activities described in a companion paper

  18. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  19. Implementing of the nuclear materials accounting and control computerized system at JINR

    International Nuclear Information System (INIS)

    Dobryanskij, V.M.; Kalyakin, N.N.; Koltin, G.P.; Samojlov, V.N.; Cheker, A.V.; Shestakov, B.A.

    2000-01-01

    The results of the development of the computerized nuclear materials accounting system at the Joint Institute for Nuclear Research (JINR) are submitted. This work was carried out under Russian-American Nuclear Materials Protection, Control and Accounting (MPCandA) Program. The System was implemented at the Institute, it was attested to work with sensitive information. The computerized information nuclear materials accounting and control system, named MTIS (Materials Tracking Information System), is intended for the automated accounting of the nuclear materials used in JINR, tracking their moving, changes of their inventory amounts, preparation of the required documentation, and also for information support of the measures spent in the JINR on MPCandA program. MTIS can prepare reports for federal level and can also generate data to be reported for internal purposes. MTIS includes as one of the subsystems a program module to prepare reporting information to the Federal Information System (FIS). The system MTIS provides control of access to the database (DB), protection of the information against the non-authorized access, division of the data into the sensitive and non-sensitive data. (author)

  20. Development of a generic, computerized nuclear material accountability system: NucMAS

    International Nuclear Information System (INIS)

    Cornell, M.D.; O'Leary, J.M.

    1987-01-01

    The application NucMAS provides basic computerized accountability functions for the Savannah River Plant (SRP) Separations Department Material Balance Areas (MBA's). These functions include data entry, data management, calculations, and report generation. NucMAS can be used both for routine reporting to the SRP central Material Control and Accounting (MC and A) system and for rapid ad hoc queries in emergency situations. The system is designed to work with any process handling one or more of the 17 accountable nuclear materials specified by the Department of Energy (DOE). It relies on user-supplied configuration data to drive data prompts, report headings, data validations, and calculations

  1. The upgrade of nuclear material accounting system at KAERI

    International Nuclear Information System (INIS)

    Kim, Hyun Jo; Kim, Hyun Sook; Park, Ho Jun; Ko, Han Suk; Lee, Byung Doo

    2010-01-01

    The agreement between the government of Republic Of Korea (ROK) and the IAEA for the application of safeguards was signed and entered into force in 1975. The Additional Protocol (AP) to the Safeguards Agreement between the ROK and the IAEA was signed in 1999 and entered into force on 19 February 2004. Also, Implementation of Integrated Safeguards (IS) was started on 1 July, 2008 after a draw of the broader conclusion. The IAEA provides 2 hours notification for Random Interim Inspection (RII) under IS. For RII, the facility has to prepare the inspection documents in a short time. Therefore, KAERI (Korea Atomic Energy Research Institute) developed a new computerized nuclear material accounting system named KASIS (KAERI Safeguards Information treatment System) to treat the data by on-line for RII. For the efficient IS implementation, KAERI has a plan to upgrade the system to reflect the accounting approaches or reporting procedure according to facility characteristic. This paper describes the upgrade of the nuclear material accounting system and the efforts to reduce the burden of the facility operators

  2. The development of nuclear material accountability system - software user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig.

  3. Principles of near-real-time materials accounting and control systems

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The general structural features of a national system of accountability and control and the interfaces with the IAEA safeguards system are considered. Techniques for carrying out the design of such systems, including modeling and simulation, are discussed. Measures of systems performance and methods for evaluating those measures are described. Examples of the safeguards design process for selected fuel-cycle facilities will be presented. The purpose of this session is to enable participants to: (1) identify the major components of an effective national system of accountability for nuclear materials; (2) describe qualitatively methods for designing an accountability system; (3) describe suitable performance measures for an effective accountability system; and (4) identify special safeguards design considerations and applications to selected fuel-cycle facilities

  4. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  5. Report of the Material Control and Material Accounting Task Force: the role of material control and material accounting in the safeguards program

    International Nuclear Information System (INIS)

    1978-03-01

    Results are presented of NRC Task Force investigations to identify the functions of a safeguards program in relation to the NRC safeguards objective, define the role and objectives of material control and material accounting systems within that program, develop goals for material control and material accounting based on those roles and objectives, assess current material control and material accounting requirements and performance levels in the light of the goals, and recommend future actions needed to attain the proposed goals. It was found that the major contribution of material accounting to the safeguards program is in support of the assurance function. It also can make secondary contributions to the prevention and response functions. In the important area of loss detection, a response measure, it is felt that limitations inherent in material accounting for some fuel cycle operations limit its ability to operate as a primary detection system to detect a five formula kilogram loss with high assurance (defined by the Task Force as a probability of detection of 90 percent or more) and that, in those cases, material accounting can act only in a backup role. Physical security and material control must make the primary contributions to the prevention and detection of theft, so that safeguards do not rely primarily for detection capabilities on material accounting. There are several areas of accounting that require more emphasis than is offered by the current regulatory base. These areas include: timely shipper-receiver difference analysis and reconciliation; a demand physical inventory capability; improved loss localization;discard measurement verification; timely recovery of scrap; improved measurement and record systems; and limits on cumulative inventory differences and shipper-receiver differences. An increased NRC capability for monitoring and analyzing licensee accounting data and more timely and detailed submittals of data to NRC by licensees are recommended

  6. Materials accounting system for an IBM PC

    International Nuclear Information System (INIS)

    Bearse, R.C.; Thomas, R.J.; Henslee, S.P.; Jackson, B.G.; Tracy, D.B.; Pace, D.M.

    1986-01-01

    We have adapted the Los Alamos MASS accounting system for use on an IBM PC/AT at the Fuels Manufacturing Facility (FMF) at Argonne National Laboratory-West (ANL-WEST) in Idaho Falls, Idaho. Cost of hardware and proprietary software was less than $10,000 per station. The system consists of three stations between which accounting information is transferred using floppy disks accompanying special nuclear material shipments. The programs were implemented in dBASEIII and were compiled using the proprietary software CLIPPER. Modifications to the inventory can be posted in just a few minutes, and operator/computer interaction is nearly instantaneous. After the records are built by the user, it takes 4 to 5 seconds to post the results to the database files. A version of this system was specially adapted and is currently in use at the FMF facility at Argonne National Laboratory in Idaho Falls. Initial satisfaction is adequate and software and hardware problems are minimal

  7. Nuclear material accounting: The next generation

    International Nuclear Information System (INIS)

    Kern, E.A.; McRae, L.P.; O'Callaghan, P.B.; Yearsley, D.

    1992-07-01

    The Westinghouse Hanford company (Westinghouse Hanford) and the Los Alamos National Laboratory (LANL) have undertaken a joint effort to develop a new generation material accounting system. The system will incorporate the latest advances in microcomputer hardware, software, and network technology. This system, the Local Area Network Material Accounting System (LANMAS), offers greater performance and functionality at a reduced overall cost. It also offers the possibility of establishing a standard among DOE and NRC facilities for material accounting. This report provides a discussion of this system

  8. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Roberts, N.J.

    1989-01-01

    This presentation gives an overview of the accounting system used at the Los Alamos National Laboratory by the Los Alamos Nuclear Material Accounting and Safeguards System (MASS). This system processes accounting data in real time for bulk materials, discrete items, and materials undergoing dynamic processing. The following topics are covered in this chapter: definitions; nuclear material storage; nuclear material storage; computer system; measurement control program; inventory differences; and current programs and future plans

  9. Assessing the integrity of local area network materials accountability systems against insider threats

    International Nuclear Information System (INIS)

    Jones, E.; Sicherman, A.

    1996-07-01

    DOE facilities rely increasingly on computerized systems to manage nuclear materials accountability data and to protect against diversion of nuclear materials or other malevolent acts (e.g., hoax due to falsified data) by insider threats. Aspects of modern computerized material accountability (MA) systems including powerful personal computers and applications on networks, mixed security environments, and more users with increased knowledge, skills and abilities help heighten the concern about insider threats to the integrity of the system. In this paper, we describe a methodology for assessing MA applications to help decision makers identify ways of and compare options for preventing or mitigating possible additional risks from the insider threat. We illustrate insights from applying the methodology to local area network materials accountability systems

  10. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. These concepts identify ways in which material accounting systems can be used to enable effective monitoring of authorized movement of nuclear material through physical protection boundaries. Concepts are also discussed for monitoring user access to nuclear material and for tagging user identification to material accounting transactions through physical protection functions. These result in benefits in detecting diversion and in positively tracing material movement. Finally, coordination of safeguards information from both subsystems in such an integrated system through a safeguards coordination center is addressed with emphasis on appropriate response in case of discrepancies

  11. Nuclear material accounting handbook

    International Nuclear Information System (INIS)

    2008-01-01

    The handbook documents existing best practices and methods used to account for nuclear material and to prepare the required nuclear material accounting reports for submission to the IAEA. It provides a description of the processes and steps necessary for the establishment, implementation and maintenance of nuclear material accounting and control at the material balance area, facility and State levels, and defines the relevant terms. This handbook serves the needs of State personnel at various levels, including State authorities, facility operators and participants in training programmes. It can assist in developing and maintaining accounting systems which will support a State's ability to account for its nuclear material such that the IAEA can verify State declarations, and at the same time support the State's ability to ensure its nuclear security. In addition, the handbook is useful for IAEA staff, who is closely involved with nuclear material accounting. The handbook includes the steps and procedures a State needs to set up and maintain to provide assurance that it can account for its nuclear material and submit the prescribed nuclear material accounting reports defined in Section 1 and described in Sections 3 and 4 in terms of the relevant agreement(s), thereby enabling the IAEA to discharge its verification function as defined in Section 1 and described in Sections 3 and 4. The contents of the handbook are based on the model safeguards agreement and, where applicable, there will also be reference to the model additional protocol. As a State using The handbook consists of five sections. In Section 1, definitions or descriptions of terms used are provided in relation to where the IAEA applies safeguards or, for that matter, accounting for and control of nuclear material in a State. The IAEA's approach in applying safeguards in a State is also defined and briefly described, with special emphasis on verification. In Section 2, the obligations of the State

  12. Study on interface between nuclear material accounting system and national nuclear forensic library

    International Nuclear Information System (INIS)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho

    2016-01-01

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library

  13. Study on interface between nuclear material accounting system and national nuclear forensic library

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library.

  14. e-Gamma: Nuclear Material Accountancy and Control System in Brazil

    International Nuclear Information System (INIS)

    Negri Ferreira, S.; Souza Dunley, L.

    2015-01-01

    The Brazilian Nuclear Energy Commission (CNEN) is the government organization responsible for regulating all nuclear activities in Brazil and for ensuring that international safeguards are implemented according to the international agreements. In 2006 CNEN initiated a project aiming at the development and implementation of a web based system (e-Gamma) for on line nuclear material accountancy and control. In January-2014, after three years of beta testing, e-Gamma finally became the official nuclear material accountancy system in Brazil. e-Gamma is a web system hosted in a dedicated server under a secure environment maintained at CNEN headquarters. Secure access is provided by the use of Digital Client Certificate and internal user pre-authorization for login as well as multiple access profiles each one with specific function menus. The System operation is based on source documents for each inventory change prepared and updated by the MBA operators with the help of specific forms with strong validations. After the document conclusion the System records the inventory change in a general ledger. Monthly the officers of CNEN analyzes the general ledgers of each MBA and generates the applicable reports through the System [Inventory Change Reports (ICR), Physical Inventory List (PIL), and Material Balance Report (MBR)]. The System allows the running of managerial queries and has brought to CNEN much more control and traceability of the inventory changes and significant reduction in typing errors, costs and inspection efforts. Therefore, more efficient accountancy verification procedures at national and international levels are expected, as well as remote accountancy verification previous to an inspection. The proposed paper will describe the e-Gamma System, its main features and the oral presentation will contain a brief demonstration of some functionalities through the use of a local version installed on a notebook. (author)

  15. Some basic criteria for using of accountancy common system and nuclear material control

    International Nuclear Information System (INIS)

    Marzo, M.A.; Biaggio, A.L.

    1994-01-01

    Some basic criteria used by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, using in the Accountancy and Control Common System of Nuclear Materials (SCCC) are presented and the control elements are described. The SCCC is a safeguard system used for all nuclear materials present in all nuclear activities executed by Brazil and Argentina. (C.G.C.). 4 refs, 1 tab

  16. Internal accounting system for feed materials in the plutonium fuel fabrication complex at Cadarache

    International Nuclear Information System (INIS)

    Arnal, T.; Guillet, H.

    1976-01-01

    The internal accounting system of the Fabrication and Radiometallurgical Inspection Service (SFER) is basically designed to meet national and international requirements for nuclear materials accountancy as applied to feed materials. The authors discuss the principles underlying this accounting system for the case of the Plutonium Fuel Assembly Fabrication Complex at Cadarache. The sphere of application of the system covers more than 200 work stations and approximately 100 different materials. Some 20000 movements of feed materials per year represent transfers of a cumulative mass much greater than one ton of fissile material. A data processing system has therefore become essential in order to ensure the rapid and reliable acquisition of accounting data relating to these movements. The authors describe the system (definition of stations and material codes, description of supporting facilities used) and discuss the mode of acquisition with particular reference to relative speed of action. In conclusion, the authors indicate that the system offers interesting possibilities, in addition to its original purpose, in the following areas: Preparation of material balances; compliance with safety regulations to avert the risk of criticality; discouragement of possible diversion. (author)

  17. The Status of Development on a Web-Based Nuclear Material Accounting System at KAERI

    International Nuclear Information System (INIS)

    Lee, Byungdoo; Kim, Inchul; Lee, Seungho; Kim, Hyunjo

    2014-01-01

    The Integrated Safeguards (IS) has been applied to 10 nuclear facilities and 1 location outside facility (LOF) at the Korea Atomic Energy Research Institute (KAERI) since July 2008. One of the major changes in the implementation of safeguards under the IS is to apply the concept of a Random Interim Inspection (RII) instead of an interim inspection. The RII plan is notified within a few hours under the IS. It is thus difficult for facility operators to prepare the inspection documents within a short time if they do not periodically manage and process the nuclear material accounting data at each facility. To resolve these issues, KAERI developed a Web-based accounting system with the function of a near real-time accounting (NRTA) system to effectively and efficiently manage the nuclear material accounting data produced at the nuclear facilities and cope with a short notice inspection under the IS, called KASIS (KAeri Safeguards Information treatment System). The facility operators must input the accounting data on the inventory changes, which are the transfers of nuclear materials among the nuclear facilities and the chemical/physical composition changes, into the KASIS. KAERI also established an RFID system for controlling and managing the transfer of nuclear material and/or radioactive materials between the nuclear facilities for the purpose of nuclear safety management, and developed the nuclear material accounting system with the functions of inventory management of nuclear material at the facility level

  18. The Status of Development on a Web-Based Nuclear Material Accounting System at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byungdoo; Kim, Inchul; Lee, Seungho; Kim, Hyunjo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Integrated Safeguards (IS) has been applied to 10 nuclear facilities and 1 location outside facility (LOF) at the Korea Atomic Energy Research Institute (KAERI) since July 2008. One of the major changes in the implementation of safeguards under the IS is to apply the concept of a Random Interim Inspection (RII) instead of an interim inspection. The RII plan is notified within a few hours under the IS. It is thus difficult for facility operators to prepare the inspection documents within a short time if they do not periodically manage and process the nuclear material accounting data at each facility. To resolve these issues, KAERI developed a Web-based accounting system with the function of a near real-time accounting (NRTA) system to effectively and efficiently manage the nuclear material accounting data produced at the nuclear facilities and cope with a short notice inspection under the IS, called KASIS (KAeri Safeguards Information treatment System). The facility operators must input the accounting data on the inventory changes, which are the transfers of nuclear materials among the nuclear facilities and the chemical/physical composition changes, into the KASIS. KAERI also established an RFID system for controlling and managing the transfer of nuclear material and/or radioactive materials between the nuclear facilities for the purpose of nuclear safety management, and developed the nuclear material accounting system with the functions of inventory management of nuclear material at the facility level.

  19. An information system for sustainable materials management with material flow accounting and waste input–output analysis

    Directory of Open Access Journals (Sweden)

    Pi-Cheng Chen

    2017-05-01

    Full Text Available Sustainable materials management focuses on the dynamics of materials in economic and environmental activities to optimize material use efficiency and reduce environmental impact. A preliminary web-based information system is thus developed to analyze the issues of resource consumption and waste generation, enabling countries to manage resources and wastes from a life cycle perspective. This pioneering system features a four-layer framework that integrates information on physical flows and economic activities with material flow accounting and waste input–output table analysis. Within this framework, several applications were developed for different waste and resource management stakeholders. The hierarchical and interactive dashboards allow convenient overview of economy-wide material accounts, waste streams, and secondary resource circulation. Furthermore, the system can trace material flows through associated production supply chain and consumption activities. Integrated with economic models; this system can predict the possible overloading on the current waste management facility capacities and provide decision support for designing strategies to approach resource sustainability. The limitations of current system are specified for directing further enhancement of functionalities.

  20. Supporting the material control and accountancy system with physical protection system features

    International Nuclear Information System (INIS)

    Miyoshi, D.S.; Olson, C.E.; Caskey, D.L.

    1984-01-01

    Most physical security functions can be accomplished by a range of alternative features. Careful design can provide comparable levels of security regardless of which option is chosen, albeit with possible differences in cost and efficiency. However, the effectiveness and especially the cost and efficiency of the material control and accounting system may be strongly influenced by the selection of a particular design approach to physical security. In this paper, a series of examples are cited to illustrate the effects that particular physical protection design choices may have. The examples have been chosen from several systems engineering projects at facilities within the DOE nuclear community. These examples are generalized, and a series of design principles are proposed for integrating physical security with material control and accounting by appropriate selection of alternative features. 2 references, 6 figures

  1. Report of the Material Control and Material Accounting Task Force: appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Five appendixes are presented. The first comprises a chronological development of material control and material accounting requirements. The second gives a description of current NRC control and material accounting requirements, practices, and capabilities. In the third a description is given of NRC's research and technical assistance program concerning the measurement and measurement quality control elements of licensee material control and material accounting systems. The fourth covers some special considerations related to inventory differences and their analysis. In the fifth a detailed description is presented of the evaluation methodologies used in development of improved material control and material accounting systems

  2. Towards a new system of accounting of nuclear material

    International Nuclear Information System (INIS)

    Maceiras, Elena; Fernandez Moreno, Sonia; Castro, Laura B.; Saavedra, Analia D.; Mairal, M.L.; Valentino, Lucia I.; Vicens, Hugo E.; Llacer, Carlos D.

    1999-01-01

    The Nuclear Regulatory Authority (NRA) of Argentina has, among other functions, to ensure the fulfilment of national nuclear regulatory standards and all international safeguards commitments assumed by Argentina, particularly those related to the accounting and control of nuclear materials. To fulfil this responsibility, national inspections and audits of the operator's accounting and measurement systems are carried out, generating a great deal of data to be processed and evaluated. To manage this information in an efficient way, the RNA has implemented a control system composed by three database: SCMN, SIS and SOP, which interact amongst them. The objectives and functions of this integrated system and the achieved results to date are described in the present paper. (author)

  3. Systems analysis for materials control and accountancy technology

    International Nuclear Information System (INIS)

    Daly, T.A.; Bucher, R.G.; Rothman, A.B.; Charak, I.; Persiani, P.J.

    1987-01-01

    The objective is to upgrade Materials Control and Accountancy (MCandA) technology over the flows of special nuclear materials throughout the DOE complex of fuel cycles. The program focus is to develop a ''Management Tool'' for decision support in evaluating MCandA upgrades, and invalidating the MCandA aspects of the Master Safeguards and Security Agreements (MSSA) effectiveness. The approach is the computerization of the nuclear materials flow charts, identification of key measurement locations in the production and product fuel cycle, and construct data information processing at each measurement location. The program is to provide the Office of Safeguards and Security (OSS) with a timely management decision support system in planning MCandA safeguards technology upgrades over the nuclear materials production and product cycles

  4. Systems of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    The implementation of safeguards agreements has always involved governmental organizations to a greater or lesser extent, according to the practices of the State concerned. When the Safeguards Committee 1970 defined the structure and content of agreements required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, particular attention was paid to the contacts between States and the Agency during the implementation of such agreements. The basic idea was that in each State a national organization would, as far as possible, lay the foundations for international safeguards. Accordingly, NPT safeguards agreements contain the obligation of the State to establish and maintain a 'State's system of accountancy for and control of nuclear material'. The Agency document describing the structure and content of NPT safeguards agreements, INFCIRC/153, also known as the 'Blue Book', lays down the basic requirements for a State's system of accounting for and control of nuclear material - SSAC for short. The same document stipulates that the Agency in its safeguards work should take due account of the technical effectiveness of the SSAC. In practice, the effectiveness of SSACs may differ widely. To take due account of their effectiveness, the Agency has to analyse them, note the elements included in them and the requirements they meet, and consider the particular situations they are designed to cope with

  5. Automated processing of nuclear materials accounting data

    International Nuclear Information System (INIS)

    Straka, J.; Pacak, P.; Moravec, J.

    1980-01-01

    An automated system was developed of nuclear materials accounting in Czechoslovakia. The system allows automating data processing including data storage. It comprises keeping records of inventories and material balance. In designing the system, the aim of the IAEA was taken into consideration, ie., building a unified information system interconnected with state-run systems of accounting and checking nuclear materials in the signatory countries of the non-proliferation treaty. The nuclear materials accounting programs were written in PL-1 and were tested at an EC 1040 computer at UJV Rez where also the routine data processing takes place. (B.S.)

  6. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  7. Automated Material Accounting Statistics System at Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    Eggers, R.F.; Giese, E.W.; Kodman, G.P.

    1986-01-01

    The Automated Material Accounting Statistics System (AMASS) was developed under the sponsorship of the U.S. Nuclear Regulatory Commission. The AMASS was developed when it was realized that classical methods of error propagation, based only on measured quantities, did not properly control false alarm rate and that errors other than measurement errors affect inventory differences. The classical assumptions that (1) the mean value of the inventory difference (ID) for a particular nuclear material processing facility is zero, and (2) the variance of the inventory difference is due only to errors in measured quantities are overly simplistic. The AMASS provides a valuable statistical tool for estimating the true mean value and variance of the ID data produced by a particular material balance area. In addition it provides statistical methods of testing both individual and cumulative sums of IDs, taking into account the estimated mean value and total observed variance of the ID

  8. Federal Automated Information System of Nuclear Material Control and Accounting: Uniform System of Reporting Documents

    International Nuclear Information System (INIS)

    Pitel, M V; Kasumova, L; Babcock, R A; Heinberg, C

    2003-01-01

    One of the fundamental regulations of the Russian State System for Nuclear Material Accounting and Control (SSAC), ''Basic Nuclear Material Control and Accounting Rules,'' directed that a uniform report system be developed to support the operation of the SSAC. According to the ''Regulation on State Nuclear Material Control and Accounting,'' adopted by the Russian Federation Government, Minatom of Russia is response for the development and adoption of report forms, as well as the reporting procedure and schedule. The report forms are being developed in tandem with the creation of an automated national nuclear material control and accounting system, the Federal Information System (FIS). The forms are in different stages of development and implementation. The first report forms (the Summarized Inventory Listing (SIL), Summarized Inventory Change Report (SICR) and federal and agency registers of nuclear material) have already been created and implemented. The second set of reports (nuclear material movement reports and the special anomaly report) is currently in development. A third set of reports (reports on import/export operations, and foreign nuclear material temporarily located in the Russian Federation) is still in the conceptual stage. To facilitate the development of a unified document system, the FIS must establish a uniform philosophy for the reporting system and determine the requirements for each reporting level, adhering to the following principles: completeness--the unified report system provides the entire range of information that the FIS requires to perform SSAC tasks; requisite level of detail; hierarchical structure--each report is based on the information provided in a lower-level report and is the source of information for reports at the next highest level; consistency checking--reports can be checked against other reports. A similar philosophy should eliminate redundancy in the different reports, support a uniform approach to the contents of

  9. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.; Roche, Charles T.; Campbell, Billy J.; Hammond, Glenn A.; Meppen, Bruce W.; Brown, Richard F.

    2011-01-01

    A nuclear material control and accountability (MC and A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC and A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC and A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC and A system (2) A fault tree of the operating MC and A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC and A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area (MBA)) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance

  10. Experience gained with Euratom's nuclear materials accounting and reporting system

    International Nuclear Information System (INIS)

    Schmitt, M.; Kschwendt, H.; Maxwell, A.G.; Littlejohn, M.

    1979-01-01

    The entry into force of the Verification Agreement in early 1977, linked to the wish to update the old Euratom System created in 1959, required that a new Euratom system (Community Regulation) be established. The main aspects of this new system, together with the practical experience gained in one and a half years operation, are presented. Certain basic accounting principles incorporated in the Euratom system, which are somewhat different from IAEA principles, are discussed in detail. This includes the notion of accounting date, some correction procedure aspects as well as the continuous updating of the book inventory to the physical reality in form of inventory changes. The effect of these differences when comparing IAEA and Euratom data is also mentioned. Furthermore, certain of the verifications carried out routinely on the operator's reports as well as on the reports submitted by Euratom to IAEA, are described and quantifications are given. Some mention is also made of areas where Euratom's role goes beyond that of the IAEA, i.e. the reporting implications of accounting for material by origin and control of particular use of the materials as well as verification of ore production and processing activities. Finally, improvements and simplifications concerning reports to the IAEA are proposed. (author)

  11. Nuclear material control and accounting system evaluation in uranium conversion operations

    International Nuclear Information System (INIS)

    Moreira, Jose Pontes

    1994-01-01

    The Nuclear Material Control and Accounting Systems in uranium conversion operations are described. The conversion plant, uses ammonium diuranate (ADU), as starting material for the production of uranium hexafluoride. A combination of accountability and verification measurement is used to verify physical inventory quantities. Two types of inspection are used to minimize the measurements uncertainty of the Material Unaccounted For (MUF) : Attribute inspection and Variation inspection. The mass balance equation is the base of an evaluation of a Material Balance Area (MBA). Statistical inference is employed to facilitate rapid inventory taking and enhance material control of Safeguards. The calculation of one sampling plan for a MBA and the methodology of inspection evaluation are also described. We have two kinds of errors : no detection and false delation. (author)

  12. Los Alamos MAWST software layered on Westinghouse Savannah River Company's nuclear materials accountability system

    International Nuclear Information System (INIS)

    Whitty, W.J.; Smith, J.E.; Davis, J.M. Jr.

    1995-01-01

    The Los Alamos Safeguards Systems Group's Materials Accounting With Sequential Testing (MAWST) computer program was developed to fulfill DOE Order 5633.3B requiring that inventory-difference control limits be based on variance propagation or any other statistically valid technique. Westinghouse Savannah River Company (WSRC) developed a generic computerized accountability system, NucMAS, to satisfy accounting and reporting requirements for material balance areas. NucMAS maintains the calculation methods and the measurement information required to compute nuclear material transactions in elemental and isotopic masses by material type code. The Safeguards Systems Group designed and implemented to WSRC's specifications a software interface application, called NucMASloe. It is a layered product for NucMAS that automatically formats a NucMAS data set to a format compatible with MAWST and runs MAWST. This paper traces the development of NucMASloe from the Software Requirements through the testing and demonstration stages. The general design constraints are described as well as the difficulties encountered on interfacing an external software product (MAWST) with an existing classical accounting structure (NucMAS). The lessons learned from this effort, the design, and some of the software are directly applicable to the Local Area Network Material Accountability System (LANMAS) being sponsored by DOE

  13. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Roberts, N.J.; Erkkila, B.H.; Kelso, H.F.

    1985-01-01

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in Fiscal Year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully

  14. Central Accountability System (CLAS)

    International Nuclear Information System (INIS)

    Hairston, L.A.

    1991-01-01

    The Central Accountability System (CLAS) is a high level accountability system that consolidates data from the site's 39 material balance areas (MBA) for reporting to Westinghouse Savannah River Company (WSRC) management, Department of Energy (DOE) and the Nuclear Materials Management and Safeguards System (NMMSS) in Oak Ridge, TN. Development of the system began in 1989 and became operational in April, 1991. The CLAS system enhances data accuracy and accountability records, resulting in increased productivity and time and cost savings. This paper reports that the system is in compliance with DOE Orders and meets NMMSS reporting requirements. WSRC management is provided with the overall status of the site's nuclear material inventory. CLAS gives WSRC a leading edge in accounting technology and enhances good accounting practices

  15. A design methodology for materials control and accounting information systems

    International Nuclear Information System (INIS)

    Helman, P.; Strittmatter, R.B.

    1987-01-01

    Modern approaches to nuclear materials safeguards have significantly increased the data processing needs of safeguards information systems. Implementing these approaches will require developing efficient, cost-effective designs. Guided by database design research, we are developing a design methodology for distributed materials control and accounting (MCandA) information systems. The methodology considers four design parameters: network topology, allocation of data to nodes, high-level global processing strategy, and local file structures to optimize system performance. Characteristics of system performance that are optimized are response time for an operation, timeliness of data, validity of data, and reliability. The ultimate goal of the research is to develop a comprehensive computerized design tool specifically tailored to the design of MCandA systems

  16. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Roberts, N.J.; Erkkila, B.H.; Kelso, H.F.

    1985-01-01

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in fiscal year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully. 8 refs., 3 figs., 1 tab

  17. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the 'stone sack' to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods

  18. Fuel conditioning facility material accountancy

    International Nuclear Information System (INIS)

    Yacout, A.M.; Bucher, R.G.; Orechwa, Y.

    1995-01-01

    The operation of the Fuel conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. It differs significantly, therefore, from traditional PUREX process facilities in both processing technology and safeguards implications. For example, the fissile material is processed in FCF only in batches and is transferred within the facility only as solid, well-characterized items; there are no liquid steams containing fissile material within the facility, nor entering or leaving the facility. The analysis of a single batch lends itself also to an analytical relationship between the safeguards criteria, such as alarm limit, detection probability, and maximum significant amount of fissile material, and the accounting system's performance, as it is reflected in the variance associated with the estimate of the inventory difference. This relation, together with the sensitivity of the inventory difference to the uncertainties in the measurements, allows a thorough evaluation of the power of the accounting system. The system for the accountancy of the fissile material in the FCF has two main components: a system to gather and store information during the operation of the facility, and a system to interpret this information with regard to meeting safeguards criteria. These are described and the precision of the inventory closure over one batch evaluated

  19. Report of the Material Control and Material Accounting Task Force

    International Nuclear Information System (INIS)

    1978-03-01

    In September 1977 a Task Force was formed to complete a study of the role of material control and material accounting in NRC's safeguards program. The Task Force's assignment was to: define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for the material control and material accounting systems based on their roles and objectives; assess the extent to which the existing safeguards regulatory base meets or provides the capability to meet the recommended goals; and provide direction for material control and material accounting development, including both near-term and long-term upgrades. The study was limited to domestic nuclear facilities possessing significant amounts of plutonium, uranium-233 or highly enriched uranium in unsealed form. The Task Force findings are reported

  20. The role of certified reference materials in material control and accounting

    International Nuclear Information System (INIS)

    Turel, S.P.

    1979-01-01

    One way of providing an adequate material control and accounting system for the nuclear fuel cycle is to calculate material unaccounted for (MUF) after a physical inventory and to compare the limit of error of the MUF value (LEMUF) against prescribed criteria. To achieve a meaningful LEMUF, a programme for the continuing determination of systematic and random errors is necessary. Within this programme it is necessary to achieve traceability of all Special Nuclear Material (SNM) control and accounting measurements to an International/National Measurement System by means of Certified Reference Materials. SNM measurements for control and accounting are made internationally on a great variety of materials using many diverse measurement procedures by a large number of facilities. To achieve valid overall accountability over this great variety of measurements there must be some means of relating all these measurements and their uncertainties to each other. This is best achieved by an International/National Measurement System (IMS/NMS). To this end, all individual measurement systems must be compatible to the IMS/NMS and all measurement results must be traceable to appropriate international/national Primary Certified Reference Materials. To obtain this necessary compatibility for any given SNM measurement system, secondary certified reference materials or working reference materials are needed for every class of SNM and each type of measurement system. Ways to achieve ''traceability'' and the various types of certified reference material are defined and discussed in this paper. (author)

  1. MATERIAL CONTROL ACCOUNTING INMM

    Energy Technology Data Exchange (ETDEWEB)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  2. Development of an integrated system for nuclear material accountancy and control at JAERI

    International Nuclear Information System (INIS)

    Nishimura, Hideo; Nishizawa, Satoshi

    1993-01-01

    This paper describes the design concept and the current status of an integrated system for nuclear material accountancy and control, which is under development at JAERI. We, at JAERI, have decided to update the current system for material accountancy and control and to develop the integrated new system with a consolidated data base in order to augment transparency, credibility and promptness of the system, to materialize a prudent control of obligations required by bilateral nuclear cooperation agreements, and to give information for the physical protection, safely handling, property control and cost-effective use of nuclear material and for public relations. The system is composed of two work-stations operated by UNIX, one for implementation and the other for development, and many terminals located at the headquarters, administrative offices, and research facilities and laboratories. It is connected with a mainframe computer. There are many files on the data base to record inventory changes, book and physical inventories, and statistics on material balances. These files are controlled by a commercial data base management system which enables us to make access to data on the files with a simple query language, spread sheet type software or an application program. (author)

  3. Material control and accounting at Exxon Nuclear, I

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    The nuclear material control and accounting system at Exxon Nuclear will be described in detail. Subjects discussed will include: the basis of the MC and A system, the nuclear materials accounting systems (NMRS and NICS), physical inventory taking, IAEA inspection experience, safeguards organization, measurements and measurement control, MUF evaluation, accounting forms and reports and use of tamper-indicating seals. The general requirements for material accounting and control in this type of a bulk-handling facility are described. The way those requirements are met for the subject areas shown above is illustrated using a reference (Model Plant) version of the Exxon Nuclear plant The difference between the item-accounting procedures used at reactor facilities and the bulk-accounting procedures used at fuel fabrication facilities is discussed in detail

  4. Development and trial operation of a site-wide computerized material accounting system at Kurchatov Institute

    International Nuclear Information System (INIS)

    Roumiantsev, A.N.; Ostroumov, Y.A.; Yevstropov, A.V.

    1997-01-01

    Since August 1994 Kurchatov Institute in cooperation with several US Department of Energy Laboratories has been developing a site-wide computerized material accounting system for nuclear materials. In 1994 a prototype system was put into trial operation at two Kurchatov facilities. Evaluation of this prototype led to the development of a new computerized material accounting system named KI-MACS, which has been operational since 1996. This system is a site-wide local secure computer network with centralized database capable of dealing with strictly confidential data and performing near-real time accountancy. It utilizes a Microsoft Windows NT operating system with SQL Server and Visual Basic, and has a 'star'-like network architecture. KI-MACS is capable of dealing with materials in itemized and bulk form, and can perform statistical evaluations of measurements and material balance. KI-MACS is fully integrated with bar code equipment, electronic scales, gamma-ray spectrometers and an Active Well Coincidence Counter, thus providing almost on-line evaluation and utilization of results of measurements, item identification and accounting. At present KI-MACS is being used in Physical Inventory Taking at the Kurchatov Central Storage Facility, and by the end of 1997 will be installed at twelve Kurchatov nuclear facilities

  5. Development and trial operation of a site-wide computerized material accounting system at Kurchatov Institute

    Energy Technology Data Exchange (ETDEWEB)

    Roumiantsev, A.N.; Ostroumov, Y.A.; Yevstropov, A.V. [Kurchatov Institute RRC, Moscow (Russian Federation)] [and others

    1997-11-01

    Since August 1994 Kurchatov Institute in cooperation with several US Department of Energy Laboratories has been developing a site-wide computerized material accounting system for nuclear materials. In 1994 a prototype system was put into trial operation at two Kurchatov facilities. Evaluation of this prototype led to the development of a new computerized material accounting system named KI-MACS, which has been operational since 1996. This system is a site-wide local secure computer network with centralized database capable of dealing with strictly confidential data and performing near-real time accountancy. It utilizes a Microsoft Windows NT operating system with SQL Server and Visual Basic, and has a `star`-like network architecture. KI-MACS is capable of dealing with materials in itemized and bulk form, and can perform statistical evaluations of measurements and material balance. KI-MACS is fully integrated with bar code equipment, electronic scales, gamma-ray spectrometers and an Active Well Coincidence Counter, thus providing almost on-line evaluation and utilization of results of measurements, item identification and accounting. At present KI-MACS is being used in Physical Inventory Taking at the Kurchatov Central Storage Facility, and by the end of 1997 will be installed at twelve Kurchatov nuclear facilities.

  6. Dynamic materials accounting for solvent-extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants.

  7. Dynamic materials accounting for solvent-extraction systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants

  8. The material control and accounting system model development in the Radiochemical plant of Siberian Chemical Combine (SChC)

    International Nuclear Information System (INIS)

    Kozyrev, A.S.; Purygin, V.Ya.; Skuratov, V.A.; Lapotkov, A.A.

    1999-01-01

    The nuclear material (NM) control and accounting computerized system is designed to automatically account NM reception, movement and storage at the Radiochemical Plant. The objective of this system development is to provide a constant surveillance over the process material movement, to improve their accountability and administrative work, to upgrade the plant protection against possible NM thefts, stealing and diversion, to rule out any casual errors of operators, to improve the timeliness and significance (reliability) of information about nuclear materials. The NM control and accounting system at the Radiochemical Plant should be based on the computerized network. It must keep track of all the material movements in each Material Balance Areas: material receipt from other plant; material local movement within the plant; material shipment to other plants; generation of required documents about NM movements and its accounting [ru

  9. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  10. Potentiality of an accounting system for nuclear materials in the PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Muto, T.; Aoki, M.; Tsutsumi, M.; Akutsu, H.

    1976-01-01

    The accounting system based on data filing and inquiry processing by the use of an optical mark reader (OMR) has been developed and operated satisfactorily for criticality control and accountancy of nuclear materials in the plutonium facilities of the Power Reactor and Nuclear Fuel Development Corporation (PNC). The OMR system has merits, especially compared with an old chit and punch-card system, such as low cost, abundance of the data included on a single sheet, universality of use for all kinds of material transfers, ease of data correction, and a large capacity. The OMR system is applied to the material transfer and also for physical inventory taking. This system, together with the use of an accurate automatic balance equipped at each glove box, which is generally designated as an accounting unit for the criticality control, generated a MUF of 0.43% for a fuel fabrication campaign of 119 assemblies for a fast reactor, which can be decreased further. In relation to the recent safeguarding situation and also to fitting in with an automatic fuel fabrication process, however, a further development of the present system will be necessary in the near future. This future system is discussed with reference to criticism of the current accountancy system by Rosenbaum and others, and its possible framework with the emphasis on the weighing and reading of numbered items is suggested. (author)

  11. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  12. Some ideas for next-generation controlled nuclear materials accountability techniques

    International Nuclear Information System (INIS)

    Brough, W.; Parrish, C.

    1994-08-01

    Current DOE regulations for Controlled Nuclear Materials (CNM) management have particular accounting problems that have become more evident as computer systems have been designed and programmed to automate the materials accounting functions. Some valuable detailed accounting information is lost with current accounting procedures and some aspects of the procedures are more complicated than need be. In February, 1988, the authors first recommended that the basic concepts of CNM accountability be reviewed, with particular emphasis on developing an Isotopic accountability system as opposed to the present Material-type accountability system. A parallel effort to review the materials measurement program would also be desirable

  13. A system design for the nuclear material accounting reports control based on the intra-net

    International Nuclear Information System (INIS)

    Jeon, I.; Park, S. J.; Min, K. S.

    2003-01-01

    The 34 nuclear facilities, including the nuclear power plants, were on operating in Korea and the Technology Center for Nuclear Control(TCNC) has been submit the nuclear material accounting reports to the government and IAEA. At the start point of this work, all reports were controlled via manually and at now, they were controlled based on the client/server system. The fast progress of the computer and internet communication changes the environment of computing from disk operating system to web based system using internet. So, a new system to access the safeguards information and nuclear material accounting system more convenient was needed. In this thesis, a safeguards information control system including the nuclear material accounting reports at the state level based on the web was designed. The oracle RDBMS (Relational Data Base Management System) was adopted for data base management. And all users can access this program via inter-net using their own computer

  14. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. Integration is approached by coordinating all safeguards information through a safeguards coordination center. This center represents a higher level in a communication, data-processing, and decision-making structure which is needed for efficient real-time operation of the integrated system. The safeguards coordination center functions to assess alarm and warning data required to resolve threats in the safeguards system, coordinate information and interaction involving the material accounting, physical protection, and facility monitoring and control systems, and present a single unified interface for interaction with facility management, facility operations, safeguards system personnel, and response forces

  15. 48 CFR 9904.411 - Cost accounting standard-accounting for acquisition costs of material.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Cost accounting standard-accounting for acquisition costs of material. 9904.411 Section 9904.411 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND...

  16. Overview of an automated, near realtime materials accounting system in use at the Savannah River Plant

    International Nuclear Information System (INIS)

    Clark, W.C. Jr.

    1987-01-01

    A reliable material accounting system is a requirement for the operation of any nuclear facility. At the Savannah River Plant, an automated, near realtime, accounting system has been developed to provide such reliability. The system's design provides timely detection of diversion or accounting problems by monitoring the activity in 18 unit process areas (UPAs). Material balance calculations are performed for each UPA after a batch of material has completed a processing step. In most cases, an inventory difference (ID) for a UPA is established at least every 24 hours. Detection of an accounting problem is further enhanced by an online measurement control program. This program evaluates the performance of most measurement equipment every 12 hours. Error estimates are propagated when a material balance is closed to provide a realtime limit of error for the inventory difference. To minimize false alarms, the data must be reliable and free of input errors. Solution volumes, container identifications, material weights, etc., are all collected via direct computer connections. Manual data input is used only as a backup to the automated system. Automatic data collection also provides a quick and easy method of entering accounting data. Data entry is therefore performed simultaneously with production operations, without reducing throughput. Finally, requests for analytical results required to determine nuclear material concentrations are made online. Concentrations are determined using one of ten assay devices or by analysis performed in a dedicated laboratory. When results are available, the information is posted on the accounting computer and any required adjustments are performed automatically. If necessary, material balances are reclosed to reflect the ID changes caused by a posted results

  17. Control and accountancy of nuclear materials in a uranium enrichment plant

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1985-01-01

    A nuclear material control and accountancy system has been developed by Goodyear Atomic Corporation to meet safeguards and security requirements. It comprises three major elements: physical security, nuclear material control, and nuclear material accounting. This safeguards system is called Dynamic Material Control and Accountancy System (DYMCAS). The system approaches real-time computer control on a transaction-by-transaction basis

  18. Material accountancy for metallic fuel pin casting

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-01-01

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases

  19. Automated material accounting statistics system (AMASS)

    International Nuclear Information System (INIS)

    Messinger, M.; Lumb, R.F.; Tingey, F.H.

    1981-01-01

    In this paper the modeling and statistical analysis of measurement and process data for nuclear material accountability is readdressed under a more general framework than that provided in the literature. The result of this effort is a computer program (AMASS) which uses the algorithms and equations of this paper to accomplish the analyses indicated. The actual application of the method to process data is emphasized

  20. Procedure for the assessment of material control and accounting systems

    International Nuclear Information System (INIS)

    Parziale, A.A.; Sacks, I.J.

    1979-01-01

    For the United States Nuclear Regulatory Commission, a procedure was developed and tested for the evaluation of Material Control and Accounting (MC and A) Systems at nuclear fuel facilities. This procedure, called the Structured Assessment Approach, SAA, subjects the MC and A system at a facility to a series of increasingly sophisticated adversaries and strategies. A fully integrated version of the computer codes which assist the analyst in this assessment will become available in October 1979. The concepts of the SAA and the results of the assessment of a hypothetical but typical facility are presented

  1. The changing role of nuclear materials accounting

    International Nuclear Information System (INIS)

    Gibbs, P.W.

    1995-01-01

    Nuclear materials accounting and accounting systems at what have been DOE Production sites are evolving into management decision support tools. As the sites are moving into the mode of making decisions on how to disposition complex and varied nuclear material holdings, the need for complete and many times different information has never been greater. The artificial boundaries that have historically been established between what belongs in the classic material control and accountability (MC and A) records versus what goes into the financial, radiological control, waste, or decommissioning and decontamination records are being challenged. In addition, the tools historically used to put material into different categories such as scrap codes, composition codes, etc. have been found to be inadequate for the information needs of today. In order to be cost effective and even, more importantly to effectively manage -our inventories, the new information systems the authors design have to have the flexibility to serve many needs. In addition, those tasked with the responsibility of managing the inventories must also expand beyond the same artificial boundaries. This paper addresses some of the things occurring at the Savannah River Site to support the changing role of nuclear materials accounting

  2. Two-stage decision approach to material accounting

    International Nuclear Information System (INIS)

    Opelka, J.H.; Sutton, W.B.

    1982-01-01

    The validity of the alarm threshold 4sigma has been checked for hypothetical large and small facilities using a two-stage decision model in which the diverter's strategic variable is the quantity diverted, and the defender's strategic variables are the alarm threshold and the effectiveness of the physical security and material control systems in the possible presence of a diverter. For large facilities, the material accounting system inherently appears not to be a particularly useful system for the deterrence of diversions, and essentially no improvement can be made by lowering the alarm threshold below 4sigma. For small facilities, reduction of the threshold to 2sigma or 3sigma is a cost effective change for the accounting system, but is probably less cost effective than making improvements in the material control and physical security systems

  3. Main requirements and criteria for State nuclear material control and accounting

    International Nuclear Information System (INIS)

    Ryazanov, B.G.; Goryunov, V.K.; Erastov, V.V.

    1999-01-01

    The paper presents comments and substantiation of the main requirements and criteria for the State nuclear materials (NM) control and accounting system in the draft of the federal Main regulations of NM control and accounting. The State NM control and accounting system structure and design principles, the list of nuclear and special non-nuclear materials which are subject to the control and accounting, NM control and accounting principles are considered. Measurement system for the values for NM control and accounting and measurement assurance program, NM transfer procedures, physical inventory taking, closing a material balance and evaluation of inventory difference and balance closure of bulk form NM are shown. Accounting units in the inventory, the system accounting report documentation and preliminary notifications, the NM control and accounting arrangement, the federal and departmental control in the State NM control and accounting system, the State NM control and accounting system supervision and requirement to the personnel carrying out the NM control and accounting are discussed [ru

  4. Report of the Material Control and Material Accounting Task Force: summary

    International Nuclear Information System (INIS)

    1978-03-01

    A special review was made of the safeguards maintained by licensees possessing 5 kg or more of strategic special nuclear material (SSNM), i.e., plutonium, uranium-233, or uranium enriched in the uranium-235 isotope to 20 percent or more. A Task Force was formed to define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for material control and material accounting systems based on their roles and objectives; assess the extent to which the existing regulatory base meets or provides the capability to meet the recommended goals; and to provide direction for material control and material accounting development, including both near-term and long-term upgrades. Based on results of Task Force investigations it is recommended that licensee plans for measurement control programs be submitted in response to Section 70.57(c) of Title 10 of the Code of Federal Regulations. Other recommendations include the review and upgrading, as necessary, of measurement error propagation models used by each licensee; revision of Nuclear Materials Management and Safeguards System (NMMSS) reporting entities for SSNM licensees to be consistent with the partitioning of facilities into plants or, if appropriate, accounting units; review of NMMSS reporting entities for SSNM licensees to assure that data for high enriched uranium operations are clearly separated from low enriched uranium operations; upgrading of the editing by NMMSS of reported licensee safeguards data for accuracy and consistency; and the acquisition of (a) a secure interactive computer capability for use in collecting, storing, sorting, and analyzing special nuclear material accounting data, and (b) associated flexible computer software that presents safeguards information in a succinct and comprehensive manner

  5. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  6. A simulation model for material accounting systems

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.

    1987-01-01

    A general-purpose model that was developed to simulate the operation of a chemical processing facility for nuclear materials has been extended to describe material measurement and accounting procedures as well. The model now provides descriptors for material balance areas, a large class of measurement instrument types and their associated measurement errors for various classes of materials, the measurement instruments themselves with their individual calibration schedules, and material balance closures. Delayed receipt of measurement results (as for off-line analytical chemistry assay), with interim use of a provisional measurement value, can be accurately represented. The simulation model can be used to estimate inventory difference variances for processing areas that do not operate at steady state, to evaluate the timeliness of measurement information, to determine process impacts of measurement requirements, and to evaluate the effectiveness of diversion-detection algorithms. Such information is usually difficult to obtain by other means. Use of the measurement simulation model is illustrated by applying it to estimate inventory difference variances for two material balance area structures of a fictitious nuclear material processing line

  7. A role for distributed processing in advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Tisinger, R.M.; Whitty, W.J.; Ford, W.; Strittmatter, R.B.

    1986-01-01

    Networking and distributed processing hardware and software have the potential of greatly enhancing nuclear materials control and account-ability (MCandA) systems, both from safeguards and process operations perspectives while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminals and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. The structuring and development of a limited distributed MCandA prototype system, including human engineering concepts, are described. Implications of integrated safeguards and computer security concepts to the distributed system design are discussed

  8. Decree 2805 by means of which the National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, is established

    International Nuclear Information System (INIS)

    1979-01-01

    This Decree has for object to establish a National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, under the supervision of the National Council for the Nuclear Industry Development. Its aims are to account nuclear materials, to control nuclear activities, to preserve and control nuclear information, to keep technical relationship with specialized organizations, and to garant nuclear safeguards [es

  9. Augmented Automated Material Accounting Statistics System (AMASS)

    International Nuclear Information System (INIS)

    Lumb, R.F.; Messinger, M.; Tingey, F.H.

    1983-01-01

    This paper describes an extension of the AMASS methodology which was previously presented at the 1981 INMM annual meeting. The main thrust of the current effort is to develop procedures and a computer program for estimating the variance of an Inventory Difference when many sources of variability, other than measurement error, are admitted in the model. Procedures also are included for the estimation of the variances associated with measurement error estimates and their effect on the estimated limit of error of the inventory difference (LEID). The algorithm for the LEID measurement component uncertainty involves the propagated component measurement variance estimates as well as their associated degrees of freedom. The methodology and supporting computer software is referred to as the augmented Automated Material Accounting Statistics System (AMASS). Specifically, AMASS accommodates five source effects. These are: (1) measurement errors (2) known but unmeasured effects (3) measurement adjustment effects (4) unmeasured process hold-up effects (5) residual process variation A major result of this effort is a procedure for determining the effect of bias correction on LEID, properly taking into account all the covariances that exist. This paper briefly describes the basic models that are assumed; some of the estimation procedures consistent with the model; data requirements, emphasizing availability and other practical considerations; discusses implications for bias corrections; and concludes by briefly describing the supporting computer program

  10. Specific Methods of Information Security for Nuclear Materials Control and Accounting Automate Systems

    Directory of Open Access Journals (Sweden)

    Konstantin Vyacheslavovich Ivanov

    2013-02-01

    Full Text Available The paper is devoted to specific methods of information security for nuclear materials control and accounting automate systems which is not required of OS and DBMS certifications and allowed to programs modification for clients specific without defenses modification. System ACCORD-2005 demonstrates the realization of this method.

  11. Process information displays from a computerized nuclear materials control and accounting system

    International Nuclear Information System (INIS)

    Ellis, J.H.

    1981-11-01

    A computerized nuclear materials control and accounting system is being developed for an LWR spent fuel reprocessing facility. This system directly accesses process instrument readings, sample analyses, and outputs of various on-line analytical instruments. In this paper, methods of processing and displaying this information in ways that aid in the efficient, timely, and safe control of the chemical processes of the facility are described

  12. IMPORTANCE OF MATERIAL BALANCES AND THEIR STATISTICAL EVALUATION IN RUSSIAN MATERIAL, PROTECTION, CONTROL AND ACCOUNTING

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1999-01-01

    While substantial work has been performed in the Russian MPC and A Program, much more needs to be done at Russian nuclear facilities to complete four necessary steps. These are (1) periodically measuring the physical inventory of nuclear material, (2) continuously measuring the flows of nuclear material, (3) using the results to close the material balance, particularly at bulk processing facilities, and (4) statistically evaluating any apparent loss of nuclear material. The periodic closing of material balances provides an objective test of the facility's system of nuclear material protection, control and accounting. The statistical evaluation using the uncertainties associated with individual measurement systems involved in the calculation of the material balance provides a fair standard for concluding whether the apparent loss of nuclear material means a diversion or whether the facility's accounting system needs improvement. In particular, if unattractive flow material at a facility is not measured well, the accounting system cannot readily detect the loss of attractive material if the latter substantially derives from the former

  13. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  14. E/Z MAS: An easy-to-use computerized materials control and accountability system

    International Nuclear Information System (INIS)

    Anderson, L.K.; Boor, M.G.; Hurford, J.M.; Landry, R.P.; Martinez, B.J.; Solem, A.M.; Whiteson, R.; Zardecki, A.

    1998-01-01

    Nuclear facilities that handle and process nuclear materials are required to track their nuclear holdings and to keep adequate records that manage and control the inventory of those holdings. The complexity of a system that does this job is directly proportional to the complexity of the facility's operations. This paper describes an approach to computerized materials protection, control, and accountability (MPC and A) that was introduced by Los Alamos National Laboratory (LANL) in the fall of 1997. This new system, E/Z MAS, is the latest addition to the LANL suite of computerized MPC and A tools, which also includes the CoreMAS system. E/Z MAS was initially designed to address the needs of those facilities that have small to modest MPC and A needs but has been expanded to provide full functionality for any facility. The system name, E/Z MAS, reflects the system's easy-to-use characteristics, which include ease of installation and ease of software maintenance. Both CoreMAS and E/Z MAS have been provided to facilities in the Former Soviet Union to assist them in implementing a computerized MPC and A system that meets their needs. In this paper the authors will address the functionality of CoreMAS and E/Z MAS, and an argument in favor of intranet-based material control and accountability will be advanced

  15. HB-Line Material Control and Accountability Measurements at SRS

    International Nuclear Information System (INIS)

    Casella, V.R.

    2003-01-01

    Presently, HB-Line work at the Savannah River Site consists primarily of the stabilization and packaging of nuclear materials for storage and the characterization of materials for disposition in H-Area. In order to ensure compliance with Material Control and Accountability (MC and A) Regulations, accountability measurements are performed throughout the HB-Line processes. Accountability measurements are used to keep track of the nuclear material inventory by constantly updating the amount of material in the MBAs (Material Balance Area) and sub-MBAs. This is done by subtracting the amount of accountable material that is added to a process and by adding the amount of accountable material that is put back in storage. A Physical Inventory is taken and compared to the ''Book Value'' listed in the Nuclear Material Accounting System. The difference (BPID) in the Book Inventory minus the Physical Inventory of a sub-account for bulk material must agree within the measurement errors combined in quadrature to provide assurance that nuclear material is accounted for. This work provides an overview of HB-Line processes and accountability measurements. The Scrap Recovery Line and Neptunium-237/Plutonium-239 Oxide Line are described and sampling and analyses for Phase II are provided. Recommendations for improvements are provided to improve efficiency and cost effectiveness

  16. Basis of accountability system

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The first part of this presentation describes in an introductory manner the accountability design approach which is used for the Model Plant in order to meet US safeguards requirements. The general requirements for the US national system are first presented. Next, the approach taken to meet each general requirement is described. The general concepts and principles of the accountability system are introduced. The second part of this presentation describes some basic concepts and techniques used in the model plant accounting system and relates them to US safeguards requirements. The specifics and mechanics of the model plant accounting system are presented in the third part. The purpose of this session is to enable participants to: (1) understand how the accounting system is designed to meet safeguards criteria for both IAEA and State Systems; (2) understand the principles of materials accounting used to account for element and isotope in the model plant; (3) understand how the computer-based accounting system operates to meet the above objectives

  17. TFTR tritium inventory accountability system

    International Nuclear Information System (INIS)

    Saville, C.; Ascione, G.; Elwood, S.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Stencel, J.; Voorhees, D.; Tilson, C.

    1995-01-01

    This paper discusses the program, PPPL (Princeton Plasma Physics Laboratory) Material Control and Accountability Plan, that has been implemented to track US Department of Energy's tritium and all other accountable source material. Specifically, this paper details the methods used to measure tritium in various systems at the Tokamak Fusion Test Reactor; resolve inventory differences; perform inventory by difference inside the Tokamak; process and measure plasma exhaust and other effluent gas streams; process, measure and ship scrap or waste tritium on molecular sieve beds; and detail organizational structure of the Material Control and Accountability group. In addition, this paper describes a Unix-based computerized software system developed at PPPL to account for all tritium movements throughout the facility. 5 refs., 2 figs

  18. Materials control and accounting (MC and A): the evolutionary pressures

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1983-01-01

    Nuclear materials control and accounting systems are subject to pressures of both regulatory and institutional natures. This fact, coupled with the emergence of new technology, is causing evolutionary changes in materials control and accounting systems. These changes are the subject of this paper

  19. Materials to be covered by accountancy and control

    International Nuclear Information System (INIS)

    Bellinger, J.

    1989-01-01

    In the State System of Accounting for and Control of Nuclear Materials it is the responsibility of the National Authority to prescribe the points at which nuclear material begins to attract full accounting and control, and when accounting and control are terminated. NPT-type safeguards agreements, as well as prescribing the starting and terminating ponts for international safeguards, permit exemption and de-exemption from safeguards. These matters are discussed with the Australian experience providing examples

  20. Material control and accountancy at EDF PWR plants

    International Nuclear Information System (INIS)

    de Cormis, F.

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes

  1. Detailed description of a state system for accounting for and control of nuclear material at the state level

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-02-01

    The purpose of this document is to provide a detailed description of the technical elements of a system for the accounting for and control of nuclear material at the State Authority level which can be used by a state in the establishment of a national system for nuclear material accounting and control. It is expected that a state system designed along the lines described also will assist the IAEA in carrying out its safeguards responsibilities. The scope of this document is limited to descriptions of the technical elements of a state level system concerned with Laws and Regulations, the Information System, and the Establishment of Requirements for Nuclear Material Accounting and Control. The discussion shows the relationship of these technical elements at the state level to the principal elements of an SSAC at the facility levels

  2. A quantitative approach to design of material accounting system for a complex facility. Study at the PNC reprocessing plants

    International Nuclear Information System (INIS)

    Ikawa, K.

    1994-01-01

    An approach to a design of nuclear materials accounting sysyem for a complex facility in Japan is discussed. Near-real-time materials accountancy model studied at the PNC reprocessing plant is described. Main features of the computerized nuclear materials accounting system are considered as well as the PROMAC - C code algorithm for statistical data processing is presented. 18 refs., 5 figs., 1 tab

  3. Variance and covariance calculations for nuclear materials accounting using ''MAVARIC''

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-07-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  4. Variance and covariance calculations for nuclear materials accounting using 'MAVARIC'

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-01-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  5. Standardized facility record and report model system (FARMS) for material accounting and control

    International Nuclear Information System (INIS)

    Nishimura, Hideo; Ihara, Hitoshi; Hisamatsu, Yoshinori.

    1990-07-01

    A facility in which nuclear materials are handled maintains a facility system of accounting for and control of nuclear material. Such a system contains, as one of key elements, a record and report system. This record and report information system is a rather complex one because it needs to conform to various requirements from the national or international safeguards authorities and from the plant operator who has to achieve a safe and economical operation of the plant. Therefore it is mandatory to computerize such information system. The authors have reviewed these requirements and standardized the book-keeping and reporting procedures in line with their computerization. On the basis of this result the authors have developed a computer system, FARMS, named as an acronym of standardized facility record and report model system, mainly reflecting the requirements from the national and international safeguards authorities. The development of FARMS has also been carried out as a JASPAS - Japan Support Programme for Agency Safeguards - project since 1985 and the FARMS code was demonstrated as an accountancy tool in the regional SSAC training courses held in Japan in 1985 and 1987. This report describes the standardization of a record and report system at the facility level, its computerization as a model system and the demonstration of the developed system, FARMS. (author)

  6. Framework for the systematic assessment of a material control and accounting system

    International Nuclear Information System (INIS)

    Schechter, R.S.; Sacks, I.J.

    1981-01-01

    Procedures are described for the systematic assessment of a Material Control and Accounting (MC and A) system, in terms of compliance to the proposed MC and A Upgrade Rule. The applicability of these assessment procedures to specific Rule provisions is discussed. Special attention is given to the statistical performance of individual subsystems, and their vulnerability to compromise by insider collusion

  7. Studies and research concerning BNFP: computerized nuclear materials control and accounting system development evaluation report, FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, J M; Ehinger, M H; Joseph, C; Madeen, M L

    1978-10-01

    Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.

  8. Supporting the material control and accountancy system with physical protection system features

    International Nuclear Information System (INIS)

    Miyoshi, D.S.; Caskey, D.L.; Olson, C.E.

    1984-01-01

    Most physical security functions can be accomplished by a range of alternative features. Careful design can provide comparable levels of security regardless of which option is chosen, albeit with possible differences in cost and efficiency. However, the effectiveness and especially the cost and efficiency of the material control and accounting system may be strongly influenced by the selection of a particular design approach to physical security. In this paper, a series of examples are cited to illustrate the effects that particular physical protection design choices may have. The examples have been chosen from several systems engineering projects at facilities within the DOE nuclear community. These examples are generalized, and a series of design principles are proposed for integrating physical security with MC and A by appropriate selection of alternative features

  9. Method for assessing the performance of a material control and accounting system at an operating nuclear fuel processing facility

    International Nuclear Information System (INIS)

    Ellwein, L.B.; Harris, L.; Altman, W.D.; Gramann, R.H.

    1981-01-01

    This paper discusses a method for assessing the performance of a material control and accounting (MCandA) system in an operating nuclear fuel processing facility. The performance criteria inherent in the assessment are 16 key goals established by NRC's 1978 Material Control and Material Accounting Task Force. 7 refs

  10. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  11. The problem of material accountancy. Difference between the international material accountancy and the Japanese material accountancy

    International Nuclear Information System (INIS)

    Ikawa, Koji

    2001-01-01

    It has been 30 years since the development of SSAC (State's system of Accounting for and Control of nuclear material) of Japan began. Moreover, 24 years have been passed after SSAC was employed. The maintenance on the law for carrying out SSAC in the meantime also progressed, and the system of SSAC has also been established favorably. However, new correspondence was internationally called for about the safeguards for reprocessing facilities or uranium enrichment facilities, and innovative safeguards concepts like NRTA or LFUA were developed. The LASCAR (Large Scale Reprocessing Plant Safeguards) forum was held on the safeguards for a large scale reprocessing facility, and international agreement on the safeguards was progressed. When we look back upon the history of such safeguards development in recent years, most people can see little problem on the contents of the national safeguards system itself. As the history shows, however, the passive approach has been taken in developing the Japanese safeguards system. We have always tried to seek a solution on the basis 'What is the minimum requirement in order to receive international safeguards.' Now, the nuclear fuel cycle of Japan has reached the maximum scale in the world. To Japan which promotes commercial use of plutonium, the world community is supervising this severely. Under such a situation it is no doubt that passive safeguards correspondence can no longer be allowed. The author thinks that it is coming when the old nuclear management system completed based on a passive attitude should be improved. What should an active nuclear material management system be? In this presentation, the author wishes to explore the clue to it. (author)

  12. NDA systems to support nuclear material control and accounting in spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Simpson, J.C.B.; Clark, P.A.; Nicols, O.P.; Whitehouse, K.R.

    1999-01-01

    Detailed descriptions of a number of instrument systems relating to accountancy and safeguarding of plutonium operations and storage on Thermal Oxide Plant (Thorp) are provided. The systems described include the Plutonium Inventory Measurement System (PIMS), used to provide Near Real Time Materials Accountancy (NRTMA) information within the Thorp plutonium finishing area; the Product Can Contents Monitor (PCCM), used to verify can weight measurements and isotopic composition and; the In-Store Plutonium Verification Monitor, used to provide in-situ measurements of plutonium in cans whilst they are in their storage channels. These nondestructive systems are necessarily combined with other physical security, surveillance and identification arrangements for the handling and storage of plutonium product cans [ru

  13. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Science.gov (United States)

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  14. Analysis of the role of an interfacility SNM accounting system

    International Nuclear Information System (INIS)

    McDonnel, J.L.; Chilton, P.D.; Kufahl, G.E.; Vergari, A.A.; Dunn, D.R.

    1982-01-01

    Lawrence Livermore National Laboratory (LLNL) undertook the task of analyzing the actual and potential value of an interfacility NRC material accounting system in deterring and detecting both material diversion and facility material accounting data falsification. The most important conclusion is that only relatively minor changes are needed to upgrade the current NRC interfacility reporting system. The emphasis of the task was on evaluating the usefulness of an NRC-monitored material accounting information system in providing protection against accounting fraud at the plant management or corporate level. The Nuclear Materials Management and Safeguards System (NMMSS) and the NRC Safeguards Status Report System (SSRS), the principal constituents of the current interfacility NRC material accounting information system, are described. Their relationship is shown in two information flow diagrams. Deterministic accounting checks and balances are discussed, both for the current NRC interfacility material accounting system and for an upgraded system. Detection mechanisms are described that would use currently available data and that could be exercised by the NRC in its safeguards management role. Additional checks and balances are recommended, with corresponding changes in data reporting requirements, to upgrade NRC interfacility material accounting system

  15. Minatom of Russia Situation and Crisis Center and the Automated Federal Information System for Nuclear Material Control and Accounting

    International Nuclear Information System (INIS)

    Berchik, V.P.; Kasumova, L.A.; Babcock, R.A.; Heinberg, C.L.; Tynan, D.M.

    2001-01-01

    Under the Situation and Crisis Center (SCC) management, the Information Analytical Center (IAC) of the Ministry of Atomic Energy (Minatom) of Russia was created to oversee the operation of the Federal Nuclear Material Control and Accounting Information System (FIS). During 2000, the FIS achieved an important milestone in its development: the basic functions of the information system were implemented. This includes placing into operation the collecting and processing of nuclear material control and accounting (MC and A) information from the enterprises reporting to the FIS. The FIS began working with 14 Russian enterprises to develop and implement full-function reporting (i.e., reporting inventory and inventory changes including closeout and reconciliation between the FIS and enterprises). In 2001, the system will expand to include enterprise-level inventory information for all enterprises using nuclear materials in Russia. For this reason, at the end of 2000 through the beginning of 2001, five separate training sessions were held for over 100 enterprise personnel responsible for preparation and transfer of the reports to the FIS. Through the assistance of the Nuclear Material Protection, Control and Accounting (MPC and A) program, information systems for the accounting of nuclear materials are being installed at Russia enterprises. In creating the program for modernization of the Russian Federation State System of Accounting and Control (SSAC) of nuclear material, the SCC conducted a survey of the enterprises to determine the readiness of their internal MC and A systems for reporting to the FIS. Based on the information from the survey and the results of the projects on creation of local information systems at Russian enterprises, the analysis of information and the technical aspects of MC and A systems identified deficiencies that were analyzed and recommendations for eliminating these deficiencies were proposed. The concentration of analytical and administrative

  16. Experience in nuclear materials accountancy, including the use of computers, in the UKAEA

    International Nuclear Information System (INIS)

    Anderson, A.R.; Adamson, A.S.; Good, P.T.; Terrey, D.R.

    1976-01-01

    The UKAEA have operated systems of nuclear materials accountancy in research and development establishments handling large quantities of material for over 20 years. In the course of that time changing requirements for nuclear materials control and increasing quantities of materials have required that accountancy systems be modified and altered to improve either the fundamental system or manpower utilization. The same accountancy principles are applied throughout the Authority but procedures at the different establishments vary according to the nature of their specific requirements; there is much in the cumulative experience of the UKAEA which could prove of value to other organizations concerned with nuclear materials accountancy or safeguards. This paper reviews the present accountancy system in the UKAEA and summarizes its advantages. Details are given of specific experience and solutions which have been found to overcome difficulties or to strengthen previous weak points. Areas discussed include the use of measurements, the establishment of measurement points (which is relevant to the designation of MBAs), the importance of regular physical stock-taking, and the benefits stemming from the existence of a separate accountancy section independent of operational management at large establishments. Some experience of a dual system of accountancy and criticality control is reported, and the present status of computerization of nuclear material accounts is summarized. Important aspects of the relationship between management systems of accountancy and safeguards' requirements are discussed briefly. (author)

  17. Reviews on the efficient nuclear material accountability at KAERI

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Ko, Han Suk; Lee, Seung Ho; Park, Ho Joon; Lee, Byung Doo

    2011-01-01

    KAERI(Korea Atomic Energy Research Institute) is constantly trying to efficiently implement safeguards in order to ensure international transparency and the credibility of KAERI safeguards. In its continuing efforts to implement safeguards efficiently, KAERI has developed KASIS(KAERI Safeguards Information Treatment System) and has linked KASIS with the RF ID system and HANARO fuel fabrication facility system. This paper describes the status of enhanced nuclear material accountancy through the development of KASIS at KAERI. The plans to more effectively implement nuclear material accountancy at KAERI are also reviewed

  18. Material control and accountability in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rumyantsev, A.N.

    2006-01-01

    It is proposed to unify the complexes, used in the systems for control and accountability of nuclear materials, and to use the successful experience of developing these complexes. It is shown that the problem of control, accountability and physical protection may by achieved by using the developed complex Probabilistic expert-advising system, permitting to analyse the safety in nuclear fuel cycles [ru

  19. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  20. Nuclear material accounting software for Ukraine

    International Nuclear Information System (INIS)

    Doll, M.; Ewing, T.; Lindley, R.; McWilliams, C.; Roche, C.; Sakunov, I.; Walters, G.

    1999-01-01

    Among the needs identified during initial surveys of nuclear facilities in Ukraine was improved accounting software for reporting material inventories to the regulatory body. AIMAS (Automated Inventory/Material Accounting System) is a PC-based application written in Microsoft Access that was jointly designed by an US/Ukraine development team. The design is highly flexible and configurable, and supports a wide range of computing infrastructure needs and facility requirements including situations where networks are not available or reliable. AIMAS has both English and Russian-language options for displays and reports, and it operates under Windows 3.1, 95, or NT 4.0trademark. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration, security, data backup and recovery). Security measures include multilevel password access control, all transactions logged with the user identification, and system administration control. Interfaces to external modules provide nuclear fuel burn-up adjustment and barcode scanning capabilities for physical inventory taking. AIMAS has been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkov Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety/Nuclear Regulatory Administration (MEPNS/NRA). Facility specialists are being trained to use the application to track material movement and report to the national regulatory authority

  1. The concept of an integrated quality record nuclear material accountancy system

    International Nuclear Information System (INIS)

    Von Wachtendonk, H.J.

    1987-01-01

    RBU had already started in 1976 with the computerisation of its nuclear material accountancy system. It used the hardware and the software which were at hand at that time. The development of the software needed about 3 years, and so, the system, was fully introduced in 1979 and has been used since then with only minor changes. But with the time, the overwhelming progress in computer and software technology has overcome the existing system. Upgrading the old system would need a lot of effort, so RBU decided to modernize its system fundamentally. In the time between RBU has developed a quality record and documentation system for the purposes of quality assurance and quality control. This system shall be enlarged, so that it can overtake the tasks of NMA, too. The quality record system contains already nearly 80 % of all NMA-relevant data. The presented paper will describe the main changes between the present and the future system

  2. German Democratic Republic State system of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    Roehnsch, W.; Gegusch, M.

    1976-01-01

    The system of accountancy for and control of nuclear material in the German Democratic Republic (GDR) with its legal bases and components is embedded in the overall State system of protection in the peaceful uses of nuclear energy. As the competent State authority, the Nuclear Safety and Radiation Protection Board of the GDR is also responsible for meeting the GDR's national and international tasks in the control of nuclear material. At enterprise level, the observance of all safety regulations for nuclear material, including the regulations for the control, is within the responsibility of managers of establishments, which are in any way concerned with the handling of nuclear material. To support managers and to function as internal control authorities, nuclear material officers have been appointed in these establishments. Design information, operating data, physical inventory of nuclear material and the respective enterprise records and reports are subject to State control by the Nuclear Material Inspectorate of the Nuclear Safety and Radiation Protection Board. This Inspectorate keeps the central records on nuclear material, forwards reports and information to, and maintains the necessary contacts with, the IAEA. For the nuclear material in the GDR four material balance areas have been established for control purposes. To rationalize central recording and reporting, electronic data processing is increasingly made use of. In a year-long national and international control of nuclear material, the State control system has stood the test and successfully co-operates with the IAEA. (author)

  3. Development of a personal computer-based state system of accounting for/and control of nuclear materials

    International Nuclear Information System (INIS)

    Markov, A.

    1986-09-01

    An IBM-PC and compatible based state system of accounting for and control of nuclear materials under international safeguards (state-level SSAC) is presented. The system works under DOS version 2.0 and above. It consists of a single-module Safeguards Report Editor which is a multi-function menu-driven code written in BASIC. The Editor may be run both in interactive mode and as an EXEC module. The output represents four types of material accounting reports on diskette, suitable for direct input into the IAEA Safeguards Information System (ISIS). In the first part of the report presented, a general description of the system is given. This is complemented with a detailed User Manual where a Guide to Applications, an Operator's Guide, a Programmer's Guide and Listings are included. The system is now available. It is maintained by the Bulgarian Committee on the Uses of Atomic Energy for Peaceful Purposes

  4. Automatic accounting of nuclear materials at WWER type reactor NPPs

    International Nuclear Information System (INIS)

    Babaev, N.S.; Poznyakov, N.L.; Strelkov, D.F.

    1978-01-01

    The possibilities of automatic accounting of nuclear materials at NPPs based on WWER reactors are considered. Organizational and technical principles of an automated system of accounting that takes into consideration IAEA requirements in conducting accounting documentation are proposed. A program is described for accounting materials using a BESM-6 computer. Operation of the program requires that all accounting data be recorded on conventional carriers of computer information (magnetic tapes, discs, perforated cards), which constitute the basic NPP accounting documents and may be directly used as initial data for a corresponding information program

  5. Safeguarding nuclear materials in the former Soviet Republics through computerized materials protection, control and accountability

    International Nuclear Information System (INIS)

    Roumiantsev, A.N.; Ostroumov, Y.A.; Whiteson, R.; Seitz, S.L.; Landry, R.P.; Martinez, B.J.; Boor, M.G.; Anderson, L.K.; Gary, S.P.

    1997-01-01

    The threat of nuclear weapons proliferation is a problem of global concern. International efforts at nonproliferation focus on preventing acquisition of weapons-grade nuclear materials by unauthorized states, organizations, or individuals. Nonproliferation can best be accomplished through international cooperation in the application of advanced science and technology to the management and control of nuclear materials. Computerized systems for nuclear material protection, control, and accountability (MPC and A) are a vital component of integrated nuclear safeguards programs. This paper describes the progress of scientists in the United States and former Soviet Republics in creating customized, computerized MPC and A systems. The authors discuss implementation of the Core Material Accountability System (CoreMAS), which was developed at Los Alamos National Laboratory by the US Department of Energy and incorporates, in condensed and integrated form, the most valuable experience gained by US nuclear enterprises in accounting for and controlling nuclear materials. The CoreMAS approach and corresponding software package have been made available to sites internationally. CoreMAS provides methods to evaluate their existing systems and to examine advantages and disadvantages of customizing CoreMAS or improving their own existing systems. The sites can also address crucial issues of software assurance, data security, and system performance; compare operational experiences at sites with functioning computerized systems; and reasonably evaluate future efforts. The goal of the CoreMAS project is to introduce facilities at sites all over the world to modern international MPC and A practices and to help them implement effective, modern, computerized MPC and A systems to account for their nuclear materials, and thus reduce the likelihood of theft or diversion. Sites are assisted with MPC and A concepts and the implementation of an effective computerized MPC and A system

  6. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  7. International training course on nuclear materials accountability for safeguards purposes

    International Nuclear Information System (INIS)

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control

  8. International training course on nuclear materials accountability for safeguards purposes

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  9. The nuclear materials control and accountability internal audit program at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Lewis, T.J.

    1987-01-01

    The internal audit program of the Nuclear Material Control and Accountability (NMCandA) Department at the Oak Ridge Y-12 Plant, through inventory-verification audits, inventory-observation audits, procedures audits, and records audits, evaluates the adequacy of material accounting and control systems and procedures throughout the Plant; appraises and verifies the accuracy and reliability of accountability records and reports; assures the consistent application of generally accepted accounting principles in accounting for nuclear materials; and assures compliance with the Department of Energy (DOE) and NMCandA procedures and requirements. The internal audit program has significantly strengthened the control and accountability of nuclear materials through improving the system of internal control over nuclear materials, increasing the awareness of materials control and accountability concerns within the Plant's material balance areas (MBAs), strengthening the existence of audit trails within the overall accounting system for nuclear materials, improving the accuracy and timeliness of data submitted to the nuclear materials accountability system, auditing the NMCandA accounting system to ensure its accuracy and reliability, and ensuring that all components of that system (general ledgers, subsidiary ledgers, inventory listings, etc.) are in agreement among themselves

  10. NuMas: A LAN-based materials control and accounting system in production

    International Nuclear Information System (INIS)

    Strickland, T.W.; Bracey, J.T.; McMahon, S.A.

    1995-01-01

    A state-of-the-art Nuclear Materials Control and Accounting (NMC and A) System has been implemented and is fully operational at the Paducah Gaseous Diffusion Plant (PGDP) as of September 1994. The uranium enrichment facility is currently regulated by the Department of Energy (DOE) and is in the process of obtaining Nuclear Regulatory Commission (NRC) certification. Implementation of this system has resulted in a tremendous cost savings to the facility as well as improvements to the overall efficiency of the NMC and A department. This paper outlines the benefits of implementing a Personal Computer/Local Area Network (PC/LAN)-based system in hopes of attracting other facilities to explore and utilize its application at their sites

  11. Upgrade of the Nuclear Material Protection, Control and Accounting System at the VNIIEF Industrial Zone

    International Nuclear Information System (INIS)

    Lewis, J.C.; Maltsev, V.; Singh, S.P.

    1999-01-01

    The Industrial Zone at the Russian Federal Nuclear Center/All-Russian Scientific Research Institute of Experimental Physics (RFNC/VNEEF) consists of ten guarded areas with twenty two material balance areas (A and As). The type of facilities in the Industrial Zone include storage sites, machine shops, research facilities, and training facilities. Modernization of the Material Protection, Control and Accounting (MPC and A) System at the Industrial Zone started in 1997. This paper provides a description of, the methodology/strategy used in the upgrade of the MFC and A system

  12. Prescriptive concepts for advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Whitty, W.J.; Strittmatter, R.B.; Ford, W.; Tisinger, R.M.; Meyer, T.H.

    1987-06-01

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs

  13. Status of national system of accounting for and control of nuclear materials in Turkey

    International Nuclear Information System (INIS)

    Yucel, A.

    1999-01-01

    Regulating the nuclear activities in Turkey is at the responsibility of Turkish Atomic Energy Authority (TAEA). Under the TAEA Act, the Authority is responsible for national security and protection of the peaceful uses of nuclear energy. After signing the Safeguards Agreement with the IAEA for the application of safeguards in connection with the NPT, a State System of Accounting for and Control of Nuclear Materials (SSAC) has been established. This paper covers national safeguards activities and implementation of SSAC and activities for upgrading of national system. These activities are the part of the IAEA programme on strengthening the effectiveness and improving the efficiency of the safeguards system and on combating illicit trafficking of nuclear materials and other radioactive sources. (author)

  14. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  15. In-plant test using process monitoring data for nuclear material accounting

    International Nuclear Information System (INIS)

    Smith, B.W.; Fager, J.E.

    1982-11-01

    A test of daily material accounting is being conducted for the NRC as part of a continuing program to estimate the effectiveness of using process monitoring data to enhance strategic special nuclear material accounting in fuel facilities. The test is being conducted at a uranium scrap recovery facility. The purpose is to develop and test procedures for resolving anomalies in material loss indicators. This report describes the results of the first test campaign, in which the emphasis was to characterize the daily material accounting system, test generic resolution procedures, and identify specific conditions that result in anomalies in material loss indicators

  16. STUDY ON STATE SYSTEMS OF ACCOUNTING AND CONTROL OF NUCLEAR MATERIALS IN SOME COUNTRIES

    International Nuclear Information System (INIS)

    ZIDAN, W.I.; EL-GAMMAL, W.A.

    2008-01-01

    All Safeguards agreements between the International Atomic Energy Agency (IAEA) and its Member States require the State to establish and maintain a system of accounting for and control of nuclear material subject to safeguards (SSAC) in order to keep track on nuclear materials subject to such agreements. SSACs implementation in 34 IAEA member States varying in their size of nuclear activities, international treaties and nuclear power plants ownership were studied. The study is oriented to state legal framework, SSAC authority, dependency, objectives and functions

  17. Measuring the safeguards value of material accountability

    International Nuclear Information System (INIS)

    Sicherman, A.

    1988-01-01

    Material accountability (MA) activities focus on providing after-the-fact indication of diversion or theft of special nuclear material (SNM). MA activities include maintaining records for tracking nuclear material and conducting periodic inventories and audits to ensure that loss has not occurred. This paper presents a value model concept for assessing the safeguards benefits of MA activities and for comparing these benefits to those provided by physical protection (PP) and material control (MC) components. The model considers various benefits of MA, which include: 1) providing information to assist in recovery of missing material, 2) providing assurance that physical protection and material control systems have been working, 3) defeating protracted theft attempts, and 4) properly resolving causes of and responding appropriately to anomalies of missing material and external alarms (e.g., hoax). Such a value model can aid decision-makers in allocating safeguards resources among PP, MC, and MA systems

  18. Resolution 62/96 Regulation for the accounting and control of the nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Regulation is a complementary disposition of the ordinance number 208 of May 24 National System of Accounting and Control of Nuclear Materials and it has as objective to establish the relative norms to this System. As for the responsibilities it establish that the National Center of Nuclear Security (CNSN) it is the responsible for the execution from the relative tasks to the National System of Accounting and Control of Nuclear Materials. It establishes the regulations for the following aspects: licenses and authorizations for the transportation of the nuclear material and important components, Of the ceasing of the Accounting and Control, Of the Accounting and Control of the Nuclear Materials, Control of the Important Components, The Inspections, International Organism of the Atomic Energy Safeguards

  19. Decree No. 208 On National Accounting and Control System of the Nuclear Materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Decree establishes the arrangements to formalize the National Accounting and Control System of the Nuclear Materials, the which one has the objectives of contributing to an efficient and economic management of the nuclear materials in the national territory; to establish the arrangements directed to detect any employment, lost or unauthorized movement of the nuclear material; and to establish the measures of necessary control to give fulfillment to the international commitments assumed by the Cuban State in relationship to the nuclear materials, important components, or both. It also establishes the following responsibilities: The Ministry of Science Technology and Environment is the Organism of the Central Administration of the State responsible for the supervision and control of the dispositions and it delegates in the National Center of Nuclear Security the execution of the functions assigned to this Ministry

  20. Detecting errors and anomalies in computerized materials control and accountability databases

    International Nuclear Information System (INIS)

    Whiteson, R.; Hench, K.; Yarbro, T.; Baumgart, C.

    1998-01-01

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines these large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results

  1. Executive summary of the special safeguards study on material control and accounting systems. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    This report assesses the feasibility of real-time systems applied to mixed-oxide fuel rod fabrication. Their interaction with other material control and accounting measures are considered. Economics, effectiveness, and acceptance factors are discussed. A cost-benefit evaluation is made and recommendations given for safeguards improvements

  2. Overview of system of accounting and control of nuclear materials in Belarus and its development perspectives

    International Nuclear Information System (INIS)

    Sudakou, I.

    1999-01-01

    This paper presents a brief overview of technical and software means involved in the system of accounting and control of nuclear materials (SSAC) in the Republic of Belarus. The existing SSAC and its main components are described, namely legal framework, requirements for accounting and control at the facility level, and reporting procedures. Further development of the SSAC is outlined along such lines as improvement of accounting information processing, measuring capabilities, training of personnel, upgrading of regulatory practice, and strengthening of international co-operation. The 2000 year problem concerning the SSAC is briefly addressed. (author)

  3. Test and evaluation of computerized nuclear material accounting methods. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    In accordance with the definition of a Material Balance Area (MBA) as a well-defined geographical area involving an Integral operation, the building housing the BFS-1 and BFS-1 critical facilities is considered to consist of one MBA. The BFS materials are in the form of small disks clad in stainless steel and each disk with nuclear material has its own serial number. Fissile material disks in the BFS MBA can be located at three key monitoring points: BFS-1 facility, BFS-2 facility and main storage of BFS fissile materials (storage 1). When used in the BFS-1 or BFS-2 critical facilities, the fissile material disks are loaded in tubes (fuel rods) forming critical assembly cores. The following specific features of the BFS MBA should be taken into account for the purpose of computerized accounting of nuclear material: (1) very large number of nuclear material items (about 70,000 fissile material items); and (2) periodically very intensive shuffling of nuclear material items. Requirements for the computerized system are determined by basic objectives of nuclear material accounting: (1) providing accurate information on the identity and location of all items in the BFS material balance area; (2) providing accurate information on location and identity of tamper-indicating devices; (3) tracking nuclear material inventories; (4) issuing periodic reports; (5) assisting with the detection of material gains or losses; (6) providing a history of nuclear material transactions; (7) preventing unauthorized access to the system and data falsification. In August 1995, the prototype computerized accounting system was installed on the BFS facility for trial operation. Information on two nuclear material types was entered into the data base: weapon-grade plutonium metal and 36% enriched uranium dioxide. The total number of the weapon-grade plutonium disks is 12,690 and the total number of the uranium dioxide disks is 1,700

  4. Accounting Information Systems Implementation and Management Accounting Change

    Directory of Open Access Journals (Sweden)

    Bredmar Krister

    2014-09-01

    Full Text Available Background: There is an on-going discussion within management accounting research regarding how to work with performance measures. In the process of developing new forms of performance measurement the task of choosing business metrics is central. This process is closely connected to the implementation of IT solutions. Objectives: In order to understand how new performance measurement solutions are implemented and used, it becomes crucial to understand how measures are selected and how new accounting information systems (AIS are developed and implemented. Methods/approach: The paper builds on the case of an on-going AIS project at a large, public university in Sweden. The empirical material was collected using a semi-action research approach over a two-year period. The majority of the material comes from written documentation and minutes. Results: Even though the implementation of a new AIS triggers a change in the management accounting practice, this study shows that this is done in more than one perspective. Conclusions: As the project develops, new priorities and objectives evolve, which in the end shape what management accounting change becomes.

  5. Nuclear materials control and accountability internal audit program

    International Nuclear Information System (INIS)

    Barham, M.A.; Abbott, R.R.

    1991-01-01

    This paper reports that the Department of Energy Order (DOE) 5633.3, Control and Accountability for Nuclear Materials, includes several requirements for development and implementation of an internal audit program. Martin Marietta Energy System, Inc., manages five sites in Tennessee, Kentucky, and Ohio for the DOE Field Office, Oak Ridge and has a Central Nuclear Materials Control and Accountability (NMC and A) Manager with matrixed responsibility for the NMC and A program at the five sites. The Energy Systems Central NMC and A Manager has developed an NMC and A Internal Audit Handbook which defines the functional responsibilities, performance criteria, and reporting and documentation requirements for the Energy Systems NMC and A Internal Audit Program. The initial work to develop and implement these standards was tested at the K-25 Site when the site hired an internal auditor to meet the DOE requirements for an NMC and A Internal Audit program

  6. Design of a study of Systems Analysis for Material Control and Accountancy Technology (SAMCAT)

    International Nuclear Information System (INIS)

    Persiani, P.J.; Rothman, A.B.; Bucher, R.G.; Daly, T.A.; Cha, B.C.; Trevorrow, L.E.; Seefeldt, W.B.; Stewart, W.E.

    1987-01-01

    The Systems Analysis for Material Control and Accountancy Technology (SAMCAT) is a program to develop an interactive computer-based management system for decision support in evaluating Material Control and Accountancy (MCandA) upgrades and for validating the MCandA aspects of the Master Safeguards and Security Agreements (MSSA) effectiveness. This paper briefly reviews SAMCAT and presents the status of current activities, with primary focus on the design of a pilot study that has been planned for the near-term development program. The objective of the pilot study is to aid in the development and testing of assessment technologies by utilizing data and information from recent upgrades in MCandA measurements at several of the measurement locations that were important contributors to the uncertainty of the inventory differences (IDs) for a specific material balance area (MBA). The FB-Line MBA in the plutonium production cycle through Savannah River was recommended as a candidate MBA for the study. Attributes considered as selection criteria of key measurement locations for MCandA upgrades, importance rankings of the measurement locations, modeling approaches in evaluating the effectiveness of upgrades at given locations, and the data requirements to support the pilot study are presented. Applications of the near-term pilot study to the overall SAMCAT development program are also presented. 2 refs., 3 figs., 1 tab

  7. Vessel calibration for accurate material accountancy at RRP

    International Nuclear Information System (INIS)

    Yanagisawa, Yuu; Ono, Sawako; Iwamoto, Tomonori

    2004-01-01

    RRP has a 800t·Upr capacity a year to re-process, where would be handled a large amount of nuclear materials as solution. A large scale plant like RRP will require accurate materials accountancy system, so that the vessel calibration with high-precision is very important as initial vessel calibration before operation. In order to obtain the calibration curve, it is needed well-known each the increment volume related with liquid height. Then we performed at least 2 or 3 times run with water for vessel calibration and careful evaluation for the calibration data should be needed. We performed vessel calibration overall 210 vessels, and the calibration of 81 vessels including IAT and OAT were held under presence of JSGO and IAEA inspectors taking into account importance on the material accountancy. This paper describes outline of the initial vessel calibration and calibration results based on back pressure measurement with dip tubes. (author)

  8. Lean accounting – as a future accounting system

    Directory of Open Access Journals (Sweden)

    M.V. Koryagin

    2017-12-01

    Full Text Available The historical development of lean accounting is researched. The comparison of lean accounting and accounting is carried out. The article determines the lean accounting basic principles, which are the basis for the selection of main ten steps of upgrading to the system of lean accounting: the evaluation of the current situation and the expected development prospects of the enterprise; the development of the principles of implementing lean accounting; the determining the production parameters and methodology of the economic model construction; the organization of lean manufacturing environment and reducing most of the stock; the determining the flow of value creation; the rejection of variable accounting and reverse cancellation of all labor costs and the cost of materials; the rejection of tracking stocks and assign of the costs directly to the costs of sales when occurred; the definition of client-targeted spending; the relationship with suppliers and automation of the accounts payable; the relationship with customers and automation of the payments received.

  9. Role of a national system of accounting and control of nuclear material under ABACC's (Brazilian-Argentine Agency) regional system

    International Nuclear Information System (INIS)

    Fernandez Moreno, Sonia; Estrada Oyuela, Miguel E.

    2000-01-01

    The Brazilian-Argentine Agency (ABACC) and the 'Common System of Accounting and Control of Nuclear Materials' (SCCC) are the result of a process started with nuclear cooperation between Argentina and Brazil. The SCCC reflects a common policy of transparency established by a Bilateral Agreement. Its insertion in the global context was made through a Quadripartite Agreement (Argentina, Brazil, ABBAC, IAEA). This paper describes the role of the State System of Accounting and Control (SSAC) in the framework established in the Bilateral and the Quadripartite Safeguards Agreements and in the context of new trends and perspectives in international safeguards. It could also serve as a example for initiatives in other regions. (author)

  10. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  11. Material accountancy and control practice at a research reactor facility

    International Nuclear Information System (INIS)

    Bouchard, J.; Maurel, J.J.; Tromeur, Y.

    1982-01-01

    This session surveys the regulations, organization, and accountancy practice that compose the French State System of Accountancy and Control. Practical examples are discussed showing how inventories are verified at a critical assembly facility and at a materials testing reactor

  12. Data verification and materials accountancy for two accounting periods

    International Nuclear Information System (INIS)

    Beedgen, R.

    1985-01-01

    In the framework of near-real-time accountancy for nuclear materials, safeguards statistical analysis based on the operator's data of a sequence of materials balance periods has been performed. Up to now, it is assumed that the operator's data are correct. A statistical model is presented that enables inspector verification measurements for a sequence of accounting periods to be included into a safeguards procedure. The analysis uses a two balance period and statistical concepts which are applied in the case of one accounting period. The interconnection of different safeguards measures shall be studied to get a basic idea about the procedure and it is shown that there might be fundamental differences to the one balance case

  13. Cost effective material control and accountability training

    International Nuclear Information System (INIS)

    Robichaux, J.J.; Shull, L.M.; Salizzoni, L.M.

    1995-01-01

    DOE Order 5630.15, ''Safeguards and Security Training Program'' is being implemented at the Savannah River Site within the Westinghouse Savannah River Company's material control and accountability program. This paper reviews the development of a material control and accountability task analysis, the development of specific material control and accountability courses, and the cost effective and innovative strategies employed to implement the training program. The paper also discusses how the site material control and accountability policies and procedures are incorporated into the Westinghouse Savannah River Company training program to ensure that personnel receive the most current information

  14. Study of the application of a near-real-time materials accountancy system for a model plutonium conversion plants

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Ikawa, Koji

    1986-11-01

    An assessment was done on the potential capability of a Near-Real-Time materials accountancy system for a model plutonium conversion plant. To this end, a computer simulation system, DYSAS-C, has been developed and evaluated through this assessment study. This study showed that N.R.T.A system could be used not only as a good operator's accounting system but also as a useful inspectorate's system to detect an abrupt diversion. It also showed, however, that more elaborated NRTA system which have not yet evaluated in this study should be considerered when we wish to improve of detecting protracted diversion. (author)

  15. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nai; Park, Ho Joon

    1991-03-01

    Using Segmented Gamma Scanning(SGS) System and coaxical Ge detector, the amounts of uranium in 55 gallon waste drums mixed with low density matrix material were determined by segmented gamma-scanning method. Various factors that influence sample measurement were identified as attenuation effects against sample container and matrix material counting loss effect by dead time and signal pile-up and radial and axial non-uniformity effects of sample. External transmission source, Yb-169, was used to correct gamma-ray attenuation by matrix material. The measure deviation caused by non-uniform distribution in the drum was minimized by rotating and dividing the drum. To calibrate the measurement system, calibration sources were prepared in the range of 50g, 100g, 300g, and 500g of U0 2 powder which let it stick to thin gummed papers and mix with other matrix materials such as papers, vinyl sheets, pieces of rubber gloves in 4 each drum. Under the calibrated assay system the uncertainty of measured amounts of UO 2 powder approached about 10% of absolute value at 1σ and a normal flow of waste stream can be maintained at least one drum per hour. On the other hand, in an effort to ease the nuclear material accounting for and control the flow of nuclear material in CANDU Fuel Fabrication Facility was analyzed to develope a model computer network interfaced with hardwares, structual design of network, computer operating system, and hardware set-up were studied to draw out the most practical network system. (Author)

  16. Software for MUF evaluating in item nuclear material accounting

    International Nuclear Information System (INIS)

    Wang Dong; Zhang Quanhu; He Bin; Wang Hua; Yang Daojun

    2009-01-01

    Nuclear material accounting is a key measure for nuclear safeguard. Software for MUF evaluation in item nuclear material accounting was worked out in this paper. It is composed of several models, including input model, data processing model, data inquiring model, data print model, system setting model etc. It could be used to check the variance of the measurement and estimate the confidence interval according to the MUF value. To insure security of the data multi-user management function was applied in the software. (authors)

  17. Advanced international training course on state systems of accounting for and control of nuclear materials

    International Nuclear Information System (INIS)

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington

  18. Advanced international training course on state systems of accounting for and control of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  19. Facility level SSAC for model country - an introduction and material balance accounting principles

    International Nuclear Information System (INIS)

    Jones, R.J.

    1989-01-01

    A facility level State System of Accounting for and Control of Nuclear Materials (SSAC) for a model country and the principles of materials balance accounting relating to that country are described. The seven principal elements of a SSAC are examined and a facility level system based on them discussed. The seven elements are organization and management; nuclear material measurements; measurement quality; records and reports; physical inventory taking; material balance closing; containment and surveillance. 11 refs., 19 figs., 5 tabs

  20. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  1. Computer-based accountability system (Phase I) for special nuclear materials at Argonne-West

    International Nuclear Information System (INIS)

    Ingermanson, R.S.; Proctor, A.E.

    1982-05-01

    An automated accountability system for special nuclear materials (SNM) is under development at Argonne National Laboratory-West. Phase I of the development effort has established the following basic features of the system: a unique file organization allows rapid updating or retrieval of the status of various SNM, based on batch numbers, storage location, serial number, or other attributes. Access to the program is controlled by an interactive user interface that can be easily understood by operators who have had no prior background in electronic data processing. Extensive use of structured programming techniques make the software package easy to understand and to modify for specific applications. All routines are written in FORTRAN

  2. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  3. New approaches towards information materiality in accounting

    OpenAIRE

    Карзаева, Наталия Николаевна

    2015-01-01

    A theoretically substantiated method of the calculation of the level of the materiality factor, taking into account the interest of the persons making decision on the basis of financial factors, formulas of the calculations of the crucial level of error, above which the data of the accounting reporting cannot be adopted as reliable and appropriate corrections must be introduced in accounting reporting. The materials on the order of making corrections in accounting records and accounting repor...

  4. Report of the Material Control and Material Accounting Task Force: blueprint for the future

    International Nuclear Information System (INIS)

    1978-03-01

    A blueprint is presented for the development of improved material control and material accounting systems by integrating the goals and capabilities of material control and material accounting and recommending specific upgrading actions. An analysis is included of several specific issues and developing recommendations for future actions related to those issues. It is felt that there is a need for a program to define specific quantified goals for an integrated safeguards program, and to monitor safeguards programs in terms of these goals. NRC should give highest priority to developing regulations and guides that will enable material control to make a greater contribution to safeguards by providing greater timeliness and sensitivity in detecting and assessing material losses. It is recommended that a technical study be conducted to determine a quantitative measure or at least a figure of merit for the effectiveness of a security clearance program, based upon full field background investigations, in protecting against malevolent conspiracies involving two or more security cleared individuals. It is also recommended that a specific effort be initiated to formulate an approach to combating collusion. This effort should specifically consider the contribution that material control and material accounting programs can make to safeguards effectiveness in this area

  5. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  6. Material Control and Accountability Experience at the Fuel Conditioning Facility

    International Nuclear Information System (INIS)

    Vaden, D.; Fredrickson, G.L.

    2007-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials. Material accountancy is necessary at FCF for two reasons: 1) it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security, and 2) it provides a periodic check of inventories to ensure that processes and materials are within control limits. Material Control and Accountability is also a Department of Energy (DOE) requirement (DOE Order 474.1). The FCF employs a computer based Mass Tracking (MTG) System to collect, store, retrieve, and process data on all operations that directly affect the flow of materials through the FCF. The MTG System is important for the operations of the FCF because it supports activities such as material control and accountability, criticality safety, and process modeling. To conduct material control and accountability checks and to monitor process performance, mass balances are routinely performed around the process equipment. The equipment used in FCF for pyro-processing consists of two mechanical choppers and two electro-refiners (the Mark-IV with the accompanying element chopper and Mark-V with the accompanying blanket chopper for processing driver fuel and blanket, respectively), and a cathode processor (used for processing both driver fuel and blanket) and casting furnace (mostly used for processing driver fuel). Performing mass balances requires the measurement of the masses and compositions of several process streams and equipment inventories. The masses of process streams are obtained via in-cell balances (i.e., load cells) that weigh containers entering and leaving the process equipment. Samples taken at key locations are analyzed to determine the composition of process streams and equipment inventories. In cases where equipment or containers cannot be

  7. Accountability of Radioactive Materials in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Noor Fadilla Ismail; Wan Saffiey Wan Abdullah; Khairuddin Mohamad Kontol; Azimawati Ahmad; Suzilawati Muhd Sarowi; Mohd Fazlie Abdul Rashid

    2016-01-01

    Radioactive materials possessed in Malaysian Nuclear Agency have many beneficial applications for research and development, calibration, tracer and irradiation. There are two types of radioactive materials which consist of sealed sourced and unsealed sourced shall be accounted for and secured at all the times by following the security aspect. The Health Physics Group in the Department of Radiation Safety and Health Division is responsible to manage the issues related to any accountability for all radioactive material purchased or received under the radioactive material protocol. The accountability of radioactive materials in Malaysian Nuclear Agency is very important to ensure the security and control the radioactive materials to not to be lost or fall into the hands of people who do not have permission to possess or use it. The accountability of radioactive materials considered as a mandatory to maintaining accountability by complying the requirements of the Atomic Energy Licensing Act 1984 (Act 304) and regulations made thereunder and the conditions of license LPTA / A / 724. In this report describes the important element of accountability of radioactive materials in order to enhances security standard by allowing tracking of the locations of sources and to reduce the risk of radioactive materials falling into the wrong hands. (author)

  8. Development of nuclear materials accounting for international safeguards

    International Nuclear Information System (INIS)

    Markin, J.T.; Augustson, R.H.; Eccleston, G.W.; Hakkila, E.A.

    1991-01-01

    This paper reports that nuclear materials accountancy was introduced as a primary safeguards measure in international safeguards at the inception of the EURATOM safeguards directorate in 1959 and in IAEA safeguards in 1961 with the issuance of INFCIRC 26. As measurement technology evolved and safeguarded facilities increased in both number and size, measurement methodology requirements increased as reflected in INFCIRC 66 (Rev 2.) in 1968 and later in INFCIRC 153 in 1972. Early measurements relied heavily on chemical analysis, but in the 1960s the measurements evolved more and more toward nondestructive assay. Future nuclear materials accountancy systems will increase in complexity, driven by larger and more complex facilities; more stringent health, safety, and environmental considerations; and unattended automation in facility operations

  9. The Impact of Materiality: Accounting's Best Kept Secret

    OpenAIRE

    Niamh Brennan; Sidney J. Gray

    2005-01-01

    This paper comprises a review of the literature on materiality in accounting. The paper starts by examining the context in which materiality is relevant, and the problems arising from applying the concept in practice. Definitions of materiality from legal, accounting and stock exchange sources are compared. The relevance of materiality to various accounting situations is discussed. Methods of calculating quantitative thresholds are described and illustrated. Prior research is reviewed, focuss...

  10. Computerized materials protection, control, and accountability at the Institute of Physics and Power Engineering

    International Nuclear Information System (INIS)

    Efimenko, V.; Goryunov, V.; Ilyantsev, A.

    1998-01-01

    As part of a multifaceted approach to protecting its nuclear materials, The Institute of Physics and Power Engineering (IPPE) at Obninsk, Russia, has been computerizing its materials protection, control, and accountability capabilities. This is being accomplished in collaboration with the CoreMAS team at Los Alamos National Laboratory. Such international cooperation in applying advanced science and technology to managing and controlling nuclear materials will help reduce the threat of nuclear weapons proliferation by preventing acquisition of weapons-grade nuclear materials by unauthorized individuals, organizations, or states. One important characteristic of IPPE is that it encompasses several facilities that manage nuclear materials, and three of these facilities already operate their own independent (or independently developed) computerized accounting systems. This paper focuses on the importance of compatibility between the computerized accountability systems at the facilities, the ability of the individual systems to communicate with a single site-wide system, and the necessity of coordination between facilities in designing and developing computerized systems. The authors believe that the lessons learned at IPPE in coordinating these efforts have wide-ranging significance for other sites with multiple facilities

  11. State system of accounting for and control of nuclear materials and Protocol Additional in the Slovak Republic

    International Nuclear Information System (INIS)

    Bencova, A.

    2001-01-01

    Full text: The State System of Accounting for and Control of Nuclear Materials (SSAC) which is established in the Slovak Republic was developed by the former Czechoslovak Atomic Energy Commission and after splitting of the Czechoslovak Republic in 1993 it has been fully accepted by the regulatory authority of the Slovak Republic. This system is based on requirements of the safeguards agreement between the government of the Czechoslovak Republic and the IAEA (which has been accepted by the government of the Slovak Republic), known as INFCIRC/173. The agreement is conforming to INFCIRC/153 i. e. it is reflecting requirements of the Treaty on the Non - Proliferation of Nuclear Weapons (NPT) which was signed by the government of the Czechoslovak Socialist Republic on 01. 07. 1968 and in March 1993 was accepted by the government of the Slovak Republic. The SSAC in the Slovak Republic has national and international objectives. Organisational and functional elements of the SSAC in the Slovak Republic can be addressed in the following six major areas: a) Authority and Responsibility; b) Laws, Regulations and Other Measures; c) SSAC Information System; d) Establishment of Requirements for Nuclear Materials Accounting and Control; e) Ensuring Compliance; f) Technical Support. Legal Basis for the IAEA inspection activities is an Agreement between the government of the Slovak Republic and the IAEA (INFCIRC/173). The Agreement is supplemented by the Subsidiary Arrangement (SA), which contains in the general part the requirements on accountancy documentation, reports and inspections. The Facility Attachment is a part of SA, which contains information specific for individual MBA, mainly: a brief description of the facility, its purpose, nominal capacity, geographic location, the name and address; location and flow of nuclear materials, a description of features of the facility relating to material accountancy, containment and surveillance; a description of the existing and

  12. The state system of accounting and control of nuclear material in Argentina and the Y2K issue

    International Nuclear Information System (INIS)

    Moreno, S.F.; Maceiras, E.

    1999-01-01

    The nuclear regulatory activities in Argentina are carried out by the 'Nuclear Regulatory Authority' (ARN). To fulfil its responsibilities, the ARN has established and enforced a regulatory framework for all nuclear activities concerning nuclear safety and radiological protection, physical protection and the guarantees of non-proliferation. Concerning the guarantees of non-proliferation, the SSAC includes an independent verification system based on national safeguards inspections, evaluations and a centralised accounting database of all nuclear materials in all nuclear activities performed in Argentina. The ARN has implemented two computerised databases to improve its SSAC. One is the 'Safeguards Inspections System' (SIS) developed to optimise the programming of the national inspections and their evaluation. The other is the 'Nuclear Material Control System' (SCMN) designed to improve the issuing and submission of accounting and operating reports. To improve further the SSAC, the ARN has requested software that should be in use at each nuclear installation in the near future. This computerised accounting database (SOP) would increase the quality of the operator's accounting and control system. About the change of the millennium, it is important to bear in mind that it may have an impact not only in the dates of the safeguards reports, but also in some data generated by software or equipment at nuclear installations used as the basis for safeguards records. For example, computerised programs for fuel element management at the Nuclear Power Stations or certain software and hardware in use at bulk installations would require a comprehensive review to assure that the change of the year 2000 will not cause any problem. Besides, some of the data generated by computerised systems at the level of installations are inputs for the three integrated databases SCMN, SIS and SOP. This paper describes the objectives and functions of these integrated systems and some main aspects

  13. Study of nuclear material accounting

    International Nuclear Information System (INIS)

    Ruderman, H.

    1977-01-01

    The implications of deliberate diversion of nuclear materials on materials accounting, the validity of the MUF concept to establish assurance concerning the possible diversion of special nuclear materials, and an economic analysis to permit cost comparison of varying the inventory frequency are being studied. An inventory cost model, the statistical hypothesis testing approach, the game theoretic approach, and analysis of generic plants are considered

  14. Criteria for Determination of Material Control and Accountability System Effectiveness

    International Nuclear Information System (INIS)

    John Wright

    2008-01-01

    The Nevada Test Site (NTS) is a test bed for implementation of the Safeguards First Principles Initiative (SFPI), a risk-based approach to Material Control and Accountability (MC and A) requirements. The Comprehensive Assessment of Safeguards Strategies (COMPASS) model is used to determine the effectiveness of MC and A systems under SFPI. Under this model, MC and A is divided into nine primary elements. Each element is divided into sub-elements. Then each sub-element is assigned two values, effectiveness and contribution, that are used to calculate the rating. Effectiveness is a measure of subelement implementation and how well it meets requirements. Contribution is a relative measure of the importance, and functions as a weighting factor. The COMPASS model provides the methodology for calculation of sub-element and element ratings, but not the actual criteria. Each site must develop its own criteria. For the rating to be meaningful, the effectiveness criteria must be objective and based on explicit, measurable criteria. Contribution (weights) must reflect the importance within the MC and A program. This paper details the NTS approach to system effectiveness and contribution values, and will cover the following: the basis for the ratings, an explanation of the contribution 'weights', and the objective, performance based effectiveness criteria. Finally, the evaluation process will be described

  15. Energy accounting of materials, products, processes and services. [Ten papers

    Energy Technology Data Exchange (ETDEWEB)

    Verbraeck, A [ed.

    1976-01-01

    Ten papers were presented, namely: Units in Energy Accounting--How Are They Defined, How Are They Measured, by Dr. Malcolm Slesser; Economics of Energy Analysis, by Dr. Thomas Veach Long II; Energy Considerations in Synthetic and Natural Fibers, by Mr. A. H. Woodhead; Energy Accounting in Food Products, by Mr. Gerald Leach; Energy Analysis of Transportation Systems, by Dr. E. J. Tuininga; Energy Accounting of Packaging Materials for Liquids and Their Transport viz Bottles and Pipes, by Mr. A. Bolzinger; Energy Accounting of Steel, by Dr. A. Decker; Energy Accounting of Aluminium, by Dr. D. Altenpohl, T. S. Daugherty, and W. Blum; Energy Requirement of Some Energy Sources, by Dr. P. F. Chapman and Dr. D. F. Hemming; Energy Analysis of Materials and Structures in the Building Industry, by Professor Dr. P. C. Kreijger. A panel discussion in response to a large number of questions was chaired by Professor Dr. W. van Gool. (MCW)

  16. Material control system simulator program reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences.

  17. Material control system simulator program reference manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences

  18. The application of statistical techniques to nuclear materials accountancy

    International Nuclear Information System (INIS)

    Annibal, P.S.; Roberts, P.D.

    1990-02-01

    Over the past decade much theoretical research has been carried out on the development of statistical methods for nuclear materials accountancy. In practice plant operation may differ substantially from the idealized models often cited. This paper demonstrates the importance of taking account of plant operation in applying the statistical techniques, to improve the accuracy of the estimates and the knowledge of the errors. The benefits are quantified either by theoretical calculation or by simulation. Two different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an accountancy tank is investigated. Secondly, a means of improving the knowledge of the 'Material Unaccounted For' (the difference between the inventory calculated from input/output data, and the measured inventory), using information about the plant measurement system, is developed and compared with existing general techniques. (author)

  19. Conceptual design of the special nuclear material nondestructive assay and accountability system for the HTGR fuel refabrication pilot plant

    International Nuclear Information System (INIS)

    Jenkins, J.D.; McNeany, S.R.; Rushton, J.E.

    1975-07-01

    The conceptual design of the fissile material assay and accountability system for the HTGR refabrication pilot plant has been established. The primary feature affecting the design is the high, time varying, gamma activity of the process material due to the unavoidable presence of uranium-232. This imposes stringent requirements for remote operation and remote maintainability of system components. At the same time, the remote operation lends itself to implementation of an automated data collection and processing system for real-time accountability. The high time-varying gamma activity of the material also precludes application of a number of techniques presently employed for light-water reactor fuel assay. The techniques selected for application in the refabrication facility are (1) active thermal neutron interrogation with fast-fission or delayed-neutron counting for fuel-rod and small-sample assay, (2) calorimetry for high-level waste assay, and (3) passive gamma scanning for low-level waste assay, and rapid on-line relative rod-loading measurements. The principal nondestructive assay subsystems are identified as (1) on-line devices for 100 percent product fuel rod assay and quality control, (2) a multipurpose device in the sample inspection laboratory for small- sample assay and secondary standards calibration, and (3) equipment for assay of high- and low-uranium content scrap and waste materials. A data processing system, which coordinates data from these subsystems with information from other process control sensors, is included to provide real-time material balance information. (U.S.)

  20. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials. Revision 1

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, Hiroshi; Augustson, R.; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel, spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the US/Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC and A) program, VNIINM is providing support for measurements of nuclear materials in bulk forms by developing specifications, test and evaluation, certification, and implementation of measurement methods for such materials. In 1996, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and their storage facility. The paper will describe the status of this work and anticipated progress in 1996

  1. Audit trails in an online accountability system

    International Nuclear Information System (INIS)

    Jamison, C.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an online computer system that was developed by Rockwell International to track the accounting and processing of nuclear materials from the time it arrives at Rocky Flats Plant through its life cycle. A major contributor to the success of SAN is the use of audit trails. They have proven to be invaluable for the management and safeguarding of these sensitive materials at Rocky Flats. Producing effective audit trails requires the recording of all pertinent transactions and the capability to access and report the information in a timely fashion. This paper discusses the implementation and application of these audit trails on the Rocky Flats SAN system

  2. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    International Nuclear Information System (INIS)

    1984-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base

  3. Computerized materials protection, control, and accountability

    International Nuclear Information System (INIS)

    Whiteson, R.; Seitz, S.; Landry, R.P.; Hadden, M.L.; Painter, J.A.

    1997-01-01

    The proliferation of nuclear weapons, along with the technical knowledge and materials needed to make these weapons, is an enduring problem of international urgency. Current international nuclear nonproliferation efforts are aimed at deterring, detecting, and responding to proliferation of weapons of mass destruction. These safeguards efforts are being implemented by applying preeminent science and technology to the management and control of nuclear materials. By strengthening systems of nuclear material protection, control, and accountability (MPC and A), one can reduce the threat of nuclear weapons proliferation. Two major programs of international cooperation are now underway to achieve this goal. The first is between the US Department of Energy (DOE) and the Institutes of the Russian Federation (Laboratory-to-Laboratory Program), and the second is between the US Government and Governments of the former Soviet Republics (Government-to-Government Program). As part of these programs, the DOE is working with facilities to assist them in implementing computerized MPC and A systems. This work is a collaboration between computer scientists and safeguards experts in both the US and the new Republics. The US is making available technology and expertise to enable Russian experts to build on computerized MPC and A software developed in the US. This paper describes the joint efforts of these international teams to develop sophisticated computerized MPC and A systems using modern computer hardware and software technology. These systems are being customized to meet the site-specific needs of each facility

  4. Developing standard performance testing procedures for material control and accounting components at a site

    International Nuclear Information System (INIS)

    Scherer, Carolynn P.; Bushlya, Anatoly V.; Efimenko, Vladimir F.; Ilyanstev, Anatoly; Regoushevsky, Victor I.

    2010-01-01

    The condition of a nuclear material control and accountability system (MC and A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC and A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC and A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC and A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC and A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC and A performance-testing procedures were the basis for a Guide for MC and A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  5. A Continuous Automated Vault Inventory System (CAVIS) for accountability monitoring of stored nuclear materials

    International Nuclear Information System (INIS)

    Pickett, C.A.; Barham, M.A.; Gafford, T.A.; Hutchinson, D.P.; Jordan, J.K.; Maxey, L.C.; Moran, B.W.; Muhs, J.; Nodine, R.; Simpson, M.L.

    1994-01-01

    Nearly all facilities that store hazardous (radioactive or non-radioactive) materials must comply with prevailing federal, state, and local laws. These laws usually have components that require periodic physical inspections to insure that all materials remain safely and securely stored. The inspections are generally labor intensive, slow, put personnel at risk, and only find anomalies after they have occurred. The system described in this paper was developed for monitoring stored nuclear materials resulting from weapons dismantlement, but its applications extend to any storage facility that meets the above criteria. The traditional special nuclear material (SNM) accountability programs, that are currently used within most of the Department of Energy (DOE) complex, require the physical entry of highly trained personnel into SNM storage vaults. This imposes the need for additional security measures, which typically mandate that extra security personnel be present while SNM inventories are performed. These requirements increase labor costs and put additional personnel at risk to radiation exposure. In some cases, individuals have received radiation exposure equivalent to the annual maximum during just one inventory verification. With increasing overhead costs, the current system is rapidly becoming too expensive to operate, the need for an automated method of inventory verification is evident. The Continuous Automated Vault Inventory System (CAVIS) described in this paper was designed and prototyped as a low cost, highly reliable, and user friendly system that is capable of providing, real-time weight, gamma. and neutron energy confirmation from each item stored in a SNM vault. This paper describes the sensor technologies, the CAVIS prototype system (built at Y- 12 for highly enriched uranium storage), the technical requirements that must be achieved to assure successful implementation, and descriptions of sensor technologies needed for a plutonium facility

  6. A Continuous Automated Vault Inventory System (CAVIS) for accountability monitoring of stored nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, C.A.; Barham, M.A.; Gafford, T.A.; Hutchinson, D.P.; Jordan, J.K.; Maxey, L.C.; Moran, B.W.; Muhs, J.; Nodine, R.; Simpson, M.L. [and others

    1994-12-08

    Nearly all facilities that store hazardous (radioactive or non-radioactive) materials must comply with prevailing federal, state, and local laws. These laws usually have components that require periodic physical inspections to insure that all materials remain safely and securely stored. The inspections are generally labor intensive, slow, put personnel at risk, and only find anomalies after they have occurred. The system described in this paper was developed for monitoring stored nuclear materials resulting from weapons dismantlement, but its applications extend to any storage facility that meets the above criteria. The traditional special nuclear material (SNM) accountability programs, that are currently used within most of the Department of Energy (DOE) complex, require the physical entry of highly trained personnel into SNM storage vaults. This imposes the need for additional security measures, which typically mandate that extra security personnel be present while SNM inventories are performed. These requirements increase labor costs and put additional personnel at risk to radiation exposure. In some cases, individuals have received radiation exposure equivalent to the annual maximum during just one inventory verification. With increasing overhead costs, the current system is rapidly becoming too expensive to operate, the need for an automated method of inventory verification is evident. The Continuous Automated Vault Inventory System (CAVIS) described in this paper was designed and prototyped as a low cost, highly reliable, and user friendly system that is capable of providing, real-time weight, gamma. and neutron energy confirmation from each item stored in a SNM vault. This paper describes the sensor technologies, the CAVIS prototype system (built at Y- 12 for highly enriched uranium storage), the technical requirements that must be achieved to assure successful implementation, and descriptions of sensor technologies needed for a plutonium facility.

  7. Techniques for developing reliable and functional materials control and accounting software

    International Nuclear Information System (INIS)

    Barlich, G.

    1988-01-01

    The media has increasingly focused on failures of computer systems resulting in financial, material, and other losses and on systems failing to function as advertised. Unfortunately, such failures with equally disturbing losses are possible in computer systems providing materials control and accounting (MCandA) functions. Major improvements in the reliability and correctness of systems are possible with disciplined design and development techniques applied during software development. This paper describes some of the techniques used in the Safeguard Systems Group at Los Alamos National Laboratory for various MCandA systems

  8. The Russian Federal Information System for Nuclear Material Control and Accounting: Yesterday, Today and Tomorrow

    International Nuclear Information System (INIS)

    Martyanov, A.A.; Pitel, V.A.; Berchik, V.P.; Kasumova, L.A.; Babcock, R.A.; Kilmartin, W.E.; Heinberg, C.L.

    2002-01-01

    Most enterprises in the Russian Federation are not prepared to report to the Russian Federal Nuclear Material Control and Accounting Information System (FIS) by the full function reporting method. The full function reporting method requires reporting inventory listings on a schedule based on nuclear material category, submission of individual inventory change reports, and reconciliation and closeout at the end of each reporting period. Most Russian enterprises do not have automated systems and do not have the resources to develop and implement such systems. Over the last two years, MinAtom put the regulations and national level nuclear material control and accounting (MC and A) software in place to require all enterprises in the Russian Federation to report summarized inventory listings to the FIS in January 2002. Enterprises do not need automated systems to comply with summarized reporting requirements. Along with the approximately 25% of the total Category 1 Material Balance Areas (MBAs) using full function reporting, the addition of this complete summarized inventory makes the FIS a more valuable tool for MinAtom management. The FIS is now poised to complete the work by improving the integrity and reliability of the data through increasing the number of enterprises and MBAs using full function reporting. There are obstacles and issues that must be dealt with along the way to achieving the final goal of every MBA sending inventory and inventory change reports using the full function reporting method. Summarized reporting is a major step toward this final goal. Currently all MBAs using full function reporting are doing so under a U.S. contract. FIS management recognized full function reporting could not be implemented in the near-term and prepared a plan with immediate, intermediate, and long-term FIS tasks. To address the major obstacles and optimize implementation, two paths need to be followed in parallel: developing the regulatory basis and overcoming

  9. System of accounting and control of nuclear materials (MCA) relative to IAEA safeguards and improvement of radioecological situation of the Joint Stock Company ULBA Metallurgical Plant

    International Nuclear Information System (INIS)

    Kuznetsov, B.; Khadeev, V.; Antonov, N.; Gradelnikov, K.

    1996-01-01

    Following goals must be accomplished following this Project : - Develop computerized and automated MCA data system; - Provide up-to-date and reliable accounting and control of availability and transfer of nuclear materials, detect loss or theft of nuclear materials; - Improve book keeping of nuclear materials, provide paperwork for raw materials and finished products sales and purchase control, process nuclear materials shipment data; - Reduce sampling error and to obtain precise measure of nuclear materials to obtain ESADRA target values; - Thorium concentrates transfer preliminary released from raw Beryllium to the new storage to prevent environment radiation pollution and obvious fire accidents; - Improve radioecological situation of the territory caused by old storage dismantling and decontamination of site; - Improve accounting, storing and Physical Protection of Thorium Following is the proposal to obtain goals of the Project : - Develop accounting and control systems - Develop basic standards and procedures for MCA system - Develop users specifications of MCA data system - Develop software of MCA data system - Assembly and adjustment of local network at the production facilities - Automated MCA data system personnel training - Develop measurement system - Determination of the mistakes in sampling and measurement of Uranium and isotopes content - Develop the procedures of sampling and measurement of Uranium and isotopes content providing ESADRA target values - Develop measure control program covering scales and analytical equipment and measuring methods - Develop software for measure control program support - Thorium shipment, decontamination and improvement of Physical Protection of Thorium storage - Accounting of Thorium containing materials when transferring to the new storage - Arrange storage decontamination - Develop new systems of Thorium Containment/Surveillance and Physical Protection

  10. US/Russian program in materials protection, control and accounting at the RRC Kurchatov Institute: 1997--1998

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.; Rumyantsev, A.; Shmelev, V.

    1998-01-01

    Six US Department of Energy Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute to improve nuclear material protection, control and accounting (MPC and A) at Kurchatov. In 1997--1998 the primary thrust of this program has been directed to Building 106, which houses a number of test reactors and critical facilities. Substantial improvements in physical protection, upgrades in the physical inventory taking procedures, installation of equipment for the computerized materials accounting system, and installation of nuclear material portal monitors and neutron-based measurement equipment are being carried out at this facility. Software for the computerized accounting system, named KI-MACS, has been developed at Kurchatov and the system has been fully integrated with the bar code printing and reading equipment, electronic scales, and nondestructive assay equipment provided under this program. Additional 1997--1998 activities at Kurchatov include continuation of a tamper indicating device program, vulnerability assessments of several facilities, hosting of a Russian-American Workshop on Fissile Material Control and Accountability at Critical Facilities, and the development of accounting procedures for transfers of nuclear materials between material balance areas

  11. Conceptual design of tritium accountancy system for LLCB TBM

    International Nuclear Information System (INIS)

    Patel, Rudreksh; Sircar, Amit

    2017-01-01

    Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) will be tested in ITER for performance evaluation of high grade of heat extraction and tritium breeding. The bred tritium in the breeder materials is extracted and recovered by Tritium Extraction System (TES), whereas tritium permeated from breeder materials to helium coolants, viz., primary coolant and secondary coolant, is recovered by Coolant Purification System (CPS). This recovered tritium has to be accounted before transferring it to tritium plant (i.e., ITER inner fuel). This tritium accountancy is performed by Tritium Accountancy System (TAS). In addition to tritium accountancy, TAS also provides necessary data for the validation of design and modelling tools.In this work, we have presented conceptual design of TAS. It also describes operational philosophy, process parameters, process flow diagram, and interface details with ITER tritium plant. (author)

  12. Audit trails in an online accountability system

    International Nuclear Information System (INIS)

    Jamison, C.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an online computer system that was developed by Rockwell International to track the accounting and processing of nuclear materials from the time it arrives at Rocky Flats Plant through its life cycle. A major contributor to the success of SAN is the use of audit trails. They have proven to be invaluable for the management and safeguarding of these sensitive materials at Rocky Flats. Producing effective audit trails requires the recording of all pertinent transactions and the capability to access and report the information in a timely fashion. This paper discusses the implementation and application of these audit trials on the Rocky Flats SAN system. 1 fig

  13. Near real time materials accountancy development programme for Thorp

    International Nuclear Information System (INIS)

    Jones, B.J.

    1991-01-01

    BNFL is currently designing and installing a fully automated system of data capture, storage and processing for its Thermal Oxide Reprocessing Plant (THORP) at Sellafield. A prototype Near Real Time Materials Accountancy (NRTMA) system has been used to demonstrate the advantages of this method of materials control to the future plant operators and their feedback continues to be incorporated in the development of user interfaces. NRTMA has been included in the User Requirements Specification for Chemical Plant Information Computer, the top-tier computer which is being provided to archive, retrieve and analyse plant data. The paper describes a development programme of performance and quality related improvements to the prototype NRTMA system. Furthermore, advanced diagnostic systems are described which will help the operator in the resolution of anomalies

  14. A saddle-point for data verification and materials accountancy to control nuclear material

    International Nuclear Information System (INIS)

    Beedgen, R.

    1983-01-01

    Materials accountancy is one of the main elements in international safeguards to determine whether or not nuclear material has been diverted in nuclear plants. The inspector makes independent measurements to verify the plant-operator's data before closing the materials balance with the operator's data. All inspection statements are in principle probability statements because of random errors in measuring the material and verification on a random sampling basis. Statistical test procedures help the inspector to decide under this uncertainty. In this paper a statistical test procedure representing a saddle-point is presented that leads to the highest guaranteed detection probability taking all concealing strategies into account. There are arguments favoring a separate statistical evaluation of data verification and materials accountancy. Following these considerations, a bivariate test procedure is explained that evaluates verification and accountancy separately. (orig.) [de

  15. Near-real-time material accountancy - A technical status report

    International Nuclear Information System (INIS)

    Lovett, J.; Ikawa, K.; Sellinschegg, D.; Shipley, J.

    1983-01-01

    Near-Real-time materials accountancy as applied to reprocessing plants involves two major elements, measurement of the in-process physical inventory at frequent intervals, and statistical evaluation of the resulting sequential material balance data. For most reprocessing plants the bulk of the in-process inventory is in measurable intermediate ''buffer'' tanks. The plutonium inventory in the solvent extraction system, which does not appear to be directly measureable, could cause a reduction in sensitivity of the sequential data analysis. Studies are in progress, and it is hoped that an acceptable means for accounting for these variations can be found. Consultants at a meeting in January 1982 agreed that statistical tests for evaluating sequential material balance data will increase both detection timeliness and detection sensitivity. IAEA verification of operator-generated measurement data is an area requiring significantly increased effort, but here too studies are in progress which should help to reduce inspection effort in increased effectiveness

  16. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

  17. Future approaches to material control and accounting

    International Nuclear Information System (INIS)

    Sherr, T.S.; Smith, G.D.; Wirfs, L.F.

    1978-01-01

    This paper presents a short description of the safeguards responsibilities and activities of the U.S. Nuclear Regulatory Commission (NRC), the NRC regulatory requirements for safeguards in the area of material control and accounting (MCandA), and the current NRC efforts which may result in significant changes in the current U.S. safeguards system. The preliminary results of NRC staff and contractor MCandA activities are discussed, as well as the recommendations of a recent NRC task force on MCandA. 9 refs

  18. Decision analysis for dynamic accounting of nuclear material

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-01-01

    Effective materials accounting for special nuclear material in modern fuel cycle facilities will depend heavily on sophisticated data analysis techniques. Decision analysis, which combines elements of estimation theory, decision theory, and systems analysis, is a framework well suited to the development and application of these techniques. Augmented by pattern-recognition tools such as the alarm-sequence chart, decision analysis can be used to reduce errors caused by subjective data evaluation and to condense large collections of data to a smaller set of more descriptive statistics. Application to data from a model plutonium nitrate-to-oxide conversion process illustrates the concepts

  19. Statistical analysis and Kalman filtering applied to nuclear materials accountancy

    International Nuclear Information System (INIS)

    Annibal, P.S.

    1990-08-01

    Much theoretical research has been carried out on the development of statistical methods for nuclear material accountancy. In practice, physical, financial and time constraints mean that the techniques must be adapted to give an optimal performance in plant conditions. This thesis aims to bridge the gap between theory and practice, to show the benefits to be gained from a knowledge of the facility operation. Four different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an 'accountancy tank' is investigated. Secondly, an analysis of the calibration data for the same tank is presented, establishing bounds for the error and suggesting a means of reducing them. Thirdly, a plant-specific method of producing an optimal statistic from the input, output and inventory data, to help decide between 'material loss' and 'no loss' hypotheses, is developed and compared with existing general techniques. Finally, an application of the Kalman Filter to materials accountancy is developed, to demonstrate the advantages of state-estimation techniques. The results of the analyses and comparisons illustrate the importance of taking into account a complete and accurate knowledge of the plant operation, measurement system, and calibration methods, to derive meaningful results from statistical tests on materials accountancy data, and to give a better understanding of critical random and systematic error sources. The analyses were carried out on the head-end of the Fast Reactor Reprocessing Plant, where fuel from the prototype fast reactor is cut up and dissolved. However, the techniques described are general in their application. (author)

  20. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  1. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    International Nuclear Information System (INIS)

    1986-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California

  2. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

  3. Japanese Cost Accounting Systems - analysis of the cost accounting systems of the Japanese cost accounting standard

    OpenAIRE

    Peter, Winter

    2005-01-01

    This paper aims at providing an insight into Japanese cost accounting. Firstly, the development of cost accounting in Japan is delineated. Subsequently, the cost accounting systems codified in the Japanese cost accounting standard are analysed based on the classification according to Hoitsch/Schmitz. Lastly, a critical appraisal of the cost accounting systems of the Japanese cost accounting standard as well as a comparison to German and American cost accounting systems are conducted.

  4. The system of nuclear material control of Kazakhstan

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    2001-01-01

    Full text: The State system for nuclear material control consists of three integral components. The efficiency of each is to guarantee the non-proliferation regime in Kazakhstan. The components are the following: accounting, export and import control and physical protection of nuclear materials. First, the implementation of the goals of accounting and control bring into force, by the organization of the system for accounting and measurement of nuclear materials to determine present quantity. Organizing the accounting for nuclear material at facilities will ensure the efficiency of accountancy and reporting information. This defines the effectiveness of the state system for the accounting for the Kazakhstan's nuclear materials. Currently, Kazakhstan's nuclear material is fully safeguarded in designated secure locations. Kazakhstan has a nuclear power plant, 4 research reactors and a fuel fabrication plant. The governmental information system for nuclear materials control consist of two level: Governmental level - KAEA collects reports from facilities and prepares the reports for International Atomic Energy Agency, keeping of supporting documents and other necessary information, a data base of export and import, a data base of nuclear material inventory. Facility level - registration and processing information from key measurement points, formation the facility's nuclear materials accounting database. All facilities have computerized systems. Currently, all facilities are safeguarded under IAEA safeguarding standards, through IAEA inspections. Annually, IAEA verifies all nuclear materials at all Kazakhstan nuclear facilities. The government reporting system discloses the existence of all nuclear material and its transfer intended for interaction through the export control system and the nuclear control accounting system. Nuclear material export is regulated by the regulations of the Nuclear Export Control Law. The standard operating procedure is the primary means for

  5. OSE inspection of materials control and accountability: Review

    International Nuclear Information System (INIS)

    Coady, K.J.

    1987-01-01

    As part of its task to confirm that Department of Energy (DOE) field offices provide levels of security and safeguards commensurate with defined threats, the DOE Office of Security Evaluations (OSE) conducts inspections of the nuclear materials control and accountability (MC and A) systems at DOE facilities throughout the United States. Inspections are based on the DOE Safeguards and Security Standards and Criteria, tailored to the specific aspects at and threats to each individual site. This paper reviews the process of inspecting MC and A systems during the planning, preinspection, and inspection/reporting phases

  6. On the activities in building a computerized system of nuclear materials accounting and control at the SChK radiochemical plant

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Purygin, V.Ya.; Savchuk, O.A.

    1999-01-01

    The project: Development of the nuclear materials (NM) control and accountancy system model on the example of the SCP Radiochemical Plant (RCP) has been fulfilled by the Siberian Chemical Plant in collaboration with a number of organization since October 1992 through October 1996. One of the key goals of the project was the use of new criteria and approaches to NM control and accounting, including step-by-step implementation for all the NM flows measurement principles. The work on project has resulted in the development of the model for NM control and accountancy system at RCP. When designing the model, the single RCP balance area on uranium and plutonium was broken down to four NM balance areas. The model developed within the project is being implemented in a few ways: introduction of innovative NM measurement techniques, working out regulatory documents, adaptation of computers for control and accountancy. An aim to secure safety in the most problematic area MBA-2 (plutonium dioxide production) transition to the real-time cannot be resolved without implementation of computerized system of NM control and accountancy [ru

  7. Regulation of nuclear materials control and accountability and inspection practices in the Russian Federation

    International Nuclear Information System (INIS)

    Volodin, Y.G.; Dimitriev, A.M.; Krouptchatnikov, B.N.

    1999-01-01

    Review and assessment of the resent state orders and directives regulating nuclear materials control and accountability, defining responsibilities and incorporation of different agencies in nuclear materials control and accountability (MC and A) area in Russia, related actions to stipulate tasks in developing the State System of Accounting for and Control of Nuclear Materials (SSAC) and a role of the Federal Nuclear and Radiation Safety Authority of Russia (Gosatomnadzor) in this process is presented. Main principles, elements and practical results of Gosatomnadzor inspection activities are reported. Elements of the SSAC, status of works in establishment of the SSAC and in implementation of fragments of the SSAC, an international assistance in up-grading MC and A systems at some of the Russian facilities and in establishing the SSAC in Russia is outlined. (author)

  8. Material accountancy in an electrometallurgical Fuel Conditioning Facility

    International Nuclear Information System (INIS)

    Vaden, D.; Benedict, R.W.; Goff, K.M.; Keyes, R.W.; Mariani, R.D.; Bucher, R.G.; Yacout, A.M.

    1996-01-01

    The Fuel Conditioning Facility (FCF) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond and cladding materials. Material accountancy is necessary at FCF for two reasons: first, it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security; second, it provides a periodic check of inventories to ensure that processes and material are under control. By weighing material entering and leaving a process, and using sampling results to determine composition, an inventory difference (ID) results when the measured inventory is compared to the predicted inventory. The ID and its uncertainty, based on error propagation, determines the degree of assurance that an operation proceeded according to expectations. FCF uses the ID calculation in two ways: closeout, which is the ID and uncertainty for a particular operational step, and material accountancy, which determines an ID and its associated uncertainty for a material balance area through several operational steps. Material accountancy over the whole facility for a specified time period assists in detecting diversion of nuclear material. Data from depleted uranium operations are presented to illustrate the method used in FCF

  9. International training course on implementation of state systems of accounting for and control of nuclear materials

    International Nuclear Information System (INIS)

    1982-12-01

    The course was developed to provide practical training in the implementation and operation of a national system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1982 course was placed on methods for safeguarding reactor facilities - both research reactors and power reactors plus their associated spent-fuel fuel storage. Separate abstracts have been prepared for 23 of the sessions; one of the remaining sessions had been previously abstracted

  10. Material control and accountability alternatives

    International Nuclear Information System (INIS)

    1991-01-01

    Department of Energy and Nuclear Regulatory Commission regulations governing material control and accountability in nuclear facilities have become more restrictive in the past decade, especially in areas that address the insider threat. As the insider threat receives greater credibility, regulations have been strengthened to increase the probability of detecting insider activity and to prevent removal of a significant quantity of Special Nuclear Material (SNM) from areas under control of the protective force

  11. Near real-time accountability system at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Combs, S.W.

    1985-05-01

    The Oak Ridge Y-12 Plant maintains a nuclear materials control and accountability system on a computerized network identified as DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). This near real-time system was initiated in 1976 and brought on line as the offical accountability system at Y-12 in April 1982. The system was designed to assist in the detection of diversion of special nuclear material and to provide timely and accurate accountability data for both routine and emergency inventory activities. In the approximately two and one-half years of on-line operation, the system has functioned quite satisfactorily in response to both routine and non-routine situations. The system remains dynamic in the sense that it is still being modified and upgraded to improve its response capability to the ever-evolving set of safeguards scenarios. This paper will discuss the development, operation, and future of the DYMCAS. 4 refs

  12. 78 FR 67225 - Amendments to Material Control and Accounting Regulations

    Science.gov (United States)

    2013-11-08

    ... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... for control and accounting of SNM that is held by a licensee. The MC&A regulations ensure that the...

  13. A Computer Simulation to Assess the Nuclear Material Accountancy System of a MOX Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Portaix, C.G.; Binner, R.; John, H.

    2015-01-01

    SimMOX is a computer programme that simulates container histories as they pass through a MOX facility. It performs two parallel calculations: · the first quantifies the actual movements of material that might be expected to occur, given certain assumptions about, for instance, the accumulation of material and waste, and of their subsequent treatment; · the second quantifies the same movements on the basis of the operator's perception of the quantities involved; that is, they are based on assumptions about quantities contained in the containers. Separate skeletal Excel computer programmes are provided, which can be configured to generate further accountancy results based on these two parallel calculations. SimMOX is flexible in that it makes few assumptions about the order and operational performance of individual activities that might take place at each stage of the process. It is able to do this because its focus is on material flows, and not on the performance of individual processes. Similarly there are no pre-conceptions about the different types of containers that might be involved. At the macroscopic level, the simulation takes steady operation as its base case, i.e., the same quantity of material is deemed to enter and leave the simulated area, over any given period. Transient situations can then be superimposed onto this base scene, by simulating them as operational incidents. A general facility has been incorporated into SimMOX to enable the user to create an ''act of a play'' based on a number of operational incidents that have been built into the programme. By doing this a simulation can be constructed that predicts the way the facility would respond to any number of transient activities. This computer programme can help assess the nuclear material accountancy system of a MOX fuel fabrication facility; for instance the implications of applying NRTA (near real time accountancy). (author)

  14. Advanced training course on state systems of accounting for and control of nuclear materials. Volume I. Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to provide practical training in the implementation and operation of a national system of accounting for and control of nuclear materials in a bulk processing facility, in the context of international safeguards. This course extends the training received in the basic course on State Systems of Accounting for and Control of Nuclear Materials to a practical, illustrative example utilizing the Exxon Nuclear low enriched uranium fabrication plant. Volume I of this manual contains the text of the presentations following the outline of the syllabus. Sample problems and answers are also included, along with some visual aids

  15. Material control and accounting requirements for uranium enrichment facilities

    International Nuclear Information System (INIS)

    Ting, P.

    1991-01-01

    This paper reports that the U.S. Nuclear Regulatory Commission has defined material control and accounting (MC and A) requirement for low-enriched uranium enrichment plants licensed under 10 CFR parts 40 and 70. Following detailed assessment of potential safeguards issues relevant to these facilities, a new MC and A rule was developed. The primary safeguards considerations are detection of the loss of special nuclear material, detection of clandestine production of special nuclear material of low strategic significance for unauthorized use or distribution, and detection of unauthorized production of uranium enriched to ≥10 wt % U-235. The primary safeguards concerns identified were the large absolute limit of error associated with the material balance closing, the inability to shutdown some uranium enrichment technologies to perform a cleanout inventory of the process system, and the flexibility of some of these technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could circumvent the detection of the production and removal of 5 kilograms of U-235 as high-enriched uranium through conventional material control and accounting programs. Safeguards techniques, including the use of production and process control information, measurements, and technical surveillance, were identified to compensate for these concerns

  16. 76 FR 28193 - Amendments to Material Control and Accounting Regulations

    Science.gov (United States)

    2011-05-16

    ...] Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... amendments to the material control and accounting (MC&A) regulations. These regulations apply to NRC... ``accounting,'' and thus does not fully describe the accounting aspects that MC&A programs must include...

  17. Developments in material accountancy in Mexico

    International Nuclear Information System (INIS)

    Pulido, R.

    1999-01-01

    This synopsis is intended to make a brief description about the way the Accountancy of Nuclear Material is carrying out in Mexican Facilities and in SSAC (State System of Accounting for and Control of Nuclear Material) nowadays involving computer languages and applications in use. The procedures were designed gradually over the past four years, address to accomplish finally the periods of time for sending ICR (Inventory Change Reports), PIL (Physical Inventory Listing), and MBR (Material Balance Period) reports to IAEA (International Atomic Energy Agency). The procedures starts in a certain facility where an inventory change and/or physical inventory taking has occurred. After that, the facility send information to the National Authority CNSNS (National Commission of Nuclear Safety and Safeguards) by means of a hard copy and magnetic file. The information included in the files is equal to that required by ICR, PIL, and MBR forms. This information is reviewed in Safeguards Section of CNSNS and if correct then the information is recorded in CNSNS data base using magnetic files. This involves a program in C++ to make a quickly and safe conversion from files in Excel application to the required ASCII (American Standard Code for Information Interchange) files. Once the information has been considered by CNSNS to be right, it is sent to IAEA. Thus CNSNS guarantee the information in facilities data base is exactly the same to that sent to IAEA. Working in this way timeliness has been improved, so that the number of delays in reports sent to IAEA has decreased. Internal procedures to review and make reports are followed by CNSNS Safeguards Section. (author)

  18. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants

    International Nuclear Information System (INIS)

    1999-01-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques [ru

  19. Role of nuclear material accounting and control on nuclear security. Countermeasure against insider threat

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    2014-01-01

    Possibility on unauthorized removal (theft) of nuclear material by a facility insider is a recognized as a serious threat. An insider could take advantage or knowledge of control system and access to nuclear material to intercept facility's system designed to protect theft of nuclear material by an insider. This paper will address how the facility level Nuclear Material Accounting and Control (NMAC) System should be designed and implemented to enhance deterring and detect theft of nuclear material by a facility insider. (author)

  20. The commercial application of near real time materials accountancy

    International Nuclear Information System (INIS)

    Chater, S.P.; Jones, B.J.; Jones, R.F.; Westwood, L.N.; Wharrier, J.A.

    2001-01-01

    Full text: Near Real Time Materials Accountancy (NRTMA) is the leading edge technical solution employed by BNFL for in-process verification and timely detection of anomalies. It facilitates Safeguards inspection without intrusion and safeguards interim assurance without a monthly plant shut down. BNFL has been committed to the development of NRTMA for commercial plutonium plants. This multimedia poster presentation describes the features of Thorp and SMP relevant to the application of NRTMA, and then the statistical engine of NRTMA, which has many features in common across the two systems. This final point renders BNFL's implementation of NRTMA eligible for application to other nuclear and non-nuclear installations. NRTMA is operational in the Thermal Oxide Reprocessing Plant (Thorp). NRTMA supports fulfilment of the monthly timeliness component of the safeguards approach so that Thorp can remain operational between annual Physical Inventory Takings (PITs). The In-Process Inventory (IPI) is determined by for each vessel, or group of vessels, based on determination of weight and assay (or volume and concentration) or process models. Data trending enhances the quality of important sources of data. Plant status rules are used to determine times when it is appropriate to determine the IPI. The number of IPIs is currently some tens per annual campaign (PIT to PIT), although the NRTMA System can accommodate more. NRTMA is an intrinsic element in the safeguards and nuclear materials control and accountancy arrangements for the Sellafield MOX Plant (SMP). This fulfils the timeliness component of the safeguards approach and does not require monthly clean out or run down for verification. The SMP is a batch process. In a plant location, there is a 'Window of Opportunity' for determining that component of the inventory while it is stationary. The IPI can be determined when the 'Windows of Opportunity' for the entire Works Accountancy Area align. There are potentially many

  1. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nae; Park, Ho Jun.

    1990-01-01

    Neutron yields from 19 F(α,n) 22 Na reaction of uranium neutron interaction with uranium-bass materials, and the characteristics of shielded neutron assay probe have been studied. On the basis of the above examination, U-235 enrichment in UF 6 cylinders like model 30B and model 48Y was measured by the reaction and U-235 contents in the containers by non-destructive total passive neutron assay method. Total measurement efficiency as a result was found to be 6.44 x 10 -4 and 1.25 x 10 -4 for model 30B and model 40Y UF 6 cylinder, respectively. The uncertainty of measured enrichment as compared to Tag value obtained from chemical analysis approached about 5 % of relative error at 95 % confidence interval. In the follow-up action for the previously developed (1988) computer system of nuclear material accounting the error searching and treatment routine in accordance with code 10, of IAEA and respective facility attachment has been added to easing the burden of manual error correction by operator. In addition, the procedure for LEMUF calculation has been prepared to help bulk facility operators evaluating MUF in the period of material balance. (author)

  2. Experience of developing and introduction of the integrated systems for accounting, control and physical protection of nuclear materials under conditions of continuously operating production

    International Nuclear Information System (INIS)

    Filatov, O.N.; Rogachev, V.E.

    2003-01-01

    The improvements of the integrated systems for accounting, control and physical protection (ACPP) of nuclear materials under conditions practically continuous production cycle are described. As a result of development and introduction of the improved means and technologies the developed systems realized successfully the requirements of reliable ACPP of nuclear materials [ru

  3. Material control system simulator user's manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts

  4. Total neutron-counting plutonium inventory measurement systems (PIMS) and their potential application to near real time materials accountancy (NRTMA)

    International Nuclear Information System (INIS)

    Driscall, I.; Fox, G.H.; Orr, C.H.; Whitehouse, K.R.

    1988-01-01

    A radiometric method of determining the inventory of an operating plutonium plant is described. An array of total neutron counters distributed across the plant is used to estimate hold-up at each plant item. Corrections for the sensitivity of detectors to plutonium in adjacent plant items are achieved through a matrix approach. This paper describes our experience in design, calibration and operation of a Plutonium Inventory Measurement System (PIMS) on an oxalate precipitation plutonium finishing line. Data from a recent trial of Near-Real-Time Materials Accounting (NRTMA) using the PIMS are presented and used to illustrate its present performance and problem areas. The reader is asked to consider what role PIMS might have in future accountancy systems

  5. Human performance: An essential element in materials control and accountability

    International Nuclear Information System (INIS)

    Haber, S.B.; Allentuck, J.

    1996-01-01

    The importance of the role of human performance in the successful and effective operation of many activities throughout many industries has been well documented. Most closely related to the materials control and accountability area is the work in human factors that has been ongoing in the U.S. nuclear industry since the Three Mile Island Nuclear Power Plant accident in 1979. Research related to the role of human reliability, human-system interface, and organization and management influences has been and is still being conducted to identify ways to enhance the safe and effective operation of nuclear facilities. This paper will discuss these human performance areas and how they relate to the materials control and accountability area. Particular attention will be focussed on the notion of open-quotes safety cultureclose quotes and how it can be defined and measured for understanding the values and attitudes held by individuals working in the materials control area. It is widely believed that the culture of an organization, which reflects the expectations and values of the management of an organization, is a key element to the operation of that organization. The human performance element is one which has not received a great deal of consideration in the materials control and accountability area and yet it will be demonstrated that it is an essential component to ensure the success of safeguards activities

  6. Nuclear material accountancy for and control of in Czech and Slovak Federal Republic

    International Nuclear Information System (INIS)

    Hladik, I.

    1991-01-01

    The Czechoslovak State System of Accounting for and Control of (SSAC) is described. It is discussed the organizational chart and role of the Czechoslovak Atomic Energy Commission as the State Authority in the Safeguards as well as its functions in the related fields (nuclear safety, physical protection) are mentioned. The individual nuclear facilities from the nuclear material accountancy point of view are shortly described and the necessity of well functioned facility level accountancy system is expressed. The cooperation between the SSAC and IAEA is mentioned and experience gained is briefly summarized

  7. Methods of internal control in integrated management accounting system of the enterprise

    Directory of Open Access Journals (Sweden)

    Shevelev A.E.

    2017-01-01

    Full Text Available The purpose of internal control procedure of material and information flows is expression of independent opinion about accounting of material and information flows of the organization, development of recommendations about elimination of detected violations and preparing data to implement automated management accounting system, based on integrated system. Internal control procedure of material and information flows in the enterprise can solve complex of problems about identifying deficiencies in accounting, searching for reserves using information resources, identifying opportunities for implementation of automated management accounting system at the enterprise. Internal control was planned and conducted thus to argue that management statements are free of misstatement, and information flows provide required operability of the entire system. Internal control was carried out on a sample basis and included examining, on a test basis evidence supporting the amounts and disclosures in management reports. The disclosure of information about innovative activities, assessment of compliance with the principles and rules of accounting used in the preparation of management reporting, the review of key performance indicators, as well as evaluating the presentation of management reports are presented.

  8. Computerization of the nuclear material accounting system for safeguards purposes at nuclear power plants with WWER-440 reactors

    International Nuclear Information System (INIS)

    Antonov, V.P.; Konnov, Yu.I.; Semenets, A.N.

    1983-01-01

    The paper sets forth the basic principles underlying nuclear material accounting at nuclear power plants with WWER-440 reactors. It briefly describes the general structure and individual units in a program for computerized accounting. The use of this program is illustrated by the actual accounting data from the fifth unit of the Novovoronezh nuclear power station. The NUMIS program seems to be of interest both for the purposes of IAEA safeguards and for nuclear power plant operators in countries where power plants with WWER-440 reactors subject to IAEA safeguards are either in operation or under construction. The research in question was conducted initially under an IAEA research contract; the system is now being developed further and tested under the IAEA-USSR technical and scientific co-operation programme on safeguards. (author)

  9. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    International Nuclear Information System (INIS)

    Campbell, Andrea Beth

    2004-01-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  10. Nuclear material control and accounting by process simulation with smalltalk

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Soper, P.D.

    1986-01-01

    Smalltalk, an object oriented computer language, enables programmers to build data structures and code which explicitly reflect the structure and working of a facility in an easily understood fashion. This paper discusses demonstration material control and accounting system that has been written in Smalltalk for the IBM PC-XT computer using the methods environment from Digitalk, Inc. The system is designed to track uranium through a processing facility. The objects are generic and not specific to any facility, objects like vault positions or tanks are created from classes of objects called uranium accounts. Uranium account objects are connected by a list of transfer rules which should reflect the operation of the facility. If operations or equipment are changed, only those rules or objects which simulate the affected components must be changed. By the nature of Smalltalk code, other objects will not be affected by these changes

  11. A database model for evaluating material accountability safeguards effectiveness against protracted theft

    International Nuclear Information System (INIS)

    Sicherman, A.; Fortney, D.S.; Patenaude, C.J.

    1993-07-01

    DOE Material Control and Accountability Order 5633.3A requires that facilities handling special nuclear material evaluate their effectiveness against protracted theft (repeated thefts of small quantities of material, typically occurring over an extended time frame, to accumulate a goal quantity). Because a protracted theft attempt can extend over time, material accountability-like (MA) safeguards may help detect a protracted theft attempt in progress. Inventory anomalies, and material not in its authorized location when requested for processing are examples of MA detection mechanisms. Crediting such detection in evaluations, however, requires taking into account potential insider subversion of MA safeguards. In this paper, the authors describe a database model for evaluating MA safeguards effectiveness against protracted theft that addresses potential subversion. The model includes a detailed yet practical structure for characterizing various types of MA activities, lists of potential insider MA defeat methods and access/authority related to MA activities, and an initial implementation of built-in MA detection probabilities. This database model, implemented in the new Protracted Insider module of ASSESS (Analytic System and Software for Evaluating Safeguards and Security), helps facilitate the systematic collection of relevant information about MA activity steps, and ''standardize'' MA safeguards evaluations

  12. Advancement of the state system of accounting for mainframe to personal computer (PC) technology

    International Nuclear Information System (INIS)

    Proco, G.; Nardi, J.

    1999-01-01

    The advancement of the U.S. government's state system of accounting from a mainframe computer to a personal computer (PC) had been successfully completed. The accounting system, from 1965 until 1995 a mainframe application, was replaced in September 1995 by an accounting system employing local area network (LAN) capabilities and other state-of-the-art characteristics. The system is called the Nuclear Materials Management and Safeguards System (NMMSS), tracking nuclear material activities and providing accounting reports for a variety of government and private users. The uses of the system include not only the tracking of nuclear materials for international and domestic safeguards purposes but also serving to facilitate the government's resource management purposes as well. The system was converted to PC hardware and fourth generation software to improve upon the mainframe system. The change was motivated by the desire to have a system amenable to frequent modifications, to improve upon services to users and to reduce increasing operating costs. Based on two years of operating the new system, it is clear that these objectives were met. Future changes to the system are inevitable and the national system of accounting for nuclear materials has the technology base to meet the challenges with proven capability. (author)

  13. 78 FR 79328 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Science.gov (United States)

    2013-12-30

    ..., 72, 74, and 150 [NRC-2009-0096 and NRC-2013-0195] RIN 3150-AI61 Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... of this document. NRC's Agencywide Documents Access and Management System (ADAMS): You may access...

  14. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  15. Methods of Verification, Accountability and Control of Special Nuclear Material

    International Nuclear Information System (INIS)

    Stewart, J.E.

    1999-01-01

    This session demonstrates nondestructive assay (NDA) measurement, surveillance and analysis technology required to protect, control and account (MPC and A) for special nuclear materials (SNM) in sealed containers. These measurements, observations and analyses comprise state-of-the art, strengthened, SNM safeguards systems. Staff member specialists, actively involved in research, development, training and implementation worldwide, will present six NDA verification systems and two software tools for integration and analysis of facility MPC and A data

  16. 47 CFR 36.181 - Material and supplies-Account 1220.

    Science.gov (United States)

    2010-10-01

    ... JURISDICTIONAL SEPARATIONS PROCEDURES; STANDARD PROCEDURES FOR SEPARATING TELECOMMUNICATIONS PROPERTY COSTS... Material and Supplies and Cash Working Capital § 36.181 Material and supplies—Account 1220. (a) The amount included in Account 1220 is apportioned among the operations on the basis of the apportionment of the cost...

  17. Material control and accountability orders

    International Nuclear Information System (INIS)

    Jewell, D.L.

    1988-01-01

    The Department of Energy's (DOE) Material Control and Accountability (MC and A) Orders were revised during this past year. The primary focus of the revision process was to eliminate any policy gaps that existed between current orders and the standards and criteria and to examine current policy where questions of completeness or effectiveness may be of concern. The MC and A Subtask Group identified the following three major areas for change: (1) the need to expand the graded safeguards concept; (2) the need to provide for defense in depth; and (3) the need to include system performance requirements. Operational and cost impacts were of primary consideration in these changes. The subtask group accomplished its goal as directed and within the required time frames. The revision process benefitted tremendously from the earlier works of the numerous standards and criteria committees and the Operation Cerberus Committees

  18. Material Control and Accountability Measurements for FB-Line Processes

    International Nuclear Information System (INIS)

    Casella, V.R.

    2002-01-01

    This report provides an overview of FB-Line processes and nuclear material accountability measurements. Flow diagrams for the product, waste, and packaging and stabilization processes are given along with the accountability measurements done before and after each of these processes. Brief descriptions of these measurements are provided. This information provides a better understanding of the general FB-Line processes and how MC and A measurements are used to keep track of the accountable material inventory

  19. Efforts in strengthening accounting for and control of nuclear materials in Russia

    International Nuclear Information System (INIS)

    Dmitriev, A.; Volodin, Y.; Krupchatnikov, B.; Sanin, A.

    2001-01-01

    Full text: Recent state orders, directives, regulations are reviewed as well as practical results of the state system for nuclear material accountancy and control (NMAC) development in the Russian Federation are addressed. Based on the Federal Laws and regulations responsibilities of different agencies related to the NMAC are discussed in view of transforming the existing nuclear material accountancy and control systems to a new system at the federal level. Governmental Orders of 10 July 1998 No.746 and of 15 December 2000 No. 962 assigned Minatom of Russia as the agency in charge of establishing and operating the NMAC at the federal level while Gosatomnadzor of Russia as the agency responsible for the enforcement of the MC and A regulation and for the NMAC oversight functions. Provisions of major regulatory documents that have been or are currently being developed defining requirements, procedures, conditions and agencies' responsibilities in the area of NM control and accounting are addressed. Trends in development of the domestic safeguards system are reported in light of strengthening regulation, inspection infrastructure and licensing of NM use. Incorporation of GAN and the agencies in charge of managing nuclear installations is discussed. Foreign support to the NMAC development in Russia is also reviewed. (author)

  20. Comparison of materials accounting in conversion and coconversion processes

    International Nuclear Information System (INIS)

    Dayem, H.A.

    1981-01-01

    Materials accounting systems performances are compared for plutonium nitrate-to-oxide conversion [Oxalate (III)] and uranium-plutonium coconversion (Coprecal and modified Coprecal). These processes have the same design basis plutonium throughput and achieve this throughput in parallel operating lines. However, the process line configurations differ. In comparing the materials loss detection sensitivities for the three processes, we find better materials loss detection sensitivity for the Oxalate (III) process than for either of the two Coprecal processes, better single-balance detection sensitivity for the original Coprecal than for the modified Coprecal, and better long-term detection sensitivity (> 1d) for the modified Coprecal than for the original Coprecal. Sensivity differences result from differences in in-process inventories, feeding arrangements, and scrap generation

  1. Accounting and Materialism in the History of Ideas

    Directory of Open Access Journals (Sweden)

    Ratnam Alagiah

    2012-12-01

    Full Text Available Current popular culture is connected to the birth of a secular and materialistic interpretation of reality. Materialism, which is the tendency to be more concerned with material values through rational experimentation and discourse. This paper applies Foucault’s genealogy to explain that materialism is a product of a series of historical events that are closely related to the practice of accounting. Second, accounting and “scientific materialism” have been instrumental in paving the course to their and our common failure. Third, the paper proposes a shift away from our impulse for a mere material existence leading to what has now become ‘popular culture’, to a vision of enhancing ‘an ever advancing civilization’.

  2. The potential capability of near-real-time materials accountancy

    International Nuclear Information System (INIS)

    Sellinschegg, D.

    1983-01-01

    The new approach for the application of materials accountancy, called ''near-real-time materials accountancy'', is described and the practical feasibility as well as the possible improvements are discussed in comparison to the conventional approach. In the case of a reference reprocessing facility with an annual throughput of 1000 t heavy material the application of this procedure is simulated and the resulting improvement in detection sensitivity demonstrated. (author)

  3. A New Regulation Policy for Accounting and Control of Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Kim, M. S.; Ahn, S. H. [Korea Institute of Nuclear nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear Safety and Security Commission(NSSC) has amended two public notices about the regulation of nuclear material accounting and control(NMAC). Those notices were declared in November 2014 and entry into force since 2015. According to this legislation, a new type of NMAC inspection system was introduced and facility rules for NMAC approved by the government should be revised subsequently. These changes were one of the preemptive actions to cope with the emergence of new international safeguards policy and increasing demand on advanced nuclear technology. Generally, the regulation policy affects the nuclear business including research and development. Therefore, understanding of the new policy and its making process may help stakeholders to minimize unnecessary financial and operational burden. This study describes background, features, and institutionalization of the new regulation policy for NMAC. The new regulation policy for NMAC was established and institutionalized to preemptively cope with the internal and external demand on 'better' national system of accounting and control of nuclear material. This new policy and regulation system may call not only the regulator but also nuclear business operators for new works to make their system more effective and efficient.

  4. A New Regulation Policy for Accounting and Control of Nuclear Material

    International Nuclear Information System (INIS)

    Kim, K. H.; Kim, M. S.; Ahn, S. H.

    2016-01-01

    Nuclear Safety and Security Commission(NSSC) has amended two public notices about the regulation of nuclear material accounting and control(NMAC). Those notices were declared in November 2014 and entry into force since 2015. According to this legislation, a new type of NMAC inspection system was introduced and facility rules for NMAC approved by the government should be revised subsequently. These changes were one of the preemptive actions to cope with the emergence of new international safeguards policy and increasing demand on advanced nuclear technology. Generally, the regulation policy affects the nuclear business including research and development. Therefore, understanding of the new policy and its making process may help stakeholders to minimize unnecessary financial and operational burden. This study describes background, features, and institutionalization of the new regulation policy for NMAC. The new regulation policy for NMAC was established and institutionalized to preemptively cope with the internal and external demand on 'better' national system of accounting and control of nuclear material. This new policy and regulation system may call not only the regulator but also nuclear business operators for new works to make their system more effective and efficient

  5. Aligning the systems of environmental accounting: From EU to Stockholm and vice versa

    Energy Technology Data Exchange (ETDEWEB)

    Burstroem, F.; Frostell, B. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Environmental Technology and Work Science

    2001-07-01

    During the last decade, authorities in local and regional communities, nations and international governance organisations, like the European Union (EU), have developed several systems for environmental accounting. An important issue in this development is the collection and collation of data. Except for the question of what data to collect, there is also a question of how to collect data. Focusing in particular on developments of physical environmental accounting systems in Sweden, a member nation of the EU, and drawing from experiences from work with materials accounting in the City of Stockholm, this paper discusses the need to align environmental accounting systems of different societal levels. It is argued that the systems of collecting 'environmental' data have to be better aligned with the objectives and strategies of environmental management and policy making, taking into account all aspects of utilisation of the basic data to be collected. If not, the result will be a conservation of the fragmented point solutions of environmental accounting systems we face today, resulting in inconsistency of data, duplication of data collection and processing efforts, and inflexibility to deal with changes. From this, it is also argued that the collection of data for physical environmental accounting (i.e. data on flows and stocks of materials and substances in society and the environment), would preferably be performed by a local/regional authority, but co-ordinated by national authorities and a national statistical office, under supervision of international authorities and statistical offices. Finally, the paper presents a structural framework for regional materials accounting, which combines a product-oriented strand with a substance-oriented strand of materials accounting, and allows for accounting and analysis on different levels of aggregation. This framework, which has been developed in co-operation with the City of Stockholm, should mainly be considered

  6. Some technical aspects of the nuclear material accounting and control at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, O.A.; Babaev, N.S.; Gryazev, V.M.; Gadzhiev, G.I.; Gabeskiriya, V.Ya.

    1977-01-01

    The possibilities of nuclear material accounting and control are discussed at nuclear facilities of fuel cycle (WWER-type reactor, fuel fabrication plant, reprocessing plant and uranium enrichment facility) and zero energy fast reactor facility. It is shown that for nuclear material control the main method is the accounting with the application isotopic correlations at the reprocessing plant and enrichment facility. Possibilities and limitations of the application of destructive and non-destructive methods are discussed for nuclear material determinations at fuel facilities and their role in the accounting and safeguards systems as well as possibilities of the application of neutron method at a zero energy fast reactor facility [ru

  7. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  8. Nuclear material control and accounting safeguards in the United States

    International Nuclear Information System (INIS)

    Woltermann, H.A.; Rudy, C.R.; Rakel, D.A.; DeVer, E.A.

    1982-01-01

    Material control and accounting (MC and A) of special nuclear material (SNM) must supplement physical security to protect SNM from unlawful use such as terrorist activities. This article reviews MC and A safeguards of SNM in the United States. The following topics are covered: a brief perspective and history of MC and A safeguards, current MC and A practices, measurement methods for SNM, historical MC and A performance, a description of near-real-time MC and A systems, and conclusions on the status of MC and A in the United States

  9. Efficiency of material accountability verification procedures: A case study

    International Nuclear Information System (INIS)

    Avenhaus, R.

    1976-01-01

    In the model agreement INFCIRC/153 the international nuclear materials safeguards system has been established such that the material accountability principle is the main safeguards tool, with containment and surveillance as complementary measures. In addition, it has been agreed that the plant operator generates all data necessary for the material balance establishment and reports them to the safeguards authority and furthermore, that these data are verified by representatives of the safeguards authority with the help of independent measurements. In this paper, the problem of the determination of the efficiency of the combined system - data verification and material balance establishment - is analysed. Here, the difficulty arises that the two statistical procedures used are not independent because part of the operator's data are used in both cases. It is the purpose of this paper to work out the procedure for calculating the systems efficiency, i.e. the overall guaranteed probability of detection for the whole system for an assumed diversion and a given false alarm rate as a function of the safeguards effort spent over a given interval of time. Simplified formulae are derived which allow for a quick determination of the whole system efficiency: it is shown that the correlation between the two parts of the total system can be neglected. Therefore, the total systems efficiency can be represented as the product of the efficiencies of the two subsystems. The method developed is applied to a concrete case of a chemical reprocessing plant for irradiated fuels on the basis of data collected earlier. (author)

  10. Nuclear materials accountancy in an industrial MOX fuel fabrication plant safeguards versus commercial aspects

    International Nuclear Information System (INIS)

    Canck, H. de; Ingels, R.; Lefevre, R.

    1991-01-01

    In a modern MOX Fuel Fabrication Plant, with a large throughput of nuclear materials, computerized real-time accountancy systems are applied. Following regulations and prescriptions imposed by the Inspectorates EURATOM-IAEA, the State and also by internal plant safety rules, the accountancy is kept in plutonium element, uranium element and 235 U for enriched uranium. In practice, Safeguards Authorities are concerned with quantities of the element (U tot , Pu tot ) and to some extent with its fissile content. Custom Authorities are for historical reasons, interested in fissile quantities (U fiss , Pu fiss ) whereas owners wish to recover the energetic value of their material (Pu equivalent). Balancing the accountancy simultaneously in all these related but not proportional units is a new problem in a MOX-plant where pool accountancy is applied. This paper indicates possible ways to solve the balancing problem created by these different units used for expressing nuclear material quantities

  11. Materials control and accountability auditor training

    International Nuclear Information System (INIS)

    Barham, M.A.

    1993-01-01

    As the Department of Energy (DOE) works to standardize the training for individuals performing materials control and accountability (MC and A) functions, the need for a definition of the appropriate training for MC and A auditors has become apparent. In order to meet the DOE requirement for individual training plans for all staff performing MC and A functions, the following set of guidelines was developed for consideration as applicable to MC and A auditors. The application of these guidelines to specific operating environments at individual DOE sites may require modification to some of the tables. The paper presents one method of developing individual training programs for an MC and A auditor or for an MC and A audit group based on the requirements for internal audits and assessments included in DOE Order 5633.3, Control and Accountability for Nuclear Materials

  12. Nuclear material control and accountancy planning and performance testing

    International Nuclear Information System (INIS)

    Mike Enhinger; Dennis Wilkey; Rod Martin; Ken Byers; Brian Smith

    1999-01-01

    An overview of performance testing as used at U.S. Department of Energy facilities is provided. Performance tests are performed on specific aspects of the regulations or site policy. The key issues in establishing a performance testing program are: identifying what needs to be tested; determining how to test; establishing criteria to evaluate test results. The program elements of performance testing program consist of: planning; coordination; conduct; evaluation. A performance test may be conducted of personnel or equipment. The DOE orders for nuclear material control and accountancy are divided into three functional areas: program administration, material accounting, and material control. Examples performance tests may be conducted on program administration, accounting, measurement and measurement control, inventory, and containment [ru

  13. Implementing advanced data analysis techniques in near-real-time materials accounting

    International Nuclear Information System (INIS)

    Markin, J.T.; Baker, A.L.; Shipley, J.P.

    1980-01-01

    Materials accounting for special nuclear material in fuel cycle facilities is implemented more efficiently by applying decision analysis methods, based on estimation and detection theory, to analyze process data for missing material. These methods are incorporated in the computer program DECANAL, which calculates sufficient statistics containing all accounting information, sets decision thresholds, and compares these statistics to the thresholds in testing the hypothesis H 0 of no missing material against the alternative H 1 that material is missing. DECANAL output provides alarm charts indicating the likelihood of missing material and plots of statistics that estimate materials loss. This program is a useful tool for aggregating and testing materials accounting data for timely detection of missing material

  14. Use of process monitoring data for the enhancement of nuclear material control and accounting

    International Nuclear Information System (INIS)

    Miles, J.C.; Glancy, J.E.; Donelson, S.E.

    1979-09-01

    Two licensed fuel fabrication facilities, one processing low-enriched and the other high-enriched uranium, were examined in this study. Safeguards effectiveness of the current material accounting system at each licensee was quantitatively assessed using an evaluation methodology. Two generations of alternate material control systems using portions of the facilities' process monitoring data were developed and similarly evaluated for each facility

  15. Computer-based safeguards information and accounting system

    International Nuclear Information System (INIS)

    1977-01-01

    Acquiring, processing and analysing information about inventories and flow of nuclear materials are essential parts of IAEA safeguards. Safeguards information originates from several sources. The information to be provided is specified in the various safeguards agreements between the States and the IAEA, including both NPT agreements and safeguards trilateral agreements. Most of the safeguards information currently received by the IAEA is contained in accounting reports from the States party to the NPT. Within the frame of the material balance concept of NPT, three types of reports are provided to the IAEA by the States: Physical Inventory Listings (PIL); Inventory Change Reports (ICR); Material Balance Reports (MBR). In addition, facility design information is reported when NPT safeguards are applied and whenever there is a change in the facility or its operation. Based on this data, an accounting system is used to make available such information as the book inventories of nuclear material as a function of time, material balance evaluations, and analysis of shipments versus receipts of nuclear material. A second source of NPT safeguards information is the inspection activities carried out in the field as a necessary counterpart for verification of the data presented by the States in their accounting reports. The processing of inspection reports and other inspection data is carried out by the present system in a provisional manner until a new system, which is under development is available. The major effort currently is directed not to computer processing but toward developing and applying uniform inspection procedures and information requirements. A third source of NPT safeguards information is advanced notifications and notifications of transfer of source materials before the starting point of safeguards. Since, however, the States are not completely aware of the need and requirement to provide these data, this is a point to be emphasized in future workshops and

  16. Management accounting and its place in the accounting system

    Directory of Open Access Journals (Sweden)

    Aneliya Galinova

    2017-05-01

    Full Text Available Management accounting was established as a new direction in accounting from the 50-ies of the XX century. However, it is still debatable as to its nature, content and the place it occupies in the accounting system. The reason for this is that different authors interpreting different way of the term "management accounting". Namely the connection accounting - management creates differences in interpretation. A significant part of the authors emphasize the concept of accounting, others focus on management and the third part of it as a autonomous system. In this article we aim to establish a relationship of management accounting with other types of accountings and his place in the system of accounting.

  17. Decision-directed materials-accounting procedures: an overview

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1981-01-01

    With materials balances taken at intervals, methods for treating materials balance data and their use by safeguards decision-making are relatively straightforward. The emphasis on accounting in which balances may be drawn on a daily or weekly basis, raises anew questions in these two areas: (1) what is the most effective means of extracting the maximum amount of information; and (2) how should safeguards decision-makers use the results, and what impact does the decision process have on the analysis techniques. These questions lead to considering combinations of materials balances, which exposes a whole new set of concerns. For example, we must select the most appropriate combinations, which implies some consideration of possible diversion scenarios, such as abrupt or protracted. Control of the overall false-alarm rate is an important requisite of the composite procedure. Significant work has been done on loss estimators, but their role in the materials accounting decision process has only begun to be examined. Current criteria may require periodic statements with respect to materials loss; the analysis procedures must be structured to provide such information. This paper presents an overview of the current technology. Questions still to be answered are pointed out

  18. Structure and experience of the state system of accounting for and control of nuclear material (SSAC) in the German Democratic Republic

    International Nuclear Information System (INIS)

    Rehak, W.

    1989-01-01

    The legislative basis, structure, functions, records and experience of the State System of Accounting for and Control of Nuclear Materials (SSAC) in the German Democratic Republic (GDR) are reviewed. The GDR's nuclear activities are characterized by research establishments and power reactors and by the absence of industrial bulk handling facilities such as fuel fabrication, reprocessing and enrichment plants. As a consequence both the national and the international safeguards approach can be based on the principles of item accountability which does not require the establishment of an elaborate measurement system. Right from the beginning the safeguards implemented were of the NPT type as the GDR was among the early parties to the Non-Proliferation Treaty. The national rules and procedures of safeguards were thus established in harmony with the international requirements and have closely followed their development. The SSAC in the GDR is part of the comprehensive set-up of protective measures against the potential hazards in the use of nuclear energy under the National Board for Atomic Safety and Radiation Protection which has established a number of inspectorates, among them the inspection group for nuclear material control -the Nuclear Material Inspectorate. 5 figs., 2 tabs

  19. An anomaly detector applied to a materials control and accounting system

    International Nuclear Information System (INIS)

    Whiteson, R.; Kelso, F.; Baumgart, C.; Tunnell, T.W.

    1994-01-01

    Large amounts of safeguards data are automatically gathered and stored by monitoring instruments used in nuclear chemical processing plants, nuclear material storage facilities, and nuclear fuel fabrication facilities. An integrated safeguards approach requires the ability to identify anomalous activities or states in these data. Anomalies in the data could be indications of error, theft, or diversion of material. The large volume of the data makes analysis and evaluation by human experts very tedious, and the complex and diverse nature of the data makes these tasks difficult to automate. This paper describes the early work in the development of analysis tools to automate the anomaly detection process. Using data from accounting databases, the authors are modeling the normal behavior of processes. From these models they hope to be able to identify activities or data that deviate from that norm. Such tools would be used to reveal trends, identify errors, and recognize unusual data. Thus the expert's attention can be focused directly on significant phenomena

  20. Application of near real time accountancy to nuclear material balance data

    International Nuclear Information System (INIS)

    Seifert, R.

    1990-02-01

    The application of near real time accountancy to nuclear material balance data can be performed effectively only with the help of computerised nuclear material accounting and information systems. Two computer programmes are introduced: DIDI, a programme for computing the MUF series and the measurement model of a reprocessing plant which is assumed to be a one-block model from data resulting from the routine operation of the facility, and PROSA, a programme for statistical analysis of NRTA data, which evaluates the MUF series on the basis of the measurement model. After the presentation of the two computer programmes two examples with realistic balance data will demonstrate the application of NRTA measures. Furthermore, some new remarks on the precision of Monte-Carlo simulations are mentioned which provide a substantial better estimation. (orig.) [de

  1. Role of measurements in material control and accountability (abstract)

    International Nuclear Information System (INIS)

    Mahmud, T.

    2011-01-01

    Analytical techniques are widely used for verification and accountancy of nuclear materials. Nuclear Material (NM) inventories are based on sampling followed by Destructive Analysis. Destructive Analyses range from traditional chemical techniques to recent implementations of radiometric methods. These techniques are performed to quantify the amount of nuclear material (elemental assay and isotopic composition) present in a specific item, container, or in some cases facility and resolving shipper-receiver differences. Analytical techniques used for the MC and A of nuclear material normally require more attention than that for process control because the largest contribution to Material Unaccounted For is in measurement uncertainty. Therefore analytical techniques selected for material control and accountability are highly precise and they comply with accepted 'International Target Values 2010'. (author)

  2. Survey procedure: Control and accountability of nuclear materials

    International Nuclear Information System (INIS)

    Van Ness, H.

    1987-02-01

    This procedure outlines the method by which the Department of Energy (DOE) San Francisco Operations Office (SAN) will plan and execute periodic field surveys of the Material Control and Accountability (MC and A) program and practices at designated contractors' facilities. The surveys will be conducted in accordance with DOE Order 5630.7, Control and Accountability of Nuclear Materials Surveys (7/8/81) to ascertain compliance with applicable DOE Orders and SAN Management Directives in the 5630 series, as well as the adequacy of the contractor's program and procedures. Surveys will be conducted by the Safeguards and Security Division of DOE-SAN. The survey team will review and evaluate the adequacy of the contractor's procedures and practices for nuclear material control and accounting by means of physical inventory, internal control, measurement and statistics, material control indicators, records and reports, and personnel training. The survey will include an audit of records and reports, observation of inventory procedures, an independent test of the inventory and a review and evaluation of the inventory differences, accidental losses, and normal operational losses as applicable to the facility to be surveyed

  3. Accountability control system in plutonium fuel facility

    International Nuclear Information System (INIS)

    Naruki, Kaoru; Aoki, Minoru; Mizuno, Ohichi; Mishima, Tsuyoshi

    1979-01-01

    More than 30 tons of plutonium-uranium mixed-oxide fuel have been manufactured at the Plutonium Facility in PNC for JOYO, FUGEN and DCA (Deuterium Critical Assembly) and for the purpose of irradiation tests. This report reviews the nuclear material accountability control system adopted in the Plutonium Facility. Initially, the main objective of the system was the criticality control of fissible materials at various stages of fuel manufacturing. The first part of this report describes the functions and the structure of the control system. A flow chart is provided to show the various stages of material flow and their associated computer files. The system is composed of the following three sub-systems: procedures of nuclear material transfer; PIT (Physical Inventory Taking); data retrieval, report preparation and file maintenance. OMR (Optical Mark Reader) sheets are used to record the nuclear material transfer. The MUF (Materials Unaccounted For) are evaluated by PIT every three months through computer processing based on the OMR sheets. The MUF ratio of Pu handled in the facility every year from 1966 to 1977 are presented by a curve, indicating that the MUF ratio was kept well under 0.5% for every project (JOYO, FUGEN, and DCA). As for the Pu safeguards, the MBA (Material Balance Area) and the KMP (Key Measurement Point) in the facility of PNC are illustrated. The general idea of the projected PINC (Plutonium Inventory Control) system in PNC is also shortly explained. (Aoki, K.)

  4. Material control and accountability aspects of safeguards for the USA 233U/Th fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1978-01-01

    The materials control and accountability aspects of the reprocessing and refabrication of a conceptual large-scale HTGR fuel recycle plant have been discussed. Two fuel cycles were considered. The traditional highly enriched uranium cycle uses an initial or makeup fuel element with a fissile enrichment of 93% 235 U. The more recent medium enriched uranium cycle uses initial or makeup fuel elements with a fissile enrichment less than 20% 235 U. In both cases, 233 U bred from the fertile thorium is recycled. Materials control and accountability in the plant will be by means of a real-time accountability method. Accountability data will be derived from monitoring of total material mass through the processes and a system of numerous assays, both destructive and nondestructive

  5. Example of an in-plant near-real-time accountancy/process control system

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This session describes an existing computerized in-plant near-real-time accounting and process monitoring system at the Allied-General Nuclear Services (AGNS) Barnwell Nuclear Fuel Plant (BNFP). Details of the system performance, objectives, hardware, plant instrumentation, and system functions are presented. Examples of actual programs for accounting and monitoring are described and system benefits will be discussed. The purpose of this session is to enable participants to: (1) identify the major computer hardware components of functional near-real-time accounting systems; (2) identify the types of process instrumentation necessary to perform near-real-time accounting; (3) describe the major nuclear material control and accounting functions of the AGNS computer system; and (4) assess the benefits to safeguards and plant operations of a computerized near-real-time accounting system

  6. From Governmental Accounting into National Accounts: Adjustments Diversity and Materiality with Evidence from the Iberian Countries’ Central Governments

    Directory of Open Access Journals (Sweden)

    Maria Antónia Jorge de Jesus

    2014-09-01

    Full Text Available In a context where governments around the world acknowledge a need for more informative governmental financial reporting to improve financial sustainability, the European Council is proposing that EU member states adopt International Public Sector Accounting Standards (IPSASs—which are recognized as also allowing improved reliability of government finance statistics—in all subsectors of the General Government Sector (GGS. Consequently, the Governmental Accounting (GA role of running and reporting on governments’ budgets for purposes of decisionmaking and accountability is changing to include being part of the EU budgetary and monetary policy, specifically within the Euro zone. Accordingly, the objective of this paper is twofold. First, it aims to start a debate in the literature about the ability of GA as it stands across Europe to meet the European System of National and Regional Accounts (ESA requirements concerning GGS data. This assumes particular relevance in a context where the two systems have to coexist, but given that budgetary reporting (GA is the main input to ESA reporting (NA, reconciliation between the two systems is required. The second objective is of a more technical nature—empirically demonstrating the diversity and materiality of the main adjustments to be made when converting GGS data from GA into NA. This is done by using evidence for Portugal and Spain, focusing on Central Government data for the period 2006–2009 and measuring their quantitative impact on the public (budgetary deficit. We conclude that GA systems as they are across EU do not meet ESA requirements, and further alignment is therefore needed to reduce adjustments as much as possible when translating data from GA into NA. Additionally, in the case of Portugal and Spain, the main findings show that the adjustments from GA into NA present great diversity for both of these Iberian countries. As for materiality, their impact is greater in Spain, but still

  7. The system of account and control of logistics costs

    Directory of Open Access Journals (Sweden)

    Khayrullin Rustam Zinnatullovich

    Full Text Available The process of organization of civil engineering provides the delivery of construction materials, equipment to the civil engineering objects in the required quantities at the specified time. Effective tool for solving this problem is logistics. The basic components of logistics costs, which occupy the largest share in the sum of all logistics costs, are transportation costs and storage costs. The civil engineering industry is very promising for the use of outsourcing. The main part of works on providing material and technical resources in most cases is transferred to the outsourcing of other companies, including the group of companies forming the holding. In large holding companies the chain of movement of materials, goods and productions: purchase of materials and goods, completion materials, production structures, storage, movement, transportation, etc. may include several companies belonging in holding. The goods can be moved from one warehouse to another, with or without change of the owner of goods. Each company is obliged to show each movement of goods in their financial accounting. During the goods’ movement within a group of companies from one storage to another, from one owner to another, the total costs of the goods rise. Sales within a group of companies lead, as a rule, to a gain by one of the companies and the logistic expenses of another company. Selling to a consumer provides a profit to the seller company. Therefore, the problem of adequate allocation of logistics expenses and profits between separate legal entity and the task of continuous accounting and control of logistics costs and earnings in large companies, is vital. The automated system for accounting and controlling of logistics costs is suggested. The developed system allows controlling logistics costs of refining, storage and transportation for each ton, pieces, linear or square meters of the shipped cargoes. The System is based on complex algorithms of distribution

  8. A near-real-time material accountancy model and its preliminary demonstration in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ikawa, K.; Ihara, H.; Nishimura, H.; Tsutsumi, M.; Sawahata, T.

    1983-01-01

    The study of a near-real-time (n.r.t.) material accountancy system as applied to small or medium-sized spent fuel reprocessing facilities has been carried out since 1978 under the TASTEX programme. In this study, a model of the n.r.t. accountancy system, called the ten-day-detection-time model, was developed and demonstrated in the actual operating plant. The programme was closed on May 1981, but the study has been extended. The effectiveness of the proposed n.r.t. accountancy model was evaluated by means of simulation techniques. The results showed that weekly material balances covering the entire process MBA could provide sufficient information to satisfy the IAEA guidelines for small or medium-sized facilities. The applicability of the model to the actual plant has been evaluated by a series of field tests which covered four campaigns. In addition to the material accountancy data, many valuable operational data with regard to additional locations for an in-process inventory, the time needed for an in-process inventory, etc., have been obtained. A CUMUF (cumulative MUF) chart of the resulting MUF data in the C-1 and C-2 campaigns clearly showed that there had been a measurement bias across the process MBA. This chart gave a dramatic picture of the power of the n.r.t. accountancy concept by showing the nature of this bias, which was not clearly shown in the conventional material accountancy data. (author)

  9. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Skripka, G.; Vatulin, V.; Yuferev, V.

    1997-01-01

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans

  10. Systematic Approach to Training and Professional Development Specialists of Physical Protection, Accounting and Control of Nuclear Materials in Ukraine

    International Nuclear Information System (INIS)

    Klos, Nataliia

    2014-01-01

    Conclusion: 1. Ukraine has created the State system for professional training, retraining and professional development of specialists in physical protection, accounting and control of nuclear materials. 2. Ukraine has founded profession physical protection, accounting and control of nuclear materials

  11. Structural properties of the material control and accounting system

    International Nuclear Information System (INIS)

    1978-12-01

    A unified digraph approach is proposed for the assessment of the structure of the MC and A System. The approach emphasizes the two structural aspects of the system: vulnerability and reliability. Vulnerability is defined as a possibility of loosing connectedness in a given structure due to line and/or node removals. It is purely deterministic notion which leads to a qualitative analysis of redundancy of connections in the corresponding system. Reliability of the MC and A System structure provides a more quantitative way of assessing how safe the system is to random failures of the links representing lines of communication, material paths, monitors, and the components of the power supply network. By assigning probabilities to the lines and nodes of the corresponding digraph, the least reliable path can be used as a measure of the goodness of the system, which can be computed by efficient shortest path algorithms. Both vulnerability and reliability considerations are important in determining the effect of tampering of an adversary with the elements of the MC and M System

  12. Material control system simulator user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts.

  13. Regional training course on state systems of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    2001-01-01

    The publication is an outline of the subjects that are included in a regional training course organized in Buenos Aires (Argentina) by the IAEA with the cooperation of the Argentine Government and the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC) from September 24 to October 5, 2001

  14. Development of DUPIC safeguards technology; development of web based nuclear material accounting program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. T.; Choi, S. H.; Choi, S. J. [Kongju National University, Kongju (Korea)

    2002-04-01

    The purpose of this project is to develop the web-based digital image processing system with the client/server architecture based on TCP/IP to be able to search and manage image data at the remote place. This system provides a nuclear facility with the ability to track the movement of nuclear material and to control and account nuclear material at anywhere and anytime. Also, this system will be helpful to increase the efficiency of safeguards affairs. The developed web-based digital image processing system for tracking the movement of nuclear material and MC and A can be applied to DUPIC facility. The result of this project will eventually contribute to similar nuclear facilities as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material. 15 refs., 33 figs., 4 tabs. (Author)

  15. Detecting anomalous nuclear materials accounting transactions: Applying machine learning to plutonium processing facilities

    International Nuclear Information System (INIS)

    Vaccaro, H.S.

    1989-01-01

    Nuclear materials accountancy is the only safeguards measure that provides direct evidence of the status of nuclear materials. Of the six categories that gives rise to inventory differences, the technical capability is now in place to implement the technical innovations necessary to reduce the human error categories. There are really three main approaches to detecting anomalies in materials control and accountability (MC ampersand A) data: (1) Statistical: numeric methods such as the Page's Test, CUSUM, CUMUF, SITMUF, etc., can detect anomalies in metric (numeric) data. (2) Expert systems: Human expert's rules can be encoded into software systems such as ART, KEE, or Prolog. (3) Machine learning: Training data, such as historical MC ampersand A records, can be fed to a classifier program or neutral net or other machine learning algorithm. The Wisdom ampersand Sense (W ampersand S) software is a combination of approaches 2 and 3. The W ampersand S program includes full features for adding administrative rules and expert judgment rules to the rule base. if desired, the software can enforce consistency among all rules in the rule base

  16. Modern methods of material accounting for mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Pindak, J.L.; Brouns, R.J.; Williams, R.C.; Brite, D.W.; Kinnison, R.R.; Fager, J.E.

    1981-01-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MCandA) philosophy have been applied to a mixed oxide fuel fabrication plant to produce a detailed preliminary MCandA system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed oxide fuel fabrication plant study

  17. Materials accountancy and control for power reactors and associated spent-fuel storage

    International Nuclear Information System (INIS)

    Ek, P.

    1982-01-01

    Materials accountancy and control at power reactors is an integrated part of the Swedish National System of Accuntancy and Control of Nuclear Materials. The nuclear material is stratified on the basis of measurement accuracy. The physical form of the material makes item accountability applicable on the rod level. Consequently, fuel assembly dismantling and fuel rod exchanges present special problems. Both physical inventory verification and the shipment of irradiated fuel are extensive operations involving inspections and controls on inventory records and fuel elements. A method for nondestructive measurement of irradiated fuel is under development in cooperation with the IAEA. The method has been tested at a reactor station with encouraging results. An away from reactor storage facility for spent fuel is under construction in Sweden. Optical verificationof each fuel element at all times is one of the basic facility control requirements. The receiving/shipping area of the storage facility is being designed and equipped to make NDA-measurements feasible. The overlal cooperation with the IAEA in matters related to safeguarding power reactors is proceeding smoothly. There are, however, some differences of opinion, for example, as regards material stratification (Key Measurement Points) and verification procedures

  18. Material control and accounting in the Department of Energy's nuclear fuel complex

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    Material control and accounting takes place within an envelope of activities related to safeguards and security, as well as to safety, health, and environment, all of which need to be managed to assure that the entire nuclear fuel complex can operate in a societally accepted manner. Within this envelope the committee was directed to carry out the following scope of work: (1) Review the MCandA systems in use at selected DOE facilities that are processing special nuclear material (SNM) in various physical and chemical forms. (2) Design and convene a workshop for senior representatives from each of DOE's facilities on the flows and inventories of nuclear materials. (3) Plan and conduct a series of site visits to each of the facilities to observe first hand the processing operations and the related MCandA systems. (4) Review the potential improvement in overall safeguard systems effectiveness, as measured by expected reduction in inventory difference control limits and inventory differences for materials balance accounts and facilities, or other criteria as appropriate. Indicate how this affects the relative degree of uncertainty in the system. (5) Review the efficiency of operating the MCandA system with and without the upgrading options and assess whether upgrading will contribute further efficiencies in operation, which may reduce many of the current operations costs. Determine if the current system is cost-effective. (6) Recommend the most promising technical approaches for further development by DOE and further study as warranted.

  19. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  20. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  1. Material control and accounting at a CANDU reactor: the instrumented safeguards scheme

    International Nuclear Information System (INIS)

    Stirling, A.J.; Payne, E.

    1985-01-01

    While CANDU reactors differ from LWRs quite markedly in the way they operate, the principles of materials accounting and safeguards are equally applicable. Indeed, since CANDU fuel is not reprocessed, the relatively simple procedure of item accounting is sufficient for CANDUs. However, on-power refueling means that automatic item counting is needed to independently confirm operator records. Surveillance and sealing techniques for spent fuel are needed for a practical system. The equipment developed has allowed the IAEA to apply safeguards at reasonable cost and with minimal interference to the utility operating the station

  2. Proposals for the Future Development of the Russian Automated Federal Information System for Nuclear Material Control and Accounting: The Universal Reporting Concept

    International Nuclear Information System (INIS)

    Martyanov, Alexander; Pitel, Victor; Kasumova, Leila; Babcock, Rose A.; Heinberg, Cynthia L.

    2004-01-01

    Development of the automated Russian Federation Federal Information System for Nuclear Material Control and Accounting (FIS) started in 1996. From the beginning, the creation of the FIS was based on the concept of obtaining data from the material balance areas of the organizations, which would enable the system to collect detailed information on nuclear material. In December 2000, the organization-level summarized reporting method was mandated by the Russian Federation and subsequently implemented for all organizations. Analysis of long-term FIS objectives, reporting by all the MBAs in Russia, showed that the present summarized reporting approach decreed by regulations posed a fair number of problems. We need alternative methods that allow the FIS to obtain more detailed information on nuclear material but which accurately reflect the technical and economic resources available to Russian organizations. One possible solution is the universal reporting method. In August 2003, the proposals of the FIS working group to transition to the universal reporting method were approved at the fourth meeting of the Joint Coordinating Committee for Implementation of the Russian Federation and U.S. Government-to-Government Agreement on Cooperation in the Area of Nuclear Material Physical Protection, Control and Accounting (JCC). One of the important elements of universal reporting is that organizations handling nuclear material will establish 'reporting areas' in cooperation with MinAtom of Russia. A reporting area may consist of one MBA, several MBAs, or even an entire organization. This paper will discuss the universal reporting concept and its major objectives and methods for the FIS.

  3. ACCOUNTING, AN ESSENTIAL COMPONENT OF THE INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    PALIU -POPA LUCIA

    2013-02-01

    Full Text Available In the context of deep financial and economic transformations taking place both nationally and globally, theneed and appropriateness of ongoing and increased involvement of accounting information in the management processis increasingly obvious under the increasing credibility and relevance of such information in user perception. Althoughthe data, information and knowledge provided by accounting are not the only ones characterizing a particular economicunit, we believe they are an essential element for analysis and assessment of the entity's statement of assets, motivationaccording to which accounting is seen by the management, and not only, as the core of the information system.Thus, the accounting information experiences a wide revaluation on all the decision-making stages specific toa field of activity, materialized, for this purpose, in economic and financial indicators that are obtained either directlyfrom synthetic and analytical accounts, or through calculations based on them, regularly and periodically, dependingon the need and possibility of operational knowledge of such indicators or only at certain times.Therefore the main purpose of the accounting information system is to provide each user, according to itsresponsibilities and tasks, with all the necessary information, representing both an interface between the operating andthe management system of the entity, but also an element connecting the internal and the external environment of thecompany, a perspective that motivates our scientific approach orientation in the research of accounting informationand its role in the decision making process.

  4. Material Control and Accounting (MC and A) System Upgrades and Performance Testing at the Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)

    International Nuclear Information System (INIS)

    Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav; Yuferev, Vladimir; Singh, Surinder Paul; Kuzminski, Jozef; Hogan, Kevin; McKisson, Jacquelin

    2008-01-01

    The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material control and accounting (MC and A) system upgrades and the preliminary results from a pilot program on the MC and A system performance testing that was recently conducted at one technical area.

  5. Preliminary field tests of near-real-time materials accountancy system at the Tokai Reprocessing Plant (TASK F)

    International Nuclear Information System (INIS)

    Tsutsumi, Masayori; Sawahata, Toshio; Sugiyama, Toshihide; Tanaka, Kazuhiko; Suyama, Naohiro

    1982-01-01

    A study of applying the proposed near-real-time material accountancy model to the Tokai Reprocessing Plant, PNC (Power Reactor and Nuclear Fuel Development Corp.), showed that the model was feasible and effective to meet the IAEA (International Atomic Energy Agency) safeguards criteria in terms of detection timeliness and sensitivity. This study using the computer simulation technique is shown in this paper. In order to investigate the applicability of the model to the actual plant, the field test was carried out on the process in the material balance area (MBA) which covers the area from the input accountability vessel (IAV) to the product accountability vessel (PAV), in cooperation with JAERI. The key measuring points for dynamic physical inventory counts (D-PIT) are shown. The results of test evaluation are as follows: For timely detection, it will be able to evaluate an abnoumal accountancy in process by using the MUFd (material unaccounted for) obtained by the D-PIT about once every week. Therefore, this seems to satisfy the timely detection of IAEA safeguards criteria. As for detection, sensitivity and verification procedures, in order to clarify these criteria for a large scale reprocessing plant, further research and development will be required. In addition, since the field test was carried out along with normal plant operation, additional man-power problem was also considered. (Wakatsuki, Y.)

  6. Establishing a system of nuclear materials accountancy and control at the facility level

    International Nuclear Information System (INIS)

    Lopez Lizana, Fernando

    2001-01-01

    This paper is the guide to a workshop designed to enable the participants to gain a better understanding of National Safeguards Systems and their functions. The workshop provides the opportunity to address the principal elements of the accounting system to be implemented at the facility level (research reactor and laboratory facilities) as a part of the national safeguards system

  7. Material control and accountability procedures for a waste isolation repository

    International Nuclear Information System (INIS)

    Jenkins, J.D.; Allen, E.J.; Blakeman, E.D.

    1978-05-01

    The material control and accountability needs of a waste isolation repository are examined. Three levels of control are discussed: (1) item identification and control, (2) tamper indication, and (3) quantitative material assay. A summary of waste characteristics is presented and, based on these, plus a consideration of the accessibility of the various types of waste, material control by item identification and accountability (where the individual waste container is the basic unit) is recommended. Tamper indicating procedures are also recommended for the intermediate and low level waste categories

  8. Measurement control program for nuclear material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Merrill, J.A.; Brown, W.B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurments of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities, equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality

  9. Materialism Moderates the Effect of Accounting for Time on Prosocial Behaviors.

    Science.gov (United States)

    Li, Jibo; Chen, Yingying; Huang, Xiting

    2015-01-01

    Accounting for time is defined as putting a price on time. Researchers have demonstrated that accounting for time reduces the time individuals spend on others; however, its association with monetary donations has not been examined. We hypothesized that accounting for time will activate a utility mindset that would affect one's allocation of time and money. In Study 1, the mediating effect of utility mindsets on the relationship between accounting for time and prosocial behavior was examined. In Study 2, we examined the effect of accounting for time on time spent helping and donating money, and the moderating role of material values on the relationship between accounting for time and prosocial behavior. Results showed that accounting for time activated a mindset of utility maximization that, in turn, reduced participants' prosocial behavior; moreover, materialism moderated the effect of accounting for time on prosocial behavior.

  10. Basic principles of accounting and control of nuclear materials in the BOR-60 experimental fast reactor

    International Nuclear Information System (INIS)

    Gryazev, V.M.; Gadzhiev, G.I.; Alekseev, I.N.

    1979-01-01

    Under a contract with the International Atomic Energy Agency, the V.I. Lenin Atomic Reactor Research Institute is currently carrying out a study of ways of organizing a nuclear materials accounting and control system for the BOR-60 fast reactor. Some results of this study are presented in the paper. The special physical and technological features of fast reactors create additional difficulties in safeguards systems and give rise to a number of new possibilities for the illicit removal of nuclear materials. These questions are discussed with reference to the BOR-60 reactor but the conclusions are probably applicable to all fast reactors. The proposed accounting and control system is based on non-destructive measurements of the amount of fissile materials in the operating fuel assemblies and screened bundles of the reactor, on the independent control of the principal facility parameters (a list of which is given) and on an automated information collection and evaluation system. Visual means of inspection can be very effective in fast reactor safeguards systems, especially for controlling storage, but they are not used with the BOR-60 reactor. (author)

  11. Complementarities Between Nuclear Security, Safeguards and State System of Accounting for and Control

    International Nuclear Information System (INIS)

    Jalouneix, J.

    2010-01-01

    Nuclear security deals with prevention against theft and diversion of nuclear materials and sabotage against nuclear materials or installations. It is based on provisions of physical protection of nuclear materials and facilities complemented by: - Provisions for accounting for and control to prevent and, where appropriate, detect loss, theft or diversion of nuclear materials; - The nuclear safety provisions to protect nuclear materials and facilities against sabotage. Safeguards are based on the statements and accounting controls in the facilities. The respective aim of EURATOM and IAEA controls is to verify afterwards the respect for the declared use of materials or political commitments undertaken by States under the non-proliferation purpose. However, EURATOM and IAEA controls are not exercised at all facilities (including those working for defence purposes) or in respect of all nuclear materials subject to the French national control. In addition, these international safeguards do not deal with physical protection of nuclear materials which is the sole responsibility of the State. The state control, implemented in France, is positioned upstream to the international controls. It aims to prevent, deter and detect the loss, theft or diversion of nuclear materials in installations or during transport. It places the responsibility of a possible diversion at the operator level. It is made of different components that complement each other and form a coherent whole. This includes: - physical protection; - accounting for and control; - inspections. The physical protection system has to protect nuclear materials against a malicious act. Malicious act means a theft or diversion of nuclear material or an act of sabotage affecting nuclear materials or facilities which could lead to radiological releases into the environment. The accounting for and control system of nuclear materials has to allow the continuous and accurate knowledge of the quantity, quality and location

  12. Considerations for sampling nuclear materials for SNM accounting measurements

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-01-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM accounting purposes are emphasized

  13. Topical understandings of nuclear material measurement · accountancy and quality assurance

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Muraoka, Susumu; Osabe, Takeshi; Terada, Hiromi; Shimizu, Kenichi; Ohtani, Tetsuo; Fujimaki, Kazunori; Ishikawa, Tadatsugu; Shinohara, Yoshinori

    2002-01-01

    Nuclear material measurement is an important measure to determine the amount of nuclear material of each stage such as receipt, shipment, inventory and hold-up. The material accountancy based on the material balance among the measurements is a measure to control of nuclear material. The material accountancy, from the technical aspect, can be used as promising measures for purposes from operator's level to state's level such as the nuclear safety, property control and environmental preservation other than safeguards measures only to conclude no diversion of nuclear material. This paper discusses various purposes of nuclear material measurements and clarifies the certain function such as quality assurance to be expected at each purpose. Based on the discussion, critical points for the quality assurance of each stage are studied. (author)

  14. 18 CFR 367.1540 - Account 154, Materials and operating supplies.

    Science.gov (United States)

    2010-04-01

    ... if not known. The cost of repairing the items must be charged to the maintenance account appropriate... the items. The cost of repairing the items must be charged to the appropriate expense account as indicated by previous use. (3) Scrap and non-usable materials included in this account must be carried at...

  15. Materials control and accountability at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Denning, G.E.; Britschgi, J.J.; Spraktes, F.W.

    1985-01-01

    The ICPP high enriched uranium recovery process has historically been operated as a single Material Balance Area (MBA), with input and output measurement capabilities. Safeguards initiated changes in the last five years have resulted in significant materials control and accountability improvements. Those changes include semi-automation of process accountability measurement, data collection and recording; definition of Sub-MBAs; standard plant cleanouts; and, bimonthly inventory estimates. Process monitoring capabilities are also being installed to provide independent operational procedural compliance verification, process anomaly detection, and enhanced materials traceability. Development of a sensitivity analysis approach to defining process measurement requirements is in progress

  16. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Holzemer, Michael; Carvo, Alan

    2012-01-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC and A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S and S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  17. Specialists training on nuclear materials control, accounting and physical protection in the Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Khromov, V.V.; Pogozhin, N.S.; Kryuchkov, E.F.; Glebov, V.B.; Geraskin, N.I.

    1998-01-01

    Educational program to train specialists on non-proliferation problems and nuclear materials control, accounting and physical protection systems (NMCA and PP) at the Science Master's level was developed and is being realized in Moscow Sate Institute of Engineering and Physics at the support of the USA Ministry of Energy. The program is intended to train students who already got the Bachelor's degree on physical and technical subjects. The United methodological base of the program comprises lecture courses, practice in laboratories and computer programs. The educational program contains the following parts for training the students. 1) Deep scientific and technical knowledge. 2) System approach to designing and analysis of the NMCA and PP systems. 3) Knowledge of scientific and technical principles, means, devices and procedures used in the NMCA and PP systems. 4) Judicial, international and economical aspects of nuclear materials management. 5) Application of computer and information technologies for nuclear materials control and accounting. 6) Extensive practice in laboratories, using the most up-to-date equipment and devices used in the worldwide practice of NM control

  18. Two-year review of an on-line accountability system

    International Nuclear Information System (INIS)

    Carlson, R.L.; Bair, W.J.; Larson, G.F.; Serier, M.N.; Woehle, B.A.

    1983-05-01

    In November 1980, Westinghouse Hanford Company installed the initial version of the Safeguards Active Response Inventory System (SARIS). It was designed as an advanced accountability system to meet the needs of process, safeguards, criticality, safety, and inventory control. A single database translates information about a quantity of nuclear material into the language used by process operators or accountants. Modifications made through functions that model the process automatically generate changes in nuclear material reports, including input of transactions to the NMMSS system at Oak Ridge, Tennessee. During the past two years, the user attitude about SARIS has improved, largely due to the changes implemented in four major additions. Problems encountered during development include: obtaining accurate and complete data to load the database, slow computer response, insufficient training of users before system implementation, and functions that did not exactly meet the user's needs. The benefits of SARIS have included: consistency in data reporting, fewer errors due to immediate resolution of discrepancies, a standardized audit trail, and elimination of manual methods. The most important improvement is a reporting scheme that enables rapid conduction and reconciliation of physical inventories

  19. Effect of pulsed-column-inventory uncertainty on dynamic materials accounting

    International Nuclear Information System (INIS)

    Ostenak, C.A.

    1985-01-01

    Reprocessing plants worldwide use the Purex solvent-extraction process and pulsed-column contactors to separate and purify uranium and plutonium from spent nuclear fuels. The importance of contactor in-process inventory to dynamic materials accounting in reprocessing plants is illustrated using the Allied-General Nuclear Services Plutonium Purification Process (PPP) of the now decommissioned Barnwell Nuclear Fuels Plant. This study shows that (1) good estimates of column inventory are essential for detecting short-term losses of in-process materials, but that (2) input-output (transfer) measurement correlations limit the accounting sensitivity for longer accounting periods (greater than or equal to 1 wk for the PPP). 6 refs., 2 figs., 3 tabs

  20. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    International Nuclear Information System (INIS)

    McAllister, S.

    1997-01-01

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation's largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE's MPC ampersand A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE's Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC ampersand A work at UEIP is expected to be completed during fiscal year 2001

  1. Code HEX-Z-DMG for support of accounting for and control of nuclear material software system as part of international safeguards system at BN-350 site

    International Nuclear Information System (INIS)

    Bushmakin, A.G.; Schaefer, B.

    1999-01-01

    A code for the computation of the global neutron distribution in the three-dimensional hexagonal-z geometry and multi-group diffusion approximation was developed at BN-350 as the main part of the BN-350 accounting for and control of nuclear material software system. This software system includes: the model for stationary distributions of neutrons; the model to calculate isotope compositions changing; the model of refueling operations; To develop this system next two principal problems were solved: to make a micro cross sections library for all nuclides for the BN-350 reactor core; to develop the code for the computation of the global neutron distribution. To solve first task the twenty-six-energy-groups micro cross sections library for more than seventy nuclides was produced. To solve second task the three-dimensional hexagonal-z geometry and multi-group diffusion approximation code was developed. This code (HEX-Z-DMG) was based on the solution of the multi groups diffusion equation using the standard net approach. The series of calculations was performed in the twenty-six-energy-groups representation using this code. We compared eigenvalues (k eff ), a worth added during refueling operations, spatial and energy-group-dependent neutron flux distributions with results of calculation using other code (DIF3D). After the series of these calculations we can say that the HEX-Z-DMG code is well established to use as the part of the BN-350 accounting for and control of nuclear material software system. (author)

  2. Digraph-fault tree methodology for the assessment of material control systems

    International Nuclear Information System (INIS)

    Lambert, H.E.; Lim, J.J.; Gilman, F.M.

    1979-01-01

    The Lawrence Livermore Laboratory, under contract to the United States Nuclear Regulatory Commission, is developing a procedure to assess the effectiveness of material control and accounting systems at nuclear fuel cycle facilities. The purpose of a material control and accounting system is to prevent the theft of special nuclear material such as plutonium or highly enriched uranium. This report presents the use of a directed graph and fault tree analysis methodology in the assessment procedure. This methodology is demonstrated by assessing a simulated material control system design, the Test Bed

  3. Sequential game-theoretical analysis of safeguards systems based on the principle of material accountability

    International Nuclear Information System (INIS)

    Abel, V.; Avenhaus, R.

    1981-01-01

    The international control of fissile material used in nuclear technology is based on the principle of material accountability, i. e. on the difference between book inventory and physical inventory of a plant at the end of an inventory period. Since statistical measurement errors cannot be avoided, this comparison calls for methods of statistical hypotheses testing. Moreover, game-theoretical methods are needed as an analytical tool, since if the plant operator wilfully diverts material he will do so in an optimal manner. In this article, the optimal test strategy is determined for the case of two inventory periods. Two assumptions are made: The operation of the plant is stopped after the first inventory period if the test indicates wilful diversion, and the plant operator chooses the probability of wilfully diverting material for both inventory periods before the start of the first period. The assertions which depend on the payoff parameters and the substitutes which must be given in the case that the payoff parameters cannot be estimated are discussed. (orig.) [de

  4. Support to the physical protection and accountancy for nuclear materials in Kazakstan

    International Nuclear Information System (INIS)

    Hashimoto, Yu.; Yoshida, M.; Akutsu, M.; Takeda, H.

    1998-01-01

    The support programs for Republic of Kazakstan have been carried out for the purpose of establishing the State System of Accounting for and Control of Nuclear Material (SSAC). These support are based on the cooperation agreement for the elimination of nuclear weapons, that reached mutual agreement between both government of Japan and the Republic of Kazakstan in March, 1994, 1994. Japan, Sweden, the United Kingdom and the United States of America have conducted the support for Kazakstan. Since there are many facilities to be supported such as fast reactors, fuel fabrication facilities and research facilities, items to be supported are coordinated and shared among the supporting countries. Japan has been carrying out the supporting tasks mainly for the fast breeder reactor facility, BN-350 and Atomic Energy Agency of Kazakstan (KAEA). PESCO Co., Ltd. is entrusted this supporting work from Technical Secretariat on Cooperation for the Elimination of Nuclear Weapons Reduced in the Former Soviet Union, and has conducted the support in the area of flow monitoring system, nuclear material accounting and control and physical protection, obtaining technical cooperation from Power Reactor and Nuclear Development Corporation (PNC)

  5. Safeguards material control and accounting at licensed processing facilities. Quarterly report, July--September 1977

    International Nuclear Information System (INIS)

    Sacks, I.J.

    1978-12-01

    Objective was to develop the methodology and software needed for assessing Material Control and Accounting (MC and A) systems at fixed site nuclear fuel facilities. The assessment of an MC and A system requires five steps: target identification, event set generation, MC and A response determination, component performance models, and thermo-physical property data base. Progress on each is reported

  6. VALIDATION OF NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY (MC and A) SYSTEM EFFECTIVENESS TOOL (MSET) AT IDAHO NATIONAL LABORATORY (INL)

    International Nuclear Information System (INIS)

    Meppen, Bruce; Haga, Roger; Moedl, Kelley; Bean, Tom; Sanders, Jeff; Thom, Mary Alice

    2008-01-01

    A Nuclear Material Control and Accountability (MC and A) Functional Model has been developed to describe MC and A systems at facilities possessing Category I or II Special Nuclear Material (SNM). Emphasis is on achieving the objectives of 144 'Fundamental Elements' in key areas ranging from categorization of nuclear material to establishment of Material Balance Areas (MBAs), controlling access, performing quality measurements of inventories and transfers, timely reporting all activities, and detecting and investigating anomalies. An MC and A System Effectiveness Tool (MSET), including probabilistic risk assessment (PRA) technology for evaluating MC and A effectiveness and relative risk, has been developed to accompany the Functional Model. The functional model and MSET were introduced at the 48th annual International Nuclear Material Management (INMM) annual meeting in July, 20071,2. A survey/questionnaire is used to accumulate comprehensive data regarding the MC and A elements at a facility. Data is converted from the questionnaire to numerical values using the DELPHI method and exercises are conducted to evaluate the overall effectiveness of an MC and A system. In 2007 a peer review was conducted and a questionnaire was completed for a hypothetical facility and exercises were conducted. In the first quarter of 2008, a questionnaire was completed at Idaho National Laboratory (INL) and MSET exercises were conducted. The experience gained from conducting the MSET exercises at INL helped evaluate the completeness and consistency of the MC and A Functional Model, descriptions of fundamental elements of the MC and A Functional Model, relationship between the MC and A Functional Model and the MC and A PRA tool and usefulness of the MSET questionnaire data collection process

  7. Upgrading nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Caravelli, Jack; Behan, Chris; Fishbone, Les

    2001-01-01

    Full text: I. Program goal and organization - In this paper we review the Cooperative US-Russia Program of Nuclear Material Protection, Control and Accounting (MPC and A), whose goal is to reduce the risk of nuclear weapons proliferation by strengthening systems of MPC and A; thereby the Program enhances US national security. Based on this goal, the technical objective is to enhance, through US technical cooperation, the effectiveness of MPC and A systems at Russian sites with weapons-usable nuclear material, i.e. plutonium and highly enriched uranium. The Program exists because the extensive social, political and economic changes in Russia arising from the dissolution of the Soviet Union have increased the risk that these materials would be subject to theft or other misuse, with potentially grave consequences. On the US side, the MPC and A Program is administered by the US Department of Energy (DOE) National Nuclear Security Administration through the DOE national laboratories and other contractors. On the Russian side, the Program is administered by the Russian Ministry of Atomic Energy (Minatom) through its nuclear sites, by the regulatory agency Gosatomnadzor, and by nuclear sites not under Minatom. To carry out the Program objective, the DOE national laboratories consummate contracts with the Russian sites to implement agreed MPC and A upgrades. Deciding on what upgrades to perform depends on a cooperative analysis of site characteristics, materials, and vulnerabilities by joint US and Russian teams. Once the upgrades are agreed, the DOE laboratories supply technical and financial support and equipment to the Russian sites. The staff of the Russian sites do the work, and the US team members monitor the work through some combination - according to contract - of direct observation and reports, photographs and videotape supplied by the staff of the Russian sites. II. MPC and A task areas - Information in this review covers a selection of topical areas, with a

  8. The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades

    International Nuclear Information System (INIS)

    Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

    2008-01-01

    Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC and A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC and A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC and A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC and A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC and A project team's suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC and A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC and A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIP's equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

  9. Development of state computerised accounting system for nuclear material in the Slovak Republic and the Czech Republic towards 2000

    International Nuclear Information System (INIS)

    Bezak, S.; Bencova, A.; Cisar, V.; Zajicova, M.; Bilek, J.; Olsansky, J.

    1999-01-01

    The presentation describes the evaluation of computerised system for processing of safeguards data and reporting to the IAEA in the Slovak Republic and in the Czech Republic in accordance with their Safeguards Agreements. The attention is given to the first code for processing of accounting data, established and operated in the Nuclear Research Institute in Rez in 1980. Further it is concentrated on the code ZARUKY, developed as a tool for control of and accounting for nuclear material at the State level in 1992, created on the database system CLIPPER-5 in operational system MS-DOS and operated until now. The general intention is to show and clarify main problems connected with the year 2000 and to share this experience with other colleagues. Possible ways for solution of these problems are listed and necessary regulatory role of the SSACs is presented. Also the main requirements for new code, which should communicate with the database of operators and reflect all limitations specified in their permissions, which should be a system with fully satisfactory safety, strictly defined confidentiality and should allow the access of several users in parallel is described. As a new component of this afford the requirements for reporting in accordance with the Protocol Additional to the Safeguard Agreement is mentioned. It is presented that the code in WINDOWS operation system on a database system ORACLE accepting also new date format 'YYYYMMDD' would meet all of these requirements. (author)

  10. Development of the system for academic training of personnel engaged in nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.

    2004-01-01

    educational problems in area of nuclear materials physical protection, control and accountability (MPC and A) in Russia. General scheme of Russian educational system is considered with main emphasis on the directions under implementation now, namely academic training system, re-training system and specialists qualification upgrade system in MPC and A area. Russian academic training system consists of the educational programs at various levels: Bachelor of Sciences, Master of Sciences, Specialist (also referred to as an Engineer Degree), and professional re-training of the personnel already working in the nuclear field. Currently, only the Master of Sciences Graduate Program is completely developed for the students training. This is taking place at Moscow Engineering Physics Institute (State University, MEPhI), where the fourth generation of Masters has graduated from in May 2003. The graduates are now working at nuclear-related governmental agencies, non-governmental organizations, universities, and nuclear facilities. Development of the system to produce academically trained Russian MPC and A personnel is therefore well underway. MEPhI's MPC and A Engineering Degree Program which currently under development is considered in the paper. Analysis of MPC and A needs at Russian nuclear facilities has demonstrated the Engineering Degree Program is the best way to satisfy these needs and the resulting demands for MPC and A specialists at Russian nuclear enterprises. This paper discusses specific features of the Engineering Degree training required by Russian education legislation and the Russian system of quality control as applied to the training process. The paper summarizes the main joint actions undertaken during the past three years by MEPhI in collaboration with the US Department of Energy and US national laboratories to develop the MPC and A Engineering Degree Program in Russia. These actions include opening a new Engineering Degree specialty, Safeguards and Nonproliferation

  11. Conversion of the US State System of Accountancy to be Year 2000 compliant

    International Nuclear Information System (INIS)

    Proco, G.; Brown, S.

    1999-01-01

    The Nuclear Materials Management and Safeguards System (NMMSS) is the US government's state system of accountancy, maintaining current and historical data on the possession, use and transfer of nuclear material. The system is an important tool in maintaining and monitoring accounting data for nuclear materials inventory and transactions and reporting under the US Atomic Energy Act of 1954, as amended, the safeguards agreement between the US and the International Atomic Energy Agency and agreements for cooperation between the US and its international partners for peaceful uses of atomic energy. Accounting information is provided to the system by nuclear facilities under the reporting requirements issued by relevant US government entities: the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The NMMSS is operated for the DOE and the NRC by NAC International, Norcross, Georgia. The state system of accountancy was identified by the US government as a 'mission essential' system, an accounting system considered essential to government missions. As such, the system is held to a high standard of reliability. This system was identified in 1996 by the DOE as a system that should be made Year 2000 compliant at an early date - by March 1999. Very detailed planning for system conversion was necessary including: risk and vulnerability assessments, a comprehensive test plan and a contingency plan to be followed in case the conversion was not completed on time. Actual compliance was accomplished well in advance of March 1999. The conversion was complete, tested and capable of receiving data in the revised format in July 1998. All date fields in the data base are now eight characters, with the year reported in four characters. All incoming data that is only six characters is modified through software into an eight-character format by a default provision in the system. Also, output reports now contain eight-character date fields. If any of the systems that

  12. Nuclear material control and accountancy in a spent fuel storage ponds

    International Nuclear Information System (INIS)

    Gurle, P.; Zhabo, Dgh.

    1999-01-01

    The spent fuel storage ponds of a large reprocessing plant La Hague in France are under safeguards by means of a wide range of techniques currently used. These techniques include the nuclear material accountancy an containment/surveillance (C/S). Nondestructive assay, design information verification, and authentication of equipment provided by the operator are also implemented. Specific C/S equipment including video surveillance and unattended radiation monitoring have been developed and implemented in a spent fuel pond of La Hague. These C/S systems named EMOSS and CONSULHA with high degree of reliability and conclusiveness provide the opportunity to improve the efficiency of safeguards, particularly as related to spent fuel storage areas where the accountancy is verified by item counting [ru

  13. Development of accounting quality management system

    Directory of Open Access Journals (Sweden)

    Plakhtii T.F.

    2017-08-01

    Full Text Available Accounting organization as one of the types of practical activities at the enterprise involves organization of the process of implementation of various kinds of accounting procedures to ensure meeting needs of the users of accounting information. Therefore, to improve its quality an owner should use tools, methods and procedures that enable to improve the quality of implementation of accounting methods and technology. The necessity of using a quality management system for the improvement of accounting organization at the enterprise is substantiated. The system of accounting quality management is developed and grounded in the context of ISO 9001:2015, which includes such processes as the processes of the accounting system, leadership, planning, and evaluation. On the basis of specification and justification of the set of universal requirements (content requirements, formal requirements the model of the environment of demands for high-quality organization of the computerized accounting system that improves the process of preparing high quality financial statements is developed. In order to improve the system of accounting quality management, to justify the main objectives of its further development, namely elimination of unnecessary characteristics of accounting information, the differences between the current level of accounting information quality and its perfect level are considered; the meeting of new needs of users of accounting information that have not been satisfied yet. The ways of leadership demonstration in the system of accounting quality management of accounting subjects at the enterprise are substantiated. The relationship between the current level of accounting information quality and its perfect level is considered. The possible types of measures aimed at improving the system of accounting quality management are identified. The paper grounds the need to include the principle of proper management in the current set of accounting

  14. ASNC upgrade for nuclear material accountancy of ACPF

    Science.gov (United States)

    Seo, Hee; Ahn, Seong-Kyu; Lee, Chaehun; Oh, Jong-Myeong; Yoon, Seonkwang

    2018-02-01

    A safeguards neutron coincidence counter for nuclear material accountancy of the Advanced spent-fuel Conditioning Process Facility (ACPF), known as the ACP Safeguards Neutron Counter (ASNC), was upgraded to improve its remote-handling and maintenance capabilities. Based on the results of the previous design study, the neutron counter was completely rebuilt, and various detector parameters for neutron coincidence counting (i.e., high-voltage plateau, efficiency profile, dead time, die-away time, gate length, doubles gate fraction, and stability) were experimentally determined. The measurement data showed good agreement with the MCNP simulation results. To the best of the authors' knowledge, the ASNC is the only safeguards neutron coincidence counter in the world that is installed and operated in a hot-cell. The final goals to be achieved were (1) to evaluate the uncertainty level of the ASNC in nuclear material accountancy of the process materials of the oxide-reduction process for spent fuels and (2) to evaluate the applicability of the neutron coincidence counting technique within a strong radiation field (e.g., in a hot-cell environment).

  15. Financial Accountant Versus Managerial Accountant in the Hotel Business System

    Directory of Open Access Journals (Sweden)

    Ivana Zubac

    2012-01-01

    Full Text Available From the perspective of financial or managerial accountant, subject of interest in this paper is the relationship of financial and managerial accounting in the hotel business. Being necessary functions within the business system of hotel company, their mutual connection as well as their differences are explained. The management of hotel company makes decisions based on accounting information from both parts of accounting. As support to hotel management in decision-making, financial accountant provides financial information about past events, while managerial accountant provides non-financial information oriented toward future. The example above is just one out of many specific tasks, which are performed by accountants of specific part of hotel accounting system. Without their support, the management could not make correct and timely decisions with certainty. The importance of the roles of financial and managerial accountant is reflected through need for a wide knowledge in the field of accounting in specific business conditions of hotel industry.

  16. Status of U.S. programs for material protection, control ampersand accounting assistance to Ukraine and Kazakstan

    International Nuclear Information System (INIS)

    Roche, C.T.; Zinneman, T.E.; Rudolph, R.R.

    1995-01-01

    The United States is one of several donor states providing technical assistance to the Newly Independent States (NIS) of the Former Soviet Union (FSU) for improving their systems for control of nuclear materials. Ukraine and Kazakstan have significant nuclear energy programs. Both countries have committed to nonproliferation of nuclear weapons. They have signed the NPT and have safeguards agreements with the U.S. concerning development of state systems of control, accounting and physical protection of nuclear materials. As directed by the DOE - International Safeguards Division (now the DOE - Russia/NIS Nuclear Materials Security Task Force), technical specialists from several national laboratories, including Argonne, Los Alamos, Oak Ridge, Pacific Northwest and Sandia, as well as representatives of other U.S. Government organizations, such as the NRC, DOD/DNA and the New Brunswick Laboratory, are interacting with government regulatory and facility personnel of Ukraine and Kazakstan. Argonne has program coordination responsibilities for both countries. In support of agreements between the U.S. and Ukraine and the U.S. and Kazakstan, the DOE is responsible for providing technical assistance and training to aid in the evaluation, design, development, and implementation of nuclear material safeguards. This assistance includes: (1) information systems for tracking and reporting the location of nuclear materials, (2) application of nuclear measurement techniques for verifying inventories, (3) material control and accounting (MC ampersand A) systems, and (4) physical protection (PP) systems. Site survey teams, including both MC ampersand A and PP experts from several national labs, have visited Ukraine and Kazakstan. This paper summarizes activities to date and future plans

  17. The changing role of Material Control and Accountability at Savannah River Site

    International Nuclear Information System (INIS)

    Rodriguez, M.P.

    1994-01-01

    As Westinghouse Savannah River Company has been faced with the challenge of better meeting DOE needs with reduced budgets and manpower, the Materials Control and Accountability (MC ampersand A) organization has taken a hard look at its roles and responsibilities. A MC ampersand A program is composed of many functions that can not only meet safeguards needs, but can be used by several organizations across the site to meet their needs as well. These functions include nuclear material measurements, tracking, accounting, and inventory control. The infrastructure in place to provide these functions for accountable nuclear materials requires only a few adjustments to expand to other areas of nuclear materials accounting and control. By integrating several organizations' requirements, the MC ampersand A section can allow line organizations to reduce their costs and rely on the section to better service their needs. On the reverse side, MC ampersand A has completed several cost reduction measures that will allow it to expand its role with no increased costs. The roles and responsibilities of the nuclear material control and accountability program should be expanded. The program's existing information infrastructure, and knowledge and experience in nuclear material measurements and safeguards can be built upon to meet the needs of new areas such as waste management and decommissioning and decontamination while continuing to support the existing processing. and storage efforts of current facilities

  18. Cooperation between the Russian Federation and the United States to enhance the existing nuclear-material protection, control, and accounting systems at Mayak Production Association

    International Nuclear Information System (INIS)

    Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M.; James, L.T.

    1997-01-01

    The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC ampersand A) systems in both countries. Mayak Production Association (MPA) is a major Russian nuclear enterprise within the nuclear complex that is operated by MINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC ampersand A systems at MPA. Current cooperative efforts are focused on enhancements to the existing MPC ampersand A systems at four plants that are operated by MPA and that produce, process, handle and/or store proliferation-sensitive nuclear materials

  19. Cooperation Between the Russian Federation and the United States to Enhance the Existing Nuclear-Material Protection, Control, and Accounting Systems at Mayak Production Association

    International Nuclear Information System (INIS)

    Cahalane, P.T.; Ehinger, M.H.; James, L.T.; Jarrett, J.H.; Lundgren, R.A.; Manatt, D.R.; Niederauer, G.F.; Olivos, J.D.; Prishchepov, A.I.; Starodubtsev, G.S.; Suda, S.C.; Tittemore, G.W.; Zatorsky, Y.M.

    1999-01-01

    The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC and A) systems in both countries. Mayak Production Association (Mayak) is a major Russian nuclear enterprise within the nuclear complex that is operated by lylINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC and A systems at Mayak. Current cooperative efforts are focused on enhancements to the existing MPC and A systems at two of the plants operated by Mayak that work with proliferation-sensitive nuclear materials

  20. Cooperation between the Russian Federation and the United States to enhance the existing nuclear-material protection, control, and accounting systems at Mayak Production Association

    Energy Technology Data Exchange (ETDEWEB)

    Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M.; James, L.T. [and others

    1997-11-01

    The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC&A) systems in both countries. Mayak Production Association (MPA) is a major Russian nuclear enterprise within the nuclear complex that is operated by MINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC&A systems at MPA. Current cooperative efforts are focused on enhancements to the existing MPC&A systems at four plants that are operated by MPA and that produce, process, handle and/or store proliferation-sensitive nuclear materials.

  1. User-Oriented Project Accounting System.

    Science.gov (United States)

    Hess, Larry G.; Alcorn, Lisa S.

    1990-01-01

    The project accounting system used by the University of Illinois Urbana-Champaign School of Chemical Sciences exchanges financial data with the campus' central accounting system and allows integration of this information with user-entered data to produce an easily read, fully obligated project accounting statement for the budget and period…

  2. A study of the material accountancy procedure at the uranium enrichment facility

    International Nuclear Information System (INIS)

    Shirahashi, J.; Akiba, M.; Omae, M.

    1984-01-01

    This paper describes an evaluation of material accountancy based on total uranium (U element MUF) to detect diversions of significant quantity in the uranium enrichment facility operating at a stated maximum enrichment level of 5%. Verification that material production is within the declared enrichment can be achieved by the inspection activities associated with limited - frequency unannounced access (LFUA) to cascade areas as treated extensively in HSP. According to the experience of the material accountancy at our facility, the reduction of the material accountancy capability by changing from U-235 isotope MUF to U element MUF is only about half. However, still the U element MUF approach can meet the current IAEA detection goals for the up to about 1000 tswu/a plant

  3. IAEA verification of materials accounting in commercial reprocessing plants

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Hakkila, E.A.

    1987-01-01

    The reprocessing plants currently under International Atomic Energy Agency (IAEA) safeguards have design capacities up to 210 tonnes of heavy metal per year. All of the plants use conventional materials accounting for safeguards. However, several larger commercial reprocessing plants are being designed with capacities of 350 to 1200 tonnes of heavy metal per year. It is likely that many of these plants, as well as some of the existing smaller ones, will adopt near-real-time materials accounting. The major effect of the combination of larger plants and near-real-time accounting on IAEA safeguards will be the demand for greater timeliness of verification. Continuous inspector presence may be required, as well as more on-site measurements by the inspector. In this paper, the authors review what needs to be verified, as well as current inspector activities in the process area. The bulk of the paper describes rapid, easy-to-use measurement techniques and instruments that may be applied to on-site verification measurements

  4. Time-series-analysis techniques applied to nuclear-material accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Downing, D.J.

    1982-05-01

    This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother

  5. Nuclear materials control and accountability criteria for upgrades measures

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Hatcher, C.R.

    1998-01-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force

  6. Nuclear materials control and accountability criteria for upgrades measures

    Energy Technology Data Exchange (ETDEWEB)

    Erkkila, B.H.; Hatcher, C.R.

    1998-11-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force.

  7. Where do the Nuclear Materials Management functions fit in the Materials Control and Accountability (MC and A) plan?

    International Nuclear Information System (INIS)

    DeVer, E.A.

    1987-01-01

    Safeguards had its beginning in the early 1940s and has continued to grow through the stormy years in dealing with nuclear materials. MC and A Plans have been developed for each facility which includes requirements for containment, surveillance, internal controls, measurements, statistics, records and report systems, and inventory certification of its nuclear materials, in the context of how precisely the inventory is known at stated risk or confidence levels. The I and E Regulations, the newest document affecting the control system, are used for testing the current MC and A plan in place at each facility. Nuclear Materials Management activities also have reporting requirements that include: (1) Annual Forecast, (2) Materials Management Plan, (3) Quarterly Status Report, (4) Assessment Report, and (5) Scrap and Excess Material Management. Data used to generate reports for both functions come from the same data base and source documents at most facilities. The separation of sponsoring groups at the DOE for NM Accountability and NM Management can and does pose problems for contractors. In this paper, we will try to separate and identify these overlaps at the Facility and DOE level

  8. Establishing and Advancing Electronic Nuclear Material Accounting Capabilities: A Canadian Perspective

    International Nuclear Information System (INIS)

    Sample, J.

    2015-01-01

    Under safeguards agreements that the Government of Canada has with the International Atomic Energy Agency (IAEA), and nuclear cooperation agreements with other states, the Canadian Nuclear Safety Commission (CNSC) is required to track the inventory and movement of all safeguarded material. As safeguards programmes evolve, including the implementation of Integrated Safeguards, the scope of the reporting requirements for facilities within Canada has also increased. At the same time, ensuring the secure transmission of the associated data continues to be an overarching factor. The changes that are occurring in the nuclear material accounting (NMA) landscape have necessitated a modernization of Canada's accounting and reporting system, with the objective of creating a more effective and efficient system, while at the same time maintaining the security of prescribed information. After a review of the environment, the CNSC embarked on a project that would encourage facilities to transition away from traditional modes of NMA reporting and adopt an electronic approach. This paper will discuss how the changes to Canada's NMA infrastructure were identified and implemented internally to allow for optimized electronic reporting. Improvements included the development of the regulatory and guidance documents, the overhaul of the reporting forms, the upgrade of the CNSC's NMA database, and the development of an electronic reporting platform that leveraged existing technologies. The paper will also discuss the logistics of engaging stakeholders throughout the process, launching the system and soliciting feedback for future system improvements. Special consideration will be given to the benefits realized by both the CNSC and facilities who have voluntarily embraced electronic reporting. The final objective of this paper will be to identify the challenges that were faced by the CNSC and the nuclear industry as the system changes were implemented and to highlight how

  9. Practical experience with nuclear material control and accountancy in a large reprocessing plant

    International Nuclear Information System (INIS)

    Lebaillif, D.; Mitterrand, B.; Rincel, X.; Regnier, J.

    1999-01-01

    This paper describes the system implemented in UP3 and provides the results of the 9-year operation experience. It will be insisted on the necessity to perform measurements as accurately as possible in order to have an effective system. The Nuclear Material Control and Accountancy implemented at La Hague has proven to be an effective and efficient tool for the management of the facility. In particular it has been shown the necessity to determine as accurately as possible every transfer of nuclear material (NM) out or into the facility of area of the facility, whatever is considered, in order to establish the best possible balance of NM. A computerized system permits accurate and timely data collection, following up of throughputs and inventories, establishment of reports and records requested by national and international authorities [ru

  10. Verification Account Management System (VAMS)

    Data.gov (United States)

    Social Security Administration — The Verification Account Management System (VAMS) is the centralized location for maintaining SSA's verification and data exchange accounts. VAMS account management...

  11. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  12. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  13. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  14. Accounting for Investement Property Under Romanian Accounting System

    OpenAIRE

    Sava Raluca

    2015-01-01

    Investment property, an important component of the current assets, need special attention both in terms of their impact on accounting and well as in reporting the annual financial statements. Internationally their accounting treatment is presented by the IAS 40 Investment property issued in 2000 and being operative for annual periods beginning on or after 1 January 2001 with a number of subsequent amendments.First step in aligning the Romanian accounting system (RAS) to the international acco...

  15. A two-year review of an on-line accountability system

    International Nuclear Information System (INIS)

    Carlson, R.L.; Bair, W.J.; Larson, G.F.; Serier, M.N.; Woehle, B.A.

    1983-01-01

    In November 1980, Westinghouse Hanford Company installed the initial version of the Safeguards Active Response Inventory System (SARIS). It was designed as an advanced accountability system to meet the needs of process, safeguards, criticality, safety, and inventory control. A single database translates information about a quantity of nuclear material into the language used by process operators or accountants. Modifications made through functions that model the process automatically generate changes in nuclear material reports, including input of transactions to the NMMSS system at Oak Ridge, Tennessee. During the past two years, the user attitude about SARIS has improved, largely due to the changes implemented in four major additions. Problems encountered during development include: obtaining accurate and complete data to load the database, slow computer response, insufficient communication between users and developers, insufficient training of users before system implementation, and functions that did not exactly meet the user's needs. The benefits of SARIS have included: consistency in data reporting, fewer errors due to immediate resolution of discrepancies, a standardized audit trail, and elimination of manual methods. The most important improvement is a reporting scheme that enables rapid conduction and reconciliation of physical inventories

  16. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    Energy Technology Data Exchange (ETDEWEB)

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  17. 5 CFR 10.2 - Accountability systems.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Accountability systems. 10.2 Section 10.2 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE RULES AGENCY ACCOUNTABILITY SYSTEMS; OPM AUTHORITY TO REVIEW PERSONNEL MANAGEMENT PROGRAMS (RULE X) § 10.2 Accountability systems. The Director of...

  18. Proposed real-time data processing system to control source and special nuclear material (SS) at Mound Laboratory

    International Nuclear Information System (INIS)

    DeVer, E.A.; Baston, M.; Bishop, T.C.

    1976-01-01

    The SS Acountability System was designed to provide accountability of all SS materials by unit identification and grams. The existing system is a gram-accountable system. The new system was designed to incorporate unit identification into an ADP (Automated Data Processing) System. It also records all transactions performed against a particular unit of accountable material. The high volume of data is input via CRT terminals. Input data will consist of the following: source of the material (its unit identification), amount of material being moved, isotopic content, type of material, Health Physics number of the person moving the material, account number from which the material is being moved, unit identification of the material being moved (if all material is not moved), Health Physics number of the person receiving the material, account number to which material is being moved, and acceptance of the material by the receiver. A running inventory of all material is kept. At the end of the month the physical inventory will be compared to the data base and all discrepancies reported. Since a complete history of transactions has been kept, the source and cause for any discrepancies should be easily located. Discrepancies are held to a minimum since errors are detected before entrance into the data base. The system will also furnish all reports necessary to control SS Accountability. These reports may be requested at any time via an accountability master terminal

  19. Example of material accounting and verification of reprocessing input

    International Nuclear Information System (INIS)

    Koch, L.; Schoof, S.

    1981-01-01

    An example is described in this paper of material accounting at the reprocessing input point. Knowledge of the fuel history and chemical analyses of the spent fuel permitted concepts to be tested which have been developed for the determination of the input by the operator and for its verification by nuclear material safeguards with the intention of detecting a protracted as well as an abrupt diversion. Accuracies obtained for a material balance of a PWR fuel reprocessing campaign are given. 6 refs

  20. Methodologies for nuclear material accounting and control: challenges and expectations

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2007-01-01

    Nuclear Material Accounting and Control (NUMAC) represents one of the most important and indispensable responsibilities of any nuclear installation. The emphasis is to ensure that the nuclear material being handled in the nuclear installation is properly accounted for with the expected accuracy and confidence levels. A number of analytical methods based on both destructive and non-destructive assay techniques are available at the disposal of the nuclear analytical scientists for this purpose and they have been enumerated extensively in literature. Instead of recounting the analytical methodologies available, an attempt has been made in this paper to highlight some of the challenges. (author)

  1. Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both state actors and non-state actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material

  2. Examples of MC and A systems to meet prompt accountability specifications

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R F; Brouns, R J; Bryant, J L; Davenport, L C; Brite, D W; Kinnison, R R; Fager, J E; Williams, R C; Wilson, R L

    1983-01-01

    Proposed regulations for NRC licensees authorized to possess and process formula quantities of strategic special nuclear material (SSNM) would require each licensee to implement a material control and accounting (MC and A) system capable of prompt loss detection and alarm resolution. In support of the loss detection and alarm response activities an overcheck program would also be implemented. This program would include personnel qualification and training, quality control, inventory verification and shipper-receiver transaction verification. However, the frequeny of physical inventory verification would be about once per year rather than once every two months. In addition MC and A activities would include procedures for the prevention and detection of data falsification and other forms of deceit that might undermine the performance of the loss detection and response systems. This report provides examples of prompt accountability systems for four plants: mixed oxide fuel fabrication, uranium hexafluoride conversion, high enriched uranium fuel fabrication, and high enriched uranium scrap recovery. Purpose of this report is to provide guidance to the MC and A system designer and evaluator on how the proposed requirements might be met.

  3. Examples of MC and A systems to meet prompt accountability specifications

    International Nuclear Information System (INIS)

    Eggers, R.F.; Brouns, R.J.; Bryant, J.L.; Davenport, L.C.; Brite, D.W.; Kinnison, R.R.; Fager, J.E.; Williams, R.C.; Wilson, R.L.

    1983-01-01

    Proposed regulations for NRC licensees authorized to possess and process formula quantities of strategic special nuclear material (SSNM) would require each licensee to implement a material control and accounting (MC and A) system capable of prompt loss detection and alarm resolution. In support of the loss detection and alarm response activities an overcheck program would also be implemented. This program would include personnel qualification and training, quality control, inventory verification and shipper-receiver transaction verification. However, the frequeny of physical inventory verification would be about once per year rather than once every two months. In addition MC and A activities would include procedures for the prevention and detection of data falsification and other forms of deceit that might undermine the performance of the loss detection and response systems. This report provides examples of prompt accountability systems for four plants: mixed oxide fuel fabrication, uranium hexafluoride conversion, high enriched uranium fuel fabrication, and high enriched uranium scrap recovery. Purpose of this report is to provide guidance to the MC and A system designer and evaluator on how the proposed requirements might be met

  4. MAINTENANCE MANAGEMENT ACCOUNTING SYSTEM OF WASTE WATER DISPOSAL SYSTEMS

    Science.gov (United States)

    Hori, Michihiro; Tsuruta, Takashi; Kaito, Kiyoyuki; Kobayashi, Kiyoshi

    Sewage works facilities consist of various assets groups. And there are many kinds of financial resources. In order to optimize the maintenance plan, and to secure the stability and sustainability of sewage works management, it is necessary to carry out financial simulation based on the life-cycle cost analysis. Furthermore, it is important to develop management accounting system that is interlinked with the financial accounting system, because many sewage administration bodies have their financial accounting systems as public enterprises. In this paper, a management accounting system, which is designed to provide basic information for asset management of sewage works facilities, is presented. Also the applicability of the management accounting system presented in this paper is examined through financial simulations.

  5. Study of nuclear material accounting. Final report, July 1, 1976--April 1, 1977

    International Nuclear Information System (INIS)

    Siri, W.E.; Gozani, T.; Maly, J.

    1977-04-01

    The following topics are discussed: hierarchy of accountability measurements; survey of analytical methods; accuracies of analytical methods for material accountability; and vulnerability of accountability measurements

  6. Material control test and evaluation system at the ICPP

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1979-01-01

    The US DOE is evaluating process monitoring as part of a total nuclear material safeguards system. A monitoring system is being installed at the Idaho Chemical Processing Plant to test and evaluate material control and surveillance concepts in an operating nuclear fuel reprocessing plant. Process monitoring for nuclear material control complements conventional safeguards accountability and physical protection to assure adherence to approved safeguards procedures and verify containment of nuclear materials within the processing plant

  7. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  8. Can a safeguards accountancy system really detect an unauthorized removal

    International Nuclear Information System (INIS)

    Ehinger, M.H.; Ellis, J.H.

    1981-11-01

    Theoretical investigations and system studies indicate safeguards material balance data from reprocessing plants can be used to detect unauthorized removals. Plant systems have been modeled and simulated data used to demonstrate the techniques. But how sensitive are the techniques when used with actual plant data. What is the effect of safeguards applications on plant operability. Can safeguards be acceptable to plant operators, and are there any benefits to be derived. The Barnwell Nuclear Fuel Plant (BNFP) has been devoted to answering these and other questions over the past several years. A computerized system of near-real-time accounting and in-process inventory has been implemented and demonstrated during actual plant test runs. Measured inventories and hourly material balance closures have been made to assess safeguards in an operating plant application. The tests have culminated in actual removals of material from the operating plant to investigate the response and measure the sensitivity of the safeguards and data evaluation system

  9. New approach to safeguards accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.

    1977-03-01

    In recent years there has been widespread concern over the problem of nuclear safeguards. Due to the proliferation of nuclear reactors throughout the world, the concern about the loss or diversion of nuclear materials at various points in the fuel cycle has greatly increased. To minimize the possibility of material loss, the nuclear industry relies on physical protection systems and materials accountability procedures at licensed facilities. Present techniques of material accountability rely on double-entry accounting systems. For various reasons, only noisy observations of on-hand inventory are available. Hence one is forced to use statistical techniques in an attempt to detect the existence of missing material. Current practice is to use control charts as the basis for detecting significant material losses. Control charts may aid in detecting large material losses but are insensitive to small quantities of material loss, even if these small losses occur repeatedly over a long period of time. The purpose of this research is to show the feasibility of using linear state estimation theory in nuclear material accountability. The Kalman Filter is used as the state estimation technique. The state vector which consists of on-hand inventory and material losses is estimated recursively

  10. Technology development for nuclear material measurement and accountability

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Lee, Yong Duk; Choi, Hyung Nae; Nah, Won Woo; Park, Hoh Joon; Lee, Yung Kil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The measurement techniques for Pu samples and spent fuel assembly were developed in support of the implementation of national inspection responsibility under the Atomic Energy Act promulgated in 1994 and a computer program was also developed to assess the total nuclear material balance by facility declared records. The results of plutonium isotopic determination by gamma-ray spectrometry with high resolution germanium detector with peak analysis codes (FRAM and MGA codes) were approached to within 1% {approx} 2% of error from chemical analysis values by mass spectrometry. A gamma-ray measurement system for underwater spent nuclear fuels was developed and tested successfully. The falsification of facility and state records can be traced with the help of the developed computer code against declared reports submitted by the concerned state. This activity eventually resulted in finding the discrepancy of accountability records. 18 figs, 20 tabs, 27 refs. (Author).

  11. Technology development for nuclear material measurement and accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Lee, Yong Duk; Choi, Hyung Nae; Nah, Won Woo; Park, Hoh Joon; Lee, Yung Kil

    1994-12-01

    The measurement techniques for Pu samples and spent fuel assembly were developed in support of the implementation of national inspection responsibility under the Atomic Energy Act promulgated in 1994 and a computer program was also developed to assess the total nuclear material balance by facility declared records. The results of plutonium isotopic determination by gamma-ray spectrometry with high resolution germanium detector with peak analysis codes (FRAM and MGA codes) were approached to within 1% ∼ 2% of error from chemical analysis values by mass spectrometry. A gamma-ray measurement system for underwater spent nuclear fuels was developed and tested successfully. The falsification of facility and state records can be traced with the help of the developed computer code against declared reports submitted by the concerned state. This activity eventually resulted in finding the discrepancy of accountability records. 18 figs, 20 tabs, 27 refs. (Author)

  12. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method

    Science.gov (United States)

    Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto

    2018-02-01

    Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  13. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA Method

    Directory of Open Access Journals (Sweden)

    Siwi Dwi Astuti Rahayu

    2018-01-01

    Full Text Available Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry’s environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  14. Professional accounting media - accountants handing over control to the system

    DEFF Research Database (Denmark)

    Baldvinsdottir, Gudrun; Burns, John; Nørreklit, Hanne

    2010-01-01

    Purpose - The purpose of this paper is to explore the relationship between management accounting software and the management accountant, as (re)produced in adverts appearing in professional management accounting journals. The paper analyses how such adverts have shaped the management accountant...... and the social practice of management accounting; in particular, whether these adverts are producing an image of management accountants who are in control of their management accounting system or who are controlled by it. The paper also discusses whether these adverts reflect changes in broader social practices....... Design/methodology/approach - The paper analyses two software adverts that were published in Chartered Institute of Management Accountants' professional journal. It uses discourse analysis to understand both the image of management accountants and the nature of the management accounting software...

  15. Nuclear material accounting and control: Co-ordinating assistance to newly independent States

    International Nuclear Information System (INIS)

    Thorstensen, S.

    1995-01-01

    This article outlines work under way among the IAEA, its Member States, and the Newly Independent States (NIS) relating to the establishment and development in the NIS of State Systems of Accounting and Control (SSACs) of nuclear material. It describes IAEA activities in the NIS, including fact-finding missions at technical visits, the successful attempts to find donor States providing voluntary funding and expertise, and the co-ordination of technical support between the IAEA and the donor States. 3 tabs

  16. 1993 Annual report of the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC

    International Nuclear Information System (INIS)

    1994-01-01

    The 1993 annual report of the Brazilian Argentine Agency for Accounting and Control of Nuclear Materials, (ABACC), describes the activities regarding the administration and application of the Control and Accounting Common System (SCCC) established by the bilateral agreement between the Republic of Argentine and Federative Republic of Brazil for exclusive peaceful use of the nuclear energy. The main goal to verify practically all the installations which were not subjected to the international safeguards, before the agreement, was reached. Considering the safeguards application under implementation in both countries, the ABACC is preparing itself technically for the quadripartite agreement to be into force and signed among Argentine, Brazil, IAEA and ABACC. On checking the procedures established by the SCCC and controlled material, nothing was detected that could indicate nuclear material diversion either for nuclear weapon or for other explosive nuclear device. (B.C.A.)

  17. ABACC's nuclear accounting area

    International Nuclear Information System (INIS)

    Nicolas, Ruben O.

    2001-01-01

    The functions and activities of the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC) accounting area is outlined together with a detailed description of the nuclear accounting system used by the bilateral organization

  18. KrasMAS: Implementation of a nuclear material computerized accounting system at the Mining and Chemical Combine through the Russian/US cooperative MPC and A program

    International Nuclear Information System (INIS)

    Dorofeev, K.V.; Zhidkov, V.V.; Martinez, B.J.; Perry, R.T.; Scott, S.C.

    1998-01-01

    The Russian/US Mining and Chemical Combine (Gorno-Kimichesky Kombinat, GKhK, also referred to as Krasnoyarsk-26) Material Protection, Control and Accounting (MPC and A) project was initiated in June 1996. A critical component of the ongoing cooperative MPC and A enhancements at the GKhK is the implementation of a computerized nuclear material control and accountability (MC and A) system. This system must meet the MC and A requirements of the GKhK by integrating the information generated by numerous existing and new MC and A components in place at the GKhK (e.g., scales, bar-code equipment, NDA measurement systems). During the first phase of this effort, the GKhK adapted CoreMAS (developed at Los Alamos National Laboratory) for use in the PuO 2 storage facility. This included formulation of Web-based user interfaces for plant personnel, Russification of the existing user interface, and at the functional level, modification of the CoreMAS stored procedures. The modified system is referred to as KrasMAS and builds upon completed work on CoreMAS. Ongoing efforts include adding GKhK specific report forms and expanding the functionality of the system for implementation at the radiochemical processing and reactor plants of the GKhK. Collaborations with other Russian facilities for appropriate parts of these efforts will be pursued

  19. Assessment of the Accounting and Joint Accounting/Computer Information Systems Programs.

    Science.gov (United States)

    Appiah, John; Cernigliaro, James; Davis, Jeffrey; Gordon, Millicent; Richards, Yves; Santamaria, Fernando; Siegel, Annette; Lytle, Namy; Wharton, Patrick

    This document presents City University of New York LaGuardia Community College's Department of Accounting and Managerial Studies assessment of its accounting and joint accounting/computer information systems programs report, and includes the following items: (1) description of the mission and goals of the Department of Accounting and Managerial…

  20. Annual Report 2007 - ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2007-01-01

    This document reports activities during the year 2007 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; outlook for 2008 and; institutional, administrative and financial activities; technical glossary; list of brazilian facilities; list of argentine facilities and a list of institution of nuclear area

  1. Annual Reviews of User Accounting Controls for the Washington Headquarters Services Allotment Accounting System

    National Research Council Canada - National Science Library

    1996-01-01

    The purpose of annual accounting system reviews is to determine whether DoD accounting systems are in compliance with accounting principles, standards, and related accounting requirements established...

  2. Modern methods of material accounting for mixed-oxide fuel-fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Brouns, R.J.; Brite, D.W.; Pindak, J.L.

    1981-07-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MC and A) philosophy have been applied to a mixed-oxide fuel-fabrication plant to produce a detailed preliminary MC and A system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed-oxide fuel-fabrication plant study. Topics covered in this paper include: mixed-oxide fuel-fabrication process description, process disaggregation into MC and A system control units, quantitative results of analysis of control units for abrupt and recurring loss-detection capability, impact of short- and long-term holdup on loss-detection capability, response to alarms for abrupt loss, and response to alarms for recurring loss

  3. Taking in account the electromagnetic pulses in study of a material or system

    International Nuclear Information System (INIS)

    Jeannolle, J.

    1985-01-01

    High altitude nuclear bursts generate extremely short and large magnitude electromagnetic pulses (EMP). Electronic circuits which are commonly used nowadays are directly threatened by such an effect. This effect is so important that it has the characteristic to cover large areas, as large as a whole country. For an equipment or a system to stand against such an electromagnetic threat without being considerably disturbed, it is advised to take into account particular protections from the outset of the design phase and during the production phase, that is to say to ensure its hardening. Taking into account and ensuring the EMP protection of an equipment or a system, the Telecommunications Division (DTC) of Thomson-CSF has been devoting to for a number of years. The experience acquired through various studies and production work has allowed a thorough definition of the main steps required in an EMP hardening task: - hardening goal definition; - hardening study and design; - hardening carrying out; - design and production of EMP environment simulators; - hardening validation; - maintenance. This paper describes for each one of these steps: - which approach is undertaken; - which questions are raised; - which documents to constitute [fr

  4. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R.; Harrison, R. [UKAEA, Nuclear Materials Control Dep., Dounreay (United Kingdom)

    1997-07-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  5. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    International Nuclear Information System (INIS)

    Barrett, T.R.; Harrison, R.

    1997-01-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  6. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Science.gov (United States)

    2010-01-01

    ... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  7. 78 FR 71532 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Science.gov (United States)

    2013-11-29

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... material control and accounting (MC&A) of special nuclear material (SNM) and the proposed guidance... and how the NRC will review and inspect these plans. DATES: The public meeting will be held on...

  8. Experience of quality control for material accountancy analysis in Pu fuel facility

    International Nuclear Information System (INIS)

    Sumi, Mika; Satoh, Mitsuhiro; Ohnishi, Sumitaka; Suzuki, Toru

    2003-01-01

    Destructive analysis for material accountancy purpose should maintain higher precision referring the International Target Value (ITV). Quality control for the analysis is effective tool to maintain the analytical precision in routine analysis as well as to improve its performance. Since isotope dilution mass spectrometry for the determination of Plutonium and Uranium content and its isotopic composition has launched in the laboratory of Plutonium Fuel Center (PFC) of JNC, comprehensive quality control system has gradually growing up, which currently consists of bias detecting, random error monitoring and human error preventing system. Preventing analysis bias is the most important to maintain long-term performance of measurement. To make bias detecting capability robust, PFC is participating to several intercomparison programs regarding DA samples. Random error monitoring system is another important system to maintain high performance of each routine analysis operation, which composes functions to detect abnormal dispersion of each result and to confirm the state of health of operation of mass spectrometers by measurement of standard materials. To avoid human error during operation process, introduction of computer control system as much extent as possible is practical approach. In this paper, the comprehensive quality control system is introduced and the experiences gained so far are summarized for discussion. (author)

  9. Basis of plant accounting system

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    This presentation describes in an introductory manner the accountability design approach which is used for the Model Plant in order to meet US safeguards requirements. The general requirements for the US national system are first presented. Next, the approach taken to meet each general requirement is described. This presentation introduces the general concepts and principles of the accountability system

  10. Real time material accountability in a chemical reprocessing unit

    International Nuclear Information System (INIS)

    Morrison, G.W.; Blakeman, E.D.

    1979-01-01

    Real time material accountability for a pulse column in a chemical reprocessing plant has been investigated using a simple two state Kalman Filter. Operation of the pulse column was simulated by the SEPHIS-MOD4 code. Noisy measurements of the column inventory were obtained from two neutron detectors with various simulated counting errors. Various loss scenarios were simulated and analyzed by the Kalman Filter. In all cases considered the Kalman Filter was a superior estimator of material loss

  11. Accounting for Investement Property Under Romanian Accounting System

    Directory of Open Access Journals (Sweden)

    Sava Raluca

    2015-04-01

    Full Text Available Investment property, an important component of the current assets, need special attention both in terms of their impact on accounting and well as in reporting the annual financial statements. Internationally their accounting treatment is presented by the IAS 40 Investment property issued in 2000 and being operative for annual periods beginning on or after 1 January 2001 with a number of subsequent amendments.First step in aligning the Romanian accounting system (RAS to the international accounting and financial reporting standards has manifested in terms of properties starting with 2012 but only for the listed companies - OMFP 1286 which has brought significant changes in the execution way of the individual financial statements of these companies and in terms of the accounting presentation of the investment properties and fixed assets held for sale. In accordance with this order and the Romanian accounting rules recognize investment properties as being a separate component of the fixed assets, applying the provisions of IAS 40.This paper deals with the next step by presenting the occurred legislative changes related to the accounting treatment of the investment property, changes that are applicable to all the Romanian companies, not just those listed on the stock exchange, starting from the financial year 2015.

  12. Applications of bulk measurement techniques for the near-real-time accounting system at the BNFP

    International Nuclear Information System (INIS)

    Ellis, J.H.

    1981-11-01

    Nuclear materials accountancy at the Barnwell Nuclear Fuel Plant (BNFP) is based primarily on bulk measurement of aqueous solutions containing uranium, plutonium, and fission products. Since 1973, Allied-General Nuclear Services (AGNS) has been adapting volume measurement and measurement control techniques at the various key measurement points within the plant. Starting in 1977, AGNS has been incorporating these measurement activities into a computerized nuclear materials control and accounting system (CNMCAS). This paper presents the major features of the measurement systems and describes the results of plant-scale testing of the system using unirradiated natural uranium. The results of these tests indicate that total uncertainties of about 0.2% of throughput (2 sigma level) can be achieved for conventional accounting and about 2.0% of hold-up can be achieved for in-process inventory estimates. These results are based on measurement of almost 500 MTU of throughput over 130 operating days

  13. International safeguards: Accounting for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  14. International safeguards: Accounting for nuclear materials

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  15. Accounting Information Systems for Decision Making

    NARCIS (Netherlands)

    Mancini, D.; Vaassen, E.H.J.; Dameri, R.P.

    2013-01-01

    ​This book contains a collection of research papers on accounting information systems including their strategic role in decision processes, within and between companies. An accounting system is a complex system composed of a mix of strictly interrelated elements such as data, information, human

  16. Overview of IAEA guidelines for state systems of accounting for and control of nuclear materials: objectives, diversion of nuclear material, and the IAEA safeguards system

    International Nuclear Information System (INIS)

    Buechler, C.

    1984-01-01

    Topics discussed include IAEA safeguards statutes, project and transfer agreements, agreements pursuant to the Non-Proliferation Treaty, implementation of IAEA safeguards, diversion strategies, accountancy and surveillance systems, and verification

  17. Cost Accounting System for fusion studies

    International Nuclear Information System (INIS)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program

  18. Cost Accounting System for fusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  19. Computerization of nuclear material accounting and control at storage facilities of RT-1 plant, PA Mayak

    International Nuclear Information System (INIS)

    Krakhmal'nik, V.I.; Menshchikov, Yu.L.; Mozhaev, D.A.

    1999-01-01

    Computerized system for nuclear material (NM) accounting and control at RT-1 plant is being created on the basis of advanced engineering and programming tools, which give a possibility to ensure prompt access to the information required, to unify the accounting and report documentation, make statistical processing of the data, and trace the NM transfers in the chain of its storage at facilities of RT-1 plant. Currently, the accounting is performed in parallel, both by the old methods and with computerized system. The following functions are performed by the system at the current stage: input of data on the end product's (plutonium dioxide) quantitative and qualitative composition; data input on the localization of containers with finished products at storage facilities of the plant and the product's temporary characteristics; selective verification of the data on containers and batches, according to the criteria prespecified by the user; data protection against unauthorized access; data archiving; report documents formation and providing [ru

  20. Preliminary concepts for materials measurement and accounting in critical facilities

    International Nuclear Information System (INIS)

    Cobb, D.D.; Sapir, J.L.

    1978-01-01

    Preliminary concepts are presented for improved materials measurement and accounting in large critical facilities. These concepts will be developed as part of a study that will emphasize international safeguarding of critical facilities. The major safeguards problem is the timely verification of in-reactor inventory during periods of reactor operation. This will require a combination of measurement, statistical sampling, and data analysis techniques. Promising techniques include integral measurements of reactivity and other reactor parameters that are sensitive to the total fissile inventory, and nondestructive assay measurements of the fissile material in reactor fuel drawers and vault storage canisters coupled with statistical sampling plans tailored for the specific application. The effectiveness of proposed measurement and accounting strategies will be evaluated during the study

  1. Annual Report ABACC 2009 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2009-01-01

    This document reports the actives during the year 2009 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; institutional, administrative and financial activities; perspectives for 2010; list of inspectors; list of Brazilian and Argentine facilities subject to the Quadripartite Agreement

  2. Materiality Thresholds in Accounting and Auditing Some UK Evidence

    OpenAIRE

    Chong, Gin

    2000-01-01

    This paper reports the telephone interviews with 12 auditors (Big 5 and non Big 5) and 14 non auditors on the materiality thresholds adopted by them or by their organisations. Non auditors include from finance directors, banker, lawyer, internal auditors, an academic, and technical directors of the Accounting Standards Board (ASB) and the Auditing Practices Board (APB) in the UK. This is in respond to the issuance of Statement of Auditing Standards (SAS) 220 on ‘Materiality and the Audit= by t...

  3. SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING

    Directory of Open Access Journals (Sweden)

    A. V. Rаdkеvich

    2014-04-01

    Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

  4. Advanced training course on state systems of accounting for and control of nuclear materials. Volume II. Visual aids

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to train in the accounting and control of nuclear materials in a bulk processing facility, for international safeguards. The Exxon low enriched uranium fabrication plant is used as an example. This volume contains visual aids used for the presentation

  5. Achievements and questions in the accountability of nuclear materials and their verification for safeguards purposes

    International Nuclear Information System (INIS)

    Deron, S.

    1990-01-01

    A very accurate accountability of nuclear materials is required throughout the industrial nuclear fuel cycle for technical reasons and safety purposes but also for commercial, physical protection and safeguards objectives. The present note intends to illustrate with a few samples the performance presently achieved and the major questions which the analysts are facing in these areas. The examples taken concern the accountability of feed and product materials at LWR nuclear fuel fabrication plants and spent fuel reprocessing plants. They were selected because they constitute major components of the flow and inventory of the nuclear fuel materials at key measurement points in nuclear industry. The factors limiting the quality of the assays and accountability of these industrial materials and some observations regarding the need and use of reference materials and quality control programmes in support of accurate accounting are presented. 7 refs

  6. U.S. N.R.C. special safeguards study on nuclear material control and accounting

    International Nuclear Information System (INIS)

    Smith, G.D.

    1976-01-01

    In Feb. 1975, NRC directed that an effort be made to determine a safeguards program for Pu recycle. This paper summarizes results of individual contractor evaluations of upgrading material control and accounting concepts as applied to strategically important special nuclear material and describes staff interpretations of these results as applied to future high-throughput fuel-cycle facilities. Real-time material control, design for physical inventory, Pu isotopics control and calorimetry, and material control and accounting for highly enriched uranium fuel materials were the concepts studied. 1 table, 15 references

  7. INMACS - An approach to on-line nuclear materials accounting and control in a fuel fabrication environment

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.; Paul, R.N.

    1977-08-01

    Taking advantage of modern system technologies, the concept of an Integrated Nuclear Materials Accounting and Control System (INMACS) was formulated as an alternative solution to manual inventory procedures. The selected approach offers prospects for tackling the more general fissile materials inventory problem while satisfying the immediate requirements of the Fuel Fabrication Pilot Line at CRNL. A PDP-11/40 minicomputer system was purchased, and a Data Base Management System (DBMS) was designed and implemented to provide a uniform file handling capability. The specific requirements of the Pilot Line were met by a package of application programs. About 16 man-years have been spent on the project. INMACS has been installed in the field and its usefulness as an on-line inventory system will be demonstrated in the Pilot Line. (author)

  8. Supercapacitors materials, systems and applications

    CERN Document Server

    Lu, Max; Frackowiak, Elzbieta

    2013-01-01

    Written by an international group of leading experts from both academia and industry, this is the first comprehensive book on the topic for 10 years. Taking into account the commercial interest in these systems and the scientific and technological developments over the past decade, all important materials and systems are covered, with several chapters devoted to topics of direct industrial relevance.The book starts by providing an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. There

  9. THE NEED FOR MANAGERIAL ACCOUNTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Flavius-Andrei GUINEA

    2016-12-01

    Full Text Available The implementation of a managerial accounting system represents a genuine initiative for implementing change, this involving the need for change, a vision of change and strategy, and last, but not least, innovation stimulation. In the last decades, the implementation of such a system translated into a broader reform, including the management system used. A management control system, once implemented, tends to attract the manifestation of creative accounting phenomena, especially in times of crisis. Taking these into consideration, the article aims to highlight the importance of the implementation of a modern managerial accounting system in the Romanian firms, as well as to analyse the potential consequences of this process, from the author’s point of view.

  10. Interactive computer-based instruction: Basic material control and accounting demonstration

    International Nuclear Information System (INIS)

    Keisch, B.

    1993-01-01

    The use of interactive, computer-based training (CBT) courses can be a time- and resource-saving alternative to formal instruction in a classroom milieu. With CBT, students can proceed at their own pace, fit the study course into their schedule, and avoid the extra time and effort involved in travel and other special arrangements. The demonstration given here is an abbreviated, annotated version of a recently developed course in basic material control and accounting designed for the MC and A novice. The system used is ''Quest'' which includes multi-media capabilities, individual scoring, and built-in result-reporting capabilities for the course administrator. Efficient instruction and training are more important than ever because of the growing numbers of relatively inexperienced persons becoming active in safeguards

  11. Control system and nuclear materials inventory at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Araujo, Jose Adroaldo de; Enokihara, Cyro Teiti

    2002-01-01

    The history, requirements, organization, and operation of the State System of Accounting and Control from the Institute for Energetic and Nuclear Research (IPEN-CNEN/SP) are described. The implementation system at the institution take into consideration the national and international safeguards requirements. It has started by the nuclear material (U, Pu and Th) physical inventory taking, including their provenance and transformation. The earlier computerized accounting system used for control has been replaced by a new one developed by the National Authority (CNEN/CSG). The optimized system has more flexibility, giving a more effective answer to any occurred change on Material Balance Area. The present system make use of an effective methodology. (author)

  12. George Kuzmycz Training Center: 5 years of American-Ukrainian efforts in the field of material control and accounting

    International Nuclear Information System (INIS)

    Gavrilyuk, V.I.; Gavrylyuk, A.V.; Kirischuk, V.I.; Romanova, O.P.; Robinson, P.; Dickerson, S.; Kuzminski, J.; Sheppard, G.A.

    2004-01-01

    The George Kuzmycz Training Center for Physical Protection, Control and Accounting of Nuclear Material (GKTC) was established in October 1998 at the Kiev Institute for Nuclear Research. During the past six years, about 700 professionals from all Ukrainian nuclear installations, executive and regulatory bodies were trained at the GKTC. Future Material Control and Accounting (MC and A) training courses are going to be held even more frequently because Ukraine has already signed the Additional Model Protocol and its ratification by Ukrainian Parliament is expected to happen very soon. Additionally, a number of new training courses will be developed. US DOE trough Argonne National Laboratory has made significant efforts to transfer Automated Inventory/Material Accounting System (AIMAS) software to Ukraine. As a result, AIMAS software can be used as a basic code for the development of the Computerized MC and A System for all Ukrainian nuclear facilities despite their differences. In 2003, a new laboratory for Nondestructive Assay (NDA) was established with assistance from the U.S. Department of Energy. As a result, GKTC training capabilities will increase substantially. Furthermore, in order to increase the efficiency of NDA laboratory, it is planned to use the NDA equipment for a program of interdiction of illicit traffic of nuclear materials in Ukraine. American-Ukrainian MC and A efforts for the last 6 years, the problems encountered and the solutions to these problems, as well as comments, suggestions and recommendations for future activity at GKTC to promote and improve the nuclear material management culture in Ukraine are discussed in detail.

  13. Compare the Chinese and American Accounting Management System

    Institute of Scientific and Technical Information of China (English)

    刘晨

    2014-01-01

    Cultureplays an important role in the development of accounting. Dif erent culture environments foster dif erent accountants, andthen dif erent accounting subcultures, which wil have dif erent influence on the choice of accounting systems. Dif erent cultures in China and the United States influenced the two countries accounting system, which lead to dif erent management system.

  14. ABACC - Brazil-Argentina Agency for Accounting and Control of Nuclear Materials, a model of integration and transparence

    International Nuclear Information System (INIS)

    Oliveira, Antonio A.; Do Canto, Odilon Marcusso

    2013-01-01

    Argentina and Brazil began its activities in the nuclear area about the same time, in the 50 century past. The existence of an international nuclear nonproliferation treaty-TNP-seen by Brazil and Argentina as discriminatory and prejudicial to the interests of the countries without nuclear weapons, led to the need for a common system of control of nuclear material between the two countries to somehow provide assurances to the international community of the exclusively peaceful purpose of its nuclear programs. The creation of a common system, assured the establishment of uniform procedures to implement safeguards in Argentina and Brazil, so the same requirements and safeguards procedures took effect in both countries, and the operators of nuclear facilities began to follow the same rules of control of nuclear materials and subjected to the same type of verification and control. On July 18, 1991, the Bilateral Agreement for the Exclusively Peaceful Use of Nuclear Energy created a binational body, the Argentina-Brazil Agency for Accounting and Control of Nuclear Materials-ABACC-to implement the so-called Common System of Accounting and Control of Nuclear materials - SCCC. The deal provided, permanently, a clear commitment to use exclusively for peaceful purposes all material and nuclear facilities under the jurisdiction or control of the two countries. The Quadripartite Agreement, signed in December of that year, between the two countries, ABACC and IAEA completed the legal framework for the implementation of comprehensive safeguards system. The 'model ABACC' now represents a paradigmatic framework in the long process of economic, political, technological and cultural integration of the two countries. Argentina and Brazil were able to establish a guarantee system that is unique in the world today and that consolidated and matured over more than twenty years, has earned the respect of the international community

  15. Accrual-based accounting system versus cash-based accounting: An empirical study in municipality organization

    Directory of Open Access Journals (Sweden)

    Mahbobeh Arab

    2013-01-01

    Full Text Available There are many cases, where we may wish to choose a good accounting system and would like to learn how they work and the advantages and disadvantages of each so we can choose the better one for a business. In this paper, we present an empirical survey to understand whether we can choose accrual or cash accounting system. The proposed study designs a questionnaire among 220 experts in area of accounting affairs. The survey considers four sub hypotheses and one main hypothesis to see whether there are reliable rules and regulations in accrual-based accounting compared with cash accounting or not. Similarly, the survey investigates whether accrual-based accounting is more informative, comprehensive and provides better comparative results compared with cash accounting. The results indicate that accrual-based account performs better in terms of all mentioned criteria and it is a better method for managing accounting affairs compared with cash accounting systems.

  16. USE OF STATISTICAL METHODS IN DETECTING ACCOUNTING ENGINEERING ACTIVITIES (AS EXEMPLIFIED BY THE ACCOUNTING SYSTEM IN POLAND – FIRST PART: THEOTHEORETICAL

    Directory of Open Access Journals (Sweden)

    Leszek Michalczyk

    2013-05-01

    Full Text Available This article is one in a series of two publications concerning companies’ detection of accounting engineering operations in use. Its conclusions and methods may be applied to external auditing procedures. The aim of the present duo-article is to define a method of statistical analysis that could identify procedures falling within the scope of a framework herein defined as accounting engineering. This model for analysis is meant to be employed in these aspects of initial financial and accounting audit in a business enterprise that have to do with isolating the influence of variant accounting solutions, which are a consequence of the settlement method chosen by the enterprise. Materials for statistical analysis were divided into groups according to the field in which a given company operated. In this article, we accept and elaborate on the premise that significant differences in financial results may be solely a result of either expansive policy on new markets or the acquisition of cheaper sources for operating activities. In the remaining cases, the choice of valuation and settlement methods becomes crucial; the greater the deviations, the more essential this choice becomes. Even though the research materials we analyze are regionally-conditioned, the model may find its application in other accounting systems in the country, provided that it has been appropriately implemented. Furthermore, the article defines an innovative concept of variant accounting.

  17. 7 CFR 1767.12 - Accounting system requirements.

    Science.gov (United States)

    2010-01-01

    ... Borrowers, herein, which prescribes accounting principles to be applied to specific factual circumstances... 7 Agriculture 12 2010-01-01 2010-01-01 false Accounting system requirements. 1767.12 Section 1767..., DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of...

  18. Material control and accounting at Exxon Nuclear, II

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    In this session the measurements and the associated measurement control program used at the Model Plant are described. The procedures for evaluating MUF and sigma MUF are also discussed. The use of material composition codes and their role in IAEA safeguards under the US/IAEA Safeguards Agreement are described. In addition, the various accounting forms used at the plant are described and the use of tamper-indicating seals is discussed

  19. Implementation of the INSPECT software package for statistical calculation in nuclear material accountability

    International Nuclear Information System (INIS)

    Marzo, M.A.S.

    1986-01-01

    The INSPECT software package was developed in the Pacific Northwest Laboratory for statistical calculations in nuclear material accountability. The programs apply the inspection and evaluation methodology described in Part of the Safeguards Technical Manual. In this paper the implementation of INSPECT at the Safeguards Division of CNEN, and the main characteristics of INSPECT are described. The potential applications of INSPECT to the nuclear material accountability is presented. (Author) [pt

  20. Straight-Line: A nuclear material storage information management system

    International Nuclear Information System (INIS)

    Nilsen, C.; Mangan, D.

    1995-01-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia's Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project

  1. Straight-Line: A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Mangan, D.

    1995-07-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  2. ReflectoActive(trademark) Seals for Materials Control and Accountability

    International Nuclear Information System (INIS)

    Richardson, G.D.; Younkin, J.R.; Bell, Z.W.

    2002-01-01

    The ReflectoActive(trademark) Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive(trademark) Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented

  3. An Internet-Based Accounting Information Systems Project

    Science.gov (United States)

    Miller, Louise

    2012-01-01

    This paper describes a student project assignment used in an accounting information systems course. We are now truly immersed in the internet age, and while many required accounting information systems courses and textbooks introduce database design, accounting software development, cloud computing, and internet security, projects involving the…

  4. US/Russian laboratory-to-laboratory program in materials protection, control and accounting at the RRC Kurchatov Institute

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.; Roumiansev, A.; Shmelev, V.

    1996-01-01

    Six US DOE Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute (RRC KI) to improve the capabilities and facilities in nuclear material protection, control, and accounting (MPC ampersand A). In 1995, the primary emphasis of this program was the implementation of improved physical protection at a demonstration building at RRC KI, and the upgrading of the computerized MC ampersand A system, diagnostic instrumentation, and physical inventory procedures at a critical assembly within this building. Work continues in 1996 at the demonstration building but now also has begun at the two Kurchatov buildings which constitute the Central Storage Facility (CSF). At this facility, there will be upgrades in the physical inventory taking procedures, a test and evaluation of gamma-ray isotopic measurements, evaluations of nuclear material portal monitors and neutron-based measurement equipment as well as development of an improved computerized materials accounting system, implementation of bar code printing and reading equipment, development of tamper indicating device program, and substantial improvements in physical protection. Also, vulnerability assessments begun in 1995 are being extended to additional high priority facilities at Kurchatov

  5. Annual report - ABACC (accounting and nuclear materials control Brazil-Argentina agency) - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The annual activities report of 1998 of accounting and nuclear materials control Brazil-Argentina agency introduces the next main topics: institutional activities - safeguards agreements implementation and administration; technical activities - planning and evaluation, operation, technical support, information accounting and treatment, technical cooperation, technical capacity invigoration; administrative and financial activities

  6. Accounting control and organizational behaviour

    CERN Document Server

    Otley, David

    1987-01-01

    This book goes beyond the material usually included in traditional management accounting texts and provides both managers and management accountants with a simple guide to the major issues involved in developing and using accounting systems for management control. Attention is focused particularly on budgetary control systems because these form the basis for management control in most organisation of any size.

  7. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Science.gov (United States)

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... and is applicable to the Paducah GDP and other uranium enrichment facilities that have been licensed...

  8. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels

    International Nuclear Information System (INIS)

    Wolf, S. F.

    1999-01-01

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns

  9. Computerized accountability program is operating - DYMCAS

    International Nuclear Information System (INIS)

    Combs, S.W.; Mee, W.T.

    1983-01-01

    The nuclear materials control and accountability program in the Oak Ridge Y-12 Plant has been placed on a computerized system identified as DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). The primary gola of the DYMCAS is to assist in detecting the diversion of special nuclear material (SNM). Secondly, the system is expected to assure quality inventory reconciliations both under normal and emergency situations. The system has been installed and was placed on active status in April 1982. Since that time numerous problems have surfaced and been resolved; i.e., delays of input, hardware breakdown, and misunderstandings of needs. An explanation of these problems, including examples and alterations that have made the system workable, are presented

  10. Integrating Systems into Accounting Instruction.

    Science.gov (United States)

    Heatherington, Ralph

    1980-01-01

    By incorporating a discussion of systems into the beginning accounting class, students will have a more accurate picture of business and the role accounting plays in it. Students should understand the purpose of forms, have a basic knowledge of flowcharting principles and symbols, and know how source documents are created. (CT)

  11. Annual report 2000. ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2000-01-01

    This document reports the general activities of the ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2000, covering safeguards, accounting and control of nuclear materials

  12. Systems work for Plutonium Fuel Production Facility (PFPF) near-real-time accounting

    International Nuclear Information System (INIS)

    Picard, R.R.; Hafer, J.F.; Pillay, K.K.S.; Takahashi, S.; Ohtani, T.; Eguchi, K.; Seya, M.

    1990-01-01

    A joint effort by the Los Alamos National Laboratory and the Power Reactor and Nuclear Fuel Development Corporation of Japan examines materials accounting for the Plutonium Fuel Production Facility. A unique feature of the systems work is a sophisticated data generator. This software follows individual items throughout the process, creating detailed data files for variance propagation. The data generator deals with user-specified process operations and handles related accounting problems, such as the tracking of individual measurements through numerous blending and splitting procedure, frequent decay correction (important for large inventories), scrap recovery, and automated determination of static inventory. There is no need to rely on simplified assumptions regarding process operation and material measurement. Also, the joint study applies recent theoretical work on stratified inspection of nonhomogeneous inventories and sequential analysis of MUF -- D. 4 refs

  13. The IAEA concept of detection of diversion through nuclear material accountancy (2)

    International Nuclear Information System (INIS)

    Akiba, Mitsunori

    2005-01-01

    Diversion into D (falsification of accounting report) and diversion into MUF could be detected by the Inspectorate through nuclear material accountancy. The Inspectorate designs inspection activities to detect diversion into D in cost effective ways. As a result, detection of diversion into D is divided into two statistics, one is item difference statistics which could detect major defects and the other is material balance statistics which could detect remaining small defects. MUF statistics could detect Diversion into MUF. Item statistics has many useful characteristics from safeguards view points, so it is examined in details. Material balance statistics and MUF statistics stem from measurement error associated with equipment inevitably. The above-mentioned concept is called 'IAEA decision structure'. Hereafter, designing safeguards (inspection activities) approach will be based on the IAEA decision structure. (author)

  14. Material Protection, Control, and Accountancy (MPC and A) Sustainability

    International Nuclear Information System (INIS)

    Baumann, Mark; Farmer, James; Haase, Michael; Mann, Greg; Soo Hoo, Mark; Toth, William

    1999-01-01

    To date, the Department of Energy's (DOE) Material Protection, Control, and Accountancy (MPC and A) program has assisted in the implementation of operational site-wide MPC and A systems at several nuclear facilities in Russia. Eleven sites from the civilian sector have completed the site-wide installations and two have completed sub-site installations. By the end of 1999, several additional sites will have completed site-wide and sub-site system installations through DOE assistance. the effort at the completed sites has focused primarily on the design, integration, and installation of upgraded MPC and A systems. In most cases, little work has been performed to ensure that the installed systems will be sustained. Because of concerns that the installed systems would not be operated in the future, DOE established a sustainability pilot program involving the 11 sites. The purpose of DOE's MPC and A Sustainability Program is to ensure that MPC and A upgrades installed at sites in Russia are effective and will continue to operate over the long term. The program mission is to work with sites where rapid upgrades have been completed to cultivate enduring and consistent MPC and A practices. The program attempts to assist the Russian sites to develop MPC and A organizations that will operate, maintain, and continue to improve the systems and procedures. Future assistance will strive to understand and incorporate culturally sensitive approaches so that the sites take ownership for all MPC and A matters. This paper describes the efforts of the sustainability program to date

  15. Energy accounting and optimization for mobile systems

    Science.gov (United States)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can

  16. Methods for cost-benefit-risk analysis of material-accounting upgrades

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Gordon, D.M.; Higinbotham, W.; Keisch, B.

    1988-01-01

    The authors have developed a cost-benefit-risk methodology for evaluating material-accounting upgrades at key measurement points in nuclear facilities. The focus of this methodology is on nuclear-material measurements and their effects on inventory differences and shipper/receiver differences. The methodology has three main components: cost, benefits, and risk factors. The fundamental outcome of the methodology is therefore cost-benefit ratios characterizing the proposed upgrades, with the risk factors applied as necessary to the benefits. Examples illustrate the methodology's use

  17. Modelling of functional systems of managerial accounting

    Directory of Open Access Journals (Sweden)

    O.V. Fomina

    2017-12-01

    Full Text Available The modern stage of managerial accounting development takes place under the powerful influence of managerial innovations. The article aimed at the development of integrational model of budgeting and the system of balanced indices in the system of managerial accounting that will contribute the increasing of relevance for making managerial decisions by managers of different levels management. As a result of the study the author proposed the highly pragmatical integration model of budgeting and system of the balanced indices in the system of managerial accounting, which is realized by the development of the system of gathering, consolidation, analysis, and interpretation of financial and nonfinancial information, contributes the increasing of relevance for making managerial decisions on the base of coordination and effective and purpose orientation both strategical and operative resources of an enterprise. The effective integrational process of the system components makes it possible to distribute limited resources rationally taking into account prospective purposes and strategic initiatives, to carry

  18. Straight-Line -- A nuclear material storage information management system

    International Nuclear Information System (INIS)

    Nilsen, C.; Mangan, D.

    1995-01-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia's Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project

  19. Straight-Line -- A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C. [Sandia National Labs., Livermore, CA (United States); Mangan, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  20. Considerations on Accounting Intelligent Systems Importance

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Managers begin to realize the importance of artificial intelligence technologies for their organizations. Knowledge is today seen as the main organizational resource and that is what intelligent systems are about: manipulating knowledge. In this paper we highlight the main reasons that an accountant can bring to his managers to emphasize this idea: intelligent systems are really needful in modern accounting.

  1. Advanced accounting techniques in automated fuel fabrication facilities

    International Nuclear Information System (INIS)

    Carlson, R.L.; DeMerschman, A.W.; Engel, D.W.

    1977-01-01

    The accountability system being designed for automated fuel fabrication facilities will provide real-time information on all Special Nuclear Material (SNM) located in the facility. It will utilize a distributed network of microprocessors and minicomputers to monitor material movement and obtain nuclear materials measurements directly from remote, in-line Nondestructive Assay instrumentation. As SNM crosses an accounting boundary, the accountability computer will update the master files and generate audit trail records. Mass balance accounting techniques will be used around each unit process step, while item control will be used to account for encapsulated material, and SNM in transit

  2. 34 CFR 200.12 - Single State accountability system.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Single State accountability system. 200.12 Section 200... Improving Basic Programs Operated by Local Educational Agencies State Accountability System § 200.12 Single State accountability system. (a)(1) Each State must demonstrate in its State plan that the State has...

  3. Consistency between Overall and Account-level Materiality Measures: An Inter-Industry Comparison and an Analysis of the Correlation with the Financial Ratios System

    OpenAIRE

    N. Pecchiari; G. Pogliani

    2006-01-01

    This study analyses the consistency between overall and account-level materiality measures. The study starts emphasizing the need for further research on planning materiality, considering that prior studies have shown large differences in materiality methods. A review of literature on materiality [Messier et al. (2005)] suggests continuing inter-industry investigations on planning materiality [Wheeler and Pany (1989)]. We have also noticed the absence of research in the area of connection bet...

  4. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  5. Near-real-time materials accountancy in an international perspective or will the real near-real-time materials accountancy please stand up

    International Nuclear Information System (INIS)

    Lovett, J.E.

    1981-01-01

    During the 1970's the IAEA gave considerable attention to the question of what its quantitative goals should be. These discussions led, in January 1980, to a set of provisional guidelines which considered both abrupt and protracted diversion possibilities. In a search for an effective means of achieving these goals at large bulk processing facilities, two technological concepts have been put forward. One concept, commonly referred to as near-real-time materials accountancy, is reviewed in this paper. 9 refs

  6. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants; Trudy trekhstoronnego seminara Uchet i kontrol' yadernykh materialov na radiokhimicheskikh ustanovkakh

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques.

  7. Comparative Analysis on Two Accounting Systems of Rural Economic Originations

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to normalize the financial account of two kinds of economic organizations,the comparative analysis is conducted on the Accounting System of Village Collective Economic Organization and Accounting System of Farmers’ Cooperatives(Trial) issued by the Ministry of Finance.The comparison points out that application and accounting principles of the two kinds of accounting systems are different.The differences and similarities of the five accounting elements are analyzed including property,liabilities,rights of owners,costs and profits and losses,as well as the reasons of the differences and similarities.Results show that both of the two accounting systems reflect the principles of simplification and clarification.The village collective accounting system works in rural village committee,which acts the administrative duties,the features of concerted benefits of it is showed.While the accounting system of farmers’ cooperatives is based on the village collective accounting system and combines the norms of accounting system of enterprises,so the system represents the demands of collaboration and profit-making.

  8. REVIEW OF EQUIPMENT USED IN RUSSIAN PRACTICE FOR ACCOUNTING MEASUREMENTS OF NUCLEAR MATERIALS

    International Nuclear Information System (INIS)

    NEYMOTIN, L.

    1999-01-01

    The objective of this work was to analyze instrumentation and methodologies used at Russian nuclear facilities for measurement of item nuclear materials, materials in bulk form, and waste streams; specify possibilities for the application of accounting measurements; and develop recommendations for improvement. The major steps and results: Representative conversion, enrichment (gas centrifuge), fuel fabrication, spent fuel reprocessing, and chemical-metallurgical production facilities in Russia were selected; Full lists of nuclear materials were prepared; Information about measurement methods and instrumentation for each type of nuclear material were gathered; and Recommendations on methodological and instrumentation support of accounting measurements for all types of materials were formulated. The analysis showed that the existing measurement methods and instrumentation serve mostly to support the technological process control and nuclear and radiation safety control. Requirements for these applications are lower than requirements for MC and A applications. To improve the state of MC and A at Russian nuclear facilities, significant changes in instrumentation support will be required, specifically in weighing equipment, volume measurements, and destructive and non-destructive analysis equipment, along with certified reference materials

  9. The role of sophisticated accounting system in strategy management

    OpenAIRE

    Naranjo Gil, David

    2004-01-01

    Organizations are designing more sophisticated accounting information systems to meet the strategic goals and enhance their performance. This study examines the effect of accounting information system design on the performance of organizations pursuing different strategic priorities. The alignment between sophisticated accounting information systems and organizational strategy is analyzed. The enabling effect of the accounting information system on performance is also examined. Relationships ...

  10. The position of IAEA safeguards relative to nuclear material control accountancy by states

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  11. The position of IAEA safeguards relative to nuclear material control accountancy by States

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  12. The Reform of Management System of Accountants in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The common existing problems of the false processing of accounting information in China and the solution--the appointment system of accountants are analyzed in this paper, it is proposed that the reform of management systems of accountants--the appointment system of accountants should be applied temporally in particular conditions.

  13. Nuclear materials control and accountability (NMC and A) auditors in the 90's

    International Nuclear Information System (INIS)

    Barham, M.A.; Abbott, R.R.

    1991-01-01

    The increase in emphasis on the adequacy of the NMC and A internal control systems requires that management define what type of training and experience is needed by NMC and A Internal Audit Program. At Martin Marietta Energy Systems, inc. (the prime contractor for the Department of Energy at Oak Ridge, Tenn.), the Central NMC and A Manager has developed a comprehensive set of NMC and A Internal Audit policies that defines performance standards, methods of conducting audits, mechanisms for ensuring appropriate independence for NMC and A auditors, structure for standardized audit reports and working papers, and a section that addresses the development of training plans for individual NMC and A auditors. The training requirements reflect the unique combination of skills necessary to be an effective NMC and A Internal Auditor- a combination of the operational auditing skills of a Certified Internal Auditor, the accounting auditing capabilities of a Certified Public Accountant, and the specific technical knowledge base associated with nuclear materials. This paper presents a mechanism for identifying an individual training program for NMC and A auditors that considers the above requirements and the individual's long-range career goals

  14. Toward an Evolutive and Tightly Integrated Information System for Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    Dessoude, O. [Euriware (Areva Group), 25 avenue de Tourville, Equeurdreville, 50100 (France)

    2009-06-15

    From a nuclear materials management standpoint, spent-fuel recycling is considered a very challenging activity. This challenge has its positive counterpart as a lot has been learned from confronting a large variety of nuclear materials, complex material transfers and transformations. Since the inception of its computerized nuclear materials management system, AREVA NC La Hague has relied upon its IT subsidiary EURIWARE for software design and development. In 2003, the founding milestone was the implementation of the new GMP software package (Gestion des Matieres et des Produits - Materials and Products Management). GMP was underpinned by the following principles: reliability, transparency and close integration with the process control layer, so as to mitigate human errors and keep the management process smooth and efficient. In 2005, another major milestone was reached with CMNR (Comptabilite des Matieres Nucleaires Reglementaire - Regulatory Nuclear Materials Accountancy), a system in charge of local accounting and multi-site consolidation at corporate level. In spite of an auspicious start, GMP came up against the same stumbling block as many information systems: the multiplication of interfaces and technologies (entropy increasing over time). For the sake of maintenance, evolutions and performance, AREVA has decided a progressive modernization of its Nuclear Materials Management (NMM) information system. The underlying principle is a clear separation between the main functions: - Physical Follow-up, performed at the plant-level, - Regulatory Accountancy (for IRSN, EURATOM and IAEA safeguards), offering consolidation at the corporate level, - Patrimonial Accountancy (allocation of materials and conditioned wastes to AREVA's customers). The pivotal piece of this multi-year programme is the implementation of a dedicated data repository. We describe its main building blocks and demonstrate how it helps in managing changes to regulation, products, customers and

  15. ACCOUNTING INFORMATION SYSTEM - QUALITATIVE CHARACTERISTICS AND THE IMPORTANCE OF ACCOUNTING INFORMATION AT TRADE ENTITIES

    Directory of Open Access Journals (Sweden)

    CARAIMAN ADRIAN-COSMIN

    2015-03-01

    Full Text Available Financial and accounting information systems, today, no longer are the traditional ones, they are subject to the normalisation and harmonisation, in the idea of globalization, and as a natural consequence of this situation, the users of accounting information require more and more diverse information from these systems. The economic entities in general, and those in the trade, in particular, performance management, management of the current situation, with multiple phenomena of crisis, require substantiation of decisions on the basis of a system of real information, pertinent, relevant and provided in a timely manner (Radu, 2011 [7]. Apart from users and goals of information provided by entities of the accounting information system of trade entities, they must have certain qualitative characteristics that facilitate the process of interpretation and use of accounting information. At the same time they are needed because their accounting information through its better goal, to represent the support base for the elaboration of certain decisions by those interested. In this article I propose to introduce qualitative characteristics of accounting information provided by IASB (International Accounting Standards Board, which, incidentally, have been taken up initially by the Romanian accounting regulations, with their subsequent amendments and additions, so far, because, in the end, as a conclusion, I consider that I should be noted that these qualities cannot be effective unlessin turn, the users themselves have the quality to have the knowledge required to understand the information that is intended for them.

  16. The account system for students school‘s attendance

    OpenAIRE

    Birgėlienė, Raminta

    2007-01-01

    SUMMARY The account system for students school‘s attendance The purpose of the created students school‘s attendance account system is to assist teachers in registering, observing and making reports on students school‘s attendance. This work presents the of secondary school students���result attendance account transferred to the informatics system. The system includes the analysis, separable processes, adjustable structured analysis and projections‘methods, which allow dealing with a real prob...

  17. Development and realization of the new state system of account and control of RAM and RAW

    International Nuclear Information System (INIS)

    Gubanov, V.; Shilko, V.; Syssoev, M.; Ershov, V.; Yanovskaya, N.

    1998-01-01

    In the article the principles of organization, organizational structure and main functions of the automated system of the state account and control of radioactive material (RAM) and waste (RAW), which is developed now in Russia, are presented. On the base of analysis the existing ( >) system the acute necessity in automation of processes of an account and control DA and DAI, based on use of modern information technologies is shown. There are presented a structure and content of normative - legal, program and information parts of the system and milestones of designing it. (author)

  18. Use of process monitoring data to enhance material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Smith, B.W.

    1980-01-01

    A study was conducted for the Nuclear Regulatory Commission as part of a continuing program to estimate the effectiveness of using process monitoring data to enhance special nuclear material accounting in nuclear facilities. Two licensed fuel fabrication facilities with internal scrap recovery processes were examined. The loss detection sensitivity, timeliness, and localization capabilities of the process monitoring technique were evaluated for single and multiple (trickle) losses. 4 refs

  19. Exploring Determinant Factors of Differences Between Governmental Accounting And National Accounts Budgetary Balances in EU Member States

    Directory of Open Access Journals (Sweden)

    Susana Margarida JORGE

    2014-12-01

    Full Text Available Framed by the earnings management ap-proach, this paper addresses the relationship be-tween budgetary balances according to Govern-mental Accounting (GA and National Accounts (NA, exploring factors that may explain both the materiality and diversity of the adjustments required when translating data from one into the other. Using data from Excessive Defcits Proce-dure reporting for all EU member states from 2007 to 2010, the analysis confrms that GA-NA adjustments refect conceptual differences be-tween the two systems, namely concerning rec-ognition criteria. Regarding potential factors ex-plaining adjustments, while none of the economic policy variables considered was found relevant in explaining either diversity or materiality, all tech-nical accounting variables analyzed explained materiality, although only GA accounting basis explained diversity.The research shows that changing GA re-porting basis into accruals reduces adjustments’ materiality and diversity. Therefore, in order to improve the quality of Government Finance Statistics (GFS, it is highly recommendable to achieve a GA system harmonized across Eu-rope, such as IPSASs or EPSASs, allowing only very few options and imposing the accrual basis in both budgetary and fnancial systems. Also relevant is the need to strengthen the role of con-trol and auditing in the GA reporting process (by Supreme Audit Institutions and external private frms, in order to avoid accounting discretion.

  20. A computerized accountability program is operating - DYMCAS

    International Nuclear Information System (INIS)

    Combs, S.W.; Mee, W.T.

    1983-01-01

    The nuclear materials control and accountability program in the Oak Ridge Y-12 Plant has been placed on a computerized system identified as DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). The primary goal of the DYMCAS is to assist in detecting the diversion of special nuclear material (SNM). Secondly, the system is expected to assure quality inventory reconciliations both under normal and emergency situations. The system has been installed and was placed on active status in April 1982. Since that time numerous problems have surfaced and been resolved; i.e., delays of input, hardware breakdown, and misunderstandings of needs. An explanation of these problems, including examples and alterations that have made the system workable, are presented

  1. Annual report 2004 of ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2004-01-01

    This document reports the general activities of the ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2004, covering safeguards, accounting and control of nuclear materials

  2. Robust topology optimization accounting for misplacement of material

    DEFF Research Database (Denmark)

    Jansen, Miche; Lombaert, Geert; Diehl, Moritz

    2013-01-01

    into account this type of geometric imperfections. A density filter based approach is followed, and translations of material are obtained by adding a small perturbation to the center of the filter kernel. The spatial variation of the geometric imperfections is modeled by means of a vector valued random field....... A sampling method is used to estimate these statistics during the optimization process. The proposed method is successfully applied to three example problems: the minimum compliance design of a slender column-like structure and a cantilever beam and a compliant mechanism design. An extensive Monte Carlo...

  3. ABACC: annual report 2012 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the actives during the year 2012 related to: technical activities as safeguards application and advances in application of safeguards; main activities conducted in Brazil and main activities developed at ABACC headquarters; management of the Quadripartite Agreement and of the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; institutional, administrative and financial activities; perspectives for 2013; list of inspectors; list of Brazilian and Argentine facilities subject to the Quadripartite Agreement

  4. Tritium accountancy

    International Nuclear Information System (INIS)

    Avenhaus, R.; Spannagel, G.

    1995-01-01

    Conventional accountancy means that for a given material balance area and a given interval of time the tritium balance is established so that at the end of that interval of time the book inventory is compared with the measured inventory. In this way, an optimal effectiveness of accountancy is achieved. However, there are still further objectives of accountancy, namely the timely detection of anomalies as well as the localization of anomalies in a major system. It can be shown that each of these objectives can be optimized only at the expense of the others. Recently, Near-Real-Time Accountancy procedures have been studied; their methodological background as well as their merits will be discussed. (orig.)

  5. The importance of managerial accounting in managerial accounting system

    OpenAIRE

    Dragan Cristian

    2014-01-01

    In order to determine the role of Managerial Accounting in a company’s information system we must start with a systematic approach. According to systematic approach, this system is a structure that produces: - transformation; - self-adjusting; - synergy (the principle of totality). Therefore, considering the above, the total is higher than the sum of the component parts, when we are referring to plus- value creation.

  6. THE EVOLUTION OF ACCOUNTING INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Andreea C. BENDOVSCHI

    2015-04-01

    Full Text Available Technological evolution becomes more and more a daily reality for businesses and individuals who use information systems as for supporting their operational activities. This article focuses on the way technological evolution changes the accounting practices, starting from the analysis of the traditional model and trying to determine future trends and arising challenges to face. From data input to consolidation and reporting, accountants’ function and operations are dissected in order to identify to what extent the development of new concepts, such as cloud computing, cloud accounting, real-time accounting or mobile accounting may affect the financial-accounting process, as well as the challenges that arise from the changing environment.

  7. Struggle against violations of the rules for radioactive materials storage, utilization, accounting and transport

    International Nuclear Information System (INIS)

    Iojrysh, A.I.

    1986-01-01

    Criminal punishments for violation of the rules of radioactive materials accounting, storage, utilization and transport or those for illegimate sending of these materials presupposed by the RSFSR criminal code are considered

  8. Optimal measurement uncertainties for materials accounting in a fast breeder reactor spent-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Dayem, H.A.; Kern, E.A.; Markin, J.T.

    1982-01-01

    Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%

  9. Study of nuclear material accounting. Final report, July 1, 1976--April 1, 1977

    International Nuclear Information System (INIS)

    Siri, W.E.; Ruderman, H.; Winsen, J.; Dresher, M.

    1977-04-01

    The basic result of this study was to affirm the utility of material accounting as a tool for safeguards purposes. Periodic inventories and proper interpretation of material unaccounted for (MUF) can be an effective procedure for estimating diversion and taking necessary follow-on action. We have developed a new approach in this study based upon the theory of games that eliminates many of the deficiencies of the classical statistical hypothesis testing approach. This new approach explicitly considers a malevolent Diverter as a basic ingredient of the analysis. This permits a different and more effective interpretation of MUF for safeguards purposes. At the present time MUF interpretation for major nuclear facilities cannot adequately support statements about diversion. Consequently NRC does not rely solely on MUF analysis for such statements. Diversion statements now are primarily based upon other safeguards systems and information. However, the game theoretic approach can make the periodic inventory-MUF concept work better for safeguards. With its use, MUF data by itself can be useful in directly interpreting possible unauthorized diversion of special nuclear material

  10. Characteristics of Company Accounting Information System

    Directory of Open Access Journals (Sweden)

    Marija Tokić

    2011-12-01

    Full Text Available Information has always presented an important factor of human activity. As a resource that guided human activity, information was gathered, stored, analysed and distributed in different ways throughout the history. Today, information system is a necessity in the global business system. Globalisation processes have changed the traditional concept of doing business and brought about the need for information management as an integral part of overall company assets and rapid development of information and communication technology. Regardless of the benefits and advantages that may be offered by the systems, companies do business to earn profit. In this sense information systems should be considered as investment. Although investment costs can be determined relatively precisely, benefits offered by the systems are more difficult to measure and they require comprehensive consideration of all aspects of doing business to which the systems refer. Accounting is an information subsystem of the single information system of a company. Its purpose is to provide comprehensive, systematic and permanent presentation of data and information, based on documents that refer to all elements contained in business subsystems and the business system of the company as a whole. Information resulting from accounting and information system is contained in accounting reports, i.e. calculations, estimates and analyses within which it is presented to the management.

  11. 14 CFR Sec. 1-4 - System of accounts coding.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false System of accounts coding. Sec. 1-4 Section... General Accounting Provisions Sec. 1-4 System of accounts coding. (a) A four digit control number is assigned for each balance sheet and profit and loss account. Each balance sheet account is numbered...

  12. USE OF STATISTICAL METHODS IN DETECTING ACCOUNTING ENGINEERING ACTIVITIES (AS EXEMPLIFIED BY THE ACCOUNTING SYSTEM IN POLAND – SECOND PART: EMPIRICAL ASPECTS OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Leszek Michalczyk

    2013-10-01

    Full Text Available This article is one in a series of two publications concerning detection of accounting engineering operations in use. Its conclusions and methods may be applied to external auditing procedures. The aim of the present duo-article is to define a method of statistical analysis that could identify procedures falling within the scope of a framework herein defined as accounting engineering. This model for analysis is meant to be employed in these aspects of initial financial and accounting audit in a business enterprise that have to do with isolating the influence of variant accounting solutions, which are a consequence of the settlement method chosen by the enterprise. Materials for statistical analysis were divided into groups according to the field in which a given company operated. In this article, we accept and elaborate on the premise that significant differences in financial results may be solely a result of either expansive policy on new markets or the acquisition of cheaper sources for operating activities. In the remaining cases, the choice of valuation and settlement methods becomes crucial; the greater the deviations, the more essential this choice becomes. Even though the research materials we analyze are regionally-conditioned, the model may find its application in other accounting systems, provided that it has been appropriately implemented. Furthermore, the article defines an innovative concept of variant accounting.

  13. A survey of infrared technology for special nuclear materials control and accounting

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Leonard, R.S.; Steverson, C.A.; Angerman, M.I.

    1992-03-01

    This report reviews some aspects of current infrared measurement technology and suggests two applications in which it may be used in nuclear safeguards. These applications include both materials control and materials accounting. In each case, the measurements rely on passive detection of infrared radiation generated from the heat produced by the radioactive decay of plutonium. Both imaging and non-imaging techniques are discussed

  14. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  15. Materials management information systems.

    Science.gov (United States)

    1996-01-01

    The hospital materials management function--ensuring that goods and services get from a source to an end user--encompasses many areas of the hospital and can significantly affect hospital costs. Performing this function in a manner that will keep costs down and ensure adequate cash flow requires effective management of a large amount of information from a variety of sources. To effectively coordinate such information, most hospitals have implemented some form of materials management information system (MMIS). These systems can be used to automate or facilitate functions such as purchasing, accounting, inventory management, and patient supply charges. In this study, we evaluated seven MMISs from seven vendors, focusing on the functional capabilities of each system and the quality of the service and support provided by the vendor. This Evaluation is intended to (1) assist hospitals purchasing an MMIS by educating materials managers about the capabilities, benefits, and limitations of MMISs and (2) educate clinical engineers and information system managers about the scope of materials management within a healthcare facility. Because software products cannot be evaluated in the same manner as most devices typically included in Health Devices Evaluations, our standard Evaluation protocol was not applicable for this technology. Instead, we based our ratings on our observations (e.g., during site visits), interviews we conducted with current users of each system, and information provided by the vendor (e.g., in response to a request for information [RFI]). We divided the Evaluation into the following sections: Section 1. Responsibilities and Information Requirements of Materials Management: Provides an overview of typical materials management functions and describes the capabilities, benefits, and limitations of MMISs. Also includes the supplementary article, "Inventory Cost and Reimbursement Issues" and the glossary, "Materials Management Terminology." Section 2. The

  16. 10 CFR 74.59 - Quality assurance and accounting requirements.

    Science.gov (United States)

    2010-01-01

    ... measurement system in question must not be used for material control and accounting purposes until it has been... 10 Energy 2 2010-01-01 2010-01-01 false Quality assurance and accounting requirements. 74.59 Section 74.59 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  17. Order Fulfillment and Accounting System

    Data.gov (United States)

    National Archives and Records Administration — OFAS is the financial management system that tracks and provides accounting of customer service requests for reproductions of National Archives and Records...

  18. On the fissionable materials management system in the process of nuclear disarmament

    International Nuclear Information System (INIS)

    Vikharev, S.S.; Mikijchuk, N.B.; Pinaev, V.S.; Sudarushkin, I.S.; Yuferev, V.I.

    1994-01-01

    Various scenarios of nuclear weapons proliferation and goals of fissionable material accounting and control system (FMACS) are considered. Ways of improving FMACS in Russia under a complicated social situation are discussed. This improvement should follow two directions: introduction of non-destructive control methods and accounting and control process automation

  19. Materials measurement and accounting in an operating plutonium conversion and purification process. Phase I. Process modeling and simulation

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.; Ostenak, C.A.; Gutmacher, R.G.; Dayem, H.A.; Kern, E.A.

    1981-04-01

    A model of an operating conversion and purification process for the production of reactor-grade plutonium dioxide was developed as the first component in the design and evaluation of a nuclear materials measurement and accountability system. The model accurately simulates process operation and can be used to identify process problems and to predict the effect of process modifications

  20. Material flows accounting for Scotland shows the merits of a circular economy and the folly of territorial carbon reporting

    Directory of Open Access Journals (Sweden)

    Kimberley Pratt

    2016-09-01

    Full Text Available Abstract Background It is essential that the human race limits the environmental damage created by our consumption. A realistic pathway to limiting consumption would be to transition to a system where materials are conserved and cycled through the economy as many times as possible and as slowly as possible, greatly reducing the greenhouse gas intensive processes of resource extraction, resource processing and waste management. Material flow analysis (MFA is a method used to understand how materials are consumed within a nation. In this study, we attempt a MFA for Scotland which links carbon emissions to material consumption using data directly based on the mass of materials used in the Scottish economy. It is the first time such an analysis has been conducted for an economy in its entirety. Research aims This study aims to create a detailed material flow account (MFA for Scotland, compare the environmental impacts and possible policy implications of different future material consumption scenarios and consider two materials, steel and neodymium, in detail. Results The model estimated that 11.4 Mg per capita of materials are consumed per year in Scotland, emitting 10.7 Mg CO2e per capita in the process, of which, 6.7 Mg CO2e per capita falls under territorial carbon accounting. Only the circular economy scenario for 2050 allowed for increases in living standards without increases in carbon emissions and material consumption. This result was mirrored in the steel and neodymium case studies—environmental impacts can be minimised by a national strategy that first reduces use, and then locally reuses materials. Conclusions Material consumption accounts for a large proportion of the carbon emissions of Scotland. Strategic dematerialisation, particular of materials such as steel, could support future efforts to reduce environmental impact and meet climate change targets. However, policy makers should consider consumption carbon accounting

  1. Material flows accounting for Scotland shows the merits of a circular economy and the folly of territorial carbon reporting.

    Science.gov (United States)

    Pratt, Kimberley; Lenaghan, Michael; Mitchard, Edward T A

    2016-12-01

    It is essential that the human race limits the environmental damage created by our consumption. A realistic pathway to limiting consumption would be to transition to a system where materials are conserved and cycled through the economy as many times as possible and as slowly as possible, greatly reducing the greenhouse gas intensive processes of resource extraction, resource processing and waste management. Material flow analysis (MFA) is a method used to understand how materials are consumed within a nation. In this study, we attempt a MFA for Scotland which links carbon emissions to material consumption using data directly based on the mass of materials used in the Scottish economy. It is the first time such an analysis has been conducted for an economy in its entirety. This study aims to create a detailed material flow account (MFA) for Scotland, compare the environmental impacts and possible policy implications of different future material consumption scenarios and consider two materials, steel and neodymium, in detail. The model estimated that 11.4 Mg per capita of materials are consumed per year in Scotland, emitting 10.7 Mg CO 2 e per capita in the process, of which, 6.7 Mg CO 2 e per capita falls under territorial carbon accounting. Only the circular economy scenario for 2050 allowed for increases in living standards without increases in carbon emissions and material consumption. This result was mirrored in the steel and neodymium case studies-environmental impacts can be minimised by a national strategy that first reduces use, and then locally reuses materials. Material consumption accounts for a large proportion of the carbon emissions of Scotland. Strategic dematerialisation, particular of materials such as steel, could support future efforts to reduce environmental impact and meet climate change targets. However, policy makers should consider consumption carbon accounting boundaries, as well as territorial boundaries, if carbon savings are to be

  2. Standard format and content acceptance criteria for the material control and accounting (MC and A) reform amendment: 10 CFR Part 74, Subpart E

    International Nuclear Information System (INIS)

    1987-03-01

    Revisions have been made to the material control and accounting requirements for NRC licensees authorized to possess and use a formula quantity or more of strategic special nuclear material. The revisions require timely monitoring of in-process inventory and discrete items in order to detect anomalies potentially indicative of material losses. Timely detection and enhanced loss localization capabilities will be beneficial to alarm resolution and material recovery in the event of an actual loss. This document presents criteria that can be used by the license applicants and the license reviewers in the preparation and subsequent review of plans to be submitted in response to the the Reform Amendment. General performance objectives, system capabilities, process monitoring, item monitoring, alarm resolution, quality assurance, and accounting are addressed. 43 refs

  3. Challenges of Environmental Management Accounting –- Current Accounting Practices

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D. Gheorghe Popescu

    2008-12-01

    Full Text Available The goal of our paper is to reduce some of the international confusion generated on such animportant topic by providing a general framework and set of definitions for Environmental ManagementAccounting (EMA.Environmental Management Accounting is a relatively new tool in environmental management definedas the identification, collection, estimation, analysis, internal reporting, and use of materials and energyflow information, environmental cost information, and other cost information for both conventionaland environmental decision-making within an organization.Due to their special role, accountants, since they are the ones with access to the important monetarydata and information systems needed for management accounting activities, must to improve both theirability to verify the quality of such information and the skills to use that information for decision making.

  4. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    International Nuclear Information System (INIS)

    Regoushevsky, V.I.; Tambovtsev, S.D.; Dvukhsherstnov, V.G.; Efimenko, V.F.; Ilyantsev, A.I.; Russ, G.P. III

    2009-01-01

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC and A items.

  5. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    International Nuclear Information System (INIS)

    Persiani, P.J.; Goleb, J.A.; Kroc, T.K.

    1981-11-01

    The purpose of this study is to investigate the applicability of isotope correlation techniques (ICT) to the Light Water Reactor (LWR) and the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles for nuclear material accountancy and safeguards surveillance. The isotopic measurement of the inventory input to the reprocessing phase of the fuel cycle is the primary direct determination that an anomaly may exist in the fuel management of nuclear material. The nuclear materials accountancy gap which exists between the fabrication plant output and the input to the reprocessing plant can be minimized by using ICT at the dissolver stage of the reprocessing plant. The ICT allows a level of verification of the fabricator's fuel content specifications, the irradiation history, the fuel and blanket assemblies management and scheduling within the reactor, and the subsequent spent fuel assembly flows to the reprocessing plant. The investigation indicates that there exist relationships between isotopic concentration which have predictable, functional behavior over a range of burnup. Several cross-correlations serve to establish the initial core assembly-averaged composition. The selection of the more effective functionals will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors on the correlation functions and respective sensitivities to isotopic compositional changes have been examined and found to be consistent with current measurement methods

  6. Demonstration personnel and material tracking system at ANL-W

    International Nuclear Information System (INIS)

    Roybal, J.A.; Ortiz, S.; Henslee, S.P.

    1988-01-01

    A Personnel and Material Tracking System (PMTS) was demonstrated in the Fuel Manufacturing Facility (FMF) at Argonne National Laboratories-West (ANL-W) in July, 1987. The PMTS is intended to aid in the transfer of inventory materials from area to area within a facility such as FMF. It is also intended to assure that only those personnel who are authorized to do so may conduct these transfer operations. The PMTS Personnel Movement (PM) subsystem uses portals installed between areas to alert the system to the movement of personnel between areas. The portals are composed to two sensors, one on either side of a proximity badge reader, to detect the presence of personnel entering the portal area. However, a restricted area can be assigned to any badge holder which will cause the system to issue an alert if the badge holder passes into his/her restricted area. The PM subsystem is intended to be transparent when in use. The PMTS Inventory Material Access (IMA) subsystem provides two functions: material control and material access. The material control is provided by the Wireless Alarm Transmission of Container Handling (WATCH) system which is a sensor rf transmitter system that detects item movements. Material access is provided by the Mobile Accountability Verification Inventory Station (MAVIS) system which is a self-powered smart barcode reader

  7. Annual report 2001. ABACC 10 years - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document represents the 2001 Annual report. ABACC 10 years - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2000, covering safeguards, accounting and control of nuclear materials

  8. Education in Accounting Using an Interactive System

    Directory of Open Access Journals (Sweden)

    Bogdan Patrut

    2010-04-01

    Full Text Available This paper represents a summary of a research report and the results of developing an educational software, including a multi-agent system for teaching accounting bases and financial accounting. The paper describes the structure of the multi-agent system, defined as a complex network of s-agents. Each s-agent contains 6 pedagogical agents and a coordinator agent. We havedefined a new architecture (BeSGOTE that extends the BDI architecture for intelligent agents and we have defined a mixing-up relation among the accounts, presenting the way in which it can be used for testing students.

  9. Performance evaluation of near-real-time accounting systems

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Examples are given illustrating the application of near-real-time accounting concepts and principles to actual nuclear facilities. Experience with prototypical systems at the AGNS reprocessing plant and the Los Alamos plutonium facility is described using examples of actual data to illustrate the performance and effectiveness of near-real-time systems. The purpose of the session is to enable participants to: (1) identify the major components of near-real-time accounting systems; (2) describe qualitatively the advantages, limitations, and performance of such systems in real nuclear facilities; (3) identify process and facility design characteristics that affect the performance of near-real-time systems; and (4) describe qualitatively the steps necessary to implement a near-real-time accounting and control system in a nuclear facility

  10. Study of the application of near-real-time materials accountancy to safeguards for reprocessing facilities

    International Nuclear Information System (INIS)

    Ikawa, Koji; Ihara, Hitoshi; Nishimura, Hideo; Hirata, Mitsuho; Sakuragi, Hirotaka; Ido, Masaru.

    1983-09-01

    This report describes the results of TASTEX task F, the basic purpose of which was to investigate the feasibility of applying the basic concepts of near-real-time materials accountancy to small or medium-sized spent fuel reprocessing facilities, using the PNC-Tokai facility as a model. The background of Task-F and the proposed IAEA requirements on reprocessing plant safeguards are briefly shown. A model of near-real-time materials accountancy based on weekly material balances covering the entire process MBA is outlined, and the effectiveness of this model is evaluated based on simulation and analysis procedures developed for the study. The results show that the proposed materials accountancy model should provide sufficient information to satisfy IAEA guidelines for detection goals. Field testing of the model began in 1980, and the preliminary evaluation of this field test data shows that weekly in-process physical inventories are possible without affecting process operations. This report also describes studies related to IAEA verification procedures, and identifies necessary further work. (author)

  11. The condition, problems, and outlook on Ukraine accounting and control system of nuclear materials

    International Nuclear Information System (INIS)

    Galasun, O.

    1999-01-01

    There are 5 NPPs with 14 operating units in Ukraine as well as scientific facilities which are all under the IAEA safeguards. Although a number of important state laws concerning the use of nuclear energy and radiation safety there are still problems on computer processing of current information on accounting and control. The Y2K problem exists in relation to control and operating systems. Ukraine is ready to accept any recommendations in order to eliminate this problem. Some working groups were organised for solving the Y2K problem, each starting from different directions towards the common aim

  12. Annual Report ABACC 2003 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2003-01-01

    This Report describes the actions of the Brazil-Argentine of Accounting and Control of Nuclear Materials (ABACC), during the year of 2003. The developed work allowed to concluded that there is no event indicating that any nuclear material non-accounted for were deviated for non permitted activities by the Agreement for Peaceful Use of Nuclear Energy between Argentine and Brazil and by the Four Parties Agreement among these countries, the ABACC and the International Atomic Energy Agency (IAEA)

  13. Principles and methods of managerial cost-accounting systems.

    Science.gov (United States)

    Suver, J D; Cooper, J C

    1988-01-01

    An introduction to cost-accounting systems for pharmacy managers is provided; terms are defined and examples of specific applications are given. Cost-accounting systems determine, record, and report the resources consumed in providing services. An effective cost-accounting system must provide the information needed for both internal and external reports. In accounting terms, cost is the value given up to secure an asset. In determining how volumes of activity affect costs, fixed costs and variable costs are calculated; applications include pricing strategies, cost determinations, and break-even analysis. Also discussed are the concepts of direct and indirect costs, opportunity costs, and incremental and sunk costs. For most pharmacy department services, process costing, an accounting of intermediate outputs and homogeneous units, is used; in determining the full cost of providing a product or service (e.g., patient stay), job-order costing is used. Development of work-performance standards is necessary for monitoring productivity and determining product costs. In allocating pharmacy department costs, a ratio of costs to charges can be used; this method is convenient, but microcosting (specific identification of the costs of products) is more accurate. Pharmacy managers can use cost-accounting systems to evaluate the pharmacy's strategies, policies, and services and to improve budgets and reports.

  14. Materials safeguards and accountability in the low enriched uranium conversion-fabrication sector of the fuel cycle

    International Nuclear Information System (INIS)

    Schneider, R.A.; Nilson, R.; Jaech, J.L.

    1978-01-01

    Today materials accounting in the low enriched conversion-fabrication sector of the LWR fuel cycle is of increased importance. Low enriched uranium is rapidly becoming a precious metal with current dollar values in the range of one dollar per gram comparing with gold and platinum at 7-8 dollars per gram. In fact, people argue that its dollar value exceeds its safeguards value. Along with this increased financial incentive for better material control, the nuclear industry is faced with the impending implementation of international safeguards and increased public attention over its ability to control nuclear materials. Although no quantity of low enriched uranium (LEU) constitutes a practical nuclear explosive, its control is important to international safeguards because of plutonium production or further enrichment to an explosive grade material. The purpose of the paper is to examine and discuss some factors in the area of materials safeguards and accountability as they apply to the low enriched uranium conversion-fabrication sector. The paper treats four main topics: basis for materials accounting; our assessment of the proposed new IAEA requirements; adequacy of current practices; and timing and direction of future modifications

  15. Proposed improvement of the Accounting System of Non-Agricultural Cooperatives

    Directory of Open Access Journals (Sweden)

    Yamira Mirabal González

    2017-12-01

    Full Text Available The improvement of the accounting system of the cooperatives should contribute to the consolidation of the cooperative role as a way of economic and social development, in the sphere of agricultural production, and in other sectors of the economy, raising the levels of efficiency and economic efficiency, productive and social. The research is aimed at: Perfecting the accounting system of the non-agricultural cooperative "Café Pinar", based on a set of tools for each of the subsystems that comprise it, which contributes to the improvement of the accounting information generated as part of its management process. The results of the research focus on: the theoretical and methodological foundations of Accounting and Accounting Systems, the results of the diagnosis of the Accounting System of the non-agricultural Cooperative "Café Pinar" and the tools for each of the subsystems that make up the Accounting system of the cooperative. In the development of the research, theoretical methods such as the historical and the logical ones were applied, among these the systemic, the modeling and the axiomatic-deductive. In addition to empirical methods such as scientific observation and measurement. Based on the diagnosis made, the existing deficiencies in the Accounting System of the cooperative object of study were determined. On this basis, the proposal was made to improve its Accounting System that will contribute to the improvement of the accounting information that the cooperative generates as part of its management.

  16. Statistical analysis of nuclear material weighing systems at the Oak Ridge - Y-12 plant

    International Nuclear Information System (INIS)

    Hammer, A.H.

    1980-04-01

    The variation in weight measurements on the electronic scales purchased for the Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) has been characterized and estimated to be more than is acceptable when using the current weighing methods. New weighing procedures have been developed which substantially reduce this variation and bring the weight errors within the Y-12 Plant Nuclear Materials Control and Accountability Department's desired +- 2-g accuracy

  17. Development of a system for academic training of the personnel engaged in nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Onykiy, B.N.; Kryuchkov, E.F.

    2005-01-01

    The main attention in the present paper is focused on discussing the educational problems in the area of nuclear materials physical protection, control and accountability (MPC and A) in Russia. Currently, only the Master of Science Graduate Program has been completely developed for students training. This is taking place at Moscow Engineering Physics Institute (State University, MEPhI), where the sixth generation of Masters has graduated in May 2004. The MPC and A Engineer Degree Program, currently under development at MEPhI, is considered in the paper. This paper discusses specific features of the Engineer Degree training required by the Russian educational legislation and the Russian quality control system as applied to the training process. The paper summarises the main joint actions undertaken during the past three years by MEPhI in collaboration with the US Department of Energy and US National Laboratories for developing the MPC and A Engineer Degree Program in Russia. (author)

  18. Computer modelling of structures with account of the construction stages and the time dependent material properties

    Directory of Open Access Journals (Sweden)

    Traykov Alexander

    2015-01-01

    Full Text Available Numerical studies are performed on computer models taking into account the stages of construction and time dependent material properties defined in two forms. A 2D model of three storey two spans frame is created. The first form deals with material defined in the usual design practice way - without taking into account the time dependent properties of the concrete. The second form creep and shrinkage of the concrete are taken into account. Displacements and internal forces in specific elements and sections are reported. The influence of the time dependent material properties on the displacement and the internal forces in the main structural elements is tracked down. The results corresponding to the two forms of material definition are compared together as well as with the results obtained by the usual design calculations. Conclusions on the influence of the concrete creep and shrinkage during the construction towards structural behaviour are made.

  19. Basics of control system material in iron foundry

    Directory of Open Access Journals (Sweden)

    J. Sitko

    2011-07-01

    Full Text Available The article is taking into account problems of preparing the production of cast-iron casts with reference to correctnesses functioning of processes supplementing, containing elements the system of supply necessary materials and the tool used in order processing production. Methods and chosen models realization elements of production process and their influence on the efficiency process were characterized.

  20. Fuel accountability and control at Combustion Engineering, Inc

    International Nuclear Information System (INIS)

    Kersteen, G.C.

    1978-01-01

    Combustion Engineering, Inc. has recently developed and installed an automated data collection, data processing system for the accounting and control of special nuclear material. The system uses a variety of data collection techniques and some relatively new data processing ideas. The next few pages describe the Fuel Accountability and Control System