WorldWideScience

Sample records for material radiation monitors

  1. Special nuclear material radiation monitors for the 1980's

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1985-01-01

    During the two decades that automatic gamma-radiation monitors have been applied to detecting special nuclear material (SNM), little attention has been devoted to how well the monitors perform in plant environments. Visits to 11 DOE facilities revealed poor information flow between developers, manufacturers, and maintainers of SNM radiation monitors. To help users achieve best performance from their monitors or select new ones, Los Alamos National Laboratory developed a hand-held monitor user's guide, calibration manuals for some commercial SNM pedestrian monitors, and an application guide for SNM pedestrian monitors. In addition, Los Alamos evaluated new commercial SNM monitors, considered whether to apply neutron detection to SNM monitoring, and investigated the problem of operating gamma-ray SNM monitors in variable plutonium gamma-radiation fields. As a result, the performance of existing SNM monitors will improve and alternative monitoring methods will become commerciallly available during the 1980s. 9 refs., 6 figs., 1 tab

  2. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  3. Standard guide for application of radiation monitors to the control and physical security of special nuclear material

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) (see 3.1.11) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms. 1.2 Dependable operation of SNM radiation monitors rests on selecting appropriate monitors for the task, operating them in a hospitable environment, and conducting an effective program to test, calibrat...

  4. Standard guide for application of radiation monitors to the control and physical security of special nuclear material

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms

  5. The Role of Automatic Radiation Monitoring in Control of Illicit Trafficking of Radioactive Materials in Slovenia

    International Nuclear Information System (INIS)

    Mitic, D.

    2003-01-01

    Automatic radiation monitoring in Slovenia comprises monitoring of external gamma radiation, aerosol radioactivity, radon progeny concentration, and radioactive deposition measurements. The officer on duty has an important part in assuring proper and undisturbed functioning of our automatic radiation monitoring. He is the one who gets the first alert message on radiation levels when exceeded pre-set values in the territory of Slovenia. Together with continuous control over the functioning of automatic radiation monitoring, the officer on duty has been also assigned for receiving messages from users, who carry the 'Radiation pager' (it is a trade mark for Sensor Technology Engineering, inc. from USA). All valuable experiences of the officer on duty who has been accepting reports from customs officers, police officers, from Slovenian radiation and nuclear safety inspectors, are described in this article. The officer on duty with his new role contributes to prevention of the illicit trafficking and inadvertent movement of radioactive materials over the territory of Slovenia. In the last year there where many different causes of emergency calls: from many cases of patient after radioisotopes medical treatment to serious rejected shipment with exceeded radiation. This is only a beginning of responsible task how to introduce and assure the control of the inadvertent movement of radioactive materials in Slovenia. (author)

  6. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...

  7. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  8. Radiation monitoring

    International Nuclear Information System (INIS)

    Larsson, L.Eh.; B'yuli, D.K.; Karmikel, Dzh.Kh.E.

    1985-01-01

    Recommendations on radiation monitoring of personnel, used medical ionizing radiation source, are given. The necessity to carry out radiation monitoring of situation at medical personnel's positions and personnel dosimetry is marked. It is convenient to subdivide radiation monitoring into 3 types: usual, surgical and special. Usual monitoring is connected with current work; surgical monitoring is carried out to receive information during a concrete operation; special monitoring is used to detect possible deviation from standard conditions of work or when suspecting them

  9. A novel diamond-based beam position monitoring system for the High Radiation to Materials facility at CERN SPS

    CERN Document Server

    AUTHOR|(CDS)2092886; Höglund, Carina

    The High Radiation to Materials facility employs a high intensity pulsed beam imposing several challenges on the beam position monitors. Diamond has been shown to be a resilient material with its radiation hardness and mechanical strength, while it is also simple due to its wide bandgap removing the need for doping. A new type of diamond based beam position monitor has been constructed, which includes a hole in the center of the diamond where the majority of the beam is intended to pass through. This increases the longevity of the detectors as well as allowing them to be used for high intensity beams. The purpose of this thesis is to evaluate the performance of the detectors in the High Radiation to Materials facility for various beam parameters, involving differences in position, size, bunch intensity and bunch number. A prestudy consisting of calibration of the detectors using single incident particles is also presented. The detectors are shown to work as intended after a recalibration of the algorithm, alb...

  10. Environmental monitoring of low-level radioactive materials

    International Nuclear Information System (INIS)

    Jester, W.A.; Yu, C.

    1985-01-01

    The authors discuss some of the current rationale behind the environmental monitoring of low-level radioactive materials are as follows: Committee 4 of the International commission on Radiological Protection (ICRP) defined three broad objectives for environmental monitoring: 1) assessment of the actual or potential exposure of humans to radioactive materials or radiation present in their environment or the estimation of the probable upper limits of such exposure; 2) scientific investigation, sometimes related to the assessment of exposures, sometimes to other objectives; 3) improved public relations. Various regulations have been written requiring environmental monitoring to ensure that the public is not being exposed to excessive amounts of radiation from natural sources or from human activities. An example of the monitoring of natural sources of radiation is a requirement of the Environmental Protection Agency's (EPA) National Interim Primary Drinking Water Regulations whereby U.S. water supply companies must have drinking water monitored at least once every four years for radionuclides, primarily the naturally occurring radium-226

  11. Radiation protection - Monitoring of workers occupationally exposed to a risk of internal contamination with radioactive material

    International Nuclear Information System (INIS)

    2006-01-01

    In the course of employment, individuals might work with radioactive materials that, under certain circumstances, could be taken into the body. Protecting workers against risks of incorporated radionuclides requires the monitoring of potential intakes and/or the quantification of actual intakes and exposures. The selection of measures and programmes for this purpose requires decisions concerning methods, techniques, frequencies etc. for measurements and dose assessment. The criteria permitting the evaluation of the necessity of such a monitoring programme or for the selection of methods and frequencies of monitoring usually depend upon the legislation, the purpose of the radiation protection programme, the probabilities of potential radionuclide intakes, and the characteristics of the materials handled. This International Standard offers guidance for the decision whether a monitoring programme is required and how it should be designed. Its intention is to optimise the efforts for such a monitoring programme consistent with legal requirements and with the purpose of the radiation protection programme. Recommendations of international expert bodies and international experience with the practical application of these recommendations in radiation protection programmes have been considered in the development of this International Standard. Its application facilitates the exchanges of information between authorities, supervisory institutions and employers. The International Standard is not a substitute for legal requirements. In the International Standard, the word 'shall' is used to denote a requirement and no deviation is allowed. The word 'should' is used to denote a recommendation from which justified deviations are allowed. The word 'may' is used to denote permission

  12. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    International Nuclear Information System (INIS)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-01-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring

  13. Radiation detectors as surveillance monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1981-01-01

    The International Atomic Energy Agency (IAEA) proposes to use personnel dosimetry radiation detectors as surveillance monitors for safeguards purposes. It plans to place these YES/NO monitors at barrier penetration points declared closed under IAEA safeguards to detect the passage of plutonium-bearing nuclear material, usually spent fuel. For this application, commercially available dosimeters were surveyed as well as other radiation detectors that appeared suitable and likely to be marketed in the near future. No primary advantage was found in a particular detector type because in this application backgrounds vary during long counting intervals. Secondary considerations specify that the monitor be inexpensive and easy to tamper-proof, interrogate, and maintain. On this basis radiophotoluminescent, thermoluminescent, and electronic dosimeters were selected as possible routine monitors; the latter two may prove useful for data-base acquisition

  14. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  15. Environmental radiation monitoring of Vizag City

    International Nuclear Information System (INIS)

    Sreekanth, B.; Narsaiah, M.V.R.; Saindane, Shashank; Pujari, Raju; Krishna, N.S.; Sambamurthy, T.; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Radiological impact assessment is to be carried out following any radiological emergency to implement the required counter measures. A ground based environmental radiation monitoring of Vizag city has been carried out by installing various radiation monitoring instruments in a vehicle to generate the base line radiation data. It also helps to check the illicit trafficking of radioactive sources and also identifying the orphan sources. The average background radiation level observed in Vizag city was 80 nGy/h. Database of baseline radiation level with GPS location at all important locations of the whole city has been developed. No illicit trafficking of radioactive materials and orphan sources were detected during the survey. All the detectors used in the survey shown good correlation in their response. The study showed that mobile monitoring methodology will be useful in the quick assessment of radiological impact and strengthens the decision makers in reducing consequences by initiating immediate counter measures

  16. Development of web monitoring radiation area monitor

    International Nuclear Information System (INIS)

    Jung, Hoon Jin; Lee, Jun Hee; Namkoong, Phil; Lee, Dong Hoon; Lee, Su Hong; Lee, Gun Bae

    2005-01-01

    Recently the increasing number of radioisotope industry and nuclear facility have ever raised the possibility of radiation safety accident. As such a result, radioisotope companies and nuclear facility operators have become to be much interested in radiation area monitoring for efficient radiation protection. At present, almost of the radiation area monitors which are imported products are outdated in aspect of their functions. Diversification of the monitoring work is urgently demanding additional functions to be added. Thus we have developed new-type digital area monitor which enables remote web monitoring with image and radiation dose rate value at distant places through using internet, the latest IT technology, and radiation measurement technology

  17. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, Hiroshi; Kobayashi, Hideo

    1993-03-01

    Japan Atomic Energy Research Institute (JAERI) has continued the radiation background survey and environmental radiation monitoring to ensure the safety of the residents around the Institute. For the monitoring of β and γ radiations and α and β radioactivities in air, the centralized automatic environmental radiation monitoring system (EMS) applying a computer with monitoring stations (MS) was established. The system has been renewed twice in 1973 and 1988. In 1962, a new concept emergency environmental γ-ray monitoring system (MP) was begun to construct and completed in 1965 independent of EMS. The first renewal of the EMS was carried out by focusing on the rapid and synthetic judgement and estimation of the environmental impacts caused by radiation and radioactive materials due to the operation of nuclear facilities by centralizing the data measured at MS, MP, a meteorological station, stack monitors and drainage monitoring stations under the control of computer. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop caused by thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min. monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles. (J.P.N.)

  18. Modular remote radiation monitor

    International Nuclear Information System (INIS)

    Lacerda, Fabio; Farias, Marcos S.; Aghina, Mauricio A.C.; Oliveira, Mauro V.

    2013-01-01

    The Modular Remote Radiation Monitor (MRRM) is a novel radiation monitor suitable for monitoring environmental exposure to ionizing radiation. It is a portable compact-size low-power microprocessor-based electronic device which provides its monitoring data to other electronic systems, physically distant from it, by means of an electronic communication channel, which can be wired or wireless according to the requirements of each application. Besides its low-power highly-integrated circuit design, the Modular Remote Radiation Monitor is presented in a modular architecture, which promotes full compliance to the technical requirements of different applications while minimizing cost, size and power consumption. Its communication capability also supports the implementation of a network of multiple radiation monitors connected to a supervisory system, capable of remotely controlling each monitor independently as well as visualizing the radiation levels from all monitors. A prototype of the MRRM, functionally equivalent to the MRA-7027 radiation monitor, was implemented and connected to a wired MODBUS network of MRA-7027 monitors, responsible for monitoring ionizing radiation inside Argonauta reactor room at Instituto de Engenharia Nuclear. Based on the highly positive experimental results obtained, further design is currently underway in order to produce a consumer version of the MRRM. (author)

  19. Smarter radiation monitors for safeguards and security

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Pratt, J.C.; Markin, J.T.; Scurry, T. Jr.

    1983-01-01

    Radiation monitors for nuclear safeguards and security depend on internal control circuits to determine when diversion of special nuclear materials is taking place. Early monitors depended on analog circuits for this purpose, subsequently, digital logic controllers made better monitoring methods possible. Now, versatile microprocessor systems permit new, more efficient, and more useful monitoring methods. One such method is simple stepwise monitoring, which has variable alarm levels to expedite monitoring where extended monitoring periods are required. Another method, sequential probability ratio logic, tests data as it accumulates against two hypothesis - background, or background plus a transient diversion signal - and terminates monitoring as soon as a decision can be made that meets false-alarm and detection confidence requirements. A third method, quantitative monitoring for personnel, calculates count ratios of high- to low-energy gamma-ray regions to predict whether the material detected is a small quantity of bare material or a larger quantity of shielded material. In addition, microprocessor system subprograms can assist in detector calibration and trouble-shooting. Examples of subprograms are a variance analysis technique to set bias levels in plastic scintillators and a state-of-health routine for detecting malfunctions in digital circuit components

  20. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Small radiation detectors based on HgI 2 , bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI 2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  1. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  2. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  3. Uzbekistan Radiation Portal Monitoring System

    International Nuclear Information System (INIS)

    Richardson, J; Knapp, R; Loshak, A; Yuldashev, B; Petrenko, V

    2005-01-01

    The work proposed in this presentation builds on the foundation set by the DTRA funded demonstration project begun in 2000 and completed in December of 2003. This previous work consisted of two phases whose overall objective was to install portal radiation monitors at four select ports-of-entry in Uzbekistan (Tashkent International Airport, Gisht-Kuprik (Kazakhstan border), Alat (Turkmenistan border), and Termez (Afghanistan border)) in order to demonstrate their effectiveness in preventing the illicit trafficking of nuclear materials. The objectives also included developing and demonstrating capabilities in the design, installation, operation, training, and maintenance of a radiation portal monitoring system. The system and demonstration project has proved successful in many ways. An effective working relationship among the Uzbekistan Customs Services, Uzbekistan Border Guards, and Uzbekistan Institute of Nuclear Physics has been developed. There has been unprecedented openness with the sharing of portal monitor data with Lawrence Livermore National Laboratory. The system has proved to be effective, with detection of illicit trafficking, and, at Alat, an arrest of three persons illegally transporting radioactive materials into Turkmenistan. The demonstration project has made Uzbekistan a model nonproliferation state in Central Asia and, with an expanded program, places them in a position to seal a likely transit route for illicit nuclear materials. These results will be described. In addition, this work is currently being expanded to include additional ports-of-entry in Uzbekistan. The process for deciding on which additional ports-of-entry to equip will also be described

  4. Monitoring of radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service.

  5. Monitoring of radiation exposure

    International Nuclear Information System (INIS)

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service

  6. Radiation monitoring considerations for radiobiology facilities

    International Nuclear Information System (INIS)

    McClelland, T.W.; McFall, E.D.

    1976-01-01

    Battelle, Pacific Northwest Laboratories, conducts a wide variety of radiobiology and radioecology research in a number of facilities on the Hanford Reservation. Review of radiation monitoring problems associated with storage, plant and animal experiments, waste handling and sterile facilities shows that careful monitoring, strict procedural controls and innovative techniques are required to minimize occupational exposure and control contamination. Although a wide variety of radioactivity levels are involved, much of the work is with extremely low level materials. Monitoring low level work is mundane and often impractical but cannot be ignored in today's ever tightening controls

  7. Maintenance experiences with hand and foot monitor for monitoring alpha and beta radiation of personnel in NFC

    International Nuclear Information System (INIS)

    Ramachandra Rao, A.; Kulkarni, R.S.; Banerjee, P.K.

    2010-01-01

    NFC is producing natural uranium and enriched uranium fuels for various reactors including PHWR etc. Monitoring of α and β radiations in the active plants of NFC is very much essential in many aspects. The personnel who are handling radiation materials have to be monitored for α radiation of hands and cloths and β radiation of feet. So the Alpha and Beta Monitor became important monitoring equipment for monitoring α and β radiations of persons working in active plants of NFC. Many Alpha and Beta Monitors of make, ECIL, PLA, and Nucleonix etc. were being used in active plants in NFC. Basically α and β radiation monitors consists of four PMT (Photo Multiplier Tubes) for detection of radiation of hands and one PMT for monitoring clothes. The PMT use ZnS (Ag) as the scintillator for detection of α radiation. GM tubes are used to detect β radiation of feet. The latest Hand and Foot Monitors have been incorporated with PC based monitoring system along with software for making the monitoring process more efficient and user friendly. As an instrumentation maintenance team for these monitors, our experiences are varied. These monitors are to be periodically maintained and tested for its effective functioning in monitoring the nuclear radiation. The monitors procured from M/s. ECIL were being used since long time in these areas. The instrumentation maintenance had faced some problems with these monitors such as frequent failure of High Voltage cards, Amplifier and Counter PCB cards. Modifications were made in the circuits of High Voltage and Counter cards to minimize the failure rate and for loading of Display and Monitoring Software through Hard disk instead of from floppy disk. So the availability of monitors for monitoring radiation got improved. Later the introduction of more sophisticated α and β radiation monitors of M/s. PLA make in these areas further improved monitoring of radiation of personnel working in active areas. These monitors are more user

  8. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Paff, Marc Gerrit, E-mail: mpaff@umich.edu; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-21

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  9. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Science.gov (United States)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  10. Quantitative radiation monitors for containment and surveillance

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Quantitative radiation monitors make it possible to differentiate between shielded and unshielded nuclear materials. The hardness of the gamma-ray spectrum is the attribute that characterizes bare or shielded material. Separate high- and low-energy gamma-ray regions are obtained from a single-channel analyzer through its window and discriminator outputs. The monitor counts both outputs and computes a ratio of the high- and low-energy region counts whenever an alarm occurs. The ratio clearly differentiates between shielded and unshielded nuclear material so that the net alarm count may be identified with a small quantity of unshielded material or a large quantity of shielded material. Knowledge of the diverted quantity helps determine whether an inventory should be called to identify the loss

  11. Capacity training for the personnel of radiation monitoring in metal recycling

    International Nuclear Information System (INIS)

    Caveda Ramos, C.A.; Dominguez Ley, O.

    2013-01-01

    In this work it a course for training for the personnel involved in the radiation monitoring of metal recycling is presented. The contents were elaborated taken into account the IAEA recommendations for the development of capacity and training activities in radiological safety and in the Guide for the control of radioactive material in metal recycling. The program is divided in eleven parts and the duration time is two weeks. Among the main covered topics are the requirements for radiation monitoring in metal recycling; response to detection of radioactive material and effects of the ionizing radiation in man and environment

  12. Study of radiation portal monitor and its application to metal recycling industry

    International Nuclear Information System (INIS)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-01-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs

  13. Development of radiation alarm monitor

    International Nuclear Information System (INIS)

    Myung Jae Song; Myung Chan Lee; Jung Kwan Son

    1997-01-01

    The Radiation Alarm Monitor is developed domestically in order to protect radiation workers from over exposure. The Radiation Alarm Monitor with microprocessor installed can record the information of radiation field before and after accidents. It can also provide the data to analyze the accident and to set a counterplan. It features a wide detection range of radiation (I OmR/h - I OOR/h), radiation work and data storage, portability, high precision (5%) due to calibration, and adaptation of a powerful alarm system. In order to protect workers from over exposure, light and sound alarm had been designed to initiate when accident occurs such as an unexpected change of radiation field such as radiation rate and accumulated dosed between 90 min. before the alarm and 30 min. after the alarm. In addition, the Radiation Alarm Monitor interfaces with computer so that the accident can be analyzed. After the testing conditions in other countries for the Radiation Alarm Monitor were compared, the most stringent test, ANSI N42. 17-A, was selected. The performance testing was car-ried out under various conditions of temperature, humidity, vibration and electromagnetic wave hindrance by Korea Research Institute of Standards and Science (KRISS). As a result, the Radiation Alan-n Monitor passed all test. Also, for the Radiation Alarm Monitor, environmental adaptability tests under the environmental conditions of NPP sites had been performed. The Radiation Alan-n Monitor had been reviewed by radiation workers at NPPs and their opinions had been collected. Operating procedure will be written and distributed to every NPP sites. Radiation Alarm Monitor will be modified for use under the specific environmental conditions of each site. It will be distributed to NPP sites and will be used by radiation workers

  14. Personnel radiation monitoring by thermoluminescence dosimetry (2000-2001)

    International Nuclear Information System (INIS)

    Mi-Cho-Cho, Daw; Hla-Hla-Win, Daw; Thin-Thin-Kraing

    2001-01-01

    Thermoluminescence dosimetry service was introduced in 1991. Personnel who exposed directly or indirectly to radiation is monitored by thermoluminescent dosimeter. TL materials used for thermoluminescent dosimeter are in the form of thin disc. Personnel whole-body and extremity doses are measured by thermoluminescence dosimetry. The Harshaw Model 4500 TLD reader and Vinten 654E TLD reader are used for TLD evaluation. At present about 600 radiation workers are provided with TLD for routine monitoring. It was found that most personnel had received within permissible dose recommended by the International Commission on Radiological Protection (ICRP). (author)

  15. The RM-5000 system for radiation monitoring

    International Nuclear Information System (INIS)

    1997-01-01

    Eight models of radiation monitors can be assembled from independent modules for the agricultural firms, customs house, boundary transitions, for the control of transport and passenger flows and for prevention of the non-authorized moving of radioactive and fissionable materials. Two modules are a basis of the system - gamma radiation detector on the basis of plastic scintillator and neutrons detector on the basis of the proportional 3 He counters

  16. Standard evaluation techniques for containment and surveillance radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1982-01-01

    Evaluation techniques used at Los Alamos for personnel and vehicle radiation monitors that safeguard nuclear material determine the worst-case sensitivity. An evaluation tests a monitor's lowest sensitivity regions with sources that have minimum emission rates. The result of our performance tests are analyzed as a binomial experiment. The number of trials that are required to verify the monitor's probability of detection is determined by a graph derived from the confidence limits for a binomial distribution. Our testing results are reported in a way that characterizes the monitor yet does not compromise security by revealing its routine performance for detecting process materials

  17. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  18. Radiation monitoring around accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)

    2000-07-01

    The present status of a network of radiation monitors (NORM) working at KEK is described in detail. NORM consists of there parts; stand-alone radiation monitors (SARM), local-monitoring stations (STATION) and a central data-handling system (CENTER). NORM has developed to a large-scaled monitoring system in which more than 250 SARMs are under operation for monitoring the radiation fields and radioactivities around accelerators in KEK. (author)

  19. Radiation monitoring of uranium workers

    International Nuclear Information System (INIS)

    1998-12-01

    In order to manage radiological hazards in the workplace, it is necessary to have reliable measurements of workplace radiation levels and estimates of exposures and doses to workers. Over the past several years there have been many changes not only to the science of monitoring and dose assessment, but also to the regulatory framework. New International Commission on Radiological Protection (ICRP) recommendations on dose in ICRP Publication 60 (1991) and the implications of the ICRP's new respiratory tract model in ICRP Publication 66 (1994) are of particular importance. In addition, triggered by the act establishing the Canadian Nuclear Safety Commission (CNSC), which will replace the Atomic Energy Control Board (AECB), there is considerable activity in the review and development of regulatory guidance. Concurrent with these activities is the introduction of innovative mining procedures in Saskatchewan in order to extract uranium ore of particularly high grade. In view of these developments, the ACRP considered that a formal review of current monitoring practices would benefit both the CNSC and its licensees. In this report, 'uranium workers' refers to workers at uranium mines and mills, and workers at natural-uranium refineries, conversion, and fuel fabrication facilities; issues relating to long-term tailings management and to the handling of enriched materials are not addressed in this document. The report will have some relevance to workers in non-uranium mines and in industries handling naturally occurring radioactive materials (NORM) since, in some circumstances, these activities can present similar workplace radiation hazards. The report outlines the radiological hazards encountered in the Canadian uranium industry, and reviews current radiological monitoring practices and options; appendices include a glossary, a more technical discussion of monitoring methods, and an examination of errors and uncertainties in measurements of radon progeny and long

  20. Monitoring occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.B.C. [Radiation Safety Consultancy, Engadine, NSW (Australia)

    1997-12-31

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives. 8 refs., 9 tabs.

  1. Citizen-based environmental radiation monitoring network

    International Nuclear Information System (INIS)

    Alemayehu, B.; Mckinzie, M.; Cochran, T.; Sythe, D.; Randrup, R.; Lafargue, E.

    2017-01-01

    This paper discusses a Citizen Radiation Monitoring project designed and implemented by the Natural Resources Defense Council . The goal of the project was to implement a radiation monitoring system that provides radiation data accessible to the public. The monitoring system consisted of usage of a radiation detector integrated with near real-time data collection and visualization. The monitoring systems were installed at five different locations and background radiation measurements were taken. The developed monitoring system demonstrated that citizen-based monitoring system could provide accessible radiation data to the general public and relevant to the area where they live. (author)

  2. Reusable radiation monitor

    International Nuclear Information System (INIS)

    Fanselow, D.L.; Ersfeld, D.A.

    1978-01-01

    An integrating, reusable device for monitoring exposure to actinic radiation is disclosed. The device comprises a substrate having deposited thereon at least one photochromic aziridine compound which is sealed in an oxygen barrier to stabilize the color developed by the aziridine compound in response to actinic radiation. The device includes a spectral response shaping filter to transmit only actinic radiation of the type being monitored. A color standard is also provided with which to compare the color developed by the aziridine compound

  3. Storage of radioactive material - accidents - precipitation - personnel monitoring

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-12-01

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry

  4. Programmes and Systems for Source and Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    2010-01-01

    The discharge of radionuclides to the atmosphere and aquatic environments is a legitimate practice in the nuclear and other industries, hospitals and research. Where appropriate, monitoring of the discharges and of relevant environmental media is an essential regulatory requirement in order to ensure appropriate radiation protection of the public. Such monitoring provides information on the actual amounts of radioactive material discharged and the radionuclide concentrations in the environment, and is needed to demonstrate compliance with authorized limits, to assess the radiation exposure of members of the public and to provide data to aid in the optimization of radiation protection. Uncontrolled releases of radionuclides to the atmosphere and aquatic environments may occur as a result of a nuclear or radiological accident. Again, monitoring at the source of the release and of the environment is necessary. In this case, monitoring is used both to assess the radiation exposure of members of the public and to determine the actions necessary for public protection, including longer term countermeasures. Source and environmental monitoring associated with the release of radionuclides to the environment is the subject of a number of IAEA Safety Standards, particularly IAEA Safety Standard RS-G-1.8 (Environmental and Source Monitoring for Purposes of Radiation Protection). This publication is intended to complement this Safety Guide and, by so doing, replaces Safety Series No. 41 (Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants) and Safety Series No. 46 (Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment). Like Safety Standard RS-G-1.8, this Safety Report deals with monitoring at the source and in the environment associated with authorized releases of radionuclides to the environment. It also deals with the general issues of emergency monitoring during and in the aftermath of an

  5. USB-based radiation monitor

    International Nuclear Information System (INIS)

    Drndarevic, V.; Jevtic, N.; Djuric, R.

    2006-01-01

    The Universal Serial Bus has become a dominant interface for the connection of standard peripheral devices to a personal computer. This paper analyzes the possibilities of USB bus applications in the field of measurement and environmental monitoring. As a result, a gamma radiation monitor consisting of an USB-based universal peripheral device and a gamma probe with a GM counter, has been designed. For the interfacing monitor with the powerful and easy to use LabVIEW software package, an instrument driver as a set of virtual instruments has been developed. The proposed monitor is a flexible instrument which can be used for laboratory measurements, as an environmental radiation monitor or for training purposes. Connected to the laptop computer, the monitor becomes a portable instrument suitable for field measurements. Basic measurements and functionality properties of the radiation monitor are presented here

  6. Real Time Environmental Radiation Monitoring System in the Philippines

    International Nuclear Information System (INIS)

    Garcia, Teofilo Y.

    2015-01-01

    The widespread release of radioactive materials caused by the Fukushima Daiichi Nuclear Power Plant Accident that occurred on 11 March 2011 raised concerns on the environmental radiation monitoring Presently, the Philippine Nuclear Research Institute (PNRI) can only perform limited incident. Country-wide radiation measurements by carrying out field-works in the different provinces of the country. This is due to limitation in the availability of appropriate equipment to carry-out the task of conducting radiation measurements, especially in remote and hart to access areas of the country. Although no nuclear reactor is currently operating in the Philippines, it is situated in a region surrounded by neighboring countries with several existing or planned nuclear power plants. While nuclear power has tremendous benefits in meeting the electricity needs of growing populations, and does not have the adverse environmental effects associated with burning of fossil fuels, there are potential risks from releases of radio nuclides into the environment. The PNRI, through the support of the International Atomic Energy Agency (IAEA), is establishing an on-line environmental radiation monitoring system that can provide real-time environmental during emergencies that lead to extensive spread of radioactive materials, such as nuclear power plant accidents, an on-line radiation monitoring system will enable the immediate detection of radiological emergencies affecting the country and will provide important information of authorities for appropriate emergency response. (author)

  7. Environmental radiation monitoring in Sao Paulo state

    International Nuclear Information System (INIS)

    Agudo, E.G.; Albuquerque, A.M. de; Vasconcellos, N.V. de

    1991-01-01

    The results of environmental radiation monitoring that CETESB (Technological Company of Environmental Sanitation of Sao Paulo) does in influence areas of radioactive materials store of Nuclemon Minero-Quimica S.A. in the municipality of Itu, Sao Paulo State, are presented. The data comprises the period of 1983-1990 with information about concentration levels of radium-225 in underground and superficial waters of the region. On March, 1989, was detected contamination in a well near of the stores. The levels observed, its implications in terms of health risks and possible causes of event are discussed too. The goals that CETESB intends to reach in terms of monitoring of environmental radiation in Sao Paulo State are also presented. (C.M.)

  8. Environmental γ radiation monitor

    International Nuclear Information System (INIS)

    Qu Xiaopeng

    1993-01-01

    The environmental γ radiation monitor is a kind of dose or dose rate measuring devices, which can be used for monitoring environmental γ radiation around a nuclear site when normal or even abnormal events occur. The monitor is controlled by a single-chip microcomputer so that it can acquire synchronously the data from four detectors and transfer the data to a central computer. The monitor has good temperature property due to the technique of temperature correction. The monitor has been used in the environment monitoring vehicle for Qinshan Nuclear Power Plant

  9. Radiation monitoring systems and methodologies for radiological impact assessment

    International Nuclear Information System (INIS)

    Chaudhury, Probal

    2016-01-01

    Radioactive sources of various strengths are used in large number of applications in industry, healthcare, agriculture and research. Though all the sources are transported and used under regulatory control, there is always a possibility of some of the sources getting into the hands of committed antisocial non state actors. In addition to this, there is a possible threat of radioactive material being illegally brought into a country. These gives rise to an increase in the global radiological threat and security experts world over are concerned about the possibility of malicious use of radiation in the public domain. Radiation detection systems are installed at various entry and exit ports of some of the countries to detect illicit trafficking of radioactive materials. IAEA has recommended that all States should have a national response plan for nuclear security events to provide for an appropriate and coordinated response. Considering the requirement of radiological emergency preparedness, various radiation monitoring systems and methodologies have been developed. A few aerial radiation monitoring systems developed at Bhabha Atomic Research Centre (BARC) for radiological impact assessment are described here

  10. Radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio A.C.; Farias, Marcos S. de; Lacerda, Fabio de; Heimlich, Adino [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Design of a portable low-power multichannel analyzer with wireless connectivity for remote radiation monitoring, powered from a solar panel with a internal battery to be operated in field. The multichannel analyzer is based on a single microcontroller which performs the digital functions and an analog signal processing board for implementing a Gaussian shaper preamplifier, a Gaussian stretcher, sample and hold, pile-up rejector and a 10 bit ADC. Now this design is to be used with a NaI(Ti) scintillator detector. This multichannel analyzer is designed to be a part of radiation monitoring network. All of them are connected, by radio in a radius of 10 kilometers, to a supervisor computer that collects data from the network of multichannel analyzers and numerically display the latest radiation measurements or graphically display measurements over time for all multichannel analyzers. Like: dose rate, spectra and operational status. Software also supports remotely configuring operating parameters (such as radiation alarm level) for each monitor independently. (author)

  11. Radiation monitoring system

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Farias, Marcos S. de; Lacerda, Fabio de; Heimlich, Adino

    2015-01-01

    Design of a portable low-power multichannel analyzer with wireless connectivity for remote radiation monitoring, powered from a solar panel with a internal battery to be operated in field. The multichannel analyzer is based on a single microcontroller which performs the digital functions and an analog signal processing board for implementing a Gaussian shaper preamplifier, a Gaussian stretcher, sample and hold, pile-up rejector and a 10 bit ADC. Now this design is to be used with a NaI(Ti) scintillator detector. This multichannel analyzer is designed to be a part of radiation monitoring network. All of them are connected, by radio in a radius of 10 kilometers, to a supervisor computer that collects data from the network of multichannel analyzers and numerically display the latest radiation measurements or graphically display measurements over time for all multichannel analyzers. Like: dose rate, spectra and operational status. Software also supports remotely configuring operating parameters (such as radiation alarm level) for each monitor independently. (author)

  12. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  13. Autonomous Radiation Monitoring of Small Vessels

    International Nuclear Information System (INIS)

    Fabris, Lorenzo; Hornback, Donald Eric

    2010-01-01

    Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the terrestrial approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. They require vehicles to pass at slow speeds between two closely-spaced radiation sensors, relying on the uniformity of vehicle sizes to space the detectors, and on proximity to link an individual vehicle to its radiation signature. In contrast to roadways where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. We have developed a unique solution to this problem based on our portal-less portal monitor instrument that is designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. It was recently tested in a maritime setting. In this paper we present the instrument, how it functions, and the results of the recent tests.

  14. ERMS - Environmental Radiation Monitoring System

    International Nuclear Information System (INIS)

    Vax, Eran; Sarusi, Benny; Sheinfeld, Mati; Levinson, Shmuel; Brandys, Irad; Sattinger, Danny; Wengrowicz, Udi; Tshuva, Avi; Tirosh, Dan

    2008-01-01

    A new Environmental Radiation Monitoring System (ERMS) has been developed in the NRCN as an extensive tool to be applied in case of nuclear malfunction or Nuclear Disposal Device (NDD) incident, as well as for routine radiation monitoring of the reactor's vicinity. The system collects real-time environmental data such as: gamma radiation, wind speed, wind direction, and temperature for monitoring purposes. The ERMS consists of a main Control Center and an array of monitoring stations. Fixed, environmental, gamma radiation monitoring stations are installed at the reactor's surroundings while portable stations can be posted rapidly along the wind direction, enhancing the spatial sampling of the radiation measurements and providing better hazard assessment at an emergency event. The presented ERMS, based on industrial standards for hardware and network protocols, is a reliable standalone system which upgrades the readiness to face a nuclear emergency event by supplying real-time, integrated meteorological and radiation data. (author)

  15. Status and trends of solid state track detector use in radiation protection monitoring

    International Nuclear Information System (INIS)

    Doerschel, B.

    1980-01-01

    The characteristic properties of solid state track detectors allow them to be used for determining the radiation fields of charged and uncharged particles and, consequently, for solving some problems involved in radiation protection monitoring. Aptitude of various detector materials is investigated on the basis of the track formation mechanism taking into account the properties of the particles to be detected. Use of these detectors in radiation protection monitoring presumes appropriate methods of intensifying the latent tracks, which are discussed as a function of various physical parameters. Readout methods of solid state track detectors are based on variations in detector properties determined by number and size of particle tracks in the detector. The choice of a special readout method, among other things, depends on the purpose, detector material, and pretreatment of the detectors. The most prospective methods are described and investigated with respect to their possible use in various fields of radiation protection monitoring. The trends of development of the application of solid state track detectors in radiation protection monitoring are discussed, using some typical applications as examples. (author)

  16. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  17. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  18. Autonomous radiation monitoring of small vessels

    International Nuclear Information System (INIS)

    Ziock, K.P.; Cheriyadat, A.; Fabris, L.; Goddard, J.; Hornback, D.; Karnowski, T.; Kerekes, R.; Newby, J.

    2011-01-01

    Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the land-based approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. In contrast to roadways, where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. A unique solution to this problem is based on a portal-less portal monitor designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. This paper presents the results of a recent test of the system in a maritime setting.

  19. Licensing authority's control of radiation sources and nuclear materials in Brazil

    International Nuclear Information System (INIS)

    Binns, D.A.C.

    2002-01-01

    Full text: The Brazilian Nuclear Energy Commission is the national licensing authority and among its responsibilities is the control of nuclear materials and radiation sources. This control is carried out in three different ways: 1) Control of the import and export of nuclear materials and radiation sources. To be able to import or export any nuclear material or radiation source, the user has to have an explicit permission of the licensing authority. This is controlled by electronic means in which the user has to fill a special form found on the licensing authority's home page, where he has to fill in his name, license number, license number of his radiation protection officer and data of the material to be imported or exported. These data are checked with a data base that contains all the information of the licensed users and qualified personnel before authorization is emitted. The airport authorities have already installed x-ray machines to check all baggages entering or leaving the country. 2) Transport and transfer permit for radiation sources. In order to transport and/or transfer radiations sources and nuclear materials within the country, the user(s) have to submit an application to the licensing authority. The user(s) fill out an application form where he fills in his company's name, licensing I.D., radiation protection officer's name and I.D and identification of the sources involved. These information are checked with the licensing operations data before the operations is permitted. 3) Inspections and radiation monitoring systems. Routine and regulatory inspections are continuously carried out where the user's radiation sources and nuclear materials inventory are checked. Also the physical security and protection of these materials are verified. The installation of monitoring systems is an item that is being discussed with the airport authorities so as to increase the possibilities of detecting any illegal transport of these materials. (author)

  20. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  1. Radiation monitoring at Pakistan research reactor

    International Nuclear Information System (INIS)

    Ali, A.

    1984-05-01

    Area radiation monitoring is accomplished by using Tracer Lab. radiation monitor. Personnel monitoring is carried out using film badges, TLDs (Thermoluminescent Dosimeters) and pocket dosimeters. For the evaluation of monthly accumulated doses of radiation workers film badges/TLDs and for instantaneous/short term dose measurement in higher radiation zones pocket dosimeters are used in addition to film badge/TLD. Environmental monitoring is necessary to check the PARR operation effect on background radiation level in the vicinity of PINSTECH. (A.B.). 4 refs

  2. Computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1994-01-01

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory's Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable

  3. A theoretical approach to calibrate radiation portal monitor (RPM) systems

    International Nuclear Information System (INIS)

    Nafee, Sherif S.; Abbas, Mahmoud I.

    2008-01-01

    Radiation portal monitor (RPM) systems are widely used at international border crossings, where they are applied to the task of detecting nuclear devices, special nuclear material, and radiation dispersal device materials that could appear at borders. The requirements and constraints on RPM systems deployed at high-volume border crossings are significantly different from those at weapons facilities or steel recycling plants, the former being required to rapidly detect localized sources of radiation with a very high detection probability and low false-alarm rate, while screening all of the traffic without impeding the flow of commerce [Chambers, W.H., Atwater, H.F., Fehlau, P.E., Hastings, R.D., Henry, C.N., Kunz, W.E., Sampson, T.E., Whittlesey, T.H., Worth, G.M., 1974. Portal Monitor for Diversion Safeguards. LA-5681, Los Alamos Scientific Laboratory, Los Alamos, NM]. In the present work, compact analytical formulae are derived and used to calibrate two RPM systems with isotropic radiating sources: (i) polyvinyltoluene (PVT) or plastic and (ii) thallium-doped crystalline sodium iodide, NaI(Tl), gamma-ray detector materials. The calculated efficiencies are compared to measured values reported in the literatures, showing very good agreement

  4. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    International Nuclear Information System (INIS)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans

  5. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  6. Radiation monitoring device

    International Nuclear Information System (INIS)

    Sato, Toshifumi.

    1993-01-01

    The device of the present invention concerns a reactor start-up region monitor of a nuclear power plant. In an existent start-up region monitor, bias voltage is limited, if the reactor moves to a power region, in order to prevent degradation of radiation detectors. Accordingly, since the power is lower than an actual reactor power, the reactor power can not be monitored. The device of the present invention comprises a memory means for previously storing a Plateau's characteristic of the radiation detectors and a correction processing means for obtaining a correction coefficient in accordance with the Plateau's characteristic to correct and calculate the reactor power when the bias voltage is limited. With such a constitution, when the reactor power exceeds a predetermined value and the bias voltage is limited, the correction coefficient can be obtained by the memory means and the correction processing means. Corrected reactor power can also be obtained from the start-up region monitor by the correction coefficient. As a result, monitoring of the reactor power can be continued while preventing degradation of the radiation detector even if the bias voltage is limited. (I.S.)

  7. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  8. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  9. Advances in radiation protection monitoring

    International Nuclear Information System (INIS)

    1978-01-01

    The requirement to keep radiation exposure as low as reasonably achievable, linked with the growing number of workers whose exposure to radiation must be strictly controlled, requires intensified efforts directed towards the provision of adequate radiation monitoring programmes. This symposium was intended to review the advances that have been made in methods, techniques and instrumentation for radiation protection monitoring. Thus the symposium complemented the detailed consideration that had already been given to two closely related topics, that of environmental monitoring and of monitoring radioactive airborne and liquid discharges from nuclear facilities. The first topic had been dealt with in detail in an Agency symposium held in November 1973 in Warsaw and the second was treated in an Agency symposium held in September 1977 in Portoroz. The present symposium covered a broad range of topics under the following main headings: Monitoring of external exposure (three sessions),Contamination monitoring (three sessions), Radiation monitoring programmes (one session), Calibration, and use of computers (two sessions). An introductory paper described the purpose of radiation protection monitoring and its historical development. It drew attention to the gradual change from the threshold dose hypothesis to the hypothesis of direct proportionality between dose and effect and discussed practical implications of the recommendations recently issued by the International Commission on Radiological Protection (ICRP). It became apparent that guidance on the application of these recommendations is urgently needed. This guidance is presently being prepared by ICRP

  10. Digital radiation monitor system

    International Nuclear Information System (INIS)

    Quan Jinhu; Zhai Yongchun; Guan Junfeng; Ren Dangpei; Ma Zhiyuan

    2003-01-01

    The article introduced digital radiation monitor system. The contents include: how to use advanced computer net technology to establish equipment net for nuclear facility, how to control and manage measuring instruments on field equipment net by local area net, how to manage and issue radiation monitoring data by internet

  11. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, Vladislav S.; Steranka, Steve A. [RadComm Systems Corp., 2931 Portland Dr., Oakville, ON L6H 5S4 (Canada)

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  12. Ultraviolet radiation monitoring in makkah city, Saudi Arabia, using thermoluminescence material CaF2:Tm

    International Nuclear Information System (INIS)

    Al-Ghorabie, F.H.; Natto, S.S.; AL-Lehyani, S.A.

    2005-01-01

    The aim of the present study is to explore the possibility of using Ca F2:Tm thermoluminescence material for measuring and monitoring of solar UV R in Makkah City, Saudi Arabia. Several laboratory experiments, prior to the field measurements, were performed included study of the effects of ultraviolet wavelengths on the response of the phosphor, study of the effect of increasing ultraviolet radiation dose on the intensity of thermoluminescence and study the effect of time factor on the thermoluminescence fading of Ca F 2 :Tm. The phosphor was then exposed directly for one hour to sunlight radiation on a daily basis for 90 days in an open field inside Umm Al-Qura university campus. The field measurements were performed during the months of June, July and August 2003 at 1:00 p.m. The laboratory and field results of this study showed that Ca F 2 :Tm can be used as a suitable dosimeter for solar UV R

  13. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  14. Occupational radiation exposure in work with radioactive materials

    International Nuclear Information System (INIS)

    Georgiev, G.V.

    1975-01-01

    Radiation exposure to personnel dealing with radioactive materials is studied on a national scale. The survey covers any type of radiation work except for mining and milling of radioactive ore, fuel production, and nuclear reactor operation. Assessments are based on a decade's collection of personnel monitoring data obtained by film dosimetry techniques, as well as on data from systematic operational site monitoring. Statistical analysis indicated exposures based on personal records to follow a normal distribution pattern and, hence, arithmetic averages to be representative. Airborne concontrations of radioactive materials and aerosols in working areas are shown to follow a logarithmic normal distribution pattern, so that geometric means are representative. Radiation exposures are generally found to be well below annual maximum permissible doses for radiation workers. However, their distribution among employee groups is nonuniform. Group A, comprising about 700 subjects, received mean annual gonad doses of more than 1000 mrem; group B, about 670 subjects, had doses ranging from 100 to 500 mrem per year; and group C, 1610 subjects, received less than 100 mrem per year. Most of the radiation dose is accounted for by external radiation, which contributed 0.327 mrem to the genetically significant population dose (0.227 from exposure to males, and 0.025 mrem from exposure to females). Analysis of accidental exposures occurring over the period 1963-1973 indicated that the contribution of this source is substantial as compared to routine work (1.0:0.3). Based on the results obtained, a number of preventive measures are developed and introduced into practice to improve radiological safety in work with radioactive materials. (A.B.)

  15. Radiation monitoring. Report covering period 1 Oct 1994 - 31 Dec 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This quarterly report on radiation monitoring in the Manchester Area uses experimental data and graphs compiled using archive materials to present a picture of gamma radiation air monitoring between 1st October 1994 and 31st December 1994. Compiled for local fire and civil defense authorities and pollution advisory body, data was collected at ten outstations. Temperature, barometric pressure, UVA and UVB readings were taken. Performance of equipment, including maintenance and outages at outstations is included. (UK)

  16. Basic principles for occupational radiation monitoring

    International Nuclear Information System (INIS)

    1987-01-01

    This Safety Guide sets forth the objectives of an adequate strategy for monitoring internal and external radiation exposures of workers. It covers individual monitoring, and workplace monitoring to the extent required for assessment and control of individual radiation doses. The responsibilities of authorities for organizing the monitoring of radiation workers are discussed, and brief descriptions are given of the rules governing the implementation of monitoring methods. The general principles to be considered in selecting instrumentation and appropriate monitoring techniques are described, as well as calibrating techniques, methods of record keeping and related aspects

  17. Radiation monitoring: an introduction. Rev. ed.

    International Nuclear Information System (INIS)

    Hayward, P.; Arnott, D.

    1987-01-01

    This Greenpeace pamphlet has been produced in reponse to requests from members of the public wishing to set up monitoring groups. It lists some U.K. manufacturers of radiation monitoring equipment and the contributors have summarized information available from manufacturer's own catalogues describing the equipment, what it will and will not do and costing various programmes. Three types of monitoring are discussed: monitoring the level of background gamma radiation, monitoring radioactive contamination, (early warning systems), and monitoring food and environmental samples for very low levels of radiation. (UK)

  18. A novel detector based on dual-mode fiber polished half block's characteristics for sensitive monitorings of radiation and materials

    International Nuclear Information System (INIS)

    Saeed, Ghadirli

    2005-01-01

    Full text : The overlay index dependence characteristics of the power distribution between two modes of dual-mode fiber polished half blocks is studied. The heat dependence characteristics of a certain overlay index affects the modal power distributions at the input of interferometer sensors used for monitoring the sensitive heat radiation changes. The other fundamental applications such as material recognitions through the index dependence characteristics in the closed chambers is also suggested

  19. Microcomputer based shelf system to monitor special nuclear materials in storage

    International Nuclear Information System (INIS)

    Nicholson, N.; Kuckertz, T.H.; Ethridge, C.D.

    1980-01-01

    Diversion of special nuclear material has become a matter of grave concern in recent years. Large quantities of this material are kept in long-term storage and must be inventoried periodically, resulting in a time-consuming activity that exposes personnel to additional radiation. A system that provides continuous surveillance of stored special nuclear materials has been developed. A shelf monitor has been designed using a single component microcomputer to collect data from a Geiger Muller tube that monitors gamma emissions and a scale that monitors the total weight of the special nuclear material and its container. A network of these shelf monitors reports their acquired data to a minicomputer for analysis and storage. Because a large number of these monitors is likely to be needed in most storage facilities, one objective of this program has been to develop a low cost but reliable monitor

  20. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  1. Maintenance of radiation monitoring systems

    International Nuclear Information System (INIS)

    Aoyama, Kei

    2001-01-01

    As the safety and quality of atomic power facilities are more strongly required, the reliability improvement and preventive maintenance of radiation monitoring systems are important. This paper describes the maintenance of radiation monitoring systems delivered by Fuji Electric and the present status of preventive maintenance technology. Also it introduces the case that we developed a fault diagnosis function adopting a statistics technique and artificial intelligence (AI) and delivered a radiation monitoring system including this function. This system can output a fault analysis result and a countermeasure from the computer in real time. (author)

  2. Automatic national network of radiation environmental monitoring in Mexico

    International Nuclear Information System (INIS)

    Aguirre, Jaime; Delgado, Jose L.; Lopez, Manuel; Zertuche, Jorge V.

    2013-01-01

    The Direccion de Vigilancia Radiologica (DVR) of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) de Mexico, performs several function for environmental radiation monitoring. One of these functions is the permanent monitoring of the environmental gamma radiation. For this, it implemented the Red Nacional Automatica de Monitoreo Radiologico Ambiental (RENAMORA) - the National Automated Network for Environmental Radiation Monitoring,which currently comprises 60 detector probes for gamma radiation which with a programmable system that includes information technologies, data transmission and software can send the information in real time to a primary center of data located in the facilities of CNSNS. - When the data are received, the system performs the verification and extraction of the information organized in Tables and charts, and generates a report of environmental gamma radiation dose rate average for each of the probes and for each period of time determined bu CNSNS. The RENAMORA covers the main cities and allows to establish the bases of almost the entire country, as well as to warn about abnormal situations caused by incidents or natural events generated by human activities inside or outside the country which involves radioactive materials; paying special attention to main radiological sites, such as the surroundings of the Laguna Verde Nuclear Power Plants, research centers and the radioactive waste disposal sites

  3. Personnel radiation exposure in the Asse saltmine repository during 1967 to 2008. Health monitoring Asse

    International Nuclear Information System (INIS)

    2011-02-01

    The health monitoring Asse includes the following chapters: Introduction, background information including handling of radioactive materials and radiation protection issues, data on radiation exposure (personnel dosimetry, incorporation surveillance, local dose rate measurements, exhaust monitoring, radioactivity in the salt mine air and in the brine, contamination), concept of the data base, interrogation of the personnel, quantification of the individual radiation doses, results of the radiation exposure quantification; significance of the results and perspectives.

  4. Experiences in the monitoring of radiation workers in industry and hospitals in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-08-01

    The task of monitoring of radiation doses among radiation workers employed either in industry and hospitals in the Philippines is presently being undertaken by the Philippine Atomic Energy Commission. These radiation monitoring devices cover not only radioactive materials or sources but also x-ray machines. The most common dosimetry used is the film badge. This paper presents some of the experiences gained in the use of the film badge and other dosimeters

  5. A new-generation radiation monitoring vehicle

    International Nuclear Information System (INIS)

    Gryc, Lubomir; Cespirova, Irena; Sury, Jan; Hanak, Vitezslav; Sladek, Petr

    2015-01-01

    A new radiation monitoring vehicle has been developed within the MOSTAR (Mobile and Stationary Radiation monitoring systems for a new generation of radiation monitoring network) Security Research project. The vehicle accommodates a system for radiation survey using scintillation detectors. Basic spectroscopy is performed with a sodium iodine crystal system, directional measurement is based on two side-mounted plastic detectors, logging dose rates, GPS coordinates and displaying results in a map. A semiconductor spectrometric chain for rapid qualitative and quantitative evaluation of environmental samples is also included. (orig.)

  6. Radiation monitoring system

    International Nuclear Information System (INIS)

    Takeuchi, Nobuyoshi; Fujimoto, Toshiaki; Nagama, Hideyo

    2007-01-01

    A positive outlook toward nuclear power plants and a higher level of technologies for using radiation in the medical field are trends that are spreading throughout the world, and as a consequence, demand is increasing for equipment and systems that measure and control radiation. Equipment ranging from radiation detection and measurement devices to computer-based radiation management systems will be set up in overseas. Products that depend on overseas specifications based on IEC and other international standards are being developed. Fuji Electric is advancing the overseas deployment of radiation monitoring systems by adopting measures that will ensure the reliability and traceability of radiation equipment. (author)

  7. Containing and discarding method for radiation contaminated materials and radiation contaminated material containing composite member

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A container for high level radiation contaminated materials is loaded in an outer container in a state of forming a gap between the outer container and a container wall, low level radiation contaminated materials are filled to the gap between the container of the radiation contaminated materials and the container wall, and then the outer container is sealed. In addition, the thickness of the layer of the low level radiation contaminated materials is made substantially uniform. Then, since radiation rays from the container of the radiation contaminated materials are decayed by the layer of the low level radiation contaminated materials at the periphery of the container and the level of the radiation rays emitted from the outer container is extremely reduced than in a case where the entire amount of high level radiation contaminated materials are filled, the level is suppressed to an extent somewhat higher than the level in the case where the entire amount of the low level radiation contaminated materials are filled. Accordingly, the management corresponds to that for the low level radiation contaminated materials, and the steps for the management and the entire volume thereof are reduced than in a case where the high level radiation contaminated materials and the low level radiation contaminated materials are sealed separately. (N.H.)

  8. Radiation monitoring by minicomputer

    International Nuclear Information System (INIS)

    Seamons, M.

    1977-01-01

    Radiation monitoring at the Los Alamos Scientific Laboratory (LASL) ranges from measuring the potential build-up of alpha particle radiation in the offices and laboratories of LASL to the detection of radiation leakage from nuclear tests at the Nevada Test Site (NTS). This paper describes PDP-11 based systems to accomplish both types of monitoring. In the first system, filter papers are collected from monitoring stations around LASL. One filter paper is placed under any of 128 photomultiplier (PM) tubes exposing it to alpha radiation. Alpha particle ''hits'' are recorded in a 64-word hardware FIFO, which interrupts and is read by the computer. The FIFO makes it possible to handle short aggregate alpha particle bursts of up to 10 6 hits/s in a computer that can only process 10 4 hits/s. In the second system, up to 100 current measuring radiation probes feed data from the site of the nuclear test(s) to the computer by microwave. The software system can support three tests simultaneously. Both systems offer a high degree of flexibility in configuring for a new test and in real-time control of such things as channel assignment, selective data retrieval, and output formatting

  9. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  10. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  11. Air and radiation monitoring stations

    CERN Multimedia

    AUTHOR|(SzGeCERN)582709

    2015-01-01

    CERN has around 100 monitoring stations on and around its sites. New radiation measuring stations, capable of detecting even lower levels of radiation, were installed in 2014. Two members of HE-SEE group (Safety Engineering and Environment group) in front of one of the new monitoring stations.

  12. Environmental radiation monitoring system

    International Nuclear Information System (INIS)

    Kato, Tsutomu; Shioiri, Masatoshi; Sakamaki, Tsuyoshi

    2007-01-01

    Environmental radiation monitoring systems are used to measure and monitoring gamma-rays at the observation boundaries of nuclear facilities and in the surrounding areas. In recent years, however, few new nuclear facilities have been constructed and the monitoring systems shift to renewal of existing systems. In addition, in order to increase public acceptance, the facilities are being equipped with communication lines to provide data to prefectural environmental centers. In this text, we introduce the latest technology incorporated in replacement of environmental radiation monitoring systems. We also introduce a replacement method that can shorten the duration during which environmental dose rate measurement is interrupted by enabling both the replacement system and the system being replaced to perform measurements in parallel immediately before and after the replacement. (author)

  13. Community Radiation Monitoring Program

    International Nuclear Information System (INIS)

    Lucas, R.P. Jr.; Cooper, E.N.; McArthur, R.D.

    1990-05-01

    The Community Radiation Monitoring Program began its ninth year in the summer of 1989, continuing as an essential portion of the Environmental Protection Agency's long-standing off-site monitoring effort. It is a cooperative venture between the Department of Energy (DOE), the Environmental Protection Agency (EPA), the University of Utah (U of U), and the Desert Research Institute (DRI) of the University of Nevada System. The objectives of the program include enhancing and augmenting the collection of environmental radiation data at selected sites around the Nevada Test Site (NTS), increasing public awareness of that effort, and involving, in as many ways as possible, the residents of the off-site area in these and other areas related to testing nuclear weapons. This understanding and improved communication is fostered by hiring residents of the communities where the monitoring stations are located as program representatives, presenting public education forums in those and other communities, disseminating information on radiation monitoring and related subjects, and developing and maintaining contacts with local citizens and elected officials in the off-site areas. 8 refs., 4 figs., 4 tabs

  14. Radiation detectors as surveillance monitors for IAEA safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  15. Radiation detectors as surveillance monitors for IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  16. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  17. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  18. Monitoring of increased natural occuring radiation exposure; Arbeitsplatzueberwachung bei erhoehter natuerlicher Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Guhr, Andreas [ALTRAC Radon-Messtechnik, Berlin (Germany); Leissring, Nick [Bergtechnisches Ingenieurbuero GEOPRAX, Chemnitz (Germany)

    2015-07-01

    The radiation exposure due to natural occurring sources is a special challenge for the health and safety protection at workplaces. The monitoring of the radon exposure of employees in mines, radon-spa and in water works is regulated by prescription of radiation protection. The relevant compounds of the radiation exposure are the inhalation of radon and radon daughter products; terrestrial irradiation; ingestion of radioactive contaminated materials and the inhalation of contaminated dust. The monitoring of the radiation workers is realized essentially by measurements by radiation safety officer of the performing company, by an external engineering firm as well as by control measurements of experts of local authorities. The experiences in the practice have shown that in the field of operational radiation protection only a combination of personal- and operational dosimetry is suitable to avoid health hazards by work in fields with increased natural occurring radiation exposures.

  19. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  20. Radiation protection and monitoring

    International Nuclear Information System (INIS)

    Thomas, P.

    1982-01-01

    The present paper deals with the following topics: - Radiological quantities and units - Principles of radiological protection - Limits of doses and activity uptake - Activity discharges and monitoring - Radiation exposure and its calculation - Environmental monitoring - Personnel dosimetry. (orig./RW)

  1. Real Time Radiation Monitoring Using Nanotechnology

    Science.gov (United States)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  2. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  3. Characteristics of the IAEA correlation monitor material for surveillance programmes

    International Nuclear Information System (INIS)

    Wallin, K.; Valo, M.; Rintamaa, R.; Toerroenen, K.

    1989-08-01

    Within the IAEA Coordinated Research Programme on optimizing of reactor pressure vessel surveillance programmes and their analysis, phase 3, a specially tailored 'radiation sensitive' correlation monitor material has been fabricated. This material will serve as a reference to the IAEA programme for future vessel surveillance programmes throughout the world. An extensive evaluation of the correlation monitor material in the as-received condition has been carried out in Finland and the results are presented here. The mechanical properties measured at different temperatures include Charpy V notch and instrumented precracked Charpy data, and elastic-plastic fracture toughness (J). The specimen size and geometry have been varied in the tests. Correlation between different fracture properties are evaluated and discussed

  4. Radiation monitors of new generation - New methodology of detection of nuclear and radioactive materials

    International Nuclear Information System (INIS)

    Kagan, L.; Stavrov, A.

    2001-01-01

    Full text: In recent few years the world community has faced a problem which was considered before as an almost theoretical one - a possibility of illicit trafficking of nuclear and radioactive materials due to their partially controlled or even completely uncontrolled proliferation. Organization of the first conference entitled 'Safety of Radiation Sources and Security of Radioactive Materials', Dijon, France, 14-18 September 1998, is particularly a witness of the world community's concern about these issues. The conference was held under the aegis of the IAEA, European Commission, INTERPOL and World Customs Organization. The conference covered the whole range of problems concerned with both the elaboration of legal regulations of radiation control, development of equipment and training of personnel. Since 1997 till 2000 the international ITRAP program (Illicit Trafficking Radiation Detection Assessment Program) was held under the aegis of the IAEA, WCO and INTERPOL. The task of the program was to work out the common requirements to the equipment, to test the equipment against the program requirements and to elaborate recommendations for the IAEA member-countries. In the course of this program realization the modern devices of the world leading manufacturers of the equipment for radiation control at state borders had been tested. The equipment to be tested is designed to fulfil the following main tasks: alarming about the presence of radioactive source in the controlled area; detection and location of the source, as well as its identification, personnel radiation protection being necessarily provided. To fulfil each of the above tasks essentially different specialized instruments are used: from large fixed installed systems to portable instruments, 'pager' type pocket search instruments and personal dosimeters. Consequently numerous different instruments have to be used during the radiation control at borders. It creates considerable difficulties for border guard

  5. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  6. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1992-06-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the first quarter of 1992. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility

  7. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1996-01-01

    The guide presents the principles to be applied in calculating the equivalent dose and the effective dose, instructions on application of the maximum values for radiation exposure, and instruction on monitoring of radiation exposure. In addition, the measurable quantities to be used in monitoring the radiation exposure are presented. (2 refs.)

  8. Radiation control monitoring system on the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Minowa, Y.; Nakazawa, T.; Sato, K.; Kikuchi, H.; Nomura, T.

    1999-01-01

    Radiation control monitoring system of the HTTR is divided into three subsystems; exhaust monitoring equipment, room air monitoring equipment, dose equivalent rate monitoring equipment. The exhaust monitoring equipment consists of exhaust gas monitors, exhaust dust monitors, and a tritium and carbon sampling device at normal operation of the reactor. Accident gas monitors are also provided for the emergency. The tritium and carbon sampling device uses cupper oxide as a oxidizer, and ethanol amine as a sampling materials which collects continuously tritium and carbon in dust during about one month and is measured by a liquid scintillation counter. The accident gas monitors consist of two channels, for a low and a high range. The high range-gas monitor consists of two ionization chambers: one encloses argon gas and the other encloses xenon gas. Average energy of various gamma-rays, hence, accident exposure dose of the public can be estimated with the comparison of the sensitivity of two kinds of ionization chambers. The dose equivalent rate monitoring equipment consists of silicon semiconductor detectors for gamma-ray, a ionization chamber for gamma-ray, a BF 3 counter for neutron, and accident area monitors which are located in the reactor container. The message of 'check dose !' or 'temporary evacuation !' can be send to the workers in the reactor with a light and a sound. A computer system collects the radiation monitoring data every 10 sec cycle and accumulates them in a server computer. The leakage and the dispersion of helium gas must be taken into account on the radiation control monitoring system of the HTTR. (Suetake, M.)

  9. National Environmental Radiation Warning And Monitoring Network And Proposed Radiation Monitoring Programme For The 1st Nuclear Power Plant Ninth Thuan

    International Nuclear Information System (INIS)

    Vuong Thu Bac

    2011-01-01

    National Environmental Radiation Warning and Monitoring Network has been gradually setting up based on some of legislative documents which have been issued in recent years. Studies and surveys to build an environmental radiation monitoring program for nuclear power plant (NPP) have also been implemented. This paper aims to introduce National Environmental Radiation Warning and Monitoring Network in Vietnam which has been approved by the government, the draft program for environmental radiation monitoring Ninh Thuan NPP and some initial results of research about environmental radiation in the planning area for building first NPP in Vietnam. (author)

  10. The design of radiation monitor passageway system

    International Nuclear Information System (INIS)

    Chu Chengsheng

    2006-10-01

    The Radiation Monitor Passageway System is designed as four modules, the radiation detection modules, the control modules, the mechanism modules and the optional modules. this system integrate the radiation detection technology and door ban control technology. It is a effective radiation monitor equipment with high detect sensitiveness, it will be hopeful devoted to national nuclear safeguard. (authors)

  11. RTP Radiation Monitoring System

    International Nuclear Information System (INIS)

    Alfred, S.L.; Mohd Fairus Abdul Farid; Ahmad Nabil Abdul Rahim; Nurhayati Ramli

    2015-01-01

    Radiation Monitoring System aiming to limiting dose exposed to personnel to the lowest level referring to the concept of ALARA (As Low As Reasonably Achievable). Atomic Energy Licensing (Basic Safety Radiation Protection) Regulation 2010 (Act 304) is a baseline to control employee and public radiation protection program and guideline, as well as to meet the requirement of the Occupational Safety and Health 1994 (Act 514). (author)

  12. Radiation contamination monitors

    International Nuclear Information System (INIS)

    Kato, Tsutomu; Iba, Hiroshi; Sato, Hiroshi

    1999-01-01

    To make sure of no contamination on people, used articles and working uniforms coming out of the radiation controlled area, nuclear power plants are equipped with radioactive contamination monitors. This paper outlines the basic specifications and advantages of our personnel surface contamination monitors to inspect whole-body surface contamination of people coming out, article surface contamination monitors to inspect the surface and inside contamination of used articles brought out, laundry monitors to inspect surface contamination of working uniforms used in the area before and after a wash, and whole-body counters to inspect and measure the internal contamination of a person out of the area. (author)

  13. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    International Nuclear Information System (INIS)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982

  14. Radiation-sensitive material and method of recording information upon radiation-sensitive material

    International Nuclear Information System (INIS)

    Petrov, V.V.; Krjuchin, A.A.

    1981-01-01

    The invention can be employed for recording binary information in memory units of electronic computers, in video-recording equipment, laser recording devices and other recording means. The proposed radiation-sensitive material comprises a metallic layer made of silver, or copper, or nickel, or thallium, or alloy thereof, an inorganic material layer made of arsenic chalcogenide, or antimony chalcogenide, or bismuth chalcogenide, and a separation layer disposed between the metallic layer and the inorganic material layer made of a material which is inert relative to said layers, which separation layer has a thickness sufficient for preventing interaction between the metallic layer and the inorganic material layer when the radiation-sensitive materials is exposed to electromagnetic or corpuscular radiation having a power density lower than a threshold value required for the breakdown of the separation layer in the area exposed to radiation. The separation layer can be made from As, Sb, Si or Ge or their oxides, metallic oxides of e.g. Al, Ti, V or Fe, or from polyorganosiloxane films. (author)

  15. Radiation monitoring system based on EPICS

    International Nuclear Information System (INIS)

    Wang Weizhen; Li Jianmin; Wang Xiaobing; Hua Zhengdong; Xu Xunjiang

    2008-01-01

    Shanghai Synchrotron Radiation Facility (SSRF for short) is a third-generation light source building in China, including a 150 MeV injector, 3.5 GeV booster, 3.5 GeV storage ring and an amount of beam line stations. During operation, a mass of Synchrotron Radiation will be produced by electrons in the booster and the storage ring. Bremsstrahlung and neutrons will also be produced as a result of the interaction between the electrons, especially the beam loss, and the wall of the vacuum beam pipe. SSRF Radiation Monitoring System is established for monitoring the radiation dosage of working area and environment while SSRF operating. The system consists of detectors, intelligent data-collecting modules, monitoring computer, and managing computer. The software system is developed based on EPICS (Experimental Physics and Industrial Control System), implementing the collecting and monitoring the data output from intelligent modules, analyzing the data, and so on. (authors)

  16. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    International Nuclear Information System (INIS)

    Bero, M A; Abukassem, I

    2009-01-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  17. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    Science.gov (United States)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  18. Multi-detector environmental radiation monitor with multichannel data communication for Indian Environmental Radiation Monitoring Network (IERMON)

    International Nuclear Information System (INIS)

    Patel, M.D.; Ratheesh, M.P.; Prakasha, M.S.; Salunkhe, S.S.; Vinod Kumar, A.; Puranik, V.D.; Nair, C.K.G.

    2011-01-01

    A solar powered system for online monitoring of environmental radiation with multiple detectors has been designed, developed and produced. Multiple GM tube detectors have been used to extend the range of measurement from 50 nano Gy/hr to 20 Gy/hr and to enhance the reliability of the system. Online data communication using GSM based and direct LAN based communication has been incorporated. Options for use of power supply from mains powered and battery powered have been enabled. Care has been taken to make it weather-proof, compact, elegant and reliable. The development is a part of the ongoing program of country-wide deployment of radiation monitors under 'Indian Environmental Radiation MOnitoring Network' (IERMON). (author)

  19. Routine sanitary radiation monitoring

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Hygienic bases and organization principles of radiation monitoring realized in the process of operation of nuclear power engineering enterprises are considered. The monitoring is aimed at prevention from a negative effect of ionizing radiations on public heath. It is achieved by solution of the following tasks: realization of control over radioactive waste disposal into environment, control over the level of radioactive substance content in evironmental objects, control over external and internal irradiation of population assessment of environmental radiactivity of certain regions and of the territory of the country with the subsequent informing the corresponding organizations and population

  20. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, H.; Kobalyashi, H.

    1993-01-01

    JAERI has continued the environmental radiation background survey and monitoring to ensure the safety of the peoples around the institute since one year before the first criticality of JRR-1 (Japan Research Reactor No.1) in August 1957. Air absorbed doses from β and γ radiation, α and β radioactivity in air and the radioactivities in environmental samples were the monitoring items. For the monitoring of β and γ radiation and α and β radioactivity in air, monitoring station and the centralized automatic environmental radiation monitoring system applying a computer were established as a new challenging monitoring system for nuclear facility, which was the first one not only in Japan but also in the would in 1960 and since then the system has been renewed two times (in 1973 and 1988) by introducing the latest technology in the fields of radiation detection and computer control at each stage. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop arisen from thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles

  1. Occupational radiation exposure monitoring among radiation workers in Nepal

    International Nuclear Information System (INIS)

    Bhatt, Chhavi Raj; Shrestha, Shanta Lall; Khanal, Tara; Ween, Borgny

    2008-01-01

    Nepal was accepted as a member of the IAEA in 2007. Nepal is one of the world's least developed countries and is defined in Health Level IV. The population counted 26.4 millions in 2007. The health care sector increases with new hospitals and clinics, however, Nepal has no radiation protection authority or radiation protection regulation in the country until now. The radiation producing equipment in the health sector includes conventional X-ray and dental X-ray equipment, fluoroscopes, mammography, CT, catheterization laboratory equipment, nuclear medicine facilities, a few linear accelerators, Co 60 teletherapy and High Dose Rate brachytherapy sources. The situation regarding dosimetry service for radiation workers is unclear. A survey has been carried out to give an overview of the situation. The data collection of the survey was performed by phone call interviews with responsible staff at the different hospitals and clinics. Data about different occupationally exposed staff, use of personal radiation monitoring and type of dosimetry system were collected. In addition, it was asked if dosimetry reports were compiled in files or databases for further follow-up of staff, if needed. The survey shows that less of 25% of the procedures performed on the surveyed hospitals and clinics are performed by staff with personnel radiation monitoring. Radiation monitoring service for exposed staff is not compulsory or standardized, since there is no radiation protection authority. Nepal has taken a step forward regarding radiation protection, with the IAEA membership, although there are still major problems that have to be solved. An evaluation of the existing practice of staff dosimetry can be the first helpful step for further work in building a national radiation protection authority. (author)

  2. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1990 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory -- Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release

  3. Radiation studied on the internet. On-line radiation teaching materials

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi; Yamasaki, Mariko

    2005-01-01

    In order to facilitate scientific understanding of radiation in Japan where social understanding has been already progressed, we developed Internet radiation teaching materials that can be utilized as off-school teaching materials or supplementary materials. The teaching materials of ''atomic structure and radiation'' and ''medical treatment and radiation'' were tried for 160 high school students and 59 junior high school students, respectively. More than 70% of the student answered that these teaching materials were effective when they understand radiation. (author)

  4. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 32 of the Radiation Act (592/91) the Finnish Centre for Radiation and Nuclear Safety gives instructions concerning the monitoring of the radiation exposure and the application of the dose limits in Finland. The principles to be applied to calculating the equivalent and the effective doses are presented in the guide. Also the detailed instructions on the application of the maximum exposure values for the radiation work and for the natural radiation as well as the instructions on the monitoring of the exposures are given. Quantities and units for assessing radiation exposure are presented in the appendix of the guide

  5. Design of Kartini reactor radiation monitor system using lab view

    International Nuclear Information System (INIS)

    Adi Abimanyu; Jumari; Achmad Fahrul Aji; Muhammad Khoiri

    2014-01-01

    Kartini Reactor operation will result in radiation exposure. Gamma radiation exposure rate at the Kartini Reactor monitored by several radiation monitors (Ludlum) that integrate with the computer, so that the rate of radiation exposure is always monitored. Current monitoring system combines six radiation monitor in one computer monitor radiation, and monitoring performed by operators and supervisors to see how the radiation exposure rate measured in the area around the reactor core in a periodic time manually. This research will develop a system to monitor radiation exposure in Kartini reactor based ATMega8 micro controller for interface between radiation monitor and computer and also Graphical User Interface (GUI) develop using Lab view software that makes monitoring is easier and documented regularly. This system is testing by simulation, it is done by replacing the function of the radiation monitoring devices (Ludlum) in Kartini Reactor with computers that send serial data with the same format with a format that is sent by Ludlum. The results show that the interface system has the ability to operate in a range of baud rate 1,200 bps, 2,400 bps, 4,800 bps, 9,600 bps, 14,400 bps, 19,200 bps and 38,400 bps, with the ability to provide realtime information every 6 seconds and able to document the rate of exposure to radiation in the form of logbook. (author)

  6. Radiation monitoring at Sizewell B PWR

    International Nuclear Information System (INIS)

    Hills, O.C.

    1992-01-01

    Radiation monitoring in Sizewell-B Power Station most significantly differs from that in existing UK Power Stations in two respects: firstly in the large number of on-line radiation monitors and secondly in the way that the monitors are linked into a fully-integrated, centralised data acquisition and display system, which can be accessed and viewed by the operators. An overview is given of how full process data is transmitted along data links between the Auxiliary Shut-Down Room, Technical Support Centre and Main Control Room, enabling Health Physics and other staff to access information from any radiation monitor. The permanently installed monitors together with the safety category, type and location are listed. As part of the Sizewell-B Process Plant control and instrumentation contract, NEI is to supply the Health Physics Instrumentation (HPI) and Process and Effluent Activity Monitoring System (PEAMS) (excluding the Primary Protection System) plus the Nuclear Sampling System (NSS). This paper concentrates on the HPI, and parts of the PEAMS and NSS for which NEI have the responsibility for system design, detail design, manufacture, site installation and commissioning. Section 2 briefly describes the sources of radiation at Sizewell-B; Sections 3, 4 and 5 describe the PEAMS, HPI and NSS respectively. Section 6 details the design of two of the Sizewell-B PEAMS subsystems. (Author)

  7. Material monitoring

    International Nuclear Information System (INIS)

    Kotter, W.; Zirker, L.; Hancock, J.A.

    1995-01-01

    Waste Reduction Operations Complex (WROC) facilities are located at the Idaho National Engineering Laboratory (INEL). The overall goal for the Pollution Prevention/Waste Minimization Unit is to identify and establish the correct amount of waste generated so that it can be reduced. Quarterly, the INEL Pollution Prevention (P2) Unit compares the projected amount of waste generated per process with the actual amount generated. Examples of waste streams that would be addresses for our facility would include be are not limited to: Maintenance, Upgrades, Office and Scrap Metal. There are three potential sources of this variance: inaccurate identification of those who generate the waste; inaccurate identification of the process that generates the waste; and inaccurate measurement of the actual amount generated. The Materials Monitoring Program was proposed to identify the sources of variance and reduce the variance to an acceptable level. Prior to the implementation of the Material Monitoring Program, all information that was gathered and recorded was done so through an informal estimation of waste generated by various personnel concerned with each processes. Due to the inaccuracy of the prior information gathering system, the Material Monitoring Program was established. The heart of this program consists of two main parts. In the first part potential waste generators provide information on projected waste generation process. In the second part, Maintenance, Office, Scrap Metal and Facility Upgrade wastes from given processes is disposed within the appropriate bin dedicated to that process. The Material Monitoring Program allows for the more accurate gathering of information on the various waste types that are being generated quarterly

  8. Monitoring system for detection of radioactive materials in trucks at Commissariat a l'Energie Atomique (CEA-France)

    International Nuclear Information System (INIS)

    Levelut, M.N.

    1998-01-01

    Radiation Monitoring to control the radioactivity in vehicles and trucks are in use inside the sites of Commissariat a l'Energie Atomique. The first function of these monitoring systems in the detection of radioactive source or contaminated materials inside all loads of vehicles, before going out the nuclear site for the discharge of their materials either in a proper waste disposal or in an industrial site for material recycling. Other radioactive controls are conducted for nuclear materials and radioactive wastes. The radiation monitoring system use 4 to 6 plastic scintillators mounted vertically on each side of the roadway near the truck and horizontally, above or below the vehicle. The functional components also include a microprocessor for processing the signals and algorithms for interpreting the data transmitted to the control unit. This system functions in a dynamic mode; radiation is detected while the truck is in motion taking a series of incremental observations based on a differential count rate with the respect to the background. Vehicle scan information is printed out on a ticket specifying the result of the control. In case of unexpected radiation, an alarm is emitted. The vehicle is submitted to further investigations to find the source with a hand held instrument, analyse the radionuclides by spectrometry and find its origin in order to manage the corrective actions. The paper describes the system named > (Controle de la Radioactivite des Chargements de Vehicules), its sensitivity and the results of routine monitoring for several years. Few examples of radiation alarm are developed. (author)

  9. Analysis of food radiation monitoring system in Belarus

    International Nuclear Information System (INIS)

    1992-01-01

    Food radiation monitoring system in Belarus due to the Chernobyl accident is analysed. Structure of radiation monitoring network, instrumentation and modern developments. Information on permissible concentration levels in foodstuffs and water is presented and calculations of radionuclide intake for man are performed. Proposals on the creation of social centres of food radiation monitoring for Belarussian population are considered. 4 tabs

  10. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    Science.gov (United States)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  11. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-01-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  12. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kheliewi, Abdullah S. [National Center for Radiation Protection, King Abdulaziz City for Science and Technology, 11442 Riyadh (Saudi Arabia); Holzheimer, Clous [ENVINET GmbH, Environmental Radiation Detection, Hans-Pinsel-Straße 4, 85540 Haar (Munich) (Germany)

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  13. Personal radiation monitoring

    International Nuclear Information System (INIS)

    Julius, H.W.

    1976-01-01

    This report reviews the context of a primary university course in individual radiation monitoring. A brief account of the regulations and permissible doses is given. The principles and design of film dosemeters, thermoluminescent dosemeters and the whole-body counting technique are treated

  14. Notes on radiation effects on materials

    International Nuclear Information System (INIS)

    Anno, J.N.

    1984-01-01

    The effects of radiation from nuclear reactions on various classes of materials are examined in an introductory textbook for students of nuclear engineering. Topics discussed include the units and general scale of radiation damage, fundamental interactions of neutrons and gamma rays with materials, transient radiation effects on electrical components, radiation effects on organic materials and on steels, nuclear fission effects, surface effects of nuclear radiations, radiation effects on biological material, and neutron and gamma-ray dosimetry. Graphs, diagrams, tables of numerical data, and problems for each chapter are provided. 122 references

  15. A unique radiation area monitoring system

    International Nuclear Information System (INIS)

    Murphy, P.C.; Allen, G.C.

    1978-01-01

    The Remote Area Monitoring Systems (RAMS) monitors four radiation areas with two independent systems in each area. Each system consists of power supplies, four ionization chambers, and four analog and digital circuits. The first system controls the warning beacons, horns, annunciation panel and interlocks. The second system presents a quantitative dose rate indication at the console and in the radiation area

  16. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1994-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1993. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  17. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1993-03-01

    This report present the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1992. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  18. Development of a portable monitor for detecting gamma radiation and X-rays

    International Nuclear Information System (INIS)

    Silva Neto, Paulo J. da; Lira, Carlos A.B. de O.; Oliveira, Arno H. de

    2011-01-01

    There are several ways to prevent individuals from receiving excessive or unnecessary doses of radiation, and area monitoring contributes to the radiation protection in the assessment whether these means are really efficient. The area monitoring is used to give an indication of radiation levels in certain locations. Using this method, one can estimate the dose received by staff occupying a particular area for a certain period of time. Hence, the purpose of this work was the construction of a portable monitor, consisting of an ionization chamber, with a volume of approximately 517 cc and built from tissue-equivalent material, and of its associated electronics. Radiation measurements of gamma and X-rays beams were then possible. The results showed a linear response of the monitor for different dose rates. The stability test of the response also showed a good reproducibility within ± 1%. A low energy dependence for energies between 16 - 200keV was observed, and complied well with the IEC 60846 standard. However, for the energy range 200 - 1250keV, the discrepancies to the IEC standard are considerable, so that the interposition of filters is necessary and may improve the energy response curve to within acceptable limits. (author)

  19. Standalone, battery powered radiation monitors for accelerator electronics

    CERN Document Server

    Wijnands, T; Spiezia, G

    2009-01-01

    A technical description of the design of a new type of radiation monitors is given. The key point in the design is the low power consumption inferior to 17 mW in radiation sensing mode and inferior to 0.3 mW in standby mode. The radiation monitors can operate without any external power or signal cabling and measure and store radiation data for a maximum period of 800 days. To read the radiation data, a standard PC can be connected via a USB interface to the device at any time. Only a few seconds are required to read out a single monitor. This makes it possible to survey a large network of monitoring devices in a short period of time, for example during a stop of the accelerator.

  20. Radiation environmental real-time monitoring and dispersion modeling

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  1. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-04-01

    This report presents the results of the NRC [Nuclear Regulatory Commission] Direct Radiation Monitoring Network for the fourth quarter of 1990. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs

  2. Field test of a post-closure radiation monitor

    International Nuclear Information System (INIS)

    Reed, S.; Christy, C.E.; Heath, R.E.

    1995-01-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy's Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. A prototype LPRMS probe was built, and B ampersand W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE's Office of Technology Development (EM-50) through METC. The system was used to measure soil and water with known uranium contamination levels, both in drums and in situ at depths up to 3 meters. For comparison purposes, measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics. This paper presents a description and the results of the field tests. The results were used to characterize the lower detection limits, precision and bias of the system, which allowed the DOE to judge the monitoring system's ability to meet its long-term post-closure radiation monitoring needs. Based on the test results, the monitoring system has been redesigned for fabrication and testing in a potential Phase III of this program. If the DOE feels that this system can meet its needs and chooses to continue into Phase III of this program, this redesigned full scale prototype system will be built and tested for a period of approximately a year. Such a system can be used at a variety of radioactively contaminated sites

  3. Monitoring system for gamma radiation of porch type for vehicles

    International Nuclear Information System (INIS)

    Vazquez C, R.M.; Molina, G.; Gutierrez O, E.; Ramirez J, F.J.; Garcia H, J.M.; Aguilar B, M.A.; Vilchis P, A.E.; Cruz E, P.; Torres B, M.A.

    2005-01-01

    A monitoring system of gamma radiation for vehicles of the porch type developed in the ININ is presented. This system carries out the radiological monitoring of the vehicles in continuous form, detecting the bottom radiological environment and the presence of nuclear material transported in vehicles. The vehicles are monitored while they pass to low speed through the porch. The detectors are plastic scintillators of great volume that allow high sensibility detection. The arrangement of detecting is interconnected in net, and the data are concentrated on a personal computer whose interface man-machine can be accessed from any personal computer connected to Internet. The system monitoring in real time with options of sampling times from 50 ms configurable up to 500 ms. (Author)

  4. Suggestions for the Improvement of Environmental Radiation Monitoring in Kenya

    International Nuclear Information System (INIS)

    Shadrack, A. K.

    2012-01-01

    Environmental radiation monitoring in Kenya was started in 1990 following the 1979 Three Mile Island and the 1986 Chernobyl nuclear power plants accidents. The main purpose was to measure the radioactivity of foodstuffs imported from oversees and to carry out environmental radiation monitoring of soil, rock, water and air sample to check for contamination. Through environmental radiation monitoring, the Food and Environmental Monitoring Section (FEM) of the Kenya Radiation Protection Board (RPB) works to protect the public and environment from hazards associated with ionizing radiation. The purpose of this paper was to highlight suggestions for the improvement of environmental radiation monitoring in Kenya with respect to protecting the public and the environment against undue radiation risk by ensuring that potential exposures are kept As Low As Reasonably Achievable (ALARA). The suggestions for improvement will serve as a guideline for the strengthening of environmental radiation monitoring program in Kenya

  5. Radiation environmental real-time monitoring and dispersion modelling

    International Nuclear Information System (INIS)

    Kovacik, Andrej; Bartokova, Ivana; Melicherova, Terezia; Omelka, Jozef

    2015-01-01

    The MicroStep-MIS system of real-time radiation monitoring, which provides a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data, is described and discussed in detail. The qualities, long-term stability of measurement and sensitivity of the RPSG-05 probe are illustrated on its use within the radiation monitoring network of the Slovak Hydrometeorological Institute and within the monitoring network in the United Arab Emirates. (orig.)

  6. Radiation synthesis of materials and compounds

    CERN Document Server

    Kharisov, Boris Ildusovich; Ortiz Méndez, Ubaldo

    2013-01-01

    Researchers and engineers working in nuclear laboratories, nuclear electric plants, and elsewhere in the radiochemical industries need a comprehensive handbook describing all possible radiation-chemistry interactions between irradiation and materials, the preparation of materials under distinct radiation types, the possibility of damage of materials under irradiation, and more. Radiation nanotechnology is still practically an undeveloped field, except for some achievements in the fabrication of metallic nanoparticles under ionizing flows. Radiation Synthesis of Materials and Compounds presents the state of the art of the synthesis of materials, composites, and chemical compounds, and describes methods based on the use of ionizing radiation. It is devoted to the preparation of various types of materials (including nanomaterials) and chemical compounds using ionizing radiation (alpha particles, beta particles, gamma rays, x-rays, and neutron, proton, and ion beams). The book presents contributions from leaders ...

  7. Personal radiation monitoring and assessment of doses received by radiation workers (1996)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1996-12-01

    Since late 1986, all persons monitored by the Australian Radiation Laboratory have been registered on a data base which maintains records of the doses received by each individual wearer. At present, the Service regularly monitors approximately 30,000 persons, which is roughly 90 percent of those monitored in Australia, and maintains dose histories of over 75,000 people. The skin dose for occupationally exposed workers can be measured by using one of the five types of monitor issued by the Service: Thermoluminescent Dosemeter (TLD monitor), Finger TLD 3, Neutron Monitor, Special TLD and Environmental monitor. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 5 figs

  8. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  9. Occupational radiation protection in the mining and processing of raw materials

    International Nuclear Information System (INIS)

    2004-01-01

    The mining and processing of uranium ore, thorium ore and other raw materials containing natural radionuclides are carried out in a number of Member States. There is a clear need to update the guidance on the radiation protection of the workers involved, and this Safety Guide provides such updated guidance. Material from two previous publications has been adapted for inclusion in this Safety Guide. These previous publications - Radiation Monitoring in the Mining and Milling of Radioactive Ores (Safety Series No. 95) and Radiation Protection of Workers in the Mining and Milling of Radioactive Ores (Safety Series No. 26, hereby superseded) - dealt principally with activities involving uranium ore and thorium ore. Activity concentrations of naturally occurring radionuclides are elevated in other mineral deposits such as heavy mineral sands and phosphate rock. Furthermore, high radon levels may be found in mines, irrespective of the activity concentrations of natural radionuclides in the raw material being extracted. In recognition of these circumstances, this Safety Guide is intended to apply also to the mining and processing of any raw material for which radiation protection measures need to be considered. The IAEA Safety Fundamentals publication on Radiation Protection and the Safety of Radiation Sources presents the principles, concepts and objectives of protection and safety. Safety requirements based on the objectives and principles specified in these Safety Fundamentals, including requirements for the protection of workers exposed to ionizing radiation, are established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or Bss). These requirements also reflect the recommendations of the International Commission on Radiological Protection (ICRP). Safety Guides provide recommendations on the basis of international experience on the fulfilment of the requirements

  10. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  11. Automated high-volume aerosol sampling station for environmental radiation monitoring

    International Nuclear Information System (INIS)

    Toivonen, H.; Honkamaa, T.; Ilander, T.; Leppaenen, A.; Nikkinen, M.; Poellaenen, R.; Ylaetalo, S.

    1998-07-01

    An automated high-volume aerosol sampling station, known as CINDERELLA.STUK, for environmental radiation monitoring has been developed by the Radiation and Nuclear Safety Authority (STUK), Finland. The sample is collected on a glass fibre filter (attached into a cassette), the airflow through the filter is 800 m 3 /h at maximum. During the sampling, the filter is continuously monitored with Na(I) scintillation detectors. After the sampling, the large filter is automatically cut into 15 pieces that form a small sample and after ageing, the pile of filter pieces is moved onto an HPGe detector. These actions are performed automatically by a robot. The system is operated at a duty cycle of 1 d sampling, 1 d decay and 1 d counting. Minimum detectable concentrations of radionuclides in air are typically 1Ae10 x 10 -6 Bq/m 3 . The station is equipped with various sensors to reveal unauthorized admittance. These sensors can be monitored remotely in real time via Internet or telephone lines. The processes and operation of the station are monitored and partly controlled by computer. The present approach fulfils the requirements of CTBTO for aerosol monitoring. The concept suits well for nuclear material safeguards, too

  12. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Science.gov (United States)

    Wart, Megan; Simpson, Evan; Flaska, Marek

    2018-01-01

    Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  13. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Directory of Open Access Journals (Sweden)

    Wart Megan

    2018-01-01

    Full Text Available Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  14. Radiation protection monitoring for #betta#-radiation at the Juelich Nuclear Research Centre

    International Nuclear Information System (INIS)

    Keller, M.; Heinzelmann, M.

    1983-01-01

    A complete system for radiation protection monitoring also includes #betta#-radiation monitoring. This requires suitable dose rate meters, personal dosemeters and last but not least detailed information about possible radiation exposure due to #betta#-radiation. Since there are at present no suitable #betta#-dosemeters available on the market yet, a large nuclear research centre such as the KFA Juelich, where radioactive substances are being handled by more than 1600 persons, has the task of developing and deploying suitable dosemeters. The centre's accomplishments in this area are described

  15. Radiation protection monitoring. Proceedings of a regional seminar for Asia and the Far East on radiation protection monitoring

    International Nuclear Information System (INIS)

    1969-01-01

    Proceedings of a regional seminar for Asia and the Far East jointly organized by the IAEA and the World Health Organization, and held in Bombay, 9-13 December 1968. The meeting was attended by 83 participants from 12 countries In the region, and by eight experts from countries outside the region who presented review papers. Contents: Purpose of radiation protection monitoring (4 papers); Radiation monitoring and dosimetry (7 papers); Monitoring of the working environment (12 papers); Individual monitoring (14 papers); Monitoring instruments (7 papers); Calibration and maintenance of instruments (3 papers); List of participants; Author index. All papers, which are preceded by an abstract, as well as the discussions, are in English

  16. Environmental and Source Monitoring for Purposes of Radiation Protection. Safety Guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide international guidance, coherent with contemporary radiation protection principles and IAEA safety requirements, on the strategy of monitoring in relation to: (a) control of radionuclide discharges under practice conditions, and (b) intervention, such as in cases of nuclear or radiological emergencies or past contamination of areas with long lived radionuclides. Three categories of monitoring are discussed: monitoring at the source of the discharge (source monitoring), monitoring in the environment (environmental monitoring) and monitoring of individual exposure in emergencies (individual monitoring). The Safety Guide also provides general guidance on assessment of the doses to critical groups of the population due to the presence of radioactive materials or radiation fields in the environment both from routine operation of nuclear and other related facilities (practice) and from nuclear or radiological emergencies and past contamination of areas with long lived radionuclides (intervention). The dose assessments are based on the results of source monitoring, environmental monitoring, individual monitoring or their combinations. This Safety Guide is primarily intended for use by national regulatory bodies and other agencies involved in national systems of radiation monitoring, as well as by operators of nuclear installations and other facilities where natural or human made radionuclides are treated and monitored. Contents: 1. Introduction; 2. Meeting regulatory requirements for monitoring in practices and interventions; 3. Responsibilities for monitoring; 4. Generic aspects of monitoring programmes; 5. Programmes for monitoring in practices and interventions; 6. Technical conditions for monitoring procedures; 7. Considerations in dose assessment; 8. Interpretation of monitoring results; 9. Quality assurance; 10. Recording of results; 11. Education and training; Glossary.

  17. Radiation shielding material

    International Nuclear Information System (INIS)

    Kawakubo, Takamasa; Yamada, Fumiyuki; Nakazato, Kenjiro.

    1976-01-01

    Purpose: To provide a material, which is used for printing a samples name and date on an X-ray photographic film at the same time an X-ray radiography. Constitution: A radiation shielding material of a large mass absorption coefficient such as lead oxide, barium oxide, barium sulfate, etc. is added to a solution of a radiation permeable substance capable of imparting cold plastic fluidity (such as microcrystalline wax, paraffin, low molecular polyethylene, polyvinyl chloride, etc.). The resultant system is agitated and then cooled, and thereafter it is press fitted to or bonded to a base in the form of a film of a predetermined thickness. This radiation shielding layer is scraped off by using a writing tool to enter information to be printed in a photographic film, and then it is laid over the film and exposed to X-radiation to thereby print the information on the film. (Seki, T.)

  18. Radiation exposures of workers and the public associated with the transport of radioactive material in Germany

    International Nuclear Information System (INIS)

    Schwarz, G.; Fett, H.J.; Lange, F.

    2004-01-01

    Most radioactive material packages transported emit penetrating ionising radiation and radiation exposures of transport workers and the public may occur during their transport. The radiation exposures incurred by transport workers and members of the public can vary significantly depending on a number of factors: most important is the type of radiation emitted (primarily gamma and neutron radiation), the radiation field intensity in the surrounding of a package and conveyance and the duration of exposure to ionising radiation. The information and guidance material on occupational exposures has primarily been derived from a survey and analysis of personal monitoring data provided by a number of commercial transport operators in Germany known as major carrier and handler organisations of fuel cycle and non-fuel cycle material (in terms of the number of pack-ages and the activity carriaged). To some extent advantage was taken of compilations of statistical transport and exposure data collated within other transport safety analysis studies including research projects funded by the European Commission. The exposure data collected cover the time period of the last 4 - 8 years and are most representative for routine transport operations closely related to the movement phase of packaged radioactive material, i.e. receipt, vehicle loading, carriage, in-transit storage, intra-/intermodal transfer, vehicle unloading and delivery at the final destination of loads of radioactive material and packages and the related supervisory and health physics functions. Radiation dose monitoring of members of the public, however, is generally impracticable and, consequently, the information available relies on employing dose assessment models and reflects radiation exposures incurred by hypothetical or critical group individuals of members of the public under normal conditions of transport

  19. Radiation monitoring using manned helicopter around the nuclear power station in the fiscal year 2015 (Contract research)

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Iwai, Takeyuki; Matsunaga, Yuki; Toyoda, Masayuki; Tobita, Shinichiro; Nishizawa, Yukiyasu; Ishida, Mutsushi; Sato, Yoshiharu; Sasaki, Miyuki; Hirayama, Hirokatsu; Takamura, Yoshihide; Nishihara, Katsuya; Imura, Mitsuo; Miyamoto, Kenji; Kudo, Tamotsu; Nakayama, Shinichi

    2016-10-01

    By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around the Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies and the evaluation of radiation attenuation by snow. (author)

  20. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  1. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  2. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  3. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  4. Passive sensor systems for nuclear material monitoring

    International Nuclear Information System (INIS)

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-01-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y 2 O 3 ) with 6 LiF (95% 6 Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant

  5. Increase in Efficiency of Use of Pedestrian Radiation Portal Monitors

    Science.gov (United States)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    Most international airports in the world use radiation portal monitors (RPM) for primary radiation control organization. During the exploitation pedestrian radiation portal monitors operators (in the Russian Federation it is a special subdivision of customs officials) have certain problems related to the search of an ionizing radiation source causing the alarm signal of a radiation monitor. Radiation portal monitors at standard (factory) settings have to find out the illegal moving of the radioisotopes moved by physical persons passing through a controlled zone and having a steady radiation by the gamma or neutron channel. The problem is that recently the number of the ownerships who underwent treatment or medical diagnostics with the use of radio pharmaceuticals considerably increased, i.e,. ownerships represent such an ionizing radiation source. The operator of the radiation portal monitor has to define very quickly whether the ownership is a violator (takes unsolved radioisotopes illegally) or is just a patient of the clinic who underwent treatment/diagnostics with the use of radio pharmaceuticals. The research showing the radioisotopes which are most often used in the medical purposes are given in article, it is offered to use the new software developed by the authors allowing the operator of the radiation portal monitor to define the location of the ownership which has such ionizing radiation source by the activity of radiation similar to the radiation from radio pharmaceuticals.

  6. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    International Nuclear Information System (INIS)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J.

    2015-01-01

    PRD3000 TM is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  7. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J. [Mirion Technologies - MGPI SA (France)

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  8. Radiation effects on materials in high-radiation environments

    International Nuclear Information System (INIS)

    Weber, W.J.; Mansur, L.K.; Clinard, F.W. Jr.; Parkin, D.M.

    1991-01-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs. (orig.)

  9. Radiation materials science. V. 7

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  10. Radiation materials science. V. 6

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  11. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1993-01-01

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  12. Integrated nuclear radiation detector and monitor

    International Nuclear Information System (INIS)

    Biehl, B.L.; Lieberman, S.I.

    1982-01-01

    A battery powered device which can continuously monitor and detect nuclear radiation utilizing fully integrated circuitry and which is provided with an alarm which alerts persons when the radiation level exceeds a predetermined threshold

  13. Towards a novel modular architecture for CERN radiation monitoring

    CERN Document Server

    Boukabache, Hamza; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-01-01

    The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation...

  14. Radiation monitoring - the role of local authorities

    International Nuclear Information System (INIS)

    Duggan, Michael

    1988-01-01

    Seven reports of papers given at a symposium on the role of local authorities in radiation monitoring are given. The main theme is concerned with radiation monitoring, how to interpret the information and how it should be disseminated. The individual experiences in the aftermath of the Chernobyl reactor accident are used to illustrate several of the papers. (U.K.)

  15. Radiation modification of materials

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1987-01-01

    Industrial and radiation chemical processes of material modification based on cross-linking of polymers as a result of radiation are considered. Among them are production of cables and rods with irradiated modified insulation, production of hardened and thermo-shrinkaging polymer products (films, tubes, fashioned products), production of radiation cross-linked polyethylene foam, technology of radiation vulcanization of elastomers. Attention is paid to radiation plants on the basis of γ-sources and electron acceleratos as well as to radiation conditions

  16. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R. [Department of Engineering Science and Mechanics, Penn State, University Park, PA 16803 (United States)

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  17. GSM module for wireless radiation monitoring system via SMS

    Science.gov (United States)

    Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam

    2018-01-01

    A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

  18. Development situation of radiation curing materials

    International Nuclear Information System (INIS)

    He Songhua; Luo Junyi; Liu Zhen

    2010-01-01

    Due to fitting the '4E' principle, radiation curing technology, known as green technology, have shown its own superiority in many applications. It has been rapid developed in China and abroad in recent years, especially ultraviolet/electron beam (UV/EB) radiation curing technology. In order to let the researchers have a general understanding on the radiation curing materials and their development, in this paper a briefly introducing on the related radiation sources, chemical systems, curing mechanism, and the application, the common and difference of ultraviolet curing and electron beam curing has been made. A brief account of development of radiation-curable material in China and the outlook of the development of materials can be found in this paper. At last, we have proposed that the development of radiation curing technology will promote the development of the radiation curing material and benefit in the humanity. (authors)

  19. Development of multi copter based autonomous unmanned aerial radiation monitoring system for the remote impact assessment of radiation emergencies

    International Nuclear Information System (INIS)

    Jose, Jis Romal; Gupta, Ashutosh; Bahadur, Shuchita; Chaudhury, Probal; Pradeepkumar, K.S.

    2016-01-01

    During any radiation emergency, the level and extent of radioactive contamination need to be monitored for the timely and effective implementation of countermeasures to reduce the radiation exposure to public. In such a scenario, radiation surveillance can be carried out using either ground based mobile monitoring techniques or aerial radiation monitoring. Aerial radiation monitoring is quick and capable of scanning the areas which are not easily accessible by the ground based mobile monitoring. Compact unmanned aerial vehicle based radiation surveillance system is ideal in above mentioned radiation emergency scenarios as it can be rapidly deployed in the affected area and radiation exposure to the monitoring personal can be totally avoided. This paper describes development of multi copter based autonomous unmanned aerial radiation monitoring system for the remote impact assessment of radiation emergencies

  20. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  1. Occupational radiation exposure in Germany: many monitored persons = high exposure?

    International Nuclear Information System (INIS)

    Nitschke, J.

    1996-01-01

    Natural radiation affects the entire population in Germany, and most of Germany's inhabitants are exposed to medical radiation in their lifetime. Occupational radiation exposure, however, is a kind of exposure affecting only a limited and well-defined group of the population, and this radiation exposure has been recorded and monitored as precisely as technically possible ever since the radiation protection laws made occupational radiation exposure monitoring a mandatory obligation. Official personal dosimetry applying passive dosemeters in fact does not offer direct protection against the effects of ionizing radiation, as dosemeter read-out and dose calculation is a post-exposure process. But it nevertheless is a rewarding monitoring duty under radiation protection law, as is shown by the radiation exposure statistics accumulated over decades: in spite of the number of monitored persons having been increasing over the years, the total exposure did not, due to the corresponding improvements in occupational radiation protection. (orig.) [de

  2. Radiation monitoring network of the Czech Republic

    International Nuclear Information System (INIS)

    Drabova, D.; Prouza, Z.; Malatova, I.; Bucina, I.

    1996-01-01

    Radiation Monitoring Network of the Czech Republic (RMN) was established after the Chernobyl accident. It consists of technical centers, laboratories and monitoring groups of State Office for Nuclear Safety, National Radiation Protection Institute, nuclear power plants, hydrometeorological service, army and Civil Defense, research institutes and other institutions. The structure of RMN, its basic components and responsible institutions are described. (author)

  3. Radiation Detection System for Prevention of Illicit Trafficking of Nuclear and Radioactive Materials

    International Nuclear Information System (INIS)

    Kwak, Sung Woo; Chang, Sung Soon; Yoo, Ho Sik

    2010-01-01

    Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle

  4. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-12-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1991

  5. Radiation protection monitoring at the JOYO experimental fast reactor

    International Nuclear Information System (INIS)

    Ouchi, S.; Endo, K.; Susaki, T.

    1979-01-01

    This paper describes the radiation protection monitoring programme for the JOYO experimental fast reactor and some of the health physics problems experienced during the low-power nuclear tests. These include: a detailed description of the centralized radiation monitoring system; the methods and results of the individual monitoring systems; the results of operational monitoring for the handling of new plutonium fuel subassemblies; the evaluation of the external radiation dose rate around the primary coolant system; and the results of an experiment on the thermal dependence of some personnel dose meters. (author)

  6. Development of natural radiation model for evaluation of background radiation in radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, Jin Hyung; Moon, Myung Kook [Radioisotope Research and Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    In ports and airports, radiation portal monitors (RPM) are deployed to detect illicit radioactive materials. Detected gamma rays in a RPM include background radiation and radiation from a freight. As a vehicle moves through the RPM, the vehicle causes the fluctuations in the natural background radiation signal, which ranges of up to 30%. The fluctuation increases the uncertainty of detection signal and can be a cause of RPM false alarm. Therefore, it is important to evaluate background radiation as well as radiation from a container. In this paper, a natural background radiation model was developed to evaluate RPM. To develop natural background radiation model, a Monte Carlo simulation was performed and compared with experimental measurements from a RPM for {sup 40}K, {sup 232}Th series, and {sup 235}U series, which are major sources of natural background radiation. For a natural radiation source, we considered a cylindrical soil volume with 300 m radius and 1 m depth, which was estimated as the maximum range affecting the RPM by MCNP6 simulation. The volume source model was converted to surface source by using MCNP SSW card for computational efficiency. The computational efficiency of the surface source model was improved to approximately 200 times better than that of the volume source model. The surface source model is composed of a hemisphere with 20 m radius in which the RPM and container are modelled. The natural radiation spectrum from the simulation was best fitted to the experimental measurement when portions of {sup 40}K, {sup 232}Th series, and {sup 235}U series were 0.75, 0.0636, and 0.0552 Bq·g{sup -1}, respectively. For gross counting results, the difference between simulation and experiment was around 5%. The background radiation model was used to evaluate background suppression from a 40 ft container with 7.2 m·s{sup -1} speed. In further study, background models and freight models for RPM in real container ports will be developed and applied to

  7. Environmental radiation monitoring from the decommission of TRIGA

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2000-03-01

    Environmental radiation monitoring was carried out with measurement of environmental radiation and environmental radioactivity analysis around TRIGA Research Reactor. The results of environmental radiation monitoring around TRIGA Research Reactor are the follows: The average level of environmental radiation measured by potable ERM and accumulated radiation dose by TLD was almost same level compared with thepast years. Gross {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. but only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. (author)

  8. Report on environmental radiation monitoring associated with visits to Australian ports by nuclear powered warships in 1980; and, amendments to the guidelines for environmental radiation monitoring during visits of nuclear powered warships to Australian ports

    International Nuclear Information System (INIS)

    1981-04-01

    The Australian Government requires that an environmental radiation monitoring program be carried out in association with visits of nuclear ships to Australian ports. The objectives and requirements of the program are summarised and the results of the marine environmental sampling program undertaken at berths are presented, together with radiation measurements taken during visits. During 1980, no releases of radioactive material were detected, nor were any radiation measurements recorded in excess of natural background levels

  9. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    International Nuclear Information System (INIS)

    NELSON RL

    2008-01-01

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel

  10. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1980-01-01

    This rule is established under the provisions of the law for the proper execution of budgets of subsidies and the enforcement ordinance for this law, and to carry out these provisions. This rule is applied to the grant of subsidies for the expenses of installing and operating radiation monitoring equipment in the surrounding areas of atomic power generating facilities. Basic terms are defined, such as atomic power generating facilities, redevelopment works for radiation monitoring facilities, preliminary survey works for radiation monitoring, radiation monitoring works, place of business and expected date of beginning operation, etc. The Director General of the Science and Technology Agency delivers subsidies to appropriate for all or a part of expenses required for the redevelopment works for radiation monitoring facilities, preliminary survey works for radiation monitoring and radiation monitoring works. Subsidies are given to those prefectures, where atomic power generating facilities are established or expected to be established, or the prefectures in their neighborhood, and to each place of business as a unit. The term of grant is stipulated for each of these places of business. The amount of subsidies for one place of business ranges from 224.4 million yen for the whole period to 20 million yen for each fiscal year according to the kinds of business. Prefectures which intend to request the grant of subsidies shall file to the Director General specified application attaching operation plans and the general explanation of atomic power generating facilities. The decision and the conditions of delivery, the reports on operation and business results, etc. are defined, respectively. (Okada, K.)

  11. BAKNET - Communication network for radiation monitoring devices

    International Nuclear Information System (INIS)

    Cohen, Y.; Wengrowicz, U.; Tirosh, D.; Barak, D.

    1997-01-01

    A system, based on a new concept of controlling and monitoring distributed radiation monitors, has been developed and approved at the NRCN. The system, named B AKNET Network , consists of a series of communication adapters connected to a main PC via an RS-485 communication network (see Fig. 1). The network's maximal length is 1200 meters and it enables connection of up to 128 adapters. The BAKNET adapters are designed to interface output signals of different types of stationary radiation monitors to a main PC. The BAKNET adapters' interface type includes: digital, analog, RS-232, and mixed output signals. This allows versatile interfacing of different stationary radiation monitors to the main computer. The connection to the main computer is via an RS-485 network, utilizing an identical communication protocol. The PC software, written in C ++ under MS-Windows, consists of two main programs. The first is the data collection program and the second is the Human Machine Interface (HMI). (authors)

  12. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  13. Radiachromic: a radiation monitoring system

    International Nuclear Information System (INIS)

    Humpherys, K.C.; Kantz, A.D.

    1977-01-01

    Various plastic film materials have been utilized to measure radiation fields. The radiachromic materials have been found to have advantages in reproducibility, stability, equivalent response to electrons and gamma ray fields, dose rate dependence and negligible variation for most environmental parameters. A simple photometer has been developed for read-out. The physical and chemical properties of the total system are described. A standard radiachromic has been selected for application to radiation processing. This material has a dose range of 5 x 10 4 to 3 x 10 7 rads, no dose rate effects to above 4 x 10 14 R/sec, an equivalent response to electrons and gamma rays, shelf life of greater than one year. Other forms are also applicable to radiation processing. (author)

  14. A suite of standards for radiation monitors and their revisions

    International Nuclear Information System (INIS)

    Noda, Kimio

    1991-01-01

    A suite of standards for radiation monitors applied in nuclear facilities in Japan was compiled mainly by Health Physicists in Power Reactor and Nuclear Fuel Development (PNC) and Japan Atomic Energy Research Institute (JAERI), and issued in 1971 as 'The Standard for Radiation Monitors'. PNC facilities such as Reprocessing Plant and Plutonium Fuel Fabrication Facility, as well as other nuclear industries have applied the standard, and contributed improvement of practical maintenability and availability of the radiation monitors. Meanwhile, the radiation monitors have remarkably progressed in its application and size of the monitors is growing. Furthermore, manufacturing techniques have significantly progressed especially in the field of system concepts and electronics elements. These progresses require revision of the standards. 'The Standard for Radiation Monitors' has been revised considering the problems in practical application and data processing capability. Considerations are given to keep compatibility of old and new modules. (author)

  15. Mobile environmental radiation monitoring station

    International Nuclear Information System (INIS)

    Assido, H.; Shemesh, Y.; Mazor, T.; Tal, N.; Barak, D.

    1997-01-01

    A mobile environmental radiation monitoring station has been developed and established for the Israeli Ministry of Environment. The radiation monitoring station is ready for immediate placing in any required location, or can be operated from a vehicle. The station collects data Tom the detector and transfers it via cellular communication network to a Computerized Control Center for data storage, processing, and display . The mobile station is fully controlled from the. Routinely, the mobile station responses to the data request accumulated since the last communication session. In case of fault or alarm condition in the mobile station, a local claim is activated and immediately initiates communication with the via cellular communication network. (authors)

  16. Workplace monitoring for radiation and contamination

    International Nuclear Information System (INIS)

    1995-01-01

    Ionizing radiations cannot be seen, felt or sensed by the human body in any way but excessive exposure to them may have adverse health effects. In order to avoid excessive exposure, appropriate and efficient radiation measuring instruments are needed. This Module explains the basic terminology associated with such measuring instruments and describes the principal types, their construction and typical applications in the workplace. It is important to ensure not only that monitoring is carried out where there is a potential radiation exposure but also that the monitoring instrument is appropriate to the task and that the user places correct interpretations on the results obtained. The Manual will be of most benefit if it forms part of more comprehensive training or is supplemented by the advice of a qualified expert in radiation protection. Some of the instrument tests and calibrations described in this Module require the services of a qualified expert

  17. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1985-01-01

    The regulations provide for subsidies for equipment and operation of a radiation monitoring facility around a nuclear power generating facility. Subsidies are provided to the prefectures concerned for equipment, etc. required in radiation monitoring, pre-service radiation monitoring and in-service radiation monitoring conducted by a prefecture. The contents are as follows: terms of subsidy allocations, the sum of subsidy allocations, applications for subsidies, decisions on the allocation of subsidies, withdrawal of applications, conditions of the allocations, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, withdrawal of the decision for subsidies, limitations for disposal of the properties, payment of the subsidy, accounting of the subsidy operations, and a record on the subsidy. (Kubozono, M.)

  18. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for subsidies for equipment and operation of a radiation monitoring facility around a nuclear power generating facility. Subsidies are provided to the prefectures concerned for equipment, etc. required in radiation monitoring, pre-service radiation monitoring and in-service radiation monitoring conducted by a prefecture. The contents are as follows: terms of subsidy allocations, the sum of subsidy allocations, applications for subsidies, decisions on the allocation of subsidies, withdrawal of applications, conditions of the allocations, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, withdrawal of the decision for subsidies, limitations for disposal of the properties, payment of the subsidy, accounting of the subsidy operations, and a record on the subsidy. (Mori, K.)

  19. Environmental radiation monitoring system with GPS (global positioning system)

    International Nuclear Information System (INIS)

    Komoto, Itsuro

    2000-01-01

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  20. Storage of radioactive material - accidents - precipitation - personnel monitoring; Stokiranje radioaktivnih materijala - akcidenti - padavine - kontrola osoblja

    Energy Technology Data Exchange (ETDEWEB)

    Matijasic, A; Gacinovic, O [Institute of Nuclear Sciences Boris Kidric, Radioloska zastita, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry.

  1. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  2. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  3. Workplace monitoring for radiation and contamination

    International Nuclear Information System (INIS)

    2004-01-01

    Ionizing radiations cannot be seen, felt or sensed by the human body in any way but excessive exposure to them may have adverse health effects. Radiation measuring instruments are needed in order to detect the presence of such radiations and avoid excessive exposure. The use of appropriate and efficient instruments enables exposures to be controlled and the doses received to be kept as low as reasonably achievable. This Manual explains the basic terminology associated with such measuring instruments and describes the principal types, their construction and typical applications in the workplace. It is important to ensure not only that monitoring is carried out where there is a potential radiation exposure but also that the monitoring instrument is appropriate to the task and that the user places correct interpretations on the results obtained. The Manual will be of most benefit if it forms part of more comprehensive training or is supplemented by the advice of a qualified expert in radiation protection. Some of the instrument tests and calibrations described in this Manual require the services of a qualified expert

  4. Health and radiation: Surveillance and monitoring

    International Nuclear Information System (INIS)

    Reitan, J.B.; Langmark, F.

    1988-01-01

    Assuming a zero risk of low-dose radiation would allow society to save a lot of resources currently used in radiation protection. If this assumption should turn out to be wrong, however, the society would face a serious cancer problem within 20-40 years. Thus, the present resources allocated to radiation protection seem justified from an ethical and moral point of view. Such radiation protection should also include monitoring of naturally enhanced radiation and possibilities of contamination, and ecological changes from energy production, waste deposition and fertilizing. The weaker parts of establishing the dose/effect relationship are radiation biology and radiation medicine. Therefore, continued research in these disciplines should be encouraged

  5. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  6. Environmental radiation monitoring from the decommission of TRIGA

    Energy Technology Data Exchange (ETDEWEB)

    Choi Geun Sik; Lee, Chang Woo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment radiation and environment radioactivity analysis around TRIGA Research Reactor. The results of environmental radiation monitoring around TRIGA Research Reactor are the follows: The average level of environmental radiation dose measured by potable ERM and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {beta} radioactivity in environmental samples showed a environmental level. v-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. 37 refs., 12 figs., 31 tabs. (Author)

  7. Radiation area monitor device and method

    Science.gov (United States)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni; Morrell, Jonathan S.; Kosicek, Andrej

    2018-01-30

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.

  8. RadNet (Environmental Radiation Ambient Monitoring System)

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet, formerly Environmental Radiation Ambient Monitoring System (ERAMS), is a national network of monitoring stations that regularly collect air, precipitation,...

  9. Evaluation of the radiation monitor

    International Nuclear Information System (INIS)

    1996-05-01

    The Radiation Monitor is an information bulletin produced every three months by the Atomic Energy Control Board (AECB) and published in five local newspapers in the Durham Region of Ontario. The bulletin reports on the radiation doses to the public due to emissions from Pickering and Darlington nuclear generating stations. Comparative information on dose levels from other sources is also provided. To measure the communications effectiveness of the bulletin, the AECB contracted for a door-to-door survey of residents living near the two nuclear stations and within the circulation areas of the five local papers. The objectives of the survey were to measure the public's awareness of the existence of the Radiation Monitor, evaluate ease in understanding the information, assess the perceived usefulness of the bulletin, and assess the perceived accessibility of the AECB as an information source. The survey found that 61 per cent of adults had heard of the AECB, and 60 per cent of those correctly identified it as a regulator of the nuclear industry. Six per cent of the surveyed population had accurate unaided recall of the Radiation Monitor, while 26 per cent recognized the bulletin when shown a copy. Most respondents to the survey seemed content with the way technical details are presented in the bulletin, and 85 per cent of all persons interviewed found the information it contained to be useful. Thirty-six per cent said that it was very useful. For many, the bulletin was seen to put radiation in perspective and to reassure residents of the low risk. It was also judged by most to be factual and easy to understand. Suggestions for improvement focus largely on improving distribution. 14 tabs

  10. Evaluation of the radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Radiation Monitor is an information bulletin produced every three months by the Atomic Energy Control Board (AECB) and published in five local newspapers in the Durham Region of Ontario. The bulletin reports on the radiation doses to the public due to emissions from Pickering and Darlington nuclear generating stations. Comparative information on dose levels from other sources is also provided. To measure the communications effectiveness of the bulletin, the AECB contracted for a door-to-door survey of residents living near the two nuclear stations and within the circulation areas of the five local papers. The objectives of the survey were to measure the public`s awareness of the existence of the Radiation Monitor, evaluate ease in understanding the information, assess the perceived usefulness of the bulletin, and assess the perceived accessibility of the AECB as an information source. The survey found that 61 per cent of adults had heard of the AECB, and 60 per cent of those correctly identified it as a regulator of the nuclear industry. Six per cent of the surveyed population had accurate unaided recall of the Radiation Monitor, while 26 per cent recognized the bulletin when shown a copy. Most respondents to the survey seemed content with the way technical details are presented in the bulletin, and 85 per cent of all persons interviewed found the information it contained to be useful. Thirty-six per cent said that it was very useful. For many, the bulletin was seen to put radiation in perspective and to reassure residents of the low risk. It was also judged by most to be factual and easy to understand. Suggestions for improvement focus largely on improving distribution. 14 tabs.

  11. Environmental radiation monitoring

    International Nuclear Information System (INIS)

    Watanabe, Isao

    2011-01-01

    The samples, pretreatment method, and measurement methods of 'Environmental radioactivity level by prefecture' of Ministry of Education, Culture, Sports, Science and Education (MEXT) is explained. It consists of 1), 'Environmental radioactivity level by prefecture' in normal period, 2) 'Strengthening of Monitoring of Environmental Radioactivity Level by Prefecture' of MEXT at emergency 3) strengthening of monitoring by Fukushima Daiichi nuclear accident, 4) radiation monitoring around the nuclear facility, 5) strengthening of monitoring by MEXT, and 6) quality of monitoring. The survey item and samples etc., of 'Environmental radioactivity level by prefecture', monitoring post, NaI (Tl) scintillation survey meter, sampling and pretreatment methods for radionuclide analysis in normal period, an example of germanium semiconductor detector, gamma ray spectrum of spaghetti from Italy by germanium semiconductor detector, flow chart of radionuclide analysis of fallout in normal period and emergency by germanium semiconductor detector, example of analytical method of radioactive strontium ( ion exchange method), outline of plutonium analytical method for emergency, sampling and pretreatment methods of radionuclides for strengthening, monitoring result around Fukushima Daiichi nuclear plant from June 23 to 24, 2011, change of air dose rate of monitoring post in Mito city from March 14 to 26, 2011, concentration of I-131 and Cs-137 in fallout in Hitachinaka city from March 19 to April 30, 2011, and change of concentration of I-131, Cs-134 and Cs-137 in tap water of Iitate village from March 20 to April 30, 2011, are illustrated. (S.Y.)

  12. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  13. Regulatory requirements and quality assurance of radiation monitoring instruments

    International Nuclear Information System (INIS)

    Narasimharao, K.L.; Sharma, Ranjit

    2005-01-01

    The successful utilisation of radiation sources in the fields of medicine and industry requires the accurate measurement of activity, exposure rate and dose. Many varieties of instruments are in use for measurement of these parameters and new ones are being developed. The criteria for the design of the radiation monitoring instrument include the type and intensity of the radiation, purpose of measurement and ruggedness of the instrument. Quality and reliability of radiation monitoring instruments ensure that individuals are adequately protected. Accuracy, response time and ruggedness are required to be as per the approved/ prescribed guidelines. Regulatory authorities outline the design and performance criteria for radiation monitoring instruments and prescribe the recommendations of international agencies such as IAEA, ICRU and ISO for radiological measurement assurance programme. National Standards Laboratories all over the world prescribe procedures for calibration of various radiation monitoring instruments. The instruments should be calibrated as per these guidelines and should be traceable to national standards. The calibration traceable to national/ international standards and documentation as well as limits stipulated by the competent authority ensures the expected performance of the instrument. (author)

  14. The development of wireless radiation dose monitoring using smart phone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Chai Wan [REMTECH, Seoul (Korea, Republic of)

    2016-11-15

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced.

  15. The Juno Radiation Monitoring (RM) Investigation

    DEFF Research Database (Denmark)

    Becker, H. N.; Alexander, J. W.; Adriani, A.

    2017-01-01

    The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s > 10-MeV electron environmen...

  16. Radiation resistant lining material

    International Nuclear Information System (INIS)

    Ouchi, Koki; Okagawa, Seigo; Tamaki, Hidehiro.

    1990-01-01

    Rigidity, viscoelasticity, flexibility, radiation resistance, leaching resistance, rust-proofness, endurance, etc. are required for the lining materials to wall surfaces and floor surfaces of facilities used under the effect of radiation rays and for the inner surface protection of vessels for radioactive wastes. The present invention provides radiation resistant lining material capable of satisfying such various requirements in a well-balanced manner. That is, the material contains (A) 100 parts by weight of rapidly curing cement, (B) 50 to 300 % by weight of aggregate, and (C) 80 to 120 parts by weight of polymer emulsion. As the specific example, the ingredient (A) is commercially available under the trade name of Jet Cement. The aggregate of the ingredient (B) has preferably from about 0.6 to 0.2 mm of size and is made of material, preferably, silicon or iron grains. As the ingredient (C), acrylic resin emulsion is preferred. As a result of example, these ingredient constitutions can satisfy each of the required performance described above. (I.S.)

  17. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  18. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry. (author)

  19. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author)

  20. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho; Lee, M.H. [and others

    1999-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author). 3 refs., 50 tabs., 12 figs.

  1. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry

  2. Environmental radiation monitoring around the research reactors

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Lee, Hyun Duk; Kim, Sam Rang; Choi, Yong Ho; Kim, Jeong Moo; Lee, Myeon Joo; Lee, Myeong Ho; Hong, Kwang Hee; Lim, Moon Ho; Lee, Won Yoon; Park, Do Won; Choi, Sang Do

    1993-04-01

    Environmental radiation monitoring was carried out measurement of environmental radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross α, β radioactivity in environmental sample was not found abnormal data. γ-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry. (Author)

  3. Radiation monitoring program at nuclear scientific experimental and educational center - IRT-Sofia

    International Nuclear Information System (INIS)

    Mladenov, A.; Stankov, D.; Marinov, K.; Nonova, T.; Krezhov, K.

    2012-01-01

    Ensuring minimal risk of personnel exposure without exceeding the dose limits is the main task of the General Program for Radiation Monitoring of Nuclear Scientific Experimental and Education Centre (NSEEC) with research reactor IRT. Since 2006 the IRT-Sofia is equipped with a new and modern Radiation Monitoring System (RMS). All RMS detectors are connected to the server RAMSYS. They have online (real-time) visualization in two workstations with RAMVISION software. The RMS allows the implementation of technological and environmental monitoring at the nuclear facility site. Environmental monitoring with the RMS external system includes monitoring of dose rate; alpha and beta activity; radon activity; Po-218, Po-214, Po-212 activity; gamma control of vehicles. Technological control of reactor gases includes: Alpha beta particulate monitor; Iodine monitor; Noble gases monitor; Stack flow monitor. The General Program based on the radiation monitoring system allows real-time monitoring and control of radiation parameters in the controlled area and provides for a high level of radiation protection of IRT staff and users of its facilities. This paper presents the technical and functional parameters of the radiation monitoring system and radiation protection activities within the restricted zone in IRT facilities. (authors)

  4. Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2006-04-01

    In order to manage various nuclear or radiological emergencies the authorities must have pre-prepared plans. The purpose of the NKS project EMARAD (Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents) was to produce and gather various data and information that could be useful in drawing up emergency plans and radiation monitoring strategies. One of the specific objectives of the project was to establish a www site that would contain various radiation-threat and radiation-monitoring related data and documents and that could be accessed by all Nordic countries. Other important objectives were discussing various factors affecting measurements in an emergency, efficient use of communication technology and disseminating relevant information on such topics as urban dispersion and illicit use of radiation. The web server is hosted by the Radiation and Nuclear Safety Authority (STUK) of Finland. The data stored include pre-calculated consequence data for nuclear power plant accidents as well as documents and presentations describing e.g. general features of monitoring strategies, the testing of the British urban dispersion model UDM and the scenarios and aspects related to malicious use of radiation sources and radioactive material. As regards the last item mentioned, a special workshop dealing with the subject was arranged in Sweden in 2005 within the framework of the project. (au)

  5. Portable radiation monitors

    International Nuclear Information System (INIS)

    Masui, Kaoru; Ishikura, Takeshi; Inui, Daisuke

    2007-01-01

    This paper presents an overview of typical portable radiation monitors and introduces Fuji Electric's latest models. The overview describes the types, uses and performance of ion chamber survey meters, GM survey meters and neutron ambient dose equivalent rate meters. Fuji Electric's new model of a wide-energy-range X/gamma ray survey meter which measures low energy X-rays up to 8 keV, a battery-powered environmental dosemeter system which measures dose history and is capable of continuous measurement with batteries over a year, and a portable monitoring post which measures dose rates from background to 10 8 nGy/h and transmits data by cellular phone are introduced, and their specifications and performance are described. (author)

  6. The problem of creation of radiation monitoring system

    International Nuclear Information System (INIS)

    Pilipchak, S.I.

    1990-01-01

    The review of problem of radiation monitoring system (RMS) in the territory of the country is presented. Unsolved problems are discussed which are divided into three groups: the organization of structures in RMS; implementation of automated RMS; the solution of scientific problems of global monitoring of radiation situation. 12 refs.; 1 tab

  7. Apparatus and method for monitoring stored material

    International Nuclear Information System (INIS)

    Price, W.E.; Lewis, D.R.; Galloway, L.A.; Lowrey, C.B.

    1983-01-01

    Material, e.g. radioactive waste or other hazardous material, which is to be stored and monitored is placed within the innermost container of a series of nested containers and monitoring fluids are circulated in a closed loop of fluid flow through the spaces between the nested containers. Monitoring devices are used to analyse said monitoring fluids to detect leakage of the stored material from the innermost nested container and to detect the migration of external fluids into the series of nested containers. A computer based monitoring system continually checks the values of various parameters of the monitoring fluids to immediately detect and report the presence of stored material or external fluid in the monitoring fluids. The stored material may then be immediately retrieved from storage to repair leaks in the series of nested containers. (author)

  8. Distributed Radiation Monitoring System for Linear Accelerators based on CAN Bus

    CERN Document Server

    Kozak, T; Napieralski, A

    2010-01-01

    Abstract—Gamma and neutron radiation is produced during the normal operation of linear accelerators like Free-Electron Laser in Hamburg (FLASH) or X-ray Free Electron Laser (X-FEL). Gamma radiation cause general degeneration of electronics devices and neutron fluence can be a reason of soft error in memories and microcontrollers. X-FEL accelerator will be built only in one tunnel, therefore most of electronic control systems will be placed in radiation environment. Exposing control systems to radiation may lead to many errors and unexpected failure of the whole accelerator system. Thus, the radiation monitoring system able to monitor radiation doses produced near controlling systems is crucial. Knowledge of produced radiation doses allows to detect errors caused by radiation, make plans of essential exchange of control systems and prevent accelerator from serious damages. The paper presents the project of radiation monitoring system able to monitor radiation environment in real time.

  9. Calibration method of radiation monitoring system at TQNPC

    International Nuclear Information System (INIS)

    Liu Zhengshan; Zhang Qingli; Liu Jinjin; Miao Yuxing; Geng Lixin; Zhuang Yun; Dong Jianfeng; He Change

    2009-04-01

    The calibration methods and calibration device for standard monitor of radioactive particulate, iodine, noble gas and so on are not yet set up at home. On consideration of the present situation of the radiation monitoring system at the Third Qinshan Nuclear Power Co. Ltd., we have studied the calibration method of these radiation monitoring instruments used for measuring the waste liquid, particulate, iodine and noble gas produced during the operation of nuclear reactor. Through the check against these instruments during the No. 202 and No. 103 overhaul, we got initially the method of the calibration and obtained the transfer coefficient of calibration when secondary solid sources are used for calibration. Through the testing and calibration, the credibility of the radiation monitoring system is enhanced. And at the same time, the problems existing in the calibration are discussed. (authors)

  10. Radiation monitoring in interventional cardiology: a requirement

    Science.gov (United States)

    Rivera, T.; Uruchurtu, E. S.

    2017-01-01

    The increasing of procedures using fluoroscopy in interventional cardiology procedures may increase medical and patients to levels of radiation that manifest in unintended outcomes. Such outcomes may include skin injury and cancer. The cardiologists and other staff members in interventional cardiology are usually working close to the area under examination and they receive the dose primarily from scattered radiation from the patient. Mexico does not have a formal policy for monitoring and recording the radiation dose delivered in hemodynamic establishments. Deterministic risk management can be improved by monitoring the radiation delivered from X-ray devices. The objective of this paper is to provide cardiologist, techniques, nurses, and all medical staff an information on DR levels, about X-ray risks and a simple a reliable method to control cumulative dose.

  11. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  12. Mobile radiation monitoring of Delhi for the prevention of malicious acts during the Common Wealth Games (CWG-2010)

    International Nuclear Information System (INIS)

    Saindane, Shashank S.; Chatterjee, M.K.; Romal, Jis; Pradeepkumar, K.S.; Singh, B.R.

    2012-01-01

    Radioactive sources are widely used in industry, research, agriculture and medical applications. In spite of various measures adopted for ensuring the safety and security of these sources, similar to Mayapuri incident, many cases of lost, misplaced, stolen radioactive sources and inadvertent radiation exposure due to radiological emergencies are reported world over. In the aftermath of the attack on the World Trade Center 2001, malicious acts using radioactive material is considered as a threat for which prevention and preparedness for response are recommended by IAEA. Hence radiation monitoring of all related area prior to and during Major Public Events (MPEs) like Olympics, World cup football etc are implemented by many nations for prevention and preparedness to such radiological threats/emergencies. Department of Atomic Energy (DAE) through their Emergency Response Centres planned and executed detailed radiation monitoring programme for the Delhi Common Wealth Games (CWG 2010) which covered all CWG stadiums. Commonwealth village etc. In addition to DAE emergency response teams of 15 members in readiness, source recovery and shielding facilities, Portable Personnel Decontamination Unit (PPDU), Radiation monitors, Protective gears, Aerial Gamma Spectrometry System (AGSS for Aerial surveys) etc. were maintained at two DAE control rooms. This paper discusses the mobile radiation monitoring carried out on Delhi city roads with the help of various state-of-the-art monitoring systems to detect the presence or movement of any orphan sources. The mobile radiation monitoring was focused on main road networks connecting to stadiums, areas surrounding stadiums, airport and Games village. For this state-of-the-art systems like Portable Mobile Gamma Spectrometry System (PMGSS), Portable Radiation Scanner (PRS), Compact Radiation Monitoring System integrated with GPS, GSM based Radiation Monitoring System (GRaMS), Gammatracers, Selection and placement of different monitoring

  13. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  14. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  15. Risk to Krakow population of gamma radiation from building materials

    International Nuclear Information System (INIS)

    Koperski, J.; Jasinska, M.

    1980-01-01

    A statistics was made of 7128 dwelling-houses considering their age, types of building materials and density of population. Gamma dose rates were measured by means of the TL and pressurized ionization chamber techniques inside 300 buildings and in 44 points outdoors over different kinds of beddings. Personal doses of 49 inhabitants of the buildings monitored were also recorded. By means of the spectrometric analysis of gamma radiation, and basing on a specially developed computational programme ''DOZA'' mean concentrations of 40 K, 226 Ra and 232 Th in 61 samples of building materials were evaluated. It was found that the mean personal dose rate as well as the mean indoor dose rate equals 5.7 urad/h /15.8 pGy/s/ and is about 19% higher than the dose outdoors which equals 4.8 urad/h /13.3 pGy/s/. Gamma dose rates inside the buildings made of gravel-sand concrete elements are about 10% lower than those in the buildings made of red bricks. Mean annual dose equivalent per capita from gamma radiation of building materials equals 40.6 mrem/y /406 uSv/y/, which constitutes about 57% of total annual dose equivalent per capita from all environmental sources of gamma radiation in the residential districts in Krakow. (author)

  16. Design and development of a Compact Aerial Radiation Monitoring System (CARMS)

    International Nuclear Information System (INIS)

    Raman, N.; Chaudhury, Probal; Padmanabhan, N.; Pradeepkumar, K.S.; Sharma, D.N.

    2005-01-01

    Operation of nuclear facilities, increasing usage of radioisotopes in industrial, scientific and medical applications and transport of nuclear and radioactive materials may have impact on the surrounding environment. There is thus a need to periodically monitor the environmental radiation background all over the country and particularly around the nuclear facilities for assessing any possible impact on the environment. Preparedness required for response to emergencies caused due to radiological/nuclear incidents/ accidents or due to radiological/nuclear terrorism also demands state of the art systems and methodology for quick assessment of radiological impact over large affected areas. In order to meet these requirements, a Compact Aerial Radiation Monitoring System (CARMS) has been designed and developed. This system is battery operated, portable and rugged for mobile radiation monitoring and can be placed in aerial platforms like helicopters or Unmanned Aerial Vehicles (UAVs) for unattended operation. CARMS uses energy compensated multiple GM detectors for enhancing sensitivity and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time. The AT89LV52 microcontroller used in the system tags the dose rate data with time and positional information and stores contiguously in a serial data memory for radiological mapping of the area surveyed using any mobile platform such as aircraft/train/boat/road vehicle. The system consumes ∼150 mA including the GPS at 12 V DC enabling ∼50 hours of continuous monitoring with a 7 Ah battery source. The system has been used in aerial, rail and road based environmental radiation surveys carried out at various places of the country. With PC support, the system can map the radiological status online onto the map of the area being surveyed to help decision-making on countermeasures during the survey. (author)

  17. Sequential probability ratio controllers for safeguards radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.L.; Nixon, K.V.

    1984-01-01

    Sequential hypothesis tests applied to nuclear safeguards accounting methods make the methods more sensitive to detecting diversion. The sequential tests also improve transient signal detection in safeguards radiation monitors. This paper describes three microprocessor control units with sequential probability-ratio tests for detecting transient increases in radiation intensity. The control units are designed for three specific applications: low-intensity monitoring with Poisson probability ratios, higher intensity gamma-ray monitoring where fixed counting intervals are shortened by sequential testing, and monitoring moving traffic where the sequential technique responds to variable-duration signals. The fixed-interval controller shortens a customary 50-s monitoring time to an average of 18 s, making the monitoring delay less bothersome. The controller for monitoring moving vehicles benefits from the sequential technique by maintaining more than half its sensitivity when the normal passage speed doubles

  18. Update on the independent radiation monitor (IRM)

    International Nuclear Information System (INIS)

    Kroening, P.M.; Mucha, R.

    1976-01-01

    The new independent radiation monitor (IRM), unlike its predecessor, is a reliable and sensitive safety device for any radiation therapy room. It shows unequivocally that the beam is on, and it is inexpensive and simple to construct

  19. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  20. Effects of terrestrial UV radiation on selected outdoor materials: an interdisciplinary approach

    Science.gov (United States)

    Heikkilä, A.; Kazadzis, S.; Tolonen-Kivimäki, O.; Meinander, O.; Lindfors, A.; Lakkala, K.; Koskela, T.; Kaurola, J.; Sormanen, A.; Kärhä, P.; Naula-Iltanen, A.; Syrjälä, S.; Kaunismaa, M.; Juhola, J.; Ture, T.; Feister, U.; Kouremeti, N.; Bais, A.; Vilaplana, J. M.; Rodriguez, J. J.; Guirado, C.; Cuevas, E.; Koskinen, J.

    2009-08-01

    Modern polymeric materials possess an ever increasing potential in a large variety of outdoor objects and structures offering an alternative for many traditional materials. In outdoor applications, however, polymers are subject to a phenomenon called weathering. This is primarily observed as unwanted property changes: yellowing or fading, chalking, blistering, and even severe erosion of the material surface. One of the major weathering factors is UV radiation. In spring 2005, the Finnish Meteorological Institute with its research and industrial partners launched a five-year material research project named UVEMA (UV radiation Effects on MAterials). Within the framework of the project, a weathering network of seven European sites was established. The network extends from the Canary Islands of Spain (latitude 28.5°N) to the Lapland of Finland (latitude 67.4°N), covering a wide range of UV radiation conditions. Since autumn 2005, the sites of the network have been maintaining weathering platforms of specimens of different kinds of polymeric materials. At the same time, the sites have been maintaining their long-term monitoring programmes for spectrally resolved UV radiation. Within UVEMA, these data are used for explaining the differences between the degradation rates of the materials at each site and for correlating the UV conditions in accelerated ageing tests to those under the Sun. We will present the objectives of the UVEMA project aiming at deeper understanding of the ageing of polymers and more reliable assessments for their service life time. Methodologies adopted within the project and the first results of the project will be summarized.

  1. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    International Nuclear Information System (INIS)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program

  2. Modification of GNPS environment radiation monitoring network system

    International Nuclear Information System (INIS)

    Jiang Lili; Cao Chunsheng

    1999-01-01

    GNPS Environment Radiation Continuous Monitoring System (KRS), the only real time on-line system of site radiation monitoring, was put into service in 1993 prior to the first loading the the plant. It is revealed through several years of operation that this system has some deficiencies such as inadequate real time monitoring means, no figure and diagram display function on the central computer, high failures, frequent failure warning signals, thus making the availability of the system at a low level. In recent years, with the rapid development of computer network technology and increasingly strict requirements on the NPP environment protection raised by the government and public, KRS modification had become necessary and urgent. In 1996, GNPS carried out modification work on the measuring geometry condition of γ radiation monitoring sub-station and lightening protection. To enhance the functions of real time monitoring and data auto-processing, further modification of the system was made in 1998, including the update of the software and hardware of KRS central processor, set-up of system computer local network and database. In this way, the system availability and monitoring quality are greatly improved and effective monitoring and analysis means are provided for gaseous release during normal operation and under accident condition

  3. Quality assurance of radiation protection monitoring instruments in India

    International Nuclear Information System (INIS)

    Tripathi, S.M.; Daniel, Liji; Rao, Suresh; Sharma, D.N.

    2008-01-01

    Bhabha Atomic Research Centre (BARC) is the National Metrology Institute (NMI) for developing, maintaining and disseminating standards for ionizing radiation in India. Radiation Safety Systems Division (RSSD) of BARC has the requisite infrastructure in the form of experts, trained manpower, laboratories, equipment and facilities for providing calibration services to users and ascertaining traceability to international standards. It periodically participates in various international inter-comparisons. RSSD maintains reference radiation fields that are required for calibrating Radiation Protection Monitoring Instruments that form the backbone of the radiation monitoring programme for harnessing the benefits of nuclear energy and ionizing radiations. These instruments are type-tested and periodically calibrated at standard reference radiation fields to ensure their healthy working condition and fitness for their intended use. This paper describes the details of the standardization procedures adopted for reference radiation fields and infrastructure established and maintained at RSSD, BARC in accordance with the recommendations of ISO-4037. The paper describes the various tests that are carried out for radiation protection monitoring instrument to study the variation of the calibration factor with influencing quantities like linearity of response, energy response, angular dependence and overload characteristics. The results of these tests for typical instruments are also discussed. The present work also describes various types of indigenously developed radiation protection monitoring instruments and their performance characteristics. Adaptability of these instruments for the implementation of operational quantities are discussed briefly. It also dwells on the IAEA Quality Audit for radiation protection level calibrations, which RSSD has been participating since 2001. Our results of the quality audit are well within the acceptance limit (±7%) set by IAEA for the

  4. Emergency Management and Radiation Moni-toring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    In order to manage various nuclear or radiological emergencies the authorities must have pre-prepared plans. The purpose of the NKS project EMARAD (Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents) was to produce and gather various data and information that could be useful in drawing up emergency plans and radiation monitoring strategies. One of the specific objectives of the project was to establish a www site that would contain various radiation-threat and radiation-monitoring related data and documents and that could be accessed by all Nordic countries. Other important objectives were discussing various factors affecting measurements in an emergency, efficient use of communication technology and disseminating relevant information on such topics as urban dispersion and illicit use of radiation. The web server is hosted by the Radiation and Nuclear Safety Authority (STUK) of Finland. The data stored include pre-calculated consequence data for nuclear power plant accidents as well as documents and presentations describing e.g. general features of monitoring strategies, the testing of the British urban dispersion model UDM and the scenarios and aspects related to malicious use of radiation sources and radioactive material. As regards the last item mentioned, a special workshop dealing with the subject was arranged in Sweden in 2005 within the framework of the project. (au)

  5. Monitoring of persons with injuries with incorporated radioactive material

    International Nuclear Information System (INIS)

    Lopes, A.G.; Tauhata, L.

    2017-01-01

    The monitoring of victims with injuries with incorporated radioactive material can be performed with portable detectors in initial evaluations, with unshielded measurements, collimation, often with the ignorance of the radionuclide, and also, in the posterior medical follow-up with whole-body detectors and HPGe, in measurements of body or urine activity in periodic measurements. Dosimetry in these situations is done using appropriate models, which surpass those of orthodox internal dosimetry, the biokinetic model described in the 2006 NCRP, such as the AIDE models, and the one developed by Deepesh for the 241 Am. Using tissue-equivalent material, measurements were made with portable detectors to obtain the values of the total attenuation coefficient for the 241 Am radiation and compared to the NIST tables. Measurements were also made with the fixed detectors for certification of the measurement procedure. The percentage deviations obtained in relation to the theoretical ones were: PRD (55%) and IdentiFINDER2 (72%). First-aid monitoring measurements may present great uncertainties and differences of accuracy, but are important data to guide the medical treatment of the victims of accidents

  6. Ultra Secure High Reliability Wireless Radiation Monitor

    International Nuclear Information System (INIS)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-01-01

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  7. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  8. Radiation monitoring policy at the advanced light source

    International Nuclear Information System (INIS)

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-01-01

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program

  9. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  10. Nuclear energy - Radioprotection - Procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation

    International Nuclear Information System (INIS)

    2002-01-01

    This International Standard specifies a procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation and describes the procedure in radiation protection monitoring for external exposure to weakly penetrating radiation in nuclear installations. This radiation comprises β - radiation, β + radiation and conversion electron radiation as well as photon radiation with energies below 15 keV. This International Standard describes the procedure in radiation protection planning and monitoring as well as the measurement and analysis to be applied. It applies to regular nuclear power plant operation including maintenance, waste handling and decommissioning. The recommendations of this International Standard may also be transferred to other nuclear fields including reprocessing, if the area-specific issues are considered. This International Standard may also be applied to radiation protection at accelerator facilities and in nuclear medicine, biology and research facilities

  11. Intercomparisons in the radiation monitoring network of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tuckova, S; Malatova, I [National Radiation Protection Inst., Prague (Czech Republic); Drabova, D [State Office for Nuclear Safety, Prague (Czech Republic)

    1996-12-31

    In Czech Republic, altogether 11 laboratories, equipped by semiconductor gamma spectrometry supply regularly to the Centre of Radiation Monitoring Network the measured data about the radionuclide activity concentration in different environmental samples, participating thus in monitoring of radiation situation in the country. The Center of Radiation Monitoring Network of Czech Republic periodically organizes through its reference laboratories interlaboratory comparison tests ensuring thus quality of the measurements within the radiation monitoring network. A ring intercomparison test was organized in 1994. The piece of steel rather highly contaminated by {sup 60}Co was used. In the intercomparison test 1994-1995 of pulverized concrete breeze-block containing fly ash with natural radionuclides were used. Results of this measurement is given as an example (authors).

  12. Radiation monitoring of PET staff

    International Nuclear Information System (INIS)

    Trang, A.

    2004-01-01

    Full text: Positron emission tomography (PET) is becoming a common diagnostic tool in hospitals, often located in and employing staff from the Nuclear Medicine or Radiology departments. Although similar in some ways, staff in PET departments are commonly found to have the highest radiation doses in the hospital environment due to unique challenges which PET tracers present in administration as well as production. The establishment of a PET centre with a dedicated cyclotron has raised concerns of radiation protection to the staff at the WA PET Centre and the Radiopharmaceutical Production and Development (RAPID) team. Since every PET centre has differing designs and practices, it was considered important to closely monitor the radiation dose to our staff so that improvements to practices and design could be made to reduce radiation dose. Electronic dosimeters (MGP DMC 2000XB), which have a facility to log time and dose at 10 second intervals, were provided to three PET technologists and three PET nurses. These were worn in the top pocket of their lab coats throughout a whole day. Each staff member was then asked to note down their duties throughout the day and also note the time they performed each duty. The duties would then correlate with the dose with which the electronic monitor recorded and an estimate of radiation dose per duty could be given. Also an estimate of the dose per day to each staff member could be made. PET nurses averaged approximately 20 μ8v per day getting their largest dose from caring for occasional problematic patients. Smaller doses of a 1-2 μ8v were recorded for injections and removing cannulas. PET technologists averaged approximately 15 μ8v per day getting their largest dose of 1-5μ8v mainly from positioning of patients and sometimes larger doses due to problematic patients. Smaller doses of 1-2 μ5v were again recorded for injections and removal of cannulas. Following a presentation given to staff, all WA PET Centre and RAPID staff

  13. Quality assurance of environmental gamma radiation monitoring in Slovenia

    International Nuclear Information System (INIS)

    Stuhec, M.; Zorko, B.; Mitic, D.; Miljanic, S.; Ranogajec-Komor, M.

    2006-01-01

    Environmental gamma radiation monitoring established in Slovenia consists of a network of multifunctional gamma monitors (MFMs) based on pairs of Geiger-Mueller counters and a network of measuring sites with high-sensitive thermoluminescence dosemeters. The measuring points are evenly spread across Slovenia, located at the meteorological stations and more densely on additional locations around the Krsko NPP. The MFM network has a 2-fold function with one sensor used for the purpose of early warning system in near surroundings of the NPP and the other, more sensitive, for natural radiation monitoring. The paper summarises activities to establish quality assurance of the environmental gamma radiation measurements in Slovenia, with a critical view of the results in comparison with the international standards and recommendations. While the results of linearity and energy dependence tests were satisfying, on-field intercomparison showed that the inherent signal of one of the monitors (MFM) has to be taken into account in the range of environmental background radiation. (authors)

  14. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1996-01-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  15. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.

    Science.gov (United States)

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-04-01

    The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.

  16. Off-site environmental monitoring report: Radiation monitoring around United States Nuclear Test areas, Calendar year 1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Fontana, C.A.; Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome', D.J.; Mullen, A.A.

    1987-05-01

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests; and protective actions in support of the nuclear testing program. These are conducted to document compliance with standards, to identify trends, and to provide information to the public. 28 refs., 37 figs., 30 tabs

  17. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  18. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  19. Paper on operation and maintenance experiences on radiation monitoring instrumentation at NAPS

    International Nuclear Information System (INIS)

    Gupta, J.P.; Vinod Kumar; Sen, S.K.; Malhotra, S.

    2005-01-01

    Narora Atomic Power Station (NAPS) is the first standardized Pressurised Heavy Water Reactor in India commissioned in the year 1989. Many new Radiation Monitoring Systems like Portal Monitors and Ventilation Exhaust Activity Monitors were first time introduced at NAPS. All the Personnel Contamination Monitors and Area Radiation Monitors used at NAPS were designed and developed by Electronics Division, BARC. Only the Portal Monitor was supplied by M/S Herfurth, Germany. The paper highlights the operation and maintenance experiences on Radiation Monitoring Instrumentation at NAPS in the last 15 years of operation. The paper also highlights the different problems faced in Radiation Instruments and our suggestions for improvement in their design for their better availability and long term reliability. (author)

  20. Radiation hardening coating material

    International Nuclear Information System (INIS)

    McDonald, W.H.; Prucnal, P.J.; DeMajistre, Robert.

    1977-01-01

    This invention concerns a radiation hardening coating material. First a resin is prepared by reaction of bisphenol diglycidylic ether with acrylic or methacrylic acids. Then the reactive solvent is prepared by reaction of acrylic or methacrylic acids with epichlorhydrine or epibromhydrine. Then a solution consisting of the resin dissolved in the reactive solvent is prepared. A substrate (wood, paper, polyesters, polyamines etc.) is coated with this composition and exposed to ionizing radiations (electron beams) or ultraviolet radiations [fr

  1. Modernization of WWER-1000 radiation monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T [General Atomics, San Diego, CA (United States)

    1996-12-31

    A modernization scheme of the radiation monitoring system for WWER-1000 is proposed. It has a purpose to comply with international standards and to reduce operational and maintenance cost by deleting obsolete components and reducing the number of detector channels. Detailed layouts of I/C system architecture, digital radiation monitoring system (DRAMS) architecture and LRP block diagram are presented. If planned and implemented properly, this program can provide cost savings by reducing time required to access and display data and maintenance cost by deleting obsolete parts and decreasing the number of detector channels. 3 figs.

  2. Modernization of WWER-1000 radiation monitoring systems

    International Nuclear Information System (INIS)

    Smith, T.

    1995-01-01

    A modernization scheme of the radiation monitoring system for WWER-1000 is proposed. It has a purpose to comply with international standards and to reduce operational and maintenance cost by deleting obsolete components and reducing the number of detector channels. Detailed layouts of I/C system architecture, digital radiation monitoring system (DRAMS) architecture and LRP block diagram are presented. If planned and implemented properly, this program can provide cost savings by reducing time required to access and display data and maintenance cost by deleting obsolete parts and decreasing the number of detector channels. 3 figs

  3. Radiation monitoring methodologies and their applications at BARC site

    International Nuclear Information System (INIS)

    Divkar, J.K.; Chatterjee, M.K.; Patra, R.P; Morali, S.; Singh, Rajvir

    2016-01-01

    Radiation monitoring methodology can be planned for various objectives during normal as well as emergency situations. During radiological emergency, radiation monitoring data provides useful information required for management of the abnormal situation. In order to assess the possible consequences accurately and to implement adequate measure, the emergency management authorities should have a well-prepared monitoring strategy in readiness. Fixed monitoring method is useful to analyze the behavior of nuclear plant site and to develop holistic model for it mobile monitoring is useful for quick impact assessment and will be the backbone of emergency response, particularly in case of non availability of fixed monitoring system caused due to natural disaster like floods, earthquake and tsunami

  4. Development of infrared communication in radiation protection and monitoring

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Choithramani, S.J.; Sharma, D.N.; Abani, M.C.

    2003-01-01

    Infra-red communication has many important applications in instrumentation and control. Different types of nuclear instruments are used for radiation protection and surveillance program. The application of this mode of communication in these instruments helps in monitoring of inaccessible or high radiation field areas by avoiding undue exposure to the occupational worker. The demand for remotely controlled monitoring instruments and wireless data communication in the mobile computing environment has rapidly increased. This is due to the increasing need for on-line radiological data analysis with minimum human interventions, especially so if the monitoring is in hazardous environment. The wireless communication can be achieved using different communication methodology for short and long range communication. The infrared based communication is used for different applications for short range up to 9-10 meters. The use of this mode of communication has been implemented in some of the radiation monitoring instruments developed in house. The evaluation of data communication using this mode was conducted for the systems like Environmental Radiation Monitor (ERM) and results showed that data communication error is less than 0.1% up to 10 meter distance. (author)

  5. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  6. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  7. International conference on individual monitoring of ionising radiation

    International Nuclear Information System (INIS)

    Vanhavere, Filip

    2016-01-01

    This special issue of the journal Radiation Protection Dosimetry is dedicated to the Proceedings of the International Conference on Individual Monitoring of Ionising Radiation (IM2015), which is the fifth of a series of conferences dealing with individual monitoring. This conference series is initiated by EURADOS, the European Radiation Dosimetry Group, and is organised every 5 years. In 2015, the conference was jointly organised by the Belgian Nuclear Research Centre (SCK.CEN), AV Controlatom, and the Vrije Universiteit Brussel. It brought together scientists from regulatory authorities, individual monitoring services (IMS), research bodies, European networks and companies, for the purpose of facilitating the dissemination of knowledge, exchanging experiences and promoting new ideas in the field of individual monitoring. After the conference, 124 papers were submitted for publication in these peer-reviewed proceedings. From these, 103 were finally accepted for publication. The help of the numerous referees and the guest editors is very much appreciated. These proceedings provide a full image of the IM2015 conference. The high-level publications will be useful to improve the state of individual monitoring all over the world and aim to inspire many scientists to continue their work on a better monitoring of radiologically exposed workers

  8. Biological monitoring of radiation using indicator plants

    International Nuclear Information System (INIS)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author)

  9. Biological monitoring of radiation using indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author).

  10. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law concerning subsidies and the provisions of the order for execution of the law. Basic terms are explained, such as: nuclear power generating facilities; arrangement business of radiation monitoring facilities; pre-research business of radiation monitoring; radiation monitoring business; place of enterprise; and expected time of beginning of the use. The Director General of Science and Technology Agency delivers subsidies to those prefectures where nuclear power generating facilities are or are expected to be established, or their neighboring prefectures. Subsidies are paid for each place of enterprise to support all or a part of expenses necessary for arrangement, pre-research or radiation monitoring business. Limits of subsidies for a place of enterprise in a prefecture are 155.6 million yen for a term for arrangement business, 16 million yen for each fiscal year for pre-research and 16 million yen for each fiscal year for radiation monitoring. An application for subsidies shall be filed by a prefecture to the Director General with the business program and gists of nuclear power generating facilities according to the forms attached. Receiving the application, the Director General shall examine it and notify without delay to the applicant the decision of delivery and its conditions in writing, when such settlement is made. Terms and conditions of delivery and reports, etc. are prescribed respectively. (Okada, K.)

  11. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  12. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  13. Radiation monitoring of nuclear census intelligent data management and mobile monitoring data acquisition system

    International Nuclear Information System (INIS)

    Huang Libin; Zhong Zhijing; Zhou Yinhang; Guo Hongbo

    2014-01-01

    The system, employing advanced intelligent terminal, mobile applications, database technology, can achieve all kinds of field monitoring, mobile radiation monitoring data collected for laboratory analysis; employing GPS technology, can achieve the geographic information of the radiation monitoring data, time tagging and other anti-cheating measures; the system also established a mass database management system; the system is suitable for all types of nuclear-related units with special adaptive functions; system will be extended to GIS-based management capabilities of nuclear contamination distribution in latter stage. (authors)

  14. Synthesis of functional materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others

    2000-04-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. Therefore, the radiation processing is used as the means to develop the high functional polymer and new material which is impossible by chemical process. The radiation grafting process has the advantage to endow the adsorption function to the existing materials such as polymer membrane, fabric, non-fabric, non-woven fabric and film. Radiation crosslinking is effected with no pressure and is performed at low temperatures. Thus, temperature sensitive additives can be used in radiation crosslinking. The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking and grafting which can restrict the application possibilities, or can increase the failure rate. In these studies, radiation grafting and crosslinking were used to develop the toxic gas adsorbent, blood compatible polymer, acetabular cup of artificial joint, urokinase adsorbent, hydrogel, hollow fiber membrane adsorbing the heavy metals, and battery separator membrane. Because cable in nuclear power plant is directly related to safe operation, the life assessment of the cable system is an important issue. To assess the degradation and life time of cable is complicated owing to the various types and the different formulation of cable. In order to make an estimate the long term degradation occurring in a material, it is necessary to carry out the accelerated aging studies and to establish the appropriate test method to characterize the degradation. These studies are aimed at the evaluation technique on radiation degradation of polymer material and applying these results to nuclear equipment qualification.

  15. Synthesis of functional materials by radiation

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others

    2000-04-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. Therefore, the radiation processing is used as the means to develop the high functional polymer and new material which is impossible by chemical process. The radiation grafting process has the advantage to endow the adsorption function to the existing materials such as polymer membrane, fabric, non-fabric, non-woven fabric and film. Radiation crosslinking is effected with no pressure and is performed at low temperatures. Thus, temperature sensitive additives can be used in radiation crosslinking. The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking and grafting which can restrict the application possibilities, or can increase the failure rate. In these studies, radiation grafting and crosslinking were used to develop the toxic gas adsorbent, blood compatible polymer, acetabular cup of artificial joint, urokinase adsorbent, hydrogel, hollow fiber membrane adsorbing the heavy metals, and battery separator membrane. Because cable in nuclear power plant is directly related to safe operation, the life assessment of the cable system is an important issue. To assess the degradation and life time of cable is complicated owing to the various types and the different formulation of cable. In order to make an estimate the long term degradation occurring in a material, it is necessary to carry out the accelerated aging studies and to establish the appropriate test method to characterize the degradation. These studies are aimed at the evaluation technique on radiation degradation of polymer material and applying these results to nuclear equipment qualification

  16. GCR and SPE Radiation Effects in Materials

    Science.gov (United States)

    Waller, Jess; Rojdev, Kristina; Nichols, Charles

    2016-01-01

    This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.

  17. Underground processing method for radiation-contaminated material and transferring method for buffer molding material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Asano, Eiichi; Yamagata, Junji; Ninomiya, Nobuo; Kawakami, Susumu.

    1995-01-01

    A bottomed molding material (buffer molding material) is formed into a bottomed cylindrical shape by solidifying, under pressure, powders such as of bentonite into a highly dense state by a cold isotropic pressing or the like, having a hole for accepting and containing a vessel for radiation-contaminated materials. The bottomed cylindrical molding material is loaded on a transferring vessel, and transferred to a position near the site for underground disposal. The bottomed cylindrical molding material having a upwarded containing hole is buried in the cave for disposal. The container for radiation-contaminated material is loaded and contained in the containing hole of the bottomed cylindrical molding material. A next container for radiation-contaminated materials is juxtaposed thereover. Then, a bottomed cylindrical molding material having a downwarded containing hole is covered to the container for the radiation-contaminated material in a state being protruded upwardly. The radiation-contaminated material is thus closed by a buffer material of the same material at the circumference thereof. (I.N.)

  18. Response of radiation monitors for ambient dose equivalent, H*(10)

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos

    2001-01-01

    Radiation monitors are used all over the world to evaluate if places with presence of ionising radiation present safe conditions for people. Radiation monitors should be tested according to international or national standards in order to be qualified for use. This work describes a methodology and procedures to evaluate the energy and angular responses of any radiation monitor for ambient dose equivalent, H*(10), according to the recommendations of ISO and IEC standards. The methodology and the procedures were applied to the Monitor Inteligente de Radiacao MIR 7026, developed by the Instituto em Engenharia Nuclear (IEN), to evaluate and to adjust its response for H*(10), characterizing it as an ambient dose equivalent meter. The tests were performed at the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), at Instituto de Radioprotecao e Dosimetria (IRD), and results showed that the Monitor Inteligente de Radiacao MIR 7026 can be used as an EI*(10) meter, in accordance to the IEC 60846 standard requirements. The overall estimated uncertainty for the determination of the MIR 7026 response, in all radiation qualities used in this work, was 4,5 % to a 95 % confidence limit. (author)

  19. Teaching materials for radiation training and user guides

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Kusama, Keiji

    2014-01-01

    Training for radiation teaching is important because of understanding radiation. Training methods except for a cloud chamber were proposed in this study; for example, drawing a visual image of a sand-picture by scanning its beta-rays with a handy type GM dosimeter. Though training hours are limited, measurement of alpha-, beta- and gamma-rays is useful to understand important characteristics of radiation. So, useful radioactive materials are the keys of radiation training. Small sizes of radioactive minerals, chemical reagent of KCl and radon progeny in the air were excellent radioactive materials for training. The differences between ionization and excitation of radiation, the relationship between penetration powers of radiation and shield effects of materials, the differences between natural radioactive materials and artificial ones, and other extension lectures were taught usefully for every grade as training by using these teaching materials. (author)

  20. Radiation protection and monitoring

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1997-01-01

    The safety, the quality and efficiency of the radiological monitoring systems for block one and two of the NPP Mochovce, designed and delivered by the general designer, should be increased by EUCOM Siemens. Modern, accident resistant and/or more powerful monitoring systems have been designed by Siemens will be added to the existing systems. To achieve this radiation measuring units will be installed inside the hermetic zone, in the reactor hall, at the stack, at the release water system and in the environment in the vicinity of the NPP. The presentation, the storage distribution and the processing of all measuring results also will be optimised by installing a modern high-performance computer system, the so-called Central Radiological Computer System 'CRCS', featuring a high availability. The components will be installed in the relevant control rooms all over the plant. With this computer system it is easy to control the radiation level inside and outside the NPP during normal operation and during and after an accident. Special programs, developed by Siemens support the staff by interpreting the consequences of radioactive releases into the environment and by initiating protection procedures during and after an accident. All functions of the system are available for emergency protection drills and training the staff interruption of the normal control procedure. For the personal protection a digital personal dosimetry system completely considering with the requirements of ICRP 60 and several contamination monitors will be installed. (authors)

  1. Background compensation for a radiation level monitor

    Science.gov (United States)

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  2. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  3. Radiation environmental real-time monitoring and dispersion modeling: A comprehensive solution

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  4. Automatic radiation dose monitoring for CT of trauma patients with different protocols: feasibility and accuracy

    International Nuclear Information System (INIS)

    Higashigaito, K.; Becker, A.S.; Sprengel, K.; Simmen, H.-P.; Wanner, G.; Alkadhi, H.

    2016-01-01

    Aim: To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). Materials and methods: In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current–time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current–time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. Results: Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDI_v_o_l; p=0.62), dose–length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both −38%, p<0.017). Compared to cohort 1, CTDI_v_o_l, DLP, and ED in cohort 3 were significantly lower (all −25%, p<0.017), similar to the noise in the chest (–32%) and abdomen (–27%, both p<0.017). Compared to cohort 2, CTDI_v_o_l (–28%), DLP, and ED (both –26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). Conclusion: Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time. - Highlights: • Automatic dose monitoring software can be

  5. Monitoring and crisis system of radiation safety

    International Nuclear Information System (INIS)

    Bartok, J.; Borovansky, P.; Macica, J.; Petrovicova, M.

    2005-01-01

    In this paper we have briefly described our practical experiences with the most complex Radiation Monitoring System we have designed. This system consists of number of stations; those data are collected in the main crisis center of the whole system. The main center integrates RMS Central Database, the IMS Model Suite workstation and the Graphics workstation. The radiations probes of the RP series are the base for stationary , portable sets and for sets measuring underwater radiation. The radiation and meteorological data, which are necessary for reasonable interpretation of radiation data, are archived in RMS Central database. The Lagrangian trajectory model from the IMS Model Suite serves for radiation dispersion modeling. (authors)

  6. Optically Stimulated Luminescence for Retrospective Radiation Dosimetry. The Use of Materials Close to Man in Emergency Situations

    OpenAIRE

    Geber-Bergstrand, Therése

    2017-01-01

    If an accident or attack involving radiological or nuclear material were to happen, people from the general public would be at risk of exposure to ionising radiation. Unlike people working with ionising radiation, for whom level of exposure to radiation is constantly monitored with dosemeters, people from the general population do not wear dosemeters; thus, the dose estimations for these individuals must be performed using alternative methods. This field of research is called retrospective do...

  7. Calibration of the radiation monitor onboard Akebono using Geant4

    Science.gov (United States)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  8. Radiation monitoring data representation for duty personnel

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.L.; Kiselev, V.P.; Krasnoperov, S.N.; Kudeshov, E.V.; Maslov, S.Y.; Semin, N.N.; Sirotinskiy, S.E.; Yakovlev, V.Y. [Nuclear Safety Institute of the Russian Academy of Sciences (NSI RAS), Moscow (Russian Federation)

    2014-07-01

    Currently, Web-GIS technologies are widely used to generate a reliable and intuitive web-based interface to monitor the current radiation situation in various regions of the Russian Federation. The developed 'Server Web-Monitoring' web-application is intended for duty personnel and can operate not only on desktop computers but also on mobile devices. The subsystem of duty personnel notification about any Off-Normal Situation (ONS) (such as: critical threshold exceedances or failures in operation of monitoring systems) is also considered in the paper. Three types of Automated Radiation Monitoring Systems (ARMS) are available for monitoring: - regional ARMS; - facility-level ARMS; - ARMS of nuclear power plant surveillance areas. Google Maps and Google Maps API toolbox are used as the cartographic basis. In the general-monitoring window only general information on each of the local systems is available. Next, the operator can move to monitoring of local ARMS he is interested in. The operator can either view a list of Radiation Situation Monitoring Posts (RSMP) showing the current data in the right frame or hide it and use the map only. Viewing the log of critical threshold exceedances for 24 hours and a report on all RSMPs of a given system over the last 7 days is also possible. The report contains maximum values of measurements for every day and for each RSMP. The developed web-application includes: - monitoring of the radiation situation and its changes on the general map of the Russian Federation and on maps of local ARMS; - displaying 7-day reports for all RSMPs of the selected ARMS; - displaying the log of critical threshold exceedances recorded over the past day. The notification subsystem informs duty personnel on all ONS, namely, on critical threshold exceedances in the incoming data and failures in operation of monitoring systems. The key features of the notification subsystem are: - round-the-clock functioning; - automatic notification in case of

  9. Correlation monitor materials

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-01-01

    This task has been established with the explicit purpose of ensuring the continued availability of the pedigreed and extremely well-characterized material now required for inclusion in all additional and future surveillance capsules in commercial light-water reactors. During this reporting period, concrete was poured and pallets storage racks were installed to provide adequate room for the storage of the correlation monitor material being transferred from its location at the Y-12 Plant to its archival storage location at ORNL. The racks came from surplus material storage at ORNL and hence were obtained at no cost to the HSSI Program. Inquiries into cost-effective means of sheltering the blocks of correlation monitor materials from further weather-related deteriorization were initiated. The most likely approach would be to procure a turn-key sheet metal building installed over the storage racks by an outside contractor to minimize costs. Most of the material has now been transferred from Y-12 to the ORNL storage area. It has been repositioned on new storage pallets and placed into the storage racks, An update of the detailed material inventory was initiated to ascertain the revised location of all blocks. Pieces of HSST plate O3 were distributed to participants in the ASTM cross-comparison exercise on subsize specimen testing technology. The use of the HSST O3 will provide for data from the many varieties of tests to be performed to be compared with the standardized data previously developed. The testing techniques will focus on ways to measure transition temperature and fracture toughness

  10. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  11. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  12. Development of a Method to Assess the Radiation Dose due to Internal Exposure to Short-lived Radioactive Materials

    International Nuclear Information System (INIS)

    Benmaman, D.; Koch, J.; Ribak, J.

    2014-01-01

    Work with radioactive materials requires monitoring of the employees' exposure to ionizing radiation. Employees may be exposed to radiation from internal and/or external exposure. Control of external exposure is mostly conducted through personal radiation dosimeters provided to employees. Control of internal exposure can be performed by measuring the concentration of radioactive substances excreted in urine or through whole-body counting in which the entire body or target organs are scanned with a sensitive detector system (1). According to the regulations in Israel an employee that may be internally exposed must undergo an exposure control at least once every three months. The idea lying behind the control of internal exposure by urine testing is that if radioactive material has penetrated into the employee body, it can be detected even if the test is performed once every three months. A model was fitted for each element describing its dispersion in the body and its excretion therefrom (2). By means of this model, one can estimate the activity that entered the body and calculate the resulting radiation dose to which the worker was exposed. There is a problem to implement this method when it comes to short-lived radioactive materials, for which it is very likely that the material that penetrated into the body has decayed and cannot be detected by testing once every three months. As a result, workers with short-lived radioactive materials are presently not monitored for internal exposure, in contradiction to the requirements of the Safety at Work Regulations. The purpose of the study is to develop an alternative method to assess the amount of radioactive material absorbed in the body and the resulting radiation dose due to internal exposure of workers to short-lived radioactive materials

  13. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  14. Study of the response of radiation protection monitors in terms of H*(10) in X radiation

    International Nuclear Information System (INIS)

    Nonato, Fernanda B.C.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E.

    2009-01-01

    The ambient dose equivalent, H * (10), is an operational quantity recommended by the International Commission of radiation Units and Measurements Report 39 for measurements in area monitoring. However, most of the monitoring instruments used in radiation protection in Brazil still use the old quantities exposure rate and absorbed dose rate. Therefore, it is necessary to study how to change the operational quantity to H * (10). In this work, the response of radiation protection monitoring detectors was studied in terms of H * (10) for different energies using standard X-rays (narrow beams) at the Calibration Laboratory of IPEN. (author)

  15. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  16. Monitoring of low level environmental gamma exposure by the centralized radiation monitoring system

    International Nuclear Information System (INIS)

    Katagiri, Hiroshi; Kobayashi, Hideo; Obata, Kazuichi; Kokubu, Morinobu; Itoh, Naoji

    1981-07-01

    In the Japan Atomic Energy Research Institute (JAERI), a centralized automatic radiation monitoring system developed 20 years ago has recently been improved to monitor low level gamma radiation more accurately in normal operation of the nuclear facilities and to detect abnormal radioactive releases more effectively. The present state of the system is described. This system puts together environmental monitoring data such as gamma exposure rate (20 points), radioactive concentration in the air (4 points) and in water (2 drains), and meteorological items (14 including wind directions, wind speeds, solar radiation and air temperatures at a observation tower of 40 m height). Environmental monitoring around the JAERI site is carried out effectively using the system. Data processing system consists of a central processing unit, a magnetic disk, a magnetic tape, a line printer and a console typewriter. The data at respective monitoring points are transmitted to the central monitoring room by wireless or telephone line. All data are printed out and field in magnetic disk and magnetic tape every 10 minutes. When the emergency levels are exceeded, however, the data are automatically output on a line printer every 2 minute. This system can distinguish very low gamma exposure due to gaseous effluents, about 1 mR/y, from the background. Even in monthly exposures, calculated values based on the data of release amount and meteorology are in good agreement with the measured ones. (author)

  17. EV M-experiment in radiation material science

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kislitsin, S.B.; Pyatiletov, Yu.S.; Turkebaev, T.Eh.; Tyupkina, O.G.

    1999-01-01

    To simulate rapid processes in materials, rearrangement at the atomic level, or processes in which the access to the materials is limited or considered to be hazardous, the EV M-experiment is going to be applied more often in the atomic material science (calculating experiment, computer-aided simulation). This paper presents the most important outcomes obtained from the calculating experiment carried out by scientists of the Institute of Nuclear Physics of NNC RK, who are considered to be followers of the scientific school named after Kirsanov V.V. The review consists of the following sections: 1. Simulation of dynamic processes of radiation damage of materials. 2. Simulation of radiation defects in materials. 3. Simulation of radiation defects migration processes in crystals. 4. Simulation of irradiated materials failure and deformation processes

  18. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1997

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency's (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods

  19. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  20. Radiation-shielding transparent material

    International Nuclear Information System (INIS)

    Kusumeki, Asao.

    1983-01-01

    Purpose : To obtain radiation-shielding transparent material having a high resistivity to the radioactive rays or light irradiation which is greater at least by two digits as compared with lead glass. Constitution : The shielding material is composed of a saturated aqueous solution zinc iodide. Zinc iodide (specific gravity of 4.2) is dissolved by 430 g into 100 cc of water at a temperature of 20 0 C and forms a heavy liquid with a specific gravity of 2.80. The radiation length of the heavy liquid is 3.8 cm which is 1.5 times as large as lead glass. The light transmission is greater than 95% in average. Furthermore, by adding hypophosphorous acid as a reducing agent to the aqueous solution of the lead iodide, the material is stabilized against the irradiation of light or radioactive rays and causes no discoloration for a long time. (Moriyama, K.)

  1. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  2. Emergency monitoring strategy and radiation measurements document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  3. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  4. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  5. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  6. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1991-01-01

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  7. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    Science.gov (United States)

    Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.

    2013-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.

  8. Radiation monitoring network of the Slovak Hydrometeorological Institute

    International Nuclear Information System (INIS)

    Melicherova, T.

    2005-01-01

    In 2000 Centre of Partial monitoring system 'Radioactivity of environment' was established on Slovak Hydrometeorology Institute (SHMI). Radiation monitoring network is one part of Radiation monitoring network of the Slovak Republic. At present SHMI operates in its monitoring network 23 detectors GammaTracer fy Genitron, one mobile detector and one stan by detector. All active detectors are placed in the professional meteorological stations in the selected parts of Slovakia. First one of these detectors was installed in 1999 and they replaced former type of detector (FAG). Last two detectors were installed in 2002. Detector GammaTracer has range of measurement from 20 nSv/h to 10 Sv/h. The detectors are calibrated every 2 years in the Slovak Institute of Metrology in compliance with the calibration plan. SHMI operates 4 aerosol monitors in Hurbanovo, Lucenec, Stropkov and Liesek. Filter 8 from these monitors are analysed in the Institute of Public Health (Cs-137, Be-7). On the base of bilateral agreement between the Austrian Ministry of Agriculture, Forestry, Environment and Water-Management and the Slovak Ministry of Environment Austrian side gave into the ownership of the Slovak side an automatic aerosol monitor AMS-02 including container and weather station. This monitor was installed in meteorological station Jaslovske Bohunice on 4-th October 2001. The Slovak Ministry of Environment provides the Austrian Ministry of Agriculture, Forestry, Environment and Water-Management with the readings of this monitor, free of charge, for at least 3 years and vice versa, the Austrian side gives the readings of the Austrian aerosol monitors to the Slovak Ministry of Environment free of charge. At present national monitoring center in Bratislava-Koliba is connected via ISDN line with Jaslovske Bohunice and Austrian center providing the data exchange. Radiation data (dose rate in the unit nSv/h) are collected via the Institute network to the MSS (message switch system) in the

  9. On-line radiation teaching materials using IT technology

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi

    2005-01-01

    We developed the on-line radiation teaching materials using the Internet, in order to provide the teaching support materials of atomic power and radiation educations in on-school study, as well as to create the complementary study system in off-school study. The themes of teaching materials were selected from requests by teachers. In the case of an elementary school, the teaching material 'an environmental problem and atomic power' was created as the aggregate of each content for study without boundary between subjects. The teaching material 'medical treatment and radiation' was created for junior high school students to raise the individual knowledge. In the case of a high school, the teaching material nucleus and radiation' was prepared to supplement the physical study of students. The on-line teaching materials were tried to 300 junior high school and high school students, 68% of students answered that the teaching material is effective to understand atomic power and radiation, though 17% answered they were not effective. Although there are problems to prepare IT learning equipments and learning follow-up system in the material, it is suggested that the on-line teaching materials will provide the novel learning system including debates for the study. This method has no limitation of time and place. (author)

  10. Results of environmental radiation monitoring and meteorology measurements (material prepared for obtaining the licence for RA reactor experimental operation)

    International Nuclear Information System (INIS)

    1980-10-01

    According to the demands for obtaining the licence for restarting the Ra reactor and the experimental operation this document includes the radiation monitoring measured data in the working space and environment of the RA reactor, i.e. Boris Kidric Institute. The meteorology measured data are included as well. All the measurements are performed according to the radiation protection program applied actually from the first reactor start-up at the end of 1959 [sr

  11. Radiation survey meters used for environmental monitoring

    International Nuclear Information System (INIS)

    Bjerke, H.; Sigurdsson, T.; Meier Pedersen, K.; Grindborg, J.-E.; Persson, L.; Siiskonen, T.; Hakanen, A.; Kosunen, A.

    2012-01-01

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  12. Radiation survey meters used for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  13. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    International Nuclear Information System (INIS)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock

    2011-01-01

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance

  14. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock [Department of Statistics and Actuarial Sciences, Business and Industrial Statistics Research Group, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); St. Andrew' s Medical Institute, St. Andrew' s War Memorial Hospital, Brisbane, Queensland 4000 (Australia); Department of Statistics and Actuarial Sciences, Business and Industrial Statistics Research Group, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment

  15. Radiation monitor reporting requirements

    International Nuclear Information System (INIS)

    Bates, W.F.

    1993-01-01

    Within High-Level Waste Management (HLWM), CAMs and VAMPs are currently considered Class B equipment, therefore, alarm conditions associated with the CAMs and VAMPs result in an Unusual Occurrence or Off-Normal notification and subsequent occurrence reporting. Recent equipment difficulties associated with Continuous Air Monitors (CAMs) and Victoreen Area Radiation Monitors (VAMPs) have resulted in a significant number of notification reports. These notification have the potential to decrease operator sensitivity to the significance of specific CAM and VAMP failures. Additionally, the reports are extremely costly and are not appropriate as a means for tracking and trending equipment performance. This report provides a technical basis for a change in Waste Management occurrence reporting categorization for specific CAM and VAMP failure modes

  16. Development of new organic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.; and others

    2012-01-15

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed.

  17. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.

    2012-01-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed

  18. Development of a Compact Gamma-ray Detector for a Neural-Network Radiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Ha, J. H.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, C. H. [Hanyang Univ., Seoul (Korea, Republic of)

    2012-03-15

    Radiation monitoring is very important to secure safety in nuclear-related facilities and against nuclear terrorism. For wide range of radiation monitoring, neutral network system of radiation detection is most efficient way. Thus, a compact radiation detector is useful to install in wide range to be concerned. A compact gamma-ray detector was fabricated by using a CsI(Tl) scintillator, which was matched with the formerly developed PIN photodiode, for a neural network radiation monitoring. At room temperature, the fabricated compact gamma-ray detector demonstrates an energy resolution of 13.3 % for 662 keV 6.9% for 1330 keV. The compactness, the low-voltage power consumption and the physical hardness are very useful features for a neural network radiation monitoring. In this study, characteristics of a fabricated compact gamma-ray detector were presented. An important aspect to consider in a neural-network radiation monitoring such as reaction probability of the fabricated compact detector for angle of incident gamma-ray was also addressed.

  19. Simulation of space radiation effects on polyimide film materials for high temperature applications. Final report

    International Nuclear Information System (INIS)

    Fogdall, L.B.; Cannaday, S.S.

    1977-11-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics

  20. Radiation monitoring network in Poland

    International Nuclear Information System (INIS)

    Grabowski, D.; Kurowski, W.; Muszynski, W.; Rubel, B.; Smagala, G.; Swietochowska, J.

    2001-01-01

    In Poland the radioactive contamination of the environment and food has been controlled since the early sixties by the Service for Measurements of Radioactive Contamination (SPSP). The service comprises a network of measuring stations and the Centre of Radioactive Contamination Measurements (COPSP). Actually, there are 100 measurement stations. The main task of such station is systematic measurement of radioactivity level in samples of environment components and food. Nine stations of SPSP acting within meteorological stations, ten stations of low level air radioactivity measurements (Aerosols Sampling Stations-500) and eleven permanent monitoring stations (PMS) form the radiation monitoring warning system in Poland. (author)

  1. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  2. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kang, Phil Hyun; Choi, Jae Hak

    2010-04-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we carried out the radiation-based new research to apply long-term moisturizing effects and effective natural herbal extracts on the atopic wounds using gamma-ray irradiation. Also, we have developed the separator and the polymer gel electrolyte for lithium secondary battery by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology for TFT-LCD panel by radiation. In the 3rd project, we have developed the various radiation-based techniques for the surface modification of polymers and ceramics, biomolecules immobilization and patterning, prevention of biomolecule's non-specific adhesion, and surface modification of carbon nanotubes

  3. Development of Nuclide Recognizing Prompt Radiation Distribution Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uk Jae; Yoo, Dong Han; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The geographic data such as latitude, longitude and map image can be obtained by using GPS and digital map. Radiation data can be acquired by detector. Finally simultaneous visibility system can be operated by using CDMA. Existing radiation distribution monitoring system is based on random generated data. However the radiation distribution monitoring system is developed. It is based on real detected data. Connection between the detector and laptop which are located at a site place is operated by using Bluetooth. CDMA is used to simulate visibility system between laptop in a site place and server PC in the control office. Real map image is taken from digital map. Finally radiation distribution contour map on the real map image can be shown by using MATLAB. 5 figures appear which shows natural, {sup 137}Cs, {sup 131}I, artificial and total radiation dose rate. So this system can be used in everywhere to check the distribution of radiation with geographic information.

  4. Radiation mapping of Jaipur city using compact aerial radiation monitoring system (CARMS) installed in mobile platform

    International Nuclear Information System (INIS)

    Jain, Amit; Chaudhury, Probal; Padmanabhan, N.; Pradeepkumar, K.S.; Sharma, D.N.; Thandra, Manu

    2010-01-01

    Full text: Widespread use of radioisotopes for social benefits through industrial, scientific and medical applications poses a potential for occurrence of radiological emergencies due to loss or misuse of the radioactive sources. Besides, as there is increased societal concern for radiation safety of man and environment, monitoring is needed as a confidence building measure. It is necessary to assess any possible increase in background radiation due to the operation of nuclear facilities or any other man made events. Any observable increase in normal radiation background is a precursor for the abnormal presence of radioactivity. As a part of emergency preparedness for response to radiological emergencies, BARC has taken up radiation mapping of all major cities. A mobile ground based radiation monitoring has been conducted around Jaipur city using state-of-the-art radiation monitoring systems and instruments. The systems were mounted in a vehicle at a height of 1.0 meter from the ground and the GPS antenna was mounted on top for clear satellite visibility. It was ensured that the gamma attenuation due to the body of the vehicle was minimal. The average speed of the vehicle was maintained at 30 km/h to ensure uniformity in distance during the data acquisition interval. The monitoring was carried out over two days and resulted in establishment of baseline dose rate data of the city, which will be useful in case of any radiological emergency. The detailed environmental radiation monitoring demonstrated the utility of the systems and the methodology for the assessment of large area ground contamination and also search and detection of any orphan radioactive sources through variations in background gamma radiation observations. The methodology adopted for analysis of the surveyed data is based on the interpretation of the changes in the mean value and standard deviation in the values in different regions of the surveyed area. During this monitoring exercise, total road

  5. The wireless sensor network monitoring system for regional environmental nuclear radiation

    International Nuclear Information System (INIS)

    Liu Chong; Liu Dao; Wang Yaojun; Xie Yuxi; Song Lingling

    2012-01-01

    The wireless sensor network (WSN) technology has been utilized to design a new regional environmental radiation monitoring system based on the wireless sensor networks to meet the special requirements of monitoring the nuclear radiation in certain regions, and realize the wireless transmission of measurement data, information processing and integrated measurement of the nuclear radiation and the corresponding environmental parameters in real time. The system can be applied to the wireless monitoring of nuclear radiation dose in the nuclear radiation environment. The measured data and the distribution of radiation dose can be vividly displayed on the graphical interface in the host computer. The system has functioned with the wireless transmission and control, the data storage, the historical data inquiry, the node remote control. The experimental results show that the system has the advantages of low power consumption, stable performance, network flexibility, range of measurement and so on. (authors)

  6. Integrating existing radiation monitors into a microprocessor-based display system

    International Nuclear Information System (INIS)

    Kalita, R, S.; Bartucci, C.M.; Mason, R.G.; Greaves, C.

    1992-01-01

    Plantwide digital radiation monitoring systems (RMSs) have been generally installed as part of the original design for newer nuclear reactors. For older plants, area and process radiation monitors were either analog or a combination of analog and digital but were not part of an integrated system design. At some plants, individual monitors have been replaced or modified, resulting in a rainbow of different monitors and vendors being represented at the plant. Usually at some point, consideration is given to replacing these monitors with a state-of-the-art RMS to improve overall reliability and achieve the benefits of sound human factors engineering. This can be a very costly project in terms of expenditures for engineering, equipment, construction, startup, and time. When human engineering deficiencies (HEDs) became an issue at Zion station, Commonwealth Edison elected to install a computer-based radiation monitoring display system (RMDS) that would interface existing raidation monitors. After reviewing the existing as-built RMS configuration and internal circuits of the various monitors, it was concluded that a microprocessor-based RMDS could be successfully designed and installed that would solve the HEDs and would tie the older analog channels into a system configuration. Although in many cases, internal modifications were made to existing RMS monitors, the RMDS upgrade allowed the existing RMS monitors to retain their original functionality and location

  7. Radiation monitoring complete change by an unprecedented nuclear power plant accident

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2011-01-01

    Hydrogen explosion at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company that was triggered by the tsunami generated from the Great East Japan Earthquake led to a series of disasters up to meltdown and melt-through. A large amount of discharge of radioactive substances to the environment due to the disasters marked a sea change in the situation of radiation monitoring in Japan to date. The Japanese Government took the following actions. (1) Establishment of government-led monitoring system through the setup of the Monitoring Coordination Council, (2) Decision on 'Comprehensive Monitoring Program' that implements unified comprehensive radiation monitoring and publishes the results, and (3) Law establishment for radiation monitoring by stipulating immediate implementation systems and implementation points as well as budgetary backup for this purpose. This paper describes the plans to monitor the environment, public facilities, aquatic environment, agricultural land, food, etc., as well as the future challenges. (O.A.)

  8. Radioactive surface contamination monitors

    International Nuclear Information System (INIS)

    Aoyama, Kei; Minagoshi, Atsushi; Hasegawa, Toru

    1994-01-01

    To reduce radiation exposure and prevent contamination from spreading, each nuclear power plant has established a radiation controlled area. People and articles out of the controlled area are checked for the surface contamination of radioactive materials with surface contamination monitors. Fuji Electric has repeatedly improved these monitors on the basis of user's needs. This paper outlines typical of a surface contamination monitor, a personal surface contamination monitor, an article surface contamination monitor and a laundry monitor, and the whole-body counter of an internal contamination monitor. (author)

  9. Capacity training for the personnel of radiation monitoring in metal recycling; Curso de capacitacion para el personal que realiza la vigilancia radiologica en el reciclaje de metales

    Energy Technology Data Exchange (ETDEWEB)

    Caveda Ramos, C.A.; Dominguez Ley, O., E-mail: caveda@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones, La Habana (Cuba)

    2013-07-01

    In this work it a course for training for the personnel involved in the radiation monitoring of metal recycling is presented. The contents were elaborated taken into account the IAEA recommendations for the development of capacity and training activities in radiological safety and in the Guide for the control of radioactive material in metal recycling. The program is divided in eleven parts and the duration time is two weeks. Among the main covered topics are the requirements for radiation monitoring in metal recycling; response to detection of radioactive material and effects of the ionizing radiation in man and environment.

  10. Emergency monitoring strategy and radiation measurements. Working document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2006-04-01

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  11. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  12. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  13. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  14. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  15. Radiation safety

    International Nuclear Information System (INIS)

    Woods, D.A.

    1982-01-01

    Sections include: dose units, dose limits, dose rate, potential hazards of ionizing radiations, control of internal and external radiation exposure, personal dosemeters, monitoring programs and transport of radioactive material (packaging and shielding)

  16. Development of rubber material for high radiation field

    International Nuclear Information System (INIS)

    Nakatsukasa, Sadayoshi; Tabasaki, Takeshi; Yoshida, Akihiro; Kadowaki, Yoshito

    2013-01-01

    Generally flexible polymeric materials exposed to radiation can't be used because they soften or harden remarkably in high radiation environment. Aromatic polymers such as PEEK, PI, and PES are also known as radiation-proof polymeric materials. Aromatic polymers are very hard, they can't be used for products like a packing where flexibility is required. We developed a new vulcanized rubber compound by the use of various additives and polymer blend. This developed rubber compound has a high radiation-proof performance by reaction balance of cross-linking and decomposition in this rubber. This rubber compound has a rubber elasticity even if exposed to radiation of MGy level, and its radiation proof is more than 5 times as high as conventional polymeric materials. This rubber compound is much more flexible than the aromatic polymers which are the used as conventional radiation-proof polymers. (author)

  17. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  18. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  19. Automation of the radiation protection monitoring system in the RP-10 reactor

    International Nuclear Information System (INIS)

    Anaya G, Olgger; Castillo Y, Walter; Ovalle S, Edgar

    2002-01-01

    During the reactor operation, it is necessary to carry out the radiological control in the different places of the reactor, in periodic form and to take a registration of these values. For it the radioprotection official, makes every certain periods, settled down in the procedures, to verify and to carry out the registration of those values in manual form of each one of the radiation monitors. For this reason it was carried out the design and implementation of an automatic monitoring system of radioprotection in the reactor. In the development it has been considered the installation of a acquisition data system for 27 radiation gamma monitors of the type Geiger Mueller, installed inside the different places of the reactor and in the laboratories where they are manipulated radioactive material, using as hardware the FieldPoint for the possessing and digitalization of the signs which are correspondents using the communication protocol RS-232 to a PC in which has settled a program in graphic environment that has been developed using the tools of the programming software LabWindows/CVI. Then, these same signs are sent 'on line' to another PC that is in the Emergency Center of Coordination to 500 m of the reactor, by means of a system of radiofrequency communication. (author)

  20. Monitoring of external background radiation level in Asa dam ...

    African Journals Online (AJOL)

    An external background ionizing radiation study has been carried out within the Asa Dam Industrial Layout of Ilorin in Kwara State. The study was carried out in 5 stations within the industrial area using two Digilert Nuclear Radiation Monitors. The study has revealed that the external background ionizing radiation is ...

  1. Physical principles of neutron-gamma materials monitoring

    Science.gov (United States)

    Pekarskii, G. Sh.

    1986-03-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  2. Safety of radiation sources and security of radioactive materials. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l`energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  3. Safety of radiation sources and security of radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l'energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  4. Remote radiation environmental monitoring

    International Nuclear Information System (INIS)

    Pashayev, A.M.; Mehdiyev, A.Sh.; Bayramov, A.A.

    2003-01-01

    Full text: The project of the automated remote monitoring for a level of an environment background radiation in settlements along boundary of the Azerbaijan Republic is developed. The main purpose of the project is: increase of a level of a radiation safety on territory of the Azerbaijan Republic; controlling of a level of an environment background radiation on boundary of the Azerbaijan Republic with the purpose of well-timed warning and acceptance of indispensable measures at probable emergencies on Atomic Power Stations in a number adjacent from Azerbaijan countries, or other ecological catastrophes; controlling of a level of an environment background radiation along eastern suburbs of Azerbaijan regions occupied of Armenia's army and detection of the facts of wrongful disposals of atomic engineering of Armenia on territory of Azerbaijan. As is known, in a number adjacent from Azerbaijan countries the nuclear industry is advanced or develops. It has resulted in origin of threat of a radiation hazard in case of ecological catastrophes: widely scale leakage of radioactive wastes, explosions, or fires on nuclear generating sets, acts of sabotage, directional against Azerbaijan. In this case, at unfavorable meteorological conditions a radioactive waste may be brought by a wind or a rain on territory of Azerbaijan. Measurement is supposed a carry with the help of 'EKOMON' fixed stations. The results of round-the-clock a gamma and a neutron background measurement from the stations will be transmitted automatically to a dispatcher station in the central computer. Established on the stations telescopic sensors also will allow to determine a direction of a radiation and coordinates of radiation source. Stations will be located along boundary, and also in Kedabek, Akstafa, Terter, Agdam and Fizuli regions, and in Autonomous Republic of Nakhichevan

  5. FPGA-based prototype of portable environmental radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Benahmed, A.; Elkarch, H. [CNESTEN -Centre National de l' Energie des Sciences et Techniques Nucleaires (Morocco)

    2015-07-01

    This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time control and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)

  6. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  7. National and international nuclear material monitoring

    International Nuclear Information System (INIS)

    Waddoups, I.G.

    1996-01-01

    The status of nuclear materials in both the U.S. and Former Soviet Union is changing based upon the execution of agreements relative to weapons materials production and weapon dismantlement. The result of these activities is that a considerably different emphasis is being placed on how nuclear materials are viewed and utilized. Even though much effort is being expended on the final disposition of these materials, the interim need for storage and security of the material is increasing. Both safety and security requirements exist to govern activities when these materials are placed in storage. These requirements are intended to provide confidence that the material is not being misused and that the storage operations are conducted safely. Both of these goals can be significantly enhanced if technological monitoring of the material is performed. This paper will briefly discuss the traditional manual methods of U.S. and international material monitoring and then present approaches and technology that are available to achieve the same goals under the evolving environment

  8. Radiation monitoring in the NPP environment, control of radioactivity in NPP-environment system

    International Nuclear Information System (INIS)

    Egorov, Yu.A.

    1987-01-01

    Problems of radiation monitoring and control of the NPP-environment system (NPPES) are considered. Radiation control system at the NPP and in the environment provides for the control of the NPP, considered as the source of radioactive releases in the environment and for the environmental radiation climate control. It is shown, that the radiation control of the NPP-environment system must be based on the ecological normalization principles of the NPP environmental impacts. Ecological normalization should be individual for the NPP region of each ecosystem. The necessity to organize and conduct radiation ecological monitoring in the NPP regions is pointed out. Radiation ecological monitoring will provide for both environmental current radiation control and information for mathematical models, used in the NPPES radiation control

  9. Air gamma spectrometry in the radiation monitoring situation of Army of the Czech Republic

    International Nuclear Information System (INIS)

    Pavlik, J.; Sladek, P.

    2011-01-01

    In this poster authors deal with aerial radiation monitoring of territory of the Czech Republic. Army Radiation Monitoring Network (ARMS) are selected folder whirlwind Army of the Czech Republic (ACR), that are destined for the tasks of the National Radiation Monitoring Network (CRMS).

  10. Personnel radiation monitoring by thermoluminescence dosimetry (1995-96)

    International Nuclear Information System (INIS)

    Daw Mi Cho Cho; Daw Yi Yi Khin; Daw San San; U Maung Maung Tin; Daw Hla Hla Win

    2001-01-01

    Personnel radiation monitoring which is the dose assessment of individual doses from external radiation received by radiation workers has been carried out by Thermoluminescence Dosimetry system consisting of a Vinten Toledo TLD reader, LiF dosimeters and associated equipment. The exposed TLD dosimeters were measured by TLD reader and the dose evaluation and dose registration were done on personal computer. Due to the records of 1995-96, most of the radiation workers complied with the permissible dose recommended by IAEA and ICRP 60. (author)

  11. System of message for gamma-radiation monitor

    International Nuclear Information System (INIS)

    Bolic, M.D.; Koturovic, A.M.

    2001-01-01

    Paper describes a system of voice messages for gamma-radiation monitor based on PC. The systems reproduces recorded messages that is simpler than the process of their synthesis. Message choice is based on combination of recorded digital results and/or received reference messages or warnings. The system of generation of voice messages applies the Windows based software. The total memory array required to create independent voice system is maximum 1.7 mbyte. The monitor may be used for continuous monitoring of radioactivity level with 5-8 s period of message repetition. Another option of the system operation is based on monitor application for the environment monitoring. Period of messages in this case is equal to 5-30 min [ru

  12. Preliminary Study of Position-Sensitive Large-Area Radiation Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Kim, Hyunok; Moon, Myung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jong Won; Lim, Yong Kon [Korea Institute of Ocean Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    An RPM, which is a passive inspection method, is a system for monitoring the movement of radioactive materials at an airport, seaport, border, etc. To detect a γ-ray, an RPM using the plastic scintillator is generally used. The method of γ-ray detection using an RPM with a plastic scintillator is to measure lights generated by an incident γ-ray in the scintillator. Generally, a large-area RPM uses one or two photomultiplier tubes (PMT) for light collection. However, in this study, we developed a 4-ch RPM that can measure the radiation signal using 4 PMTs. The reason for using 4 PMTs is to calculate the position of the radiation source. In addition, we developed an electric device for acquisition of a 4-ch output signal at the same time. To estimate the performance of the developed RPM, we performed an RPM test using a {sup 60}Co γ-ray check source. In this study, we performed the development of a 4-ch RPM. The major function of the typical RPM is to measure the radiation. However, we developed a position-sensitive 4-ch RPM, which can be used to measure the location of the radiation source, as well as the radiation measurement, at the same time. In the future, we plan to develop an algorithm for a position detection of the radiation. In addition, an algorithm will be applied to an RPM.

  13. National infrastructure for detecting, controlling and monitoring radioactive materials

    International Nuclear Information System (INIS)

    Othman, I.

    2001-01-01

    Full text: The Atomic Energy Commission of Syria (AECS) has the direct responsibility to assure proper safety for handling, accounting for and controlling of nuclear materials and radioactive sources which based on a solid regulatory infrastructure , its elements contains the following items: preventing, responding, training, exchanging of information. Based on the National Law for AECS's Establishment no. 12/1976, a Ministerial Decree for Radiation Safety no. 6514 dated 8.12.1997, issued by the Prime Minister. This Decree authorizes the Syrian Atomic Energy Commission to regulate all kinds of radiation sources. It fulfills the basic requirements of radiation protection and enforce the rules and regulations. The Radiation and Nuclear Regulatory Office (RNRO) is responsible for preparing all the draft regulations. In 1999 the General Regulations for Radiation Protection was issued by the Director General of the AECS, under Decision no. 112/99 dated 3.2.1999. It is based on an IAEA publication, Safety Series no. 115 (1996), and adopted to meet the national requirements. Syria has nine Boarding Centers seeking to prevent unauthorized movement of nuclear material and radioactive sources in and out side the country. They are related to the Atomic Energy Commission (AECS), and are located at the main entrances of the country. Each is provided with the practical tools and equipment in order to assist Radiation Protection Officers (RPO) in fulfilling their commitments, by promoting greater transparency in legal transfers of radioactive materials and devices. They apply complete procedures for the safe import, export and transit of radioactive sources. The RPOs provide authorizations by issuing an entry approval document, after making sure that each concerned shipments has an authorized license from the Syrian Regulatory Body (RNRO) before permitting shipments to leave, arrive or transit across their territory, enabling law enforcement to track the legal movement of

  14. Radiation damage of structural materials

    International Nuclear Information System (INIS)

    Koutsky, J.; Kocik, J.

    1994-01-01

    Maintaining the integrity of nuclear power plants (NPP) is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for reactor pressure vessels (RPV) and Zr-Nb alloys for fuel element cladding. The book is divided into seven main chapters, with the exception of the opening one and the chapter providing phenomenological background for the subject of radiation damage. Chapters 3-6 are devoted to RPV steels and chapters 7-9 to zirconium alloys, analyzing their radiation damage structure, changes of mechanical properties due to neutron irradiation as well as factors influencing the degree of their performance degradation. The recovery of damaged materials is also discussed. Considerable attention is paid to a comparison of VVER-type and western-type light-water materials

  15. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Costa Silva, L.H. da; Rosa, R.

    1991-11-01

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  16. Overview of environmental radiological monitoring program of Institute of Radiation Protection And Dosimetry - IRD

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Sarah Barreto Oliveira de Christo; Peres, Sueli da Silva, E-mail: suelip@ird.gov.br, E-mail: sarah.barreto1@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radioproteção

    2017-07-01

    As a branch of the Brazilian Nuclear Energy Commission (CNEN), the Institute of Radiation Protection and Dosimetry (IRD) performs extensive activities in the fields of radiation protection, metrology, and dosimetry, as well as specific education, onto a wide operational scope that includes the technical support to national regulatory authorities in the licensing process for nationwide nuclear and radioactive facilities. IRD has several laboratories where are performed radiometric and radiochemical analyses and others radioactivity evaluation procedures in different types of samples obtained in the inspection activities, production of radioactivity metrological standards and reference material by National Laboratory of Metrology of Ionizing Radiation (LMNRI), besides others research activities. In this laboratories can be used sealed or unsealed radioactive sources and radiation-producing devices and are classified with radioactive installations in accordance to national regulations. This way, radioactive liquid effluents can be eventually produced and released into the environment in the course of such activities and an effluent monitoring program to control and reduce the releases to environment is carried out. Additionally, IRD maintains the Radioactive Waste Management Program and Environmental Radiological Monitoring Program (ERMP) in accordance to national regulations requirements. The primary focus of ERMP comprises the validation of the dose prognostics for the public members due to effluents discharge and the provision of consistent projections of the radiation levels at the monitoring sites. In this study, a long term ERMP data survey is discussed, spanning the last thirteen years of activities. On the basis of such discussions and prognostics, it could be observed that the radiological environmental radiological impact due to operation of IRD installations is negligible. (author)

  17. Overview of environmental radiological monitoring program of Institute of Radiation Protection And Dosimetry - IRD

    International Nuclear Information System (INIS)

    Gomes, Sarah Barreto Oliveira de Christo; Peres, Sueli da Silva

    2017-01-01

    As a branch of the Brazilian Nuclear Energy Commission (CNEN), the Institute of Radiation Protection and Dosimetry (IRD) performs extensive activities in the fields of radiation protection, metrology, and dosimetry, as well as specific education, onto a wide operational scope that includes the technical support to national regulatory authorities in the licensing process for nationwide nuclear and radioactive facilities. IRD has several laboratories where are performed radiometric and radiochemical analyses and others radioactivity evaluation procedures in different types of samples obtained in the inspection activities, production of radioactivity metrological standards and reference material by National Laboratory of Metrology of Ionizing Radiation (LMNRI), besides others research activities. In this laboratories can be used sealed or unsealed radioactive sources and radiation-producing devices and are classified with radioactive installations in accordance to national regulations. This way, radioactive liquid effluents can be eventually produced and released into the environment in the course of such activities and an effluent monitoring program to control and reduce the releases to environment is carried out. Additionally, IRD maintains the Radioactive Waste Management Program and Environmental Radiological Monitoring Program (ERMP) in accordance to national regulations requirements. The primary focus of ERMP comprises the validation of the dose prognostics for the public members due to effluents discharge and the provision of consistent projections of the radiation levels at the monitoring sites. In this study, a long term ERMP data survey is discussed, spanning the last thirteen years of activities. On the basis of such discussions and prognostics, it could be observed that the radiological environmental radiological impact due to operation of IRD installations is negligible. (author)

  18. Let's start learning radiation. Supplementary material on radiation for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Yoko; Yamashita, Kiyonobu; Shimada, Mayuka

    2015-01-01

    The Japan Atomic Energy Agency has been organizing training programs for engineers in Asian countries introducing nuclear technology. In 2012, we launched a course ‘Basic Radiation Knowledge for School Education’ as we thought disseminating accurate knowledge on radiation to school students and public would also be important in those countries after Fukushima-Daiichi nuclear power station accident. Ministry of Education, Culture, Sports, Science and Technology - Japan published supplemental learning material on radiation for secondary school students and teachers in Japanese in October 2011. Since the learning material is designed to give a clear explanation of radiation and covers various topics, we thought it would also be beneficial for young students in the world if a learning material in English was available. Therefore, we made a new learning material in English using the topics covered in supplemental learning material on radiation in Japanese as a reference. This learning material has been favourably evaluated by the International Atomic Energy Agency (IAEA) and will be widely used as a practical educational tool in many countries around the world through the IAEA. (author)

  19. Synchrotron radiation and fusion materials

    International Nuclear Information System (INIS)

    Nielsen, S.F.

    2009-01-01

    The development of fusion energy is approaching a stage where the capabilities of materials will be dictating the further progress and the time scale for the attainment of fusion power. EU has therefore funded the Fusion Energy Materials Science project Coordination Action (FEMaS - CA) with the intension to utilise the know-how in the materials community to help overcome the material science problems with the fusion related materials. The FEMaS project and some of the possible applications of synchrotron radiation for materials characterisation are described in this paper. (au)

  20. Development of a GSM based radiation monitoring system (GRaMS)

    International Nuclear Information System (INIS)

    Saindane, Shashank S.; Suri, M.M.K.; Padmanabhan, N.; Pradeepkumar, K.S.; Sharma, D.N.

    2007-01-01

    Real-time measurements and the quick analysis of the data are of crucial importance during a radiological or nuclear emergency. To develop a timely response capability, the Radiation Safety Systems Division has launched a project to develop an advanced online measurement system for use in different threat scenarios, such as the release of radioactive materials to the environment during any nuclear or radiological accident. In order to meet this requirement a Global system for Mobile (GSM) based Radiation Monitoring system is designed and tested on field. It uses an energy compensated GM detector and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time, and GSM modem for online data transfer. The equipment can be operated continuously while the vehicle is moving. The system is designed to provide measurement information, either raw data or analysis results, to the local database or to a remote database through a communication link. The system consumes ∼ 250 mA including the GPS and GSM enabling ∼ 30 hours of continuous radioactivity monitoring with a 12 Ah battery source. The system has been used in road based environmental radiation surveys carried out at various part of the country. With PC support, the system can map the radiological status online onto the map of the area being surveyed, to help decision-making on countermeasures during the survey and sending the online data at a remote station to enable the emergency managers to take appropriate decision. (author)

  1. Quality management status of national radiation environmental monitoring network and strategy for development

    International Nuclear Information System (INIS)

    Huang Renjie; Zhang Rongsuo; Ni Shiying; Shen Gang

    2009-01-01

    During the period of 10th five-year plan, MEP has constructed a national radiation environmental monitoring network. In the running of the network, quality management on monitoring data is of vital importance. So all the members of the radiation environmental monitoring network are required to ensure the quality of monitoring method, equipment, reagent,quality of personnel, data processing and information management and so on. Thus the monitoring result would be typical and accuracy in science. The article introduced in detail the quality management status of the National Radiation Environmental Monitoring Network and put forward the strategy for development from the institutionalized and large-scale point of view of radioactive environmental monitoring work. (authors)

  2. Design of data acquisition, detection and monitoring radiation in robot tank

    International Nuclear Information System (INIS)

    Adhiyat Miftahudin Latif; Djiwo Harsono; Adi Abimanyu

    2016-01-01

    Research of radiation monitoring has been developing with needs, for example on industry. In this case, give a gap to research about radiation monitoring through data acquisition system. The purpose of this research is to produce radiation resource mapping data information that can be showed on web. The research method is processing data information that transmitting from robot tank by radio frequency. This consists of data position and voltage. Voltage information can be represented as radiation exposure. The result of this research is radiation resource mapping that showing on web. The contents of this web are data position and radiation exposure. Time computation that required from data reading to saving data on database is 1,001 second (s). (author)

  3. Immunological monitoring of the personnel at radiation hazardous facilities

    International Nuclear Information System (INIS)

    Kiselev, S.M.; Sokolnikov, M.E.; Lyss, L.V.; Ilyina, N.I.

    2017-01-01

    The study of possible mechanisms resulting in changes in the immune system after exposure to ionizing radiation is an area that has not been thoroughly evaluated during recent years. This article presents an overview of immunological monitoring studies of personnel from the radiation-hazardous factories that took place over the past 20 years in Russia. The methodology of these studies is based on: (1) the preclinical evaluation of immune status of workers whose occupation involves potential exposure to ionizing radiation; (2) selecting at risk groups according to the nature of immune deficiency manifestation; and (3) studying the changes of immune status of employees with regard to the potential effects of radiation exposure. The principal aim of these studies is accumulation of new data on the impact of radiation exposure on the human immune system and search for the relationship between the clinical manifestations of immune disorders and laboratory parameters of immunity to improve the monitoring system of the health status of the professional workers involved in radiation-hazardous industrial environments and the population living close to these facilities. (authors)

  4. Current status of control of radiation sources and radioactive materials in the United Republic of Tanzania

    International Nuclear Information System (INIS)

    Nyaruba, M.M.; Mompome, W.K.

    2001-01-01

    A Protection from Radiation Act was enacted in Tanzania in 1983 to regulate the use of ionizing radiation and protect people against its danger. The Act established a regulatory authority known as National Radiation Commission (NRC), which is the corporate body to enforce the law and regulations. From the beginning of 2000, the NRC has kept inventory of 200 and 324 radiation installations, and radiation sources and radioactive materials in the country, respectively; and has provided personnel monitoring services to 665 radiation workers. However, due to the trade liberalization that is currently being experienced in the country, the increase in the number of radiation practices is observed yearly. To cope with the situation, the whole system of notification, authorization, registration and licensing needs to be improved. The improvement has now started by amending the existing Protection from Radiation Act. (author)

  5. Determination of radiation direction in environmental monitoring

    International Nuclear Information System (INIS)

    Campos, Vicente de Paulo de; Moura, Eduardo S.; Rocha, Felicia D.G.; Manzoli, Jose Eduardo

    2009-01-01

    The assessment of environmental exposure has been performed in Brazil using the thermoluminescence technique at Thermoluminescence Dosimetry Laboratory (LDT), at Nuclear and Energetic Research Institute (IPEN/CNEN-SP). To carry out these measurements, several thermoluminescent dosimeters (TLD's) were used to measure the expose. In this procedure, very few information of direction where the radiation came from is available. A vague supposition about the direction from where the radiation came from could be inferred only by evaluation of multiple dosimeters displaced at entire region of monitoring, but this demand to much effort or sometimes become impractical for certain situations. In this work, a single device is used to provide information about the direction from where the radiation came through. This device is called directional dosimeter (DD). Using more than one DD it is possible to reduce the uncertainty of the measurements and determine the radiation source position. The DD basically consists of a regular solid with high effective atomic number, where one TLD is positioned at each face. The DD allows evaluating the environmental exposure and the direction of the radiation by a simple vector sum. At each face of the DD, it is associated an orthogonal vector, and modulus of this vector represents the correspond exposure measured by the TLD. The direction of the radiation source is the sum of these faces vectors. The prototype used in this work was a lead cube with six TLDs of CaSO 4 :Dy/Teflon. The TLDs have high sensibility and are already used in area, environmental and personal monitoring. The measurements had shown the correct environmental exposure and a good indication of the radiation direction. (author)

  6. Automatic national network of radiation environmental monitoring in Mexico; Red nacional automatica de monitoreo radiologico ambiental en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Jaime; Delgado, Jose L.; Lopez, Manuel; Zertuche, Jorge V., E-mail: jaguirre@cnsns.gob.mx, E-mail: jldelgado@cnsns.gob.mx, E-mail: mlopez@cnsns.gob.mx, E-mail: jorge.zertuche@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS), D.F. (Mexico). Direccion de Vigilancia Radiologica

    2013-07-01

    The Direccion de Vigilancia Radiologica (DVR) of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) de Mexico, performs several function for environmental radiation monitoring. One of these functions is the permanent monitoring of the environmental gamma radiation. For this, it implemented the Red Nacional Automatica de Monitoreo Radiologico Ambiental (RENAMORA) - the National Automated Network for Environmental Radiation Monitoring,which currently comprises 60 detector probes for gamma radiation which with a programmable system that includes information technologies, data transmission and software can send the information in real time to a primary center of data located in the facilities of CNSNS. - When the data are received, the system performs the verification and extraction of the information organized in Tables and charts, and generates a report of environmental gamma radiation dose rate average for each of the probes and for each period of time determined bu CNSNS. The RENAMORA covers the main cities and allows to establish the bases of almost the entire country, as well as to warn about abnormal situations caused by incidents or natural events generated by human activities inside or outside the country which involves radioactive materials; paying special attention to main radiological sites, such as the surroundings of the Laguna Verde Nuclear Power Plants, research centers and the radioactive waste disposal sites.

  7. Radiation monitor for surveillance of moving vehicles

    International Nuclear Information System (INIS)

    Dvorak, R.F.

    1985-09-01

    A radiation monitor has been developed that will scan each vehicle leaving the Clinton P. Anderson Los Alamos Meson Physics Facility site. If an increase in radiation level is sensed, an alarm light and a Klaxon horn are activated, inviting the driver to return to the Health Physics office for check. A photograph showing the vehicle license number is also taken. A radiation source that doubles the detector count rate when stationary will cause an alarm at vehicle speeds up to about 24 km/h (15 mph). The technique used to prevent false alarms because of radiations from nearby buildings or from plumes of low-level radioactive gas is described. 9 figs

  8. Web design and development for centralize area radiation monitoring system in Malaysian Nuclear Agency

    Science.gov (United States)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman

    2017-01-01

    One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.

  9. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS)

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd

    2015-07-01

    Since July 2015 the study ''ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS) - an international cohort study'' is available. INWORKS comprised data from 300.000 occupational exposed and dosimetric monitored persons from France, USA and UK. The contribution is a critical discussion of this study with respect to the conclusion of a strong evidence of positive associations between protracted low-dose irradiation exposure and leukemia.

  11. Radiation Damage Monitoring in the ATLAS Pixel Detector

    CERN Document Server

    Seidel, S

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to integrated luminosity 5.6 fb$^{-1}$ is presented along with a comparison to the theoretical model.

  12. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  13. Radiological interference from personal articles in occupational radiation monitoring

    International Nuclear Information System (INIS)

    Krishnakumar, P.; Jayan, M.P; Pawar, V.J; Patil, S.L; Selvamani, N.; Vedram; Sureshkumar, M.K.; Chinnaesakki, S.

    2016-01-01

    This paper discusses the presence of radioactivity in some personal articles worn on sacred thread and the related difficulties faced by health physicists during occupational radiation monitoring in nuclear facilities. In an incident, the portal monitor installed at the exit gate of a nuclear facility indicated contamination on self of a radiation worker while passing through it. The worker was therefore, subjected to thorough check for external contamination by the plant health physicist, using a pan-cake contamination monitor. All the clothing of the person was also checked for contamination. On further detailed examination, a dark brownish personal article hanging on a sacred thread from his neck was found to be the source of contamination. This presentation aims at giving information to the health physics community on the possibility of such interferences during personal monitoring in nuclear facilities

  14. Automated TLD system for gamma radiation monitoring

    International Nuclear Information System (INIS)

    Nyberg, P.C.; Ott, J.D.; Edmonds, C.M.; Hopper, J.L.

    1979-01-01

    A gamma radiation monitoring system utilizing a commercially available TLD reader and unique microcomputer control has been built to assess the external radiation exposure to the resident population near a nuclear weapons testing facility. Maximum use of the microcomputer was made to increase the efficiency of data acquisition, transmission, and preparation, and to reduce operational costs. The system was tested for conformance with an applicable national standard for TLD's used in environmental measurements

  15. Radiation monitoring around United States nuclear test areas, calendar year 1989

    International Nuclear Information System (INIS)

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs

  16. Radiation monitoring around United States nuclear test areas, calendar year 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

  17. Radiation Response of Forward Biased Float Zone and Magnetic Czochralski Silicon Detectors of Different Geometry for 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Mekki, J; Dusseau, Laurent; Roche, Nicolas Jean-Henri; Saigne, Frederic; Mekki, Julien; Glaser, Maurice

    2010-01-01

    Aiming at evaluating new options for radiation monitoring sensors in LHC/SLHC experiments, the radiation responses of FZ and MCz custom made silicon detectors of different geometry have been studied up to about 4 x 10(14) n(eq)/cm(2). The radiation response of the devices under investigation is discussed in terms of material type, thickness and active area influence.

  18. Real-Time Patient and Staff Radiation Dose Monitoring in IR Practice

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: karmanna@stanford.edu; Paulis, Leonie, E-mail: leonie.paulis@mumc.nl; Vergoossen, Laura; Kovac, Axel O., E-mail: axel.kovac@mumc.nl; Wijnhoven, Geert, E-mail: g.wijnhoven@mumc.nl [Maastricht University Medical Centre, Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Mees, Barend, E-mail: barend.mees@mumc.nl [Maastricht University Medical Centre, Department of Vascular Surgery (Netherlands); Das, Marco, E-mail: m.das@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre, Department of Radiology (Netherlands)

    2017-03-15

    PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to procedure type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm{sup 2} (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm{sup 2} in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.

  19. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  20. New materials for radiation dosimetry

    International Nuclear Information System (INIS)

    Madatov, R.S.; Necefov, A.I.; Qabulov, I.A.; Seferova, S.

    2002-01-01

    Full text: The utilization of nuclear energy and beginning the production of radioactive nuclides are the reasons for radiation safety problems actualization. As a result of this, a new specific peculiar properties such as environmental, psychological, biological and etc. that are originated due to radioactive irradiation have been observed. Dosimetric equipment is used with the purpose of environmental protection, radiation detection, radiation safety assessment and distribution of information. The principle of operation of this equipment is based on the ionization effect. However, the equipment is differed one from another by the registration method. The main imperfections of dosimetric equipment are a narrowness of irradiation range as well as small values of energy sensitivity and stability. Taking into account of all above-stated imperfections, the obtaining of a new radiation-resistant materials and production of modern dosimetric detectors on their basis are one of the actual problems in dosimetry. At present the detectors on the basis of semiconductor materials such as Ge, Si, CdTe, CdS and etc. are widespread. Their principle of operation is also based on the ionization process, but the mechanism of its is differ from gas detectors. It is connected with that the carrier mobility for electrons in semiconductors is varied from 1400 up to 4000 cm 2 /(V·sec), and for holes from 400 up to 2000 cm 2 /(V·sec). It provides high level of detection for detectors on the basis of semiconductors. Initial conductivity of semiconductors differs one from another and it restricts the efficiency of detectors. The investigations on two directions have been carried out by this reason. The first direction is the increasing of radiation resistance of existing materials. The second direction is the obtaining of a new materials with high radiation resistance. It is known that the laminated materials on the basis of tellurium, for instance TeInS 2 are high sensitivity to X-radiation

  1. Radiation technology of improved quality materials production

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Nadirov, N.K.; Zajkina, R.F.

    1997-01-01

    The technology of materials production from metals and alloys with high operational properties is developed. The technology is based on use of radiation methods in powder metallurgy. Use of radiation processing allows to improve technological conditions of sintering. It is established, that in certain regimes the sintering temperature is decreasing from 1200 deg C up to 950 deg C in the result of radiation processing of stainless steel powders . According to the processing regimes it is possible load reduction by powder pressing on 15-20 % and sintering time in to 1,5 - 2 times . The radiation methods give possibility to produce high qualitative goods from cheap powder materials without use energy-intensive processes and prolonged processing of finished products

  2. The Global Environment Radiation Monitoring Network (GERMON)

    International Nuclear Information System (INIS)

    Zakheim, B.J.; Goellner, D.A.

    1994-01-01

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future

  3. Mobile radiation monitoring of Mumbai and it's suburb through various road routes by using state-of-the-art radiation monitoring systems

    International Nuclear Information System (INIS)

    Divkar, J.K.; Chatterjee, M.K.; Patil, S.S.; Sharma, Ranjit; Singh, Rajvir; Pradeepkumar, K.S.

    2007-01-01

    The monitoring of environmental radiation in different parts of the country is being periodically carried out with an objective to establish the countrywide baseline dose rate data. The task of quick assessment of impact due to any large-scale radiological emergencies in public domain involves reliable and quick monitoring of dose rate levels using mobile monitoring techniques. In order to achieve higher accuracy and more confidence in measured values, various state-of-the-art monitoring systems are used for mapping a large area. It enables collection and processing of data for rapid and correct evaluation of the situation. The evaluation of measured data from the different systems provides comparable results. This paper describes the radiation mapping of Mumbai and its suburbs carried out through different road routes by installing state-of-the art monitoring systems like CARMS, PMGSS, gamma tracers and micro-R survey meters in a light motor vehicle with the objective of assessing the background radiation level of Mumbai city including Mumbai Suburb, Navi Mumbai and Thane, tagging each data with the positional coordinates and also to detect and locate the presence of orphan sources, if any. The average of measured dose rate levels of Mumbai and Mumbai Suburbs, Navi Mumbai and Thane are 53.3±9.1 nGy.h -1 , 50.9±10.0 nGy.h -1 and 52.1±10.8 nGy.h -1 respectively with maximum ∼ 160 nGy.h -l due to presence of high concentration of 40 K at some locations. (author)

  4. The role of national regulatory authority in monitoring of radioactivity and in case of seizure of radioactive or nuclear material

    International Nuclear Information System (INIS)

    Morkunas, G.

    2002-01-01

    Full text: The Radiation Protection Centre is a regulatory authority in radiation protection in Lithuania. Its main tasks are licensing of practices, supervision, control and enforcement of radiation protection requirements, dosimetric, radiometric and spectrometric measurements, evaluation of exposure and its sources, expertise and advice on optimization of radiation protection. Its activities may be divided into two main parts -- regulatory and analytical ones. Food, drinking water, environmental, wipe and other samples are monitored, the appropriate evaluation of doses is done. The data on concentrations of artificial radionuclides in different bodies are available. The laboratory is to be accredited according to the ISO 17025 standard in the framework of Phare Twinning Project. In case of seized radioactive or nuclear material the Radiation Protection Centre has to identify the necessary radiation protection means for members of public and emergency workers, perform measurements of dose rate and radioactive contamination, and, if necessary, evaluate doses received due to the seized radioactive or nuclear material. Since the Radiation Protection Centre has its departments in the largest cities of Lithuania the above mentioned measures can be taken very urgently, especially the ones connected with primary evaluation of situation and identification of optimized radiation protection measures. The Radiation Protection Centre has its own possibilities of identification of radionuclides in the seized material. Such installations as HpGe spectrometers (Oxford and Canberra), equipment for radiochemical separation of U, Pu and actinides, alpha spectrometer, liquid scintillation spectrometer and neutron rem counter are available. There were a few cases when seized material had to be analyzed also. Different sources were found in different places of Lithuania, and it was necessary to define the activity and isotopic content of these sources. The following scheme is used in

  5. Radiation shielding material

    International Nuclear Information System (INIS)

    Matsumoto, Akio; Isobe, Eiji.

    1976-01-01

    Purpose: To increase the shielding capacity of the radiation shielding material having an abundant flexibility. Constitution: A mat consisting of a lead or lead alloy fibrous material is covered with a cloth, and the two are made integral by sewing in a kilted fashion by using a yarn. Thereafter, the system is covered with a gas-tight film or sheet. The shielding material obtained in this way has, in addition to the above merits, advantages in that (1) it is free from restoration due to elasticity so that it can readily seal contaminants, (2) it can be used in a state consisting of a number of overlapped layers, (3) it fits the shoulder well and is readily portable and (4) it permits attachment of fasteners or the like. (Ikeda, J.)

  6. Radiation and radionuclide monitoring during emergencies

    International Nuclear Information System (INIS)

    Wilkins, B.T.; Clark, M.J.

    1988-01-01

    One of the major impacts of the Chernobyl accident has been increased interest in the measurement of radionuclides in the environment. The capability to detect and respond to the arrival of a plume of radioactive material promptly, is under review by governments in many countries. Furthermore, many organizations who previously had little or no involvement in radiation now perceive a need to contribute to the monitoring effort after any future accident. Consequently, facilities set up to collate measurement data and assess the implications of an accident could be deluged with information from a very large number of laboratories. Ideally, such a facility should not have to assess the quality of the data as it is received, whereas after Chernobyl, some of the data generated were inappropriate and created additional and unnecessary pressure. One major lesson of the accident was that contingency monitoring should be well planned, and measurement and sampling protocols agreed beforehand. In the UK, the Government has announced the creation of a new, countrywide, accident detection system which, in the first phase is likely to be based on continual measurement of external dose rate with large, energy compensated, Geiger-Mueller detectors. Many other organizations, especially local government, intend to purchase similar equipment and, after obtaining authorization from central government, will be able to transmit their data to a centralized data base facility. The equipment required for these measurements is relatively cheap, compact and robust, and is likely to find widespread use. 2 refs., 1 fig

  7. The central monitoring station of Indian Environmental Radiation Monitoring Network (IERMON): the architecture and functions

    International Nuclear Information System (INIS)

    Garg, Saurabh; Ratheesh, M.P.; Mukundan, T.; Patel, M.D.; Nair, C.K.G.; Puranik, V.D.

    2010-01-01

    The Indian Environmental Radiation Monitoring Network (IERMON) is being established across the country by the Bhabha Atomic Research Centre, Mumbai. The network consists of stations with automated systems for environmental radiation monitoring with online data communication facility. Currently about 100 stations are operational and additional 500 stations are expected to be installed by March, 2012. The network is established with different objectives, the main objective being the detection and reporting of any nuclear emergency anywhere in the country. The central monitoring station of the network is established in Mumbai. This paper describes the architecture and functions of IERMON Central Station. The Central Station consists of server room for online data collection from remote stations and maintenance of databases for various applications; central monitoring room for user interaction with database and IERMON website maintenance and development room for the development of new applications. The functions of IERMON Central Station include detection and reporting of nuclear emergency, maintenance of remote stations, enhancement of public awareness on environmental radiation through public display systems and website, etc. The details on system layout and data protocols can be found in the paper. (author)

  8. Microstructural characterization of radiation effects in nuclear materials

    CERN Document Server

    2017-01-01

    Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...

  9. Statistical data processing with automatic system for environmental radiation monitoring

    International Nuclear Information System (INIS)

    Zarkh, V.G.; Ostroglyadov, S.V.

    1986-01-01

    Practice of statistical data processing for radiation monitoring is exemplified, and some results obtained are presented. Experience in practical application of mathematical statistics methods for radiation monitoring data processing allowed to develop a concrete algorithm of statistical processing realized in M-6000 minicomputer. The suggested algorithm by its content is divided into 3 parts: parametrical data processing and hypotheses test, pair and multiple correlation analysis. Statistical processing programms are in a dialogue operation. The above algorithm was used to process observed data over radioactive waste disposal control region. Results of surface waters monitoring processing are presented

  10. Apparatus for radiation source depth determination in a material

    International Nuclear Information System (INIS)

    Campbell, P.J.

    1979-01-01

    An apparatus is disclosed for determining the depth of a radiation source within a body of material utilizing a radiation source holder moving the radiation source within the body. A plurality of switches have contacts that are fixed in relation to the movement of the radiation source within the material. Trigger means activates a particular switch at a preselected depth of the radiation source. Means for indicating the activation of a switch would thus produce a signal as a representative of the depth of the radiation source

  11. Radiation monitoring programme in a university hot laboratory

    International Nuclear Information System (INIS)

    Tillander, M.; Heinonen, O.J.

    1979-01-01

    The Department of Radiochemistry in the University of Helsinki is the only institute teaching radiochemistry at the university level in Finland. The research programme of the Deparment must therefore include the uses of radiation and radionuclides in many branches of science. The students must receive adequate instruction in radiation protection for safe work in laboratories. This also has the educational benefit that the radiochemists will subsequently be able to observe the necessary safety precautions when employing ionizing radiation professionally. The Department of Radiochemistry consists of the following laboratories: a radiotracer laboratory, a neutron/electron and a gamma irradiation laboratory, an environmental low activity level laboratory, a whole-body counting laboratory, a reactor chemistry laboratory and a waste-treatment facility. The radiation protection organization of the Department is presented. Various methods of monitoring, including advantages and disadvantages are discussed. Emphasis is placed on the reactor chemistry laboratory where transuranic elements are utilized. These elements are highly radiotoxic and their monitoring in most cases requires destructive analysis. Different methods of determining external and internal doses are evaluated with regard to sensitivity and accuracy. Detection limits for radionuclides utilized in the laboratory are presented for different measurement systems, including non-destructive monitoring, spectrometry after chemical analysis, liquid scintillation counting and low-energy gamma spectrometry using a CsI-NaI scintillation detector. The guidelines laid down in the IAEA Safety Series Manuals are discussed in the light of practical experience. (author)

  12. Transition in occupational radiation exposure monitoring methods in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Loennroth, N.; Hirvonen-Kari, M.; Timonen, M.; Savolainen, S.; Kortesniemi, M.

    2008-01-01

    Radiation exposure monitoring is a traditional keystone of occupational radiation safety measures in medical imaging. The aim of this study was to review the data on occupational exposures in a large central university hospital radiology organisation and propose changes in the radiation worker categories and methods of exposure monitoring. An additional objective was to evaluate the development of electronic personal dosimeters and their potential in the digitised radiology environment. The personal equivalent dose of 267 radiation workers (116 radiologists and 151 radiographers) was monitored using personal dosimeters during the years 2006-2010. Accumulated exposure monitoring results exceeding the registration threshold were observed in the personal dosimeters of 73 workers (59 radiologists' doses ranged from 0.1 to 45.1 mSv; 14 radiographers' doses ranged from 0.1 to 1.3 mSv). The accumulated personal equivalent doses are generally very small, only a few angiography radiologists have doses >10 mSv per 5 y. The typical effective doses are -1 and the highest value was 0.3 mSv (single interventional radiologist). A revised categorisation of radiation workers based on the working profile of the radiologist and observed accumulated doses is justified. Occupational monitoring can be implemented mostly with group dosimeters. An active real-time dosimetry system is warranted to support radiation protection strategy where optimisation aspects, including improving working methods, are essential. (authors)

  13. Radiation-reversible material carriers of different colour

    International Nuclear Information System (INIS)

    Hofmann, G.

    1976-01-01

    A suggestion is made instead of using coloured material carriers - the cones and cylindrical tubes in spinning mills and weaving mills are given as example - to use such ones which change colour with irradiation and keep this colour until a new radiation impulse causes a new colour which differs well from the first one. (No data on material or type of radiation are given.) (UWI) [de

  14. Storage chamber for container of radiation-contaminated material

    International Nuclear Information System (INIS)

    Takakura, Masahide.

    1996-01-01

    The present invention concerns a storage chamber for containing radiation-contaminated materials in containing tubes and having cooling fluids circulated at the outer side of the containing tubes. The storage chamber comprises a gas supply means connected to the inside of the container tube for supplying a highly heat-conductive gas and a gas exhaustion means for discharging the gas present in the container tube. When containing vessels for radiation-contaminated materials are contained in the container tube, the gases present inside of the container tube is exhausted by means of the gas exhaustion means, and highly heat conductive gases are filled from the gas supply means to the space between the container tube and the containing vessels for the radiation-contaminated materials. When the temperature of the highly heat conductive gas is elevated due to the heat generation of the radiation-contaminated materials, the container tube is heated, and then cooled by the cooling fluid at the outer side of the container tube. In this case, the heat of the radiation-contaminated material-containing vessels is removed by the heat conduction by the highly heat conductive gas to reduce temperature gradient between the containing vessels and the containing tube. This can enhance the cooling effect. (T.M.)

  15. The introduction of radiation monitor produced by several nuclear instrument factories

    International Nuclear Information System (INIS)

    Yu Liying

    2005-01-01

    The paper introduce some radiation monitor products of several nuclear instrument factories include Xi'an Nuclear Instrument Factory, MGP Instruments Inc, and Canberra Industries Inc. The introduction aspects include the range, configuration, and application of products. So, the paper is reference for the designer with responsibility for radiation monitoring system of new nuclear project. (authors)

  16. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  17. Packaging materials for use in radiation processing of foods

    International Nuclear Information System (INIS)

    Dragusin, M.; Rotaru, P.R.

    1999-01-01

    In radiation processing of food, the product often has to be prepackaged to prevent microbial recontamination during and after irradiation. The packaging material is exposed to radiation during radiation processing and radiation stability is a key consideration in the selection of packaging materials. The effects of ionizing radiation on many food packaging materials at the dose levels recommended for food precessing can be minimized by selecting appropriate radiation resistant materials. It is important to select materials in which chemicals formed as a result of the radiation treatment do not migrate and interact with the food, affecting its organoleptic and toxicological aspects. It is also important to select materials in which the physical properties are not altered to the extent they cannot resist damage during commercial production, shipment and storage. Radiation treatment of food may be classified broadly into two categories: 1. Processes requiring doses less than 10 kGy; 2. Processes requiring doses from 25 to 40 kGy for production of commercial sterility. In radiation processing of foods, gamma radiation from radioisotopes Co-60 and Cs-137 is most widely used because of its high penetrating power. Electron beam irradiation (E<10 MeV) and X-rays (E<5 MeV) can also be used for certain speciality food and packaging to the food. Because the public acceptance of irradiated foods is a major problem in marketing such products, we have developed in our laboratory an alternative techniques. These techniques are based on applying films on the surfaces of foods. The films are edible, i.e. they are an aqueous solution based on caseine, glycerine, poly-etilene-glycol (PEG), crosslinked by radiation processing. So, our techniques implies no longer the food irradiation but instead its isolation from the environmental biological attacks by means of edible films obtained by irradiation. The protective properties of films, as special humidity, oxygen and fat barriers, are

  18. Basic requirements of dosemeter systems for individual monitoring of external radiation

    International Nuclear Information System (INIS)

    Boehm, J.; Ambrosi, P.

    1985-01-01

    A plea is made for detailed detector independent requirements for dosemeter systems for individual monitoring of external radiation. These requirements should have their origin in the fundamental aspects and concepts of radiation protection for workers, and should be something like a translation of the general principles of individual monitoring into a language easily understandable by producers and users. This work comprises a summary of the general objectives of individual monitoring and discussion of some relevant requirements for dosemeter systems. (orig.) [de

  19. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  20. Radiation monitoring network of the Czech Republic

    International Nuclear Information System (INIS)

    Kuca, P.; Novak, L.; Rulik, P.; Tecl, J.

    2003-01-01

    The Radiation Monitoring Network (RMN) of the Czech Republic was established after the Chernobyl accident in 1986 and it is developed all the time. It is co-ordinated by the State Office for Nuclear Safety in co-operation with the National Radiation Protection Institute. Czech RMN consists of the several sub-networks, which include selected or all permanent parts of RMN. The sub-networks are following: the Early Warning Network (EWN), the TLD Territorial Network, the Network of the Measuring Sites of Air Contamination, the Network of Laboratories Equipped with Gamma-spectrometric and Radiochemical Analytical Instrumentation, the Ground and Airborne Mobile Groups. The Laboratory of Monitoring of Internal Contamination and the information system (IS) are a significant part of RMN, too. The data of RMN resulting from monitoring are transferred to the central database of CRMN, processed by the information system (IS). They are used in normal and emergency situations for an evaluation of radiation situation and for preparation of recommendations for protection of the public and the environment. In 2002 any extraordinary radioactivity in the environment was not detected and also none of the measuring points recorded any exceeding of established investigation levels. In components of environment and also in human beings a very low activity of 137 Cs was still measurable, that had been released into environment after the Chernobyl accident and by the nuclear weapon tests in sixties of the last century. (authors)

  1. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  2. Radiation exposure monitoring and control in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Khan, A.H.

    2003-01-01

    The front end nuclear fuel cycle facilities presently operational in India are the mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad and Trombay. Dedicated Health Physics Units set up at each site regularly carry out in-plant and personnel monitoring to ensure safe working conditions and evaluate radiation exposure of workers and advise appropriate control measures. External gamma radiation, radon, thoron, their progeny and airborne long-lived activity due to radioactive dust are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the plant and personal monitoring data. Provision of adequate ventilation, control of dust and spillage of active solutions, prompt decontamination, use of personal protective appliances and worker education are the key factors in keeping the doses to the workers well within the regulatory limits. It has been observed that the total radiation dose to workers has been well below 20 mSv.y - 1 at all stages of operations. The monitoring methodologies and summary of radiation exposure data for different facilities during the last few years are presented in the paper. (author)

  3. Radiation resistance of InP-related materials

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Takamoto, Tatsuya; Ikeda, Eiji; Kurita, Hiroshi; Ohmori, Masamichi; Ando, Koshi; Vargas-Aburto, C.

    1995-01-01

    Irradiation effects of 1-MeV electrons on InP-related materials such as InP, InGaP and InGaAsP have been examined in comparison with those of GaAs. Superior radiation-resistance of InP-related materials and their devices compared to GaAs has been found in terms of minority-carrier diffusion length and properties of devices such as solar cells and light-emitting devices. Moreover, minority-carrier injection-enhanced annealing of radiation-induced defects in InP-related materials has also been observed. (author)

  4. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history

  5. Radiation Control on Uzbekistan Borders - Results and Perspectives

    International Nuclear Information System (INIS)

    Petrenko, Vitaliy; Yuldashev, Bekhzod; Ismailov, Ulughbek; Shipilov, Nikolay; Chipizubov, Sergey; Avezov, Anvar

    2009-01-01

    The measures and actions on prevention, detection and response to criminal or unauthorized acts involving radioactive materials in Uzbekistan are presented. In frames of program of radiation monitoring to prevent illicit trafficking of nuclear and radioactive materials main customs border checkpoints were equipped with commercial radiation portal monitors. Special radiation monitors elaborated and manufactured in INP AS RU are installed in INP(main gates, research reactor and laboratory building) to provide nuclear security of Institute facilities. The experience of Uzbekistan in establishing radiation monitoring systems on its borders, their operation and maintenance would be useful for realization of proposed plan of strengthening measures to prevent illicit trafficking in Republics of Central Asia region.

  6. A micro-controller based palm-size radiation monitor

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2001-01-01

    A micro-controller based, palm-size radiation monitor, PALMRAD, using a silicon P-N junction diode as a detector has been developed. It is useful for radiation protection monitoring during radiation emergency as well as radioactive source loading operations. Some of the features of PALMRAD developed are the use of a semiconductor diode as the detector, simultaneous display of integrated dose and dose rate on a 16-digit alpha numeric LCD display, measurable integrated dose range from 1 μSv to 5000 μSv and dose rate range from 1 mSv/h to 1,000 mSv/h, RS 232C serial interface for connection to a Personal Computer,-storage of integrated dose and dose rate readings, recall of stored readings on LCD display, presentable integrated dose alarm from 1 μSv to 5000 μSv and dose rate from 1 mSv/h to 1,000 mSv/h, battery status and memory status check during measurement, LCD display with LED back-lighting, etc. (author)

  7. Intelligent Radiative Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An opportunity to boost energy efficiency in homes and buildings exists through the design of functional radiative properties in glass and other building materials....

  8. Radiation attenuation by lead and nonlead materials used in radiation shielding garments

    International Nuclear Information System (INIS)

    McCaffrey, J. P.; Shen, H.; Downton, B.; Mainegra-Hing, E.

    2007-01-01

    The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity.cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm 'lead equivalent'. The parameter 'lead equivalent' is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials

  9. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo

    2012-03-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uranium and Strontium in environmental samples showed a environmental level. The {gamma}-radionuclides such as natural radionuclides 40K or 7Be were detected in pine needle and food. The nuclear radionuclides 134Cs, 137Cs or 131I were temporarily detected in the samples of air particulate and rain in April and of fall out in 2nd quarter from the effect of Fukusima accident.

  10. Optimization of in-vivo monitoring program for radiation emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jong Kyung [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. In this study, minimum detectable doses (MDDs) for '1'3'4Cs, {sup 137}Cs, and {sup 131}I were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detectable level was determined to set committed effective dose of 0.1 mSv for emergency response. We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for {sup 134}Cs and {sup 137}Cs, and 100 Bq for {sup 131}I were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

  11. NRC TLD [Nuclear Regulatory Commission thermoluminescent dosimeter] direct radiation monitoring network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1990-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1989. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  12. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    Science.gov (United States)

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  13. Working safely with radioactive materials

    International Nuclear Information System (INIS)

    Davies, Wynne

    1993-01-01

    In common with exposure to many other laboratory chemicals, exposure to ionising radiations and to radioactive materials carries a small risk of causing harm. Because of this, there are legal limits to the amount of exposure to ionising radiations at work and special rules for working with radioactive materials. Although radiation protection is a complex subject it is possible to simplify to 10 basic things you should do -the Golden Rules. They are: 1) understand the nature of the hazard and get practical training; 2) plan ahead to minimise time spent handling radioactivity; 3) distance yourself appropriately from sources of radiation; 4) use appropriate shielding for the radiation; 5) contain radioactive materials in defined work areas; 6) wear appropriate protective clothing and dosimeters; 7) monitor the work area frequently for contamination control; 8) follow the local rules and safe ways of working; 9) minimise accumulation of waste and dispose of it by appropriate routes, and 10) after completion of work, monitor, wash, and monitor yourself again. These rules are expanded in this article. (author)

  14. Effects of the new radiation protection act on the radiation protection register and the monitoring of occupational radiation exposure

    International Nuclear Information System (INIS)

    Frasch, G.

    2016-01-01

    The implementation of DIRECTIVE 2013/59 / EURATOM (EURATOM Basic Safety Standards) is via the new radiation protection law and brings in the monitoring of occupational radiation among others two significant new features and changes: - Introduction of a unique personal identifier, - update of the occupational categories. Both require technical and organizational changes in the data transmission of the licensees to the dosimetry services and the radiation protection register.

  15. Radiation monitoring strategy in nuclear or radiological emergencies

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2003-01-01

    Full text: Radiation measurements provide indispensable data needed for the management of a nuclear or radiological emergency. There must exist pre-prepared emergency monitoring strategies, with accompanying procedures and methods, that help the authorities to perform measurements efficiently and, consequently, to evaluate the radiological situation correctly and to carry out proper countermeasures on time. However, defining a realistic yet comprehensive radiation monitoring strategy for emergencies is far from being an easy task. The very concept of 'emergency monitoring strategy' should be understood in a broad sense. In an ideal case, a strategy has interfaces with all related emergency and information exchange arrangements and agreements both at the national and international level. It covers all activities from the recognition of a potential hazard situation to environmental sampling performed during the late phases of an accident. It integrates routine-monitoring practices with the special requirements set by emergency monitoring and the use of fixed monitoring stations with that of mobile measurement teams. It includes elements for gathering, analyzing, transmitting and presenting data, as well as for combining them with different kinds of forecasts. It also takes into account the various intrinsic characteristics of possible threat scenarios and contains options for adapting measuring activities according to prevailing environmental conditions. Furthermore, a strategy must have relevant links to the social and economical realities and to the primary interests of different stakeholders. In order to assist individual countries in establishing national strategies, international organisations (IAEA, OECD/NEA, EU) have published basic guidelines for emergency response and radiation measurements. Nuclear accidents, especially the Chernobyl case with its large-scale environmental consequences, and other kinds of shocking events (like the one on September 11, 2001

  16. Overview and perspective of materials characterization by using synchrotron radiation

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2009-01-01

    A peculiarity of techniques and the methods of synchrotron radiation are explained. It consists of five sections such as introduction, synchrotron radiation, interaction between X-ray and materials, analytical methods of materials using synchrotron radiation and perspective and problems. The second section described the principles of synchrotron orbit radiation, synchrotron light source, the main formulae and schematic drawing of undulator, and the synchrotron radiation facilities in Japan. The third section explained behavior of X-ray in materials, absorption, reflection, refraction and scattering of X-ray. The fourth section stated many analytical methods of materials; the surface diffractometer, powder diffractometer, high-energy X-ray diffraction, core-electron absorption spectroscopy, micro-beam diffraction, X-ray fluorescence, X-ray absorption fine structure (XAFS), and photoemission spectroscopy (PES). A characteristic feature of synchrotron radiation contains the large wave length ranges from infrared to X-ray, high directivity and brightness, linear (circular) polarization, pulsed light, good control and stability. The brightness spectra of Spring-8 and SAGA-LS, concept of synchrotron light source, undulator and wiggler, nine synchrotron radiation facilities in Japan, mass absorption coefficients of Cu and Au, and analysis of materials using synchrotron radiation are illustrated. (S.Y.)

  17. Development of database management system for monitoring of radiation workers for actinides

    International Nuclear Information System (INIS)

    Kalyane, G.N.; Mishra, L.; Nadar, M.Y.; Singh, I.S.; Rao, D.D.

    2012-01-01

    Annually around 500 radiation workers are monitored for estimation of lung activities and internal dose due to Pu/Am and U from various divisions of Bhabha Atomic Research Centre (Trombay) and from PREFRE and A3F facilities (Tarapur) in lung counting laboratory located at Bhabha Atomic Research Centre hospital under Routine and Special monitoring program. A 20 cm diameter phoswich and an array of HPGe detector were used for this purpose. In case of positive contamination, workers are followed up and monitored using both the detection systems in different geometries. Management of this huge data becomes difficult and therefore an easily retrievable database system containing all the relevant data of the monitored radiation workers. Materials and methods: The database management system comprises of three main modules integrated together: 1) Apache server installed on a Windows (XP) platform (Apache version 2.2.17) 2) MySQL database management system (MySQL version 5.5.8) 3) PHP (Preformatted Hypertext) programming language (PHP version 5.3.5). All the 3 modules work together seamlessly as a single software program. The front end user interaction is through an user friendly and interactive local web page where internet connection is not required. This front page has hyperlinks to many other pages, which have different utilities for the user. The user has to log in using username and password. Results and Conclusions: Database management system is used for entering, updating and management of lung monitoring data of radiation workers, The program is having following utilities: bio-data entry of new subjects, editing of bio-data of old subjects (only one subject at a time), entry of counting data of that day's lung monitoring, retrieval of old records based on a number of parameters and filters like date of counting, employee number, division, counts fulfilling a given criterion, etc. and calculation of MEQ CWT (Muscle Equivalent Chest Wall Thickness), energy

  18. The calibration procedure of the radiation monitoring system installed in radiation controlled area of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Kyun; Min, Yi-Sub; Park, Jeong-Min; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The spaces, where these accelerators are installed, are defined as the radiation controlled area and the levels of the radiation in this area are monitored by the radiation monitoring system (RMS) to protect radiation workers and experiment users from the hazards of the ionizing radiation and the surface and air contamination tests are carried out periodically by the radiation secure team. The most of RMS instruments are installed in the accelerator building, where the 100-MeV proton linear accelerator is installed. All detectors of RMS should be calibrated every year to prove the reliability of RMS and almost all instruments for RMS was calibrated during this summer maintenance period of KOMAC this year. Almost all RMS instruments installed in KOMAC is calibrated between 2016-07-13 and 2016-08-24. As the calibration result, if the current reading value are within the 5% of the reference dose rate value, this RMS instrument can be used one more year. Otherwise, the detector of that RMS instrument should be repaired or replaced. The self-calibration certificate for each RMS instrument will be published only for the instrument to satisfy the condition.

  19. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, M. [University of California Irvine, Irvine, CA 92697 (United States); Burchat, P. [Stanford University, Stanford, CA 94305-4060 (United States); Curry, S. [University of California Irvine, Irvine, CA 92697 (United States)], E-mail: scurry@slac.stanford.edu; Edwards, A.J. [Stanford University, Stanford, CA 94305-4060 (United States); Kagan, H.; Kass, R. [Ohio State University, Columbus, OH 43210 (United States); Kirkby, D. [University of California Irvine, Irvine, CA 92697 (United States); Majewski, S.; Petersen, B.A. [Stanford University, Stanford, CA 94305-4060 (United States)

    2007-12-11

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  20. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P S; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will cause damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 and fluences of 1-MeV(Si) equivalent neutrons and thermal neutrons at several locations in ATLAS detector. In this paper measurements collected during two years of ATLAS data taking are presented and compared to predictions from radiation background simulations.

  1. Monitoring of radiation via CT

    International Nuclear Information System (INIS)

    Atzinger, A.; Pfaendner, K.; Gfirtner, H.; Hoetzinger, H.

    1981-01-01

    The results presented in this article lead to the conclusion that it would be appropriate to demand control or monitoring of radiation via CT whenever complicated exposure to radiation is required. Such control appears mandatory in order to guarantee a sufficiently high tumour dosage and satisfactory protection or minimum burdening of the surrounding tissue. At first sight, it may seem that such CT operations are relatively costly. However, once the teamwork has been properly established, both the time required and the cost involved remain within reasonable limits and will probably not be greater than control via therapy simulator. The decisive factor is that computerised tomography should offer sufficient possibilities of translating such control into reality by effecting the necessary dosage adjustments in accordance with given requirements. (orig.) [de

  2. Proposal of a monitoring program of occupational exposure by incorporation of radioactive material for nuclear medicine services in the Caja Costarricense del Seguro Social

    International Nuclear Information System (INIS)

    Badilla Segura, Mirta

    2013-01-01

    A monitoring program of the occupational exposure by incorporation of radioactive material is proposed. Nuclear medicine services of the Caja Costarricense del Seguro Social (CCSS) are evaluated. The monitoring program is based on the provisions of the International Atomic Energy Agency and of study of nuclear medicine services of the CCSS. Radionuclides are determined for monitoring of the occupational exposure, according to the radioactive material that is worked in nuclear medicine services of the CCSS. The appropriate and alternative techniques are established for the monitoring of the occupational exposure by incorporation of radioactive material, depending on the type of radionuclide that is worked in nuclear medicine services. The worker occupationally exposed (TOE) should be subject of monitoring and how often should be realized the monitoring of the occupational exposure. The monitoring of the radiation by radioactive material must be applied to personnel working in radiopharmacies and the worker has carried out therapeutic procedures for handling of significant amounts of 13 1 I. The calculation of the committed effective dose is proposed by incorporation of radioactive material with the TOE [es

  3. Environmental radiation monitoring data for Point Lepreau Generating Station, 1988. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1989-01-01

    Annual report presenting a compilation of the 1988 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,700 analyses were made on 1,200 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and lichen. Background radiation is measured by thermoluminescence dosimetry.

  4. Environmental radiation monitoring data for Point Lepreau Generating Station, 1987. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1988-01-01

    Annual report presenting a compilation of the 1987 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,800 analyses were made on 1,300 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and periwinkles. Background radiation is measured by thermoluminescence dosimetry.

  5. Radiation levels from computer monitor screens within Benue State ...

    African Journals Online (AJOL)

    Investigation of possible presence of soft X-ray levels from Computer Screens at distances of 0.5m and 1.0m was carried out within Benue State University, Makurdi, using ten different monitor models. Radiation measurement was carried out using a portable digital radiation meter, INSPECTOR 06250 (SE international Inc.

  6. Radiation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.

    1986-05-21

    A detector for the detection of radiation such as X-ray radiation comprises an array of scintillation elements embedded in a sheet of radiation absorbing material. The scintillation elements are monitored individually, for example by a corresponding array of photodiodes, to build up a picture of the incident radiation. The front face of the sheet and the inner walls of the bores may be coated with a reflective material. The detector finds particular application in weld radiography. The detector may be stepped relative to the radiation source, the signals produced by the rows of the detector as they pass a predetermined point being summed.

  7. Radiation imaging

    International Nuclear Information System (INIS)

    Redmayne, Ian.

    1986-01-01

    A detector for the detection of radiation such as X-ray radiation comprises an array of scintillation elements embedded in a sheet of radiation absorbing material. The scintillation elements are monitored individually, for example by a corresponding array of photodiodes, to build up a picture of the incident radiation. The front face of the sheet and the inner walls of the bores may be coated with a reflective material. The detector finds particular application in weld radiography. The detector may be stepped relative to the radiation source, the signals produced by the rows of the detector as they pass a predetermined point being summed. (author)

  8. EDGAR, a new plant radiation monitoring system

    International Nuclear Information System (INIS)

    Vuong, Q.M.; Da Costa Vieira, D.

    2004-01-01

    The EDGAR system is a new radiation monitoring system for nuclear power plant, reprocessing plant and nuclear research reactor for radioactive contamination, gamma and neutron field monitoring. Developed by French Atomic Energy Agency, this system provides not only complete functions of standard RMS, also allows spectroscopy level detection of alpha and beta particles based on a patented collimator unit. A complete computerized approach has been taken allowing full installation control in a single PC based display and communication unit. (author)

  9. Environmental radiation monitoring technology: Capabilities and needs

    International Nuclear Information System (INIS)

    Hofstetter, K.J.

    1994-01-01

    Radiation monitoring in the Savannah River Site (SRS) environment is conducted by a combination of automated, remote sampling and/or analysis systems, and manual sampling operations. This program provides early detection of radionuclide releases, minimizes the consequences, and assesses the impact on the public. Instrumentation installed at the release points monitor the atmospheric and aqueous releases from SRS operations. Ground water and air monitoring stations are strategically located throughout the site for radionuclide migration studies. The environmental radiological monitoring program at SRS includes: fixed monitoring stations for atmospheric radionuclide concentrations, aqueous monitors for surface water measurements, mobile laboratory operations for real-time, in-field measurements, aerial scanning for wide area contamination surveillance, and hand-held instruments for radionuclide-specific measurements. Rigorous environmentnal sampling surveillance coupled with laboratory analyses provide confirmatory results for all in-field measurements. Gaps in the technologies and development projects at SRS to fill these deficiencies are discussed in the context of customer needs and regulatory requirements

  10. Design of position monitor module in radioactive material transport monitoring system

    International Nuclear Information System (INIS)

    Adi Abimanyu; Dwi Yuliansari N

    2013-01-01

    Aspects of safety and security of radioactive substances from the sender to the receiver is to be secured so as not to harm humans. In general, monitoring is done through conversation by telephone to determine the location and rate of exposure of radioactive substances. Through the development of science and technology makes it possible to develop a system of monitoring the transport of radioactive substances in real time by combining radiation monitor module, position monitors module and sending information nir-cable. Position monitor module developed using GPS-receiver and a micro controller ATMega8 based serial interrupts communication. Testing is done by testing communication between micro controller and GPS and also testing reading position by GPS receiver. From the test results concluded that the developed modules is good in serial communication is based on serial interrupts, good position measurement to be used outdoors and is not good enough for measurements indoors because the GPS receiver used is not using an outdoor antenna. (author)

  11. A Study on the Interaction Mechanism between Thermal Radiation and Materials

    Institute of Scientific and Technical Information of China (English)

    Dehong XIA; Tao YU; Chuangu WU; Qingqing CHANG; Honglei JIAO

    2005-01-01

    From the viewpoint of field synergy principle and dipole radiation theory, the interaction between the incident thermal radiation wave and materials is analyzed to reveal the mechanism of selective absorption of incident thermal radiation. It is shown that the frequency of the incident thermal radiation and the damping constant of damping oscillators in materials are of vital importance for the thermal radiation properties (reflectivity, absorptivity, transmissivity, etc.) of materials.

  12. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs

  13. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  14. Intercomparison of personal radiation monitoring services in the Asia/Pacific region

    International Nuclear Information System (INIS)

    Young, J.G.; Hargrave, N.J.

    1994-01-01

    The Australian Radiation Laboratory conducted an international intercomparison of personal radiation monitoring services in the Asia/Pacific region during 1991. Twenty nine organizations from sixteen countries took part in the study, with the People's Republic of China having eleven participants. Dosemeters incorporating thermoluminescent phosphors and conventional film were submitted for evaluation. Both types were irradiated at normal incidence on a phantom with 137 Cs gamma rays, X rays and beta radiation from a 90 Sr/ 90 Y source. Participants were requested to assess their dosemeters in terms of the new operational quantities of the ICRU for personal radiation monitoring, in particular the personal dose equivalents H p (0.07) and H p (10). (author)

  15. Atmospheric radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P. [Universidade Federal do ABC (UFABC), SP (Brazil); Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10{sup 17} eV and 10{sup 18} eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < {lambda} < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  16. Atmospheric radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P.; Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A.

    2011-01-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10 17 eV and 10 18 eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < λ < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  17. Development of radiation-resisting high molecular-weight materials

    International Nuclear Information System (INIS)

    Nakagawa, Tsutomu

    1976-01-01

    The excellent radiation-resisting polyvinyl chloride developed at the opportunity of the research on the relationships between the protection of living body and the polymer-technological protection from radiation is reviewed. The report is divided into four main parts, namely 1) the change in the molecular arrangement of market-available, high molecular-weight materials by gamma-ray irradiation, 2) the protection of high molecular-weight materials from radiation, 3) the relationships between the biological radiation-protective substances and the change to radiation-resisting property of synthesized high molecular-weight substances, and 4) the development of the radiation-resisting high molecular-weight materials as metal-collecting agents. Attention is paid to the polyvinyl chloride having N-methyl-dithio-carbamate radical (PMD), synthesized by the author et. al., that has excellent radiation-resisting property. PMD has some possibility to form thiol- and amino-radicals necessary to protect living things from radiation. It is believed that the protection effects of N-methyl-dithio-carbamate radical are caused by the relatively stable S radical produced by the energy transfer. PMD film is suitable for the irradiation of foods, because it hardly changes the permeability of oxygen and carbon dioxide. PMD produces mercaptide or chelate. A new metal-collecting agent (PSDC) having reactivity with the metallic ions with radiation-resisting property was developed, which is derived from polyvinyl chloride and sodium N-methyl-N-carboxy-methyl-dithio-carbamate. (Iwakiri, K.)

  18. Environmental Radiation Monitoring Around the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2008-05-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uraniu and Strontium in environmental samples showed a environmental level. The radioactivities of most {gamma}-radionuclides in air particulate, surface water and ground water were less than MDA except {sup 40}K or {sup 7}Be which are natural radionuclides. However, not only {sup 40}K or {sup 7}Be but also {sup 137}Cs were detected at the background level in surface soil, discharge sediment and fallout or pine needle.

  19. Radiation monitoring system based on Internet

    International Nuclear Information System (INIS)

    Drndarevic, V.R.; Popovic, A.T; Bolic, M.D.; Pavlovic, R.S.

    2001-01-01

    This paper presents concept and realization of the modern distributed radiation monitoring system. The system uses existing conventional computer network and it is based on the standard Internet technology. One personal computer (PC) serves as host and system server, while a number of client computers, link to the server computer via standard local area network (LAN), are used as distributed measurement nodes. The interconnection between the server and clients are based on Transmission Control Protocol/Internet Protocol (TCP/IP). System software is based on server-client model. Based on this concept distributed system for gamma ray monitoring in the region of the Institute of Nuclear Sciences Vinca has been implemented. (author)

  20. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  1. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  2. Environmental Radiation Surveillance Results from over the Last Decade of Operational Experience at the Regional Radiation Monitoring Stations(RRMS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Young [Daegu Regional Radiation Monitoring Station, Daegu (Korea, Republic of); Yoo, Dong Han [Ulsan Regional Radiation Monitoring Station, Ulsan (Korea, Republic of); Lee, Sang Hoon [Kyungpook National University, Daegu (Korea, Republic of)

    2015-10-15

    The objectives of the current program are to monitor environmental radiation/radioactivity level in Korea and to provide the base-line data on environmental radiation/radioactivity which will be useful in the case of radiological emergency situations. This program plays an important role in the view of protecting the public health against the potential hazards of radiation and maintaining a clean environment. This paper describes an introduction to the Regional Radiation Monitoring Stations (RRMS), and also presents some results of recent years (2001-2014). The environmental radiation surveillance results of years 2001-2014 have been described. It indicates normal levels of radiation in the past years. These kinds of studies are very important in providing references in understanding the environmental radioactivity level in a particular region.

  3. Radiation Monitoring in a Newly Established Nuclear Medicine Facility

    International Nuclear Information System (INIS)

    Afroj, Kamila; Anwar-Ul-Azim, Md.; Nath, Khokon Kumar; Khan, Md. Rezaul Karim

    2010-05-01

    A study of area monitoring in a nuclear medicine department's new physical facility was performed for 3 months to ascertain the level of radiation protection of the staff working in nuclear medicine and that of the patients and patient's attendants. Exposure to nuclear medicine personnel is considered as occupational exposure, while exposure to patients is considered medical exposure and exposure to patients' attendants is considered public exposure. The areas for the sources of radiation considered were the hot laboratory, where unsealed isotopes, radionuclides, generators are stored and dosages are prepared, the patients' waiting room, where the radioactive nuclides are administered orally and intravenously for diagnosis and treatment and the SPECT rooms, where the patients' acquisition are taken. The monitoring process was performed using the TLD supplied and measured by the Health Physics Division of Bangladesh Atomic Energy Commission. The result shows no over-exposure of radiation from any of the working areas. The environment of the department is safe for work and free from unnecessary radiation exposure risk. (author)

  4. Radiation damage in organic materials

    International Nuclear Information System (INIS)

    Campbell, F.J.

    1981-01-01

    A surprising number of electrical components and seals are listed as being inside the containment building of a nuclear power plant. The types of radiation and their interaction with organic materials lead to a dosimetry discussion, and then a brief description of the chemical mechanisms which predominate in typical organic materials follows. Relative stability of polymer structures and the types of additives that contribute stabilization to the basic polymer matrix in formulated compounds are reviewed. However, the emphasis must now be directed toward the need to consider the total environment of nuclear plant service on the degradation of these materials if maximum reliability is to be achieved. The degradation mechanisms may be strongly affected by the dose-rate/oxidation effect. Temperature, steam and physical stress, when applied concurrently with the radiation field, can also influence the amount of absorbed dose required to produce a given change in the property being tested. Determining the degree of these influences and developing standardized test procedures to evaluate them have become the objective of several prominent research programs and international committee efforts. (author)

  5. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  6. GERMON. Global Environmental Radiation Monitoring Network

    International Nuclear Information System (INIS)

    1992-01-01

    Between 15-18 December 1987, a meeting of experts of WHO/UNEP met at Le Vesinet, France, to develop the basic principles of a global environmental radiation monitoring network (GERMON) which would have the function of reporting on a regular basis environmental radiation levels, and be positioned to provide rapid and reliable radiation measurements in the event of a major radiation release. To date, some 58 countries have indicated their willingness to become part of GERMON. About 40 of these have technical staff and equipment to meet the minimum requirements for joining the network, and about 30 have designated appropriate organizations within their country to serve as national Liaison Institutions for GERMON. Sixteen countries are now providing data on a regular basis to the CCC at SCPRI in Le Vesinet, France. Thirty-two countries responded to the request of WHO for readiness to take part in a IAEA radiation emergency exercise. The present meeting has been held in Montgomery, Alabama, USA at the National Air and Radiation Environmental Laboratory between 27 April 1992 and 30 April 1992, with the purpose of reviewing GERMON. One important topic considered was the implementation of GERMON in the Americas. Particular attention was given to the need for better coordination with IAEA in responding to the Convention on Early Notification, to the role of the CCC, to forms of data transmission, etc

  7. Radioactivity in the scrap recycling process: Radiation protection aspects and experimental monitoring problems

    International Nuclear Information System (INIS)

    Sacco, D.; Ruggeri, F.; Bindi, G.; Bonanni, A.; Casciardi, S.; Delia, R.; Loppa, A.; Rossi, P.; Venturini, L.

    1996-01-01

    The steel scrap recycling by steel mill is increasing moved by profits and by purpose of protection of environmental resources. Besides the use of radioactive sources in several fields (medical, industrial and in scientific researches) on one hand, and the disposal of made radioactive materials from nuclear reactors on the other one, makes the likelihood no more negligible that some radionuclides could be found, accidental y or fraudulently, in steel recycling scrap. Radiation protection problems for surveillance both employees in the production cycle and of people and environment in general arose. First of all, we characterize different type of radioactive materials that can found in scraps, pointing out the potential hazards from exposure of workers and people and from environmental contamination, related to physical and chemical specifications of the involved radionuclides. Some suitable monitoring equipment for scrap recycling facilities are discussed, related to the different step of production cycle (transport, storage, manipulation and melting). At last experimental data, taken in some periods of the monitoring campaign made at the Italian border on imported scraps, are presented. (author)

  8. Radiation-related monitoring and environmental research at the Nevada Test Site

    International Nuclear Information System (INIS)

    Anspaugh, L.R.; Patton, S.E.; Shinn, J.H.; Black, S.C.; Costa, C.F.; Elle, D.R.; Essington, E.H.; Gilbert, R.O.; Gonzalez, D.A.; Hunter, R.B.; Medica, P.A.; McArthur, R.D.; Thompson, C.B.; O'Farrell, T.P.; Romney, E.M.

    1990-01-01

    Beginning with the first nuclear-weapons-related tests at the Nevada Test Site (NTS) in 1951, a radiation-related monitoring program was established to determine the levels and distribution of radionuclides released. Primary methods involved survey-meter-equipped field-monitoring teams and placement of film badges and air-sampling devices at fixed locations. Beginning in the mid-1950s, more stringent standards, the results of this monitoring program, and the results of related research programs led to increased engineering efforts to reduce local fallout. With passage of the National Environmental Policy Act and increased concern about possible effects of radiation exposure, environmental activities related to the NTS increased. There is now an extensive monitoring program at the NTS to assess radiological conditions resulting from past tests and from continued testing of nuclear-weapons devices. In populated areas near NTS, there is also a monitoring effort that relies on assistance from local communities. Other efforts include reconstruction of radiation doses received by offsite residents during the 1950s and 1960s, determination of the current inventory and distribution of radionuclides in surface soil, and studies of the movement of radionuclides in the desert ecosystem

  9. Wide range radiation monitoring apparatus

    International Nuclear Information System (INIS)

    Goldstein, N.P.

    1983-01-01

    There is described a simple and rugged detector capable of measuring radiation fields over the range of 0.02 R/hr up to 10/8 R/hr or higher. The device consists of an emitter element of high atomic number material which is connected to the center conductor of a signal cable. This emitter element is positioned in a spaced-apart relationship between collector element of a low atomic number material with a gap region between the emitter element and the adjacent collector elements

  10. Study of radiation damage in solid materials by simulating physical processes

    International Nuclear Information System (INIS)

    Pinnera Hernandez, Ibrahin

    2006-12-01

    Nowadays the damage induced by different types of radiation in advanced materials is widely studied. Especially those materials involved in experiments and developing of new technologies, such as high critical temperature superconductors, semiconductors, metals. These materials are the basis constituents of radiation detectors, particle accelerators, etc. One way of studying this kind of damage is through the determination of the displacements per atom (dpa) induced by the radiation in these materials. This magnitude is one of the measures of the provoked radiation damage. On this direction, the present thesis deals with the study of two types of materials through mathematical simulation of physical processes taking place in the radiation transport. Ceramic superconductor Yba 2 Cu 3 O 7-x and metal Fe are the selected materials. The energy range of the incident gamma radiation goes from a few keV to 15 MeV. The MCNPX version 2.6b is used to determine the physical magnitudes required to calculate the distribution of displacements per atom within these materials, using an algorithm implemented for this purpose. Finally, a comparison between the obtained dpa profiles and the corresponding of energy deposition by radiation in these same materials and the possible linear dependence between both quantities is discussed. (Author)

  11. Investigation of graphene-based nanoscale radiation sensitive materials

    Science.gov (United States)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  12. Group: radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1990-01-01

    The main activities of the radiation dosimetry group is described, including the calibration of instruments, sources and radioactive solutions and the determination of neutron flux; development, production and market dosimetric materials; development radiation sensor make the control of radiation dose received by IPEN workers; development new techniques for monitoring, etc. (C.G.C.)

  13. Guide for the monitoring of radiation protection during national modification and maintenance operations. Report nr 307

    International Nuclear Information System (INIS)

    Bataille, C.; Michelet, M.; Schieber, C.

    2010-02-01

    This methodological guide aims at helping the different involved actors in designing and implementing the monitoring of radiation protection during modification and maintenance operations performed at the national level. It describes actions to be performed by each actor in order to comply with the objectives of the four steps related to the radiation protection monitoring of an operation: the design of the radiation protection monitoring during the study phase, the adaptation of this monitoring to the concerned CNPE (electricity production nuclear centre), the radiation protection monitoring during the operation performance, and the analysis of the return on experience

  14. Community Radiation Monitoring Program

    International Nuclear Information System (INIS)

    Cooper, E.N.

    1993-05-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link

  15. Survey of instrumentation for environmental monitoring: major update. Volume 3. Radiation

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This is the third volume of a four-volume (seven-part) series, the culmination of a comprehensive survey of instrumentation for environmental monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to radiation monitoring. The results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Information is also given regarding the pollutants to be monitored, their characteristics and forms, their sources and pathways, their effects on the ecosystem, and the means of controlling them through process and regulatory controls. The discussion is presented under sections entitled radiation sources; instrumentation: by type of radiation or instrument type; and, instrumentation for specific radionuclides. (JGB)

  16. Survey of instrumentation for environmental monitoring: major update. Volume 3. Radiation

    International Nuclear Information System (INIS)

    1979-09-01

    This is the third volume of a four-volume (seven-part) series, the culmination of a comprehensive survey of instrumentation for environmental monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to radiation monitoring. The results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Information is also given regarding the pollutants to be monitored, their characteristics and forms, their sources and pathways, their effects on the ecosystem, and the means of controlling them through process and regulatory controls. The discussion is presented under sections entitled radiation sources; instrumentation: by type of radiation or instrument type; and, instrumentation for specific radionuclides

  17. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  18. Behaviour of organic materials in radiation environment

    CERN Document Server

    Tavlet, M

    2000-01-01

    Radiation effects in polymers are reminded together with the ageing factors. Radiation-ageing results are mainly discussed about thermosetting insulators, structural composites and cable-insulating materials. Some hints are given about high-voltage insulations, cooling fluids, organic scintillators and light-guides. Some parameters to be taken into account for the estimate of the lifetime of components in radiation environment are also shown. (23 refs).

  19. Method and apparatus for neutron radiation monitoring

    International Nuclear Information System (INIS)

    Schwarzmann, A.

    1985-01-01

    A self-calibrated neutron radiation monitor includes a flux responsive element comprised of intrinsic silicon neutron detectors and self-calibration resistors in a single structure. As the resistance of the flux responsive element increases to the value of successive calibration resistors, known increments of flux have been encountered

  20. Long-Term Lunar Radiation Degradation Effects on Materials

    Science.gov (United States)

    Rojdev, Kristina; ORourke, Mary Jane; Koontz, Steve; Alred, John; Hill, Charles; Devivar, Rodrigo; Morera-Felix, Shakira; Atwell, William; Nutt, Steve; Sabbann, Leslie

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is focused on developing technologies for extending human presence beyond low Earth orbit. These technologies are to advance the state-of-the-art and provide for longer duration missions outside the protection of Earth's magnetosphere. One technology of great interest for large structures is advanced composite materials, due to their weight and cost savings, enhanced radiation protection for the crew, and potential for performance improvements when compared with existing metals. However, these materials have not been characterized for the interplanetary space environment, and particularly the effects of high energy radiation, which is known to cause damage to polymeric materials. Therefore, a study focusing on a lunar habitation element was undertaken to investigate the integrity of potential structural composite materials after exposure to a long-term lunar radiation environment. An overview of the study results are presented, along with a discussion of recommended future work.

  1. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    International Nuclear Information System (INIS)

    Kulich, V.; Studeny, J.

    1995-01-01

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany

  2. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kulich, V; Studeny, J [NPP Dukovany (Czech Republic)

    1996-12-31

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany.

  3. A beam radiation monitoring and protection system for AGS secondary beams

    International Nuclear Information System (INIS)

    Levine, G.S.

    1978-01-01

    A commercially available radiation monitor using a scintillation detector was modified for charged particle beam monitoring. The device controls access to secondary beams of the AGS and limits beam intensity

  4. RAM R-200 - A Portable Ruggedized Radiation Monitoring System

    International Nuclear Information System (INIS)

    Wengrowicz, U.; Mazor, T.; Assido, H.; Kadmon, Y.; Tirosh, D.; Shani, G.

    1999-01-01

    RAM R-200, a new generation of ruggedized portable radiation-monitoring systems, is presented. The system which is a result of interdisciplinary research, was developed at the NRCN in collaboration with Ben-Gurion University. It consists of RAM R-200 - a portable radiation meter, and a variety of external probes for wide range gamma radiation fields and beta-gamma contamination detection and measurement. The meter or each one of the external probes can be used as a portable system or a stand-alone radiation measurement station. All the system's components were specially designed to meet severe environmental conditions

  5. Environmental radiation monitoring data for Point Lepreau Generating Station, 1990. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1991-01-01

    Annual report presenting a compilation of the 1990 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,500 analyses were made on 1,100 samples to monitor environmental radiation, including air particulates, airborne water vapour, carbon dioxide in air, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops, periwinkles, sea plants and lichen. Background radiation is measured by thermoluminescence dosimetry. Radon is not assessed.

  6. Application of the ALARA principle to individual occupational radiation monitoring

    International Nuclear Information System (INIS)

    Aleinikov, V.E.

    1998-01-01

    Routine individual occupational radiation monitoring is necessary to ensure that exposure are kept as low as reasonably achievable (ALARA) and that the authorized dose limits are not exceeded. The type and extend of the monitoring depend on the nature and magnitude of occupational radiation exposure. Optimal choice of the wearing time for individual dosimeters, T, has important consequences for achievement of the individual monitoring objects. The choice of T depends on individual dose distribution, the lower detection limit for the detector used, the lost of an information during period of monitoring, the cost of the measurements and the benefits associated with the results. The paper describes the application of quantitative optimization techniques to optimize the wearing time for individual dosimeters. It was shown how optimal wearing time for individual dosimeters depends on dose distribution, the lower detection limit, dose limit, fading and cost of the measurements. (author)

  7. Vehicle tracking based technique for radiation monitoring during nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Saindane, Shashank S.; Otari, Anil D.; Suri, M.M.K.; Patil, S.S.; Pradeepkumar, K.S.; Sharma, D.N.

    2010-01-01

    Radiation Safety Systems Division, BARC has developed an advanced online radiation measurement cum vehicle tracking system for use. For the preparedness for response to any nuclear/radiological emergency scenario which may occur anywhere, the system designed is a Global System for Mobile (GSM) based Radiation Monitoring System (GRaMS) along with a Global Positioning System (GPS). It uses an energy compensated GM detector for radiation monitoring and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time, and GSM modem for online data transfer to a remote control centre. The equipment can be operated continuously while the vehicle is moving

  8. Application of GPRS in the remote X γ radiation monitoring system

    International Nuclear Information System (INIS)

    Wang Yanliang; Su Xiaohui; Jin Yu; Li Zhengcai; Wang Yuhong; Zhang Wentao

    2008-01-01

    This paper introduces a system sending radiation monitoring data wirelessly by GPRS network. Monitor terminal in this system can send the measured data to the monitor computer wirelessly by GPRS, then managing program of the monitor computer can process the data. When data is abnormal, there is an alarm, workers can deal with it on time. (authors)

  9. Light-refractory radiation shielding materials using diatomites and zeolites

    International Nuclear Information System (INIS)

    Murakami, Hideki

    2005-01-01

    It has been recently shown that diatomites and zeolites have some useful characteristics for radiation shielding materials. In this study, the availability of these materials for unexpected accidents in the nuclear sites is examined. The diatomites and zeolites, compared to existing shielding materials, have superior characteristics; low density and light weight, low in radiation-induced problem, high-heat resistance, remain unaltered by the addition of an acid except hydrofluoric acid, porous and large specific surface area, and also excellent water-absorbing property. These porous materials could also expand the shielding energy range applied and be used for fast- and thermal-neutrons, and γ ray. In addition, these materials are easy to store for long periods of time against emergency because of their natural rocks. From the examinations, it is cleared that diatomites and zeolites have excellent properties as radiation shielding materials for emergency use. (author)

  10. On-line monitoring of toxic materials in sewage at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Auyong, M.; Cate, J.L. Jr.; Rueppel, D.W.

    1980-01-01

    It is becoming increasingly important for industry to prevent releases of potentially toxic material to the environment. The Lawrence Livermore Laboratory has developed a system to monitor its sewage effluent on a continuous basis. A representative fraction of the total waste stream leaving the Plant is passed through a detection assembly consisting of an x-ray fluorescence unit which detects high levels of metals, sodium iodide crystal detectors that scan the sewage for the presence of elevated levels of radiation, and an industrial probe for pH monitoring. With the aid of a microprocessor, the data collected is reduced and analyzed to determine whether levels are approaching established environmental limits. Currently, if preset pH or radiation levels are exceeded, a sample of the suspect sewage is automatically collected for further analysis, and an alarm is sent to a station where personnel can be alerted to respond on a 24-hour basis. In the same manner, spectral data from the x-ray fluorescence unit will be routed through the 24-hour alarm system as soon as evaluation of the unit is complete. The design of the system and operational experience is discussed

  11. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Kadmon, Y.; Tirosh, D.; Elhanany, I.; Gabovitch, A.; Barak, D.

    1997-01-01

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  12. Progress in Gamma Ray Measurement Information Barriers for Nuclear Material Transparency Monitoring

    International Nuclear Information System (INIS)

    Wolford, J.K.; White, G.K.

    2000-01-01

    Negotiations between technical representatives of the US and the Russian Federation in support of several pending nuclear arms and nuclear material control agreements must take account of the need for assurances against the release of sensitive information. Most of these agreements involve storing nuclear material and in some cases nuclear components from stockpile weapons in specially designed containers. Strategies for monitoring the agreements typically include measuring neutron and gamma radiation from the controlled items to verify declared attributes of plutonium or highly enriched uranium. If accurate enough to be useful, these measurements will contain information about the design of the component being monitored, information considered sensitive by one or both parties to the agreement. Safeguards have evolved to prevent disclosure of this information during inspections. These measures combine hardware, software, and procedural measures to contain the sensitive data, presenting only the results needed for verification. Custom features preserve data security and guard against disclosure in case of failure. This paper summarizes the general problem and discusses currently developing solutions for a high resolution gamma ray detection system. It argues for the simplest possible implementation of several key system components

  13. Radiation monitoring and dose distribution of medical workers in A.P. state 1999-2000

    International Nuclear Information System (INIS)

    Singh, D.R.; Reddy, K.S.; Kamble, M.K.; Roy, Madhumita

    2001-01-01

    Individual monitoring for external ionizing radiation is being conducted for all radiation workers in Andhra Pradesh State by TLD Unit located in Nuclear Fuel Complex, Hyderabad.The Unit comes under Personnel Monitoring Section of Bhabha Atomic Research Center, Mumbai. The aim of monitoring is to confirm that the radiation safety standards are strictly adhered in the institutions and also to investigate excessive exposures, if any. Personnel monitoring also provides data for epidemiological studies. In view of ICRP/AERB recommendations of 100 mSv dose limit for the five years block of 1994-98, the dose distribution among radiation workers in Andhra Pradesh State is analyzed for the period 1994-98. In continuation of above work, we have analyzed the data for the year 1999-2000 for various medical diagnostic procedures and these are presented

  14. Development of flame retardant, radiation resistant insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M.

    1984-01-01

    On the cables used for nuclear power stations, in particular those ranked as IE class, flame retardation test, simulated LOCA environment test, radiation resistance test and so on are imposed. The results of the evaluation of performance by these tests largely depend on the insulating materials mainly made of polymers. Ethylene propylene copolymer rubber has been widely used as cable insulator because of its electrical characteristics, workability, economy and relatively good radiation resistance, but it is combustible, therefore, in the practical use, it is necessary to make it fire resistant. The author et al. have advanced the research on the molecular design of new fire retarding materials, and successfully developed acenaphthylene bromide condensate, which is not only fire resistant but also effective for improving radiation resistance. The condition of flame retardant, radiation resistant auxiliary agents is explained, and there are additive type and reaction type in fire retarding materials. The synthesis of acenaphthylene bromide condensate and its effect of giving flame retardant and radiation resistant properties are reported. The characteristics of the cables insulated with the flame retardant ethylene propylene rubber containing acenaphthylene bromide condensate were tested, and the results are shown. (Kako, I.).

  15. Automatic data acquisition system of environmental radiation monitor with a personal computer

    International Nuclear Information System (INIS)

    Ohkubo, Tohru; Nakamura, Takashi.

    1984-05-01

    The automatic data acquisition system of environmental radiation monitor was developed in a low price by using a PET personal computer. The count pulses from eight monitors settled at four site boundaries were transmitted to a radiation control room by a signal transmission device and analyzed by the computer via 12 channel scaler and PET-CAMAC Interface for graphic display and printing. (author)

  16. NREL Patents Method for Continuous Monitoring of Materials During

    Science.gov (United States)

    Manufacturing | News | NREL NREL Patents Method for Continuous Monitoring of Materials During Manufacturing News Release: NREL Patents Method for Continuous Monitoring of Materials During Manufacturing NREL's Energy Systems Integration Facility (ESIF). More information, including the published patent, can

  17. The application and development on radiation monitoring microcomputer management system in design of a certain project

    International Nuclear Information System (INIS)

    Zhang Hongyou

    1993-01-01

    A scheme of a radiation monitoring system with a RMMMS (Radiation Monitoring Microcomputer Management System) has been designed for the first time in the radiation protection design of a certain nuclear projection undertaken by the BINE (Beijing Institute of Nuclear Engineering). Meanwhile, we accepted the research task of the RMMMS that can manage 40 monitoring channel. The key factors of radiation monitors, microcomputer, information management and systematic design method are considered in the development of the RMMMS. This paper presents briefly the scheme and functions of the RMMMS

  18. Radiation types and their influence on thermoluminescence of materials

    International Nuclear Information System (INIS)

    Soika, C.; Delincee, H.

    1999-01-01

    The paper reports experiments investigating pure minerals (quartz and potash feldspar) and a mixture (sand) and their luminescence under the impact of various types of radiation. The materials were exposed to the radiation types commonly used for radiation treatment of food: 5 and 10 MeV electron radiation, 6 0Co-γ radiation with applied doses of 0.2 and 5.0 kGy. After measurements, the samples were normalized by re-irradiation with 2, 5, and 10 MeV electrons as well as β radiation ( 9 0Sr), γ radiation ( 6 0Co), and UV-C light (200-280 nm), applying radiation doses of 0.25 kGy and 1.0 kGy, or 0.5 J/cm 2 , respectively. The analysis of the first and second glow curves of each material showed that the radiation type determines the glow curve. UV light was found to be inappropriate for normalisation of those samples containing only quartz as a luminescent constituent. (orig./CB) [de

  19. A European network of experts with direct responsibility for monitoring and dosimetry after a deliberate release of radioactive material or a deliberate radiation exposure

    International Nuclear Information System (INIS)

    Rahola, Tua; Muikku, Maarit; Pellow, Peter G.D.; Etherington, George; Hodgson, Alan; Youngman, Mike J.; Le Guen, Bernard; Berard, Philippe; Lopez, Maria A.

    2008-01-01

    In the event of an accidental or deliberate release of radionuclides to the environment, individual monitoring and dose assessment may be needed for large numbers of people. The consequences of such incidents are not limited by national boundaries. However, within the European Union (EU), there has not been any coordinated strategy for individual monitoring and dose assessment. CONRAD (CO-ordination Action for Radiation Dosimetry) is an EC 6 th Framework Programme Co-ordination Action sponsored by EURADOS (the European Radiation Dosimetry Group, http://www.eurados.org). The objective of Task 5.4 of Work Package 5 of the CONRAD project, coordinated by HPA (UK) and STUK (Finland), is the development of a network of people and organisations with responsibilities for emergency monitoring of emergency services personnel and members of the public. The network (named EUREMON) aims to promote sharing of information between countries on plans and arrangements for individual monitoring. It currently has 51 individual members from 22 EU countries, 8 non-EU countries and two international organisations. After it was established, the network was used in a survey of plans and arrangements for emergency personal monitoring in EU countries. Information is also being compiled on portable and transportable monitoring facilities and equipment in the EU. (author)

  20. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    Pavlenko, V.I.; Chekashina, N.I.; Yastrebinskij, R.N.; Sokolenko, I.V.; Noskov, A.V.

    2016-01-01

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  1. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    Rantanen, E.

    2001-03-01

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  2. UNLAMINATED GAFCHROMIC EBT3 FILM FOR ULTRAVIOLET RADIATION MONITORING.

    Science.gov (United States)

    Welch, David; Randers-Pehrson, Gerhard; Spotnitz, Henry M; Brenner, David J

    2017-11-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A national computerized system for monitoring operational radiation exposure

    International Nuclear Information System (INIS)

    Canipelle, A.D.

    1996-01-01

    In parallel to the expansion of the number of French nuclear power plant units in operation, maintenance actions have multiplied, which has meant calling upon the services of a growing number of increasingly specialized workers. It has therefore proved necessary to reinforce the radiation dose rate surveillance of these workers. As a result, certain companies decided to set up their own occupational radiation dose monitoring system, in addition to mandatory monitoring by the OPRI, using dosemeters, generally electronic or thermoluminescent film badges, supplied by the subcontractor companies or nuclear facility operators. This enables acquiring fast and accurate knowledge of the radiation doses received by the workers. For this type of surveillance to be fully efficient, a data centralization system was required, able to provide frequent, even daily readings if necessary, of the dose received during the current month or for any period of time, up to the sum of the doses accumulated over five years. (author)

  4. Actions of radiation protection in the collection of discarded radioactive material

    International Nuclear Information System (INIS)

    Neri, E.P.M.; Silva, F.C.A. da

    2017-01-01

    Brazil has approximately 2000 radiative facilities that use radiation sources in their processes and are controlled by The Brazilian Nuclear Energy Commission - CNEN through standards, authorizations and inspections. These radioactive materials, whether in the form of waste or radioactive source, used in medical, industrial, research, etc. are sometimes discarded and found in inappropriate places, such as garbage dumps, industrial waste, streets, squares, etc. found by urban cleaning professionals without the proper knowledge of them. The work presents the radiation protection actions required for the safe collection of radioactive material to be performed by these professionals. According to the type of radioactive material the main actions of radiation protection are, among others: recognition of a radioactive material; correct use of personal protective equipment to contain possible radiation contamination; implementation of an area control etc. In order for the actions of recognition and collection of discarded radioactive material to be effective, there is a need to implement a training program in radiation protection for urban cleaning professionals

  5. Synthesis of functional materials by radiation and qualification testing of organic materials in nuclear power plant

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others; Jun, Hong Jae; Suh, Dong Hak; Lee, Young Moo; Min, Byung Kak; Bae, You Han

    2003-05-01

    The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as covering for burns and wound, and controlled release of drug. A radiation technology was used to develop PTC materials useful in devices that limit electric fault currents. Radiation-curing of fiber-matrix composites is a promising application. There are a number of advantages to radiation curing of composites, compared with conventional thermal processing. Radiation curing at ambient temperature allows tighter control of part dimensions, and elimination of internal stresses which otherwise occur on cooling and which reduce material strength. These studies involved radiation curing of epoxy resins with various fibers and filler for structural application for aerospace and sport goods. The chain scission is the basis of other radiation treatments aimed at enhancing processing characteristics of polymers. These studies aim to make PTFE powder from PTFE scrap using the radiation degradation which allows incorporation of the material into coatings, inks etc. Low density polyethylene, crosslinked polyethylene, ethylene propylene rubber, and acrylonitrile butadiene rubber as cable insulating, seathing and sealing materials were irradiated for the accelerated ageing tests. Degradation was investigated by measuring dielectric analysis, thermogravimetric analysis, and dynamic mechanical analysis. Dielectric tanδ, storage modulus and loss modulus were increased with irradiation doses. However, decomposition temperature decreased with irradiation doses

  6. Monitoring of contamination of atmospheric environment by radiation

    International Nuclear Information System (INIS)

    Ise, Hiroaki

    1995-01-01

    Atmospheric pollution has become a worldwide problem regardless of developed industrial nations and developing countries. In particular, the pollution due to automobile exhaust gas, the carcinogenic particles in diesel exhaust and their relation to various respiratory diseases are the problems. Nitrogen oxides and sulfur oxides in exhaust gas become the cause of acid rain. Radiation began to be utilized for the measurement of the concentration of floating particles and the amount of fallout dust, the forecast of the generation and diffusion of pollutants, the elucidation of the contribution of generation sources in wide areas and so on. In this report, the circumstances that radiation became to be utilized for monitoring atmospheric environment and the present status and the perspective of the radiation utilization in the field of the preservation of atmospheric environment are described. The progress of the method of measuring floating particles in Japan is explained. The automatic measurement of floating particles by β-ray absorption method and the application of β-ray absorption method to the measurement of the amount of fallout dust, generation source particles and the exposure to floating particles of individuals for health control are described. The utilization of radiation for real time monitoring, the investigation of the generation of blown-up dust, atmospheric diffusion experiment and the elucidation of the contribution of generation sources by PIXE radioactivation analysis are reported. (K.I.)

  7. Radiation ecological monitoring in NPP region

    International Nuclear Information System (INIS)

    Egorov, Yu.A.; Kazakov, S.V.

    1985-01-01

    The known principle of sanitary-hygienic regulation of NPP radiation effect on man and environment is analyzed. An ecological approach is required to optimize NPP relations with the environment and to regulate radioactivity of the NPP - environment system. The ecological approach envisages the development of standards of permissible concentrations of radioactive and chemical substances (as well as heat) in natural environment, taking into account their synergism, corresponding to ecologically permissible response reactions of biota to their effect. The ecological approach also comprises the sanitary-hygienic principle of radiation protection of man. Attention is paid to ecological monitoring in NPP region, comprising consideration of factors, affecting the environment, evaluation of the actual state of the environment, prediction of the environmental state, evaluation of the expected environmental state

  8. Radiation risks and monitoring of transboundary rivers of Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Solodukhin, V.P.; Khazhekber, S.; Poznyak, V.L.; Chernykh, E.E.; Passell, H.D.

    2006-01-01

    Full text: The condition of the water resources of the Republic of Kazakhstan is characterized with their whole deficiency as well as their high pollution and desiccation. The situation is also aggravated with much relaxation of work coordination on regulation of trans-boundary river flows and control of their water quality as a result of the USSR collapse and isolation of separate republics. The absence of objective information on water condition of rivers and their contamination sources creates a danger of high ecological risk and psychological stress for inhabitants, localities of that related to the basins of these rivers, and serves as reasoning for claims (occasionally unreasonable) to neighboring countries. Following rivers are the largest trans-boundary ones in Kazakhstan: Ile, Syrdarya, Ural and Irtysh. All these rivers are of great importance for people's life-support of the republic. At the same time presence of a number of large industrial centers, agricultural enterprises and radiation-dangerous objects in the basins of these rivers creates a potential danger of chemical and radiation contamination for their water flows. Objective information on its influence rate is required. The most acceptable form of the control of radiation and hydro-chemical situation in the basins of transboundary rivers is their monitoring based on modern nuclear-and-physical methods of analysis. Very important factor in organization of such monitoring system is participation of all the countries concerned with the basin of the river under the control. There is a work experience of many years in Central Asia on monitoring of large Syrdarya and Amudarya rivers. These works have been carried out since 2000 with the framework of the International project NAVRUZ. Participants of this project are organizations of nuclear profile from Uzbekistan, Kirghizia, Tajikistan and Kazakhstan. The collaborator of this project is the Sandia National Laboratories (SNL), USA. Experience of these

  9. Principles of monitoring for the radiation protection of the population

    International Nuclear Information System (INIS)

    Sowby, F.D.

    1984-01-01

    In this report all exposures are considered except occupational exposure and exposure to patients from medical uses of radiation. The subject is dealt with under the following headings: explanation of terms and relevant recommendations of the I.C.R.P., interaction between modelling and monitoring, general objectives and requirements of monitoring programmes, monitoring of source, environment and individuals within the population, quality assurance. (U.K.)

  10. Response of radiation monitoring labels to gamma rays and electrons

    DEFF Research Database (Denmark)

    Rahim, F. Abdel; Miller, Arne; McLaughlin, W.L.

    1985-01-01

    or location has been irradiated to high doses. Among labels available worldwide, a few are suitable for indicating absorbed dose regions of slightly less than 104 Gy (monitoring high dose ranges (i.e., sterilization dose levels of > 104 Gy or > 1 Mrad), and in some cases......, and differences in dose rate and radiation type (gamma rays and electron beams) were made on 15 kinds of labels. The results show that, for many types of indicators, diverse effects may give misleading conclusions unless countermeasures are taken. For example, some of the most commonly used labels, which contain...... permit somewhat more precise discrimination of dose levels, and may sometimes be useful for monitoring differences in local dose distributions or area monitoring of radiation damage probabilities around particle accelerators or large radionuclide sources....

  11. Application of real time spectrum measurement to radiation monitors

    International Nuclear Information System (INIS)

    Matsuno, K.; Watanabe, M.; Sakamaki, T.

    1996-01-01

    A multichannel analyzer (MCA) and two realtime spectrum monitoring methods have been developed for use in radiation monitors. The new MCA was designed to be installed at a local site as a component of a radiation monitor. The MCA repeats spectrum measurement at short intervals (Δt) and, after each measurement, transmits a spectrum datum to the operation console. The authors applied two methods to process Δt spectrum counts for each channel for longer time interval. One method of processing counts is the 'running average (RA) method'. The other method is the 'exponential smoothing (ES) method', which simulates RC rate meters by subtracting a fraction corresponding to the accumulated counts. Relative standard deviations for each channel can be made the same by selecting an appropriate value. The response with the 'ES' method is initially faster than that with the 'RA' method, but the 'RA' method allows a full response to be reached at a predictable time. (author)

  12. Calibration of radiation protection area monitoring instruments in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Youssif, B.E.; Beineen, A.A.; Hassan, M.

    2010-01-01

    This article presents results of measurements for the calibration of radiation protection area monitoring instruments carried out during the period 2006-2008 at Secondary Standard Dosimetry Laboratory of Sudan. The work performed included quality assurance measurements, measurements for the dosimeter calibrations and uncertainty analysis. Calibrations were performed using 137 Cs gamma ray sources produced by OB 85 and OB 34/1 gamma calibrators producing air kerma rate that ranged from 10 μGy/h to 50 mGy/h. Area monitoring instruments were calibrated in terms of ambient dose equivalent, H*(10) derived using air kerma to ambient dose equivalent conversion coefficients. Results are presented for 78 area monitoring instruments representing most commonly used types in Sudan. Radioactive check source measurements for the reference chamber showed deviation within 1% limit. The accuracy in the beam output measurements was within 5% internationally considered as acceptable. The results highlighted the importance of radiation protection calibrations. Regulations are further need to ensure safety aspect really meet the required international standards.

  13. Radiation protection and environmental monitoring in the area of the Asse shaft plant

    International Nuclear Information System (INIS)

    Meyer, H.; Mueller-Lyda, I.

    1990-08-01

    Personnel monitoring has been carried through in compliance with the Radiation Protection Ordinance. Environmental monitoring including measurement of local doses, local dose rates, and airborne radioactivity in the shaft has been made according to the provisions for radiation protection at the place of work. Maximum permissible personal doses or activity levels for occupationally exposed persons have not been exceeded in the reporting period. Exhaust air monitoring detected the nuclides H-3, C-14, Pb-210, and the short-lived daughter products of Rn-222 and Rn-220. The activity concentrations in the environment, determined from the measured annual release values, for some part have been lower than the average of natural concentrations of said nuclides. The radiation exposure due to emissions, measured at the least favourable point in the environment, has been far below the limits set by the Radiation Protection Ordinance. In conclusion: The radiation exposure of the personnel and of the population in the area of the Asse shaft plant due to the storage of radioactive is low, compared to the natural radiation exposure. (orig.) [de

  14. Radiation protection and environmental monitoring in the area of the Asse shaft plant

    International Nuclear Information System (INIS)

    Mueller-Lyda, I.; Meyer, H.

    1989-06-01

    Personnel monitoring has been carried through in compliance with the Radiation Protection Ordinance. Environmental monitoring including measurement of local doses, local dose rates, and airborne radioactivity in the shaft has been made according to the provisions for radiation protection at the place of work. Maximum permissible personal doses or activity levels for occupationally exposed persons have not been exceeded in the reporting period. Exhaust air monitoring detected the nuclides H-3, C-14, Pb-210, and the short-lived daughter products of Rn-222 and Rn-220. The activity concentrations in the environment, determined from the measured annual release values, for some part have been lower than the average of natural concentrations of said nuclides. The radiation exposure due to emissions, measured at the least favourable point in the environment, has been far below the limits set by the Radiation Protection Ordinance. In conclusion: The radiation exposure of the personnel and of the population in the area of the Asse shaft plant due to the storage of radioactive is low, compared to the natural radiation exposure. (orig.) [de

  15. System and Method for Monitoring Piezoelectric Material Performance

    Science.gov (United States)

    Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)

    2007-01-01

    A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.

  16. Development of radiation monitoring and visualization systems for Fukushima. GPS monitoring system, Dose3DMap system, and LED-coupled scintillating fiber detector

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Kosako, Kazuaki; Kinoshita, Norikazu; Kawaguchi, Masato

    2016-01-01

    Lands that were contaminated with radioactive elements following the Fukushima Daiichi Nuclear Power Plant accident in 2011 have been decontaminated, and the construction of an interim storage facility for radioactive waste is planned. A GPS monitoring system was developed to concomitantly determine a location and measure the radiation level at the location. Moreover, a mapping system that produces radiation maps at the measurement locations and also predicts post-decontamination radiation maps using the compiled Monte Carlo simulation program was constructed. These systems were used for decontamination planning and estimation of the decontamination effect. An LED-coupled scintillating fiber detector was developed for visually monitoring radiation in real time at the interim storage facility. The LEDs display different colors corresponding to different radiation levels at the measurement locations along the fiber detector, the maximum length of which is 50 m. Thus, the radiation levels at all positions along the length of the detector can be visually monitored in real time. Moreover, it is useful for radiation safety and for risk communication with radiation workers and residents close to the site. (author)

  17. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  18. Area monitoring intelligent system - SIMA

    International Nuclear Information System (INIS)

    Bhoem, P.; Hisas, F.; Gelardi, G.

    1990-01-01

    The area monitoring intelligent system (SIMA) is an equipment to be used in radioprotection. SIMA has the function of monitoring the radiation levels of determined areas of the installations where radioactive materials are handled. (Author) [es

  19. The design of intelligentized nuclear radiation monitoring detector

    International Nuclear Information System (INIS)

    Meng Yan; Fang Zongliang; Wen Qilin; Li Lirong; Hu Jiewei; Peng Jing

    2010-01-01

    This paper introduced an intelligentized nuclear radiation monitoring detector. The detector contains GM tubes, high voltage power supply and MCU circuit. The detector connect terminal via reformative serial port to provide power, accept the data and sent the command. (authors)

  20. General approaches to the reconstruction of radiation monitoring systems at the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Garin, E.V.; Istomin, N.I.; Perminov, V.G.

    1998-01-01

    The article deals with the issue of the Chernobyl NPP radiation monitoring systems and equipment to make them meet the latest safety requirements and take into account the radiation situation at the ChNPP site after the accident of 1986. The descriptions of the existing radiation monitoring systems are given. The appropriate modifications in the systems structure as the initial (first) stage in establishing a new radiation monitoring system (RMS) based on the NPP general radiation safety principles are proposed. It is noted that reconstruction shall include the number of technical means important for arranging the informational and analytical system in addition to the existing one without any violations in its features. Later, the system shall be extended due to the technological functions extension. 7 refs., 4 figs