WorldWideScience

Sample records for matching mathematical simulation

  1. ECMOR 4. 4th European conference on the mathematics of oil recovery. Topic E: History match and recovery optimization. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The report with collected proceedings from a conference, deals with mathematics of oil recovery with the focus on history match and recovery optimization. Topics of proceedings are as follow: Calculating optimal parameters for history matching; new technique to improve the efficiency of history matching of full-field models; flow constrained reservoir characterization using Bayesian inversion; analysis of multi-well pressure transient data; new approach combining neural networks and simulated annealing for solving petroleum inverse problems; automatic history matching by use of response surfaces and experimental design; determining the optimum location of a production well in oil reservoirs. Seven papers are prepared. 108 refs., 45 figs., 12 tabs.

  2. Mathematics Career Simulations: An Invitation

    Science.gov (United States)

    Sinn, Robb; Phipps, Marnie

    2013-01-01

    A simulated academic career was combined with inquiry-based learning in an upper-division undergraduate mathematics course. Concepts such as tenure, professional conferences and journals were simulated. Simulation procedures were combined with student-led, inquiry-based classroom formats. A qualitative analysis (ethnography) describes the culture…

  3. Physiological responses and match characteristics in professional tennis players during a one-hour simulated tennis match

    Directory of Open Access Journals (Sweden)

    Kilit Bülent

    2016-06-01

    Full Text Available The purpose of this study was to investigate the effects of serve and return game situations on physiological responses and match characteristics in professional male tennis players during one hour-long simulated singles tennis matches. Ten internationally ranked tennis players (age 22.2 ± 2.8 years; body height 180.7 ± 4.4 cm; body mass 75.9 ± 8.9 kg participated in this study. Their physiological responses were measured using two portable analyzers during indoor hard court matches. Ratings of perceived exertion were also determined at the end of the game. The variables describing the characteristics of the matches determined from video recordings were: (a duration of rallies; (b rest time; (c work-to-rest ratio; (d effective playing time; and (d strokes per rally. Significant differences (p<0.05 were found between serving and returning conditions in an hour-long simulated singles tennis match in terms of oxygen uptake, a heart rate, ratings of perceived exertion, pulmonary ventilation, respiration frequency and a respiratory gas exchange ratio. In addition, both the heart rate and ratings of perceived exertion responses were moderately correlated with the duration of rallies and strokes per rally (r = 0.60 to 0.26; p<0.05. Taken together, these results indicate that the serve game situation has a significant effect on the physiological response in an hour-long simulated tennis match between professional male tennis players. These findings might be used for the physiological adaptations required for tennis-specific aerobic endurance.

  4. a Discrete Mathematical Model to Simulate Malware Spreading

    Science.gov (United States)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  5. Geomagnetic matching navigation algorithm based on robust estimation

    Science.gov (United States)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  6. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  7. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  8. Muscle damage produced during a simulated badminton match in competitive male players.

    Science.gov (United States)

    Abián, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidón; Muñoz, Victor; Lorenzo-Capella, Irma; Abián-Vicén, Javier

    2016-01-01

    The purpose of the study was to assess the occurrence of muscle damage after a simulated badminton match and its influence on physical and haematological parameters. Sixteen competitive male badminton players participated in the study. Before and just after a 45-min simulated badminton match, maximal isometric force and badminton-specific running/movement velocity were measured to assess muscle fatigue. Blood samples were also obtained before and after the match. The badminton match did not affect maximal isometric force or badminton-specific velocity. Blood volume and plasma volume were significantly reduced during the match and consequently haematite, leucocyte, and platelet counts significantly increased. Blood myoglobin and creatine kinase concentrations increased from 26.5 ± 11.6 to 197.3 ± 70.2 µg·L(-1) and from 258.6 ± 192.2 to 466.0 ± 296.5 U·L(-1), respectively. In conclusion, a simulated badminton match modified haematological parameters of whole blood and serum blood that indicate the occurrence of muscle fibre damage. However, the level of muscle damage did not produce decreased muscle performance.

  9. Coincidental match of numerical simulation and physics

    Science.gov (United States)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  10. Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match

    Directory of Open Access Journals (Sweden)

    Huang Ming-Hsiang

    2010-10-01

    Full Text Available Abstract The supplementation of sodium bicarbonate (NaHCO3 could increase performance or delay fatigue in intermittent high-intensity exercise. Prolonged tennis matches result in fatigue, which impairs skilled performance. The aim of this study was to investigate the effect of NaHCO3 supplementation on skilled tennis performance after a simulated match. Nine male college tennis players were recruited for this randomized cross-over, placebo-controlled, double-blind study. The participants consumed NaHCO3 (0.3 g. kg-1 or NaCl (0.209 g. kg-1 before the trial. An additional supplementation of 0.1 g. kg-1 NaHCO3 or 0.07 g. kg-1 NaCl was ingested after the third game in the simulated match. The Loughborough Tennis Skill Test was performed before and after the simulated match. Post-match [HCO3-] and base excess were significantly higher in the bicarbonate trial than those in the placebo trial. Blood [lactate] was significantly increased in the placebo (pre: 1.22 ± 0.54; post: 2.17 ± 1.46 mM and bicarbonate (pre: 1.23 ± 0.41; post: 3.21 ± 1.89 mM trials. The match-induced change in blood [lactate] was significantly higher in the bicarbonate trial. Blood pH remained unchanged in the placebo trial (pre: 7.37 ± 0.32; post: 7.37 ± 0.14 but was significantly increased in the bicarbonate trial (pre: 7.37 ± 0.26; post: 7.45 ± 0.63, indicating a more alkaline environment. The service and forehand ground stroke consistency scores were declined significantly after the simulated match in the placebo trial, while they were maintained in the bicarbonate trial. The match-induced declines in the consistency scores were significantly larger in the placebo trial than those in the bicarbonate trial. This study suggested that NaHCO3 supplementation could prevent the decline in skilled tennis performance after a simulated match.

  11. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Bojko, V.S.

    1987-01-01

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  12. Mathematical modeling of reciprocating pump

    International Nuclear Information System (INIS)

    Lee, Jong Kyeom; Jung, Jun Ki; Chai, Jang Bom; Lee, Jin Woo

    2015-01-01

    A new mathematical model is presented for the analysis and diagnosis of a high-pressure reciprocating pump system with three cylinders. The kinematic and hydrodynamic behaviors of the pump system are represented by the piston displacements, volume flow rates and pressures in its components, which are expressed as functions of the crankshaft angle. The flow interaction among the three cylinders, which was overlooked in the previous models, is considered in this model and its effect on the cylinder pressure profiles is investigated. The tuning parameters in the mathematical model are selected, and their values are adjusted to match the simulated and measured cylinder pressure profiles in each cylinder in a normal state. The damage parameter is selected in an abnormal state, and its value is adjusted to match the simulated and ensured pressure profiles under the condition of leakage in a valve. The value of the damage parameter over 300 cycles is calculated, and its probability density function is obtained for diagnosis and prognosis on the basis of the probabilistic feature of valve leakage.

  13. The effect of carbohydrate ingestion on performance during a simulated soccer match.

    Science.gov (United States)

    Goedecke, Julia H; White, Nicholas J; Chicktay, Waheed; Mahomed, Hafsa; Durandt, Justin; Lambert, Michael I

    2013-12-16

    This study investigated how performance was affected after soccer players, in a postprandial state, ingested a 7% carbohydrate (CHO) solution compared to a placebo (0% CHO) during a simulated soccer match. Using a double-blind placebo-controlled design, 22 trained male league soccer players (age: 24 ± 7 years, wt: 73.4 ± 12.0 kg, VO2max: 51.8 ± 4.3 mL O2/kg/min) completed two trials, separated by 7 days, during which they ingested, in random order, 700 mL of either a 7% CHO or placebo drink during a simulated soccer match. Ratings of perceived exertion (RPE), agility, timed and run to fatigue were measured during the trials. Change in agility times was not altered by CHO vs. placebo ingestion (0.57 ± 1.48 vs. 0.66 ± 1.00, p = 0.81). Timed runs to fatigue were 381 ± 267 s vs. 294 ± 159 s for the CHO and placebo drinks, respectively (p = 0.11). Body mass modified the relationship between time to fatigue and drink ingestion (p = 0.02 for drink × body mass), such that lower body mass was associated with increased time to fatigue when the players ingested CHO, but not placebo. RPE values for the final stage of the simulated soccer match were 8.5 ± 1.7 and 8.6 ± 1.5 for the CHO and placebo drinks respectively (p = 0.87). The group data showed that the 7% CHO solution (49 g CHO) did not significantly improve performance during a simulated soccer match in league soccer players who had normal pre-match nutrition. However, when adjusting for body mass, increasing CHO intake was associated with improved time to fatigue during the simulated soccer match.

  14. The Effect of Carbohydrate Ingestion on Performance during a Simulated Soccer Match

    Directory of Open Access Journals (Sweden)

    Julia H. Goedecke

    2013-12-01

    Full Text Available Aim: This study investigated how performance was affected after soccer players, in a postprandial state, ingested a 7% carbohydrate (CHO solution compared to a placebo (0% CHO during a simulated soccer match. Methods: Using a double-blind placebo-controlled design, 22 trained male league soccer players (age: 24 ± 7 years, wt: 73.4 ± 12.0 kg, VO2max: 51.8 ± 4.3 mL O2/kg/min completed two trials, separated by 7 days, during which they ingested, in random order, 700 mL of either a 7% CHO or placebo drink during a simulated soccer match. Ratings of perceived exertion (RPE, agility, timed and run to fatigue were measured during the trials. Results: Change in agility times was not altered by CHO vs. placebo ingestion (0.57 ± 1.48 vs. 0.66 ± 1.00, p = 0.81. Timed runs to fatigue were 381 ± 267 s vs. 294 ± 159 s for the CHO and placebo drinks, respectively (p = 0.11. Body mass modified the relationship between time to fatigue and drink ingestion (p = 0.02 for drink × body mass, such that lower body mass was associated with increased time to fatigue when the players ingested CHO, but not placebo. RPE values for the final stage of the simulated soccer match were 8.5 ± 1.7 and 8.6 ± 1.5 for the CHO and placebo drinks respectively (p = 0.87. Conclusions: The group data showed that the 7% CHO solution (49 g CHO did not significantly improve performance during a simulated soccer match in league soccer players who had normal pre-match nutrition. However, when adjusting for body mass, increasing CHO intake was associated with improved time to fatigue during the simulated soccer match.

  15. A simulated rugby match protocol induces physiological fatigue ...

    African Journals Online (AJOL)

    Background: A rugby union game consists of 80 minutes of strenuous exertion. Forwards are required to participate in the arduous activity of scrummaging throughout a game. Objectives: The purpose of this study was to identify whether rugby-match simulated fatigue modified individual scrummaging technique and ...

  16. Propensity Score Matching Helps to Understand Sources of DIF and Mathematics Performance Differences of Indonesian, Turkish, Australian, and Dutch Students in PISA

    Science.gov (United States)

    Arikan, Serkan; van de Vijver, Fons J. R.; Yagmur, Kutlay

    2018-01-01

    We examined Differential Item Functioning (DIF) and the size of cross-cultural performance differences in the Programme for International Student Assessment (PISA) 2012 mathematics data before and after application of propensity score matching. The mathematics performance of Indonesian, Turkish, Australian, and Dutch students on released items was…

  17. Metabolic demands and replenishment of muscle glycogen after a rugby league match simulation protocol.

    Science.gov (United States)

    Bradley, Warren J; Hannon, Marcus P; Benford, Victoria; Morehen, James C; Twist, Craig; Shepherd, Sam; Cocks, Matthew; Impey, Samuel G; Cooper, Robert G; Morton, James P; Close, Graeme L

    2017-09-01

    The metabolic requirements of a rugby league match simulation protocol and the timing of carbohydrate provision on glycogen re-synthesis in damaged muscle were examined. Fifteen (mean±SD: age 20.9±2.9 year, body-mass 87.3±14.1kg, height 177.4±6.0cm) rugby league (RL) players consumed a 6gkgday-1 CHO diet for 7-days, completed a time to exhaustion test (TTE) and a glycogen depletion protocol on day-3, a RL simulated-match protocol (RLMSP) on day-5 and a TTE on day-7. Players were prescribed an immediate or delayed (2-h-post) re-feed post-simulation. Muscle biopsies and blood samples were obtained post-depletion, before and after simulated match-play, and 48-h after match-play with PlayerLoad and heart-rate collected throughout the simulation. Data were analysed using effects sizes±90% CI and magnitude-based inferences. PlayerLoad (8.0±0.7 AUmin-1) and %HRpeak (83±4.9%) during the simulation were similar to values reported for RL match-play. Muscle glycogen very likely increased from immediately after to 48-h post-simulation (272±97 cf. 416±162mmolkg-1d.w.; ES±90%CI) after immediate re-feed, but changes were unclear (283±68 cf. 361±144mmolkg-1d.w.; ES±90%CI) after delayed re-feed. CK almost certainly increased by 77.9±25.4% (0.75±0.19) post-simulation for all players. The RLMSP presents a replication of the internal loads associated with professional RL match-play, although difficulties in replicating the collision reduced the metabolic demands and glycogen utilisation. Further, it is possible to replete muscle glycogen in damaged muscle employing an immediate re-feed strategy. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Exploring Iconic Interpretation and Mathematics Teacher Development through Clinical Simulations

    Science.gov (United States)

    Dotger, Benjamin; Masingila, Joanna; Bearkland, Mary; Dotger, Sharon

    2015-01-01

    Field placements serve as the traditional "clinical" experience for prospective mathematics teachers to immerse themselves in the mathematical challenges of students. This article reports data from a different type of learning experience, that of a clinical simulation with a standardized individual. We begin with a brief background on…

  19. A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities.

    Science.gov (United States)

    Shin, Mikyung; Bryant, Diane Pedrotty

    2015-01-01

    The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.

  20. On the mathematical modeling of memristors

    KAUST Repository

    Radwan, Ahmed G.

    2012-10-06

    Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.

  1. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  2. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)

    1997-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  3. A Comparison of the Perceptual and Technical Demands of Tennis Training, Simulated Match Play, and Competitive Tournaments.

    Science.gov (United States)

    Murphy, Alistair P; Duffield, Rob; Kellett, Aaron; Reid, Machar

    2016-01-01

    High-performance tennis environments aim to prepare athletes for competitive demands through simulated-match scenarios and drills. With a dearth of direct comparisons between training and tournament demands, the current investigation compared the perceptual and technical characteristics of training drills, simulated match play, and tournament matches. Data were collected from 18 high-performance junior tennis players (gender: 10 male, 8 female; age 16 ± 1.1 y) during 6 ± 2 drill-based training sessions, 5 ± 2 simulated match-play sessions, and 5 ± 3 tournament matches from each participant. Tournament matches were further distinguished by win or loss and against seeded or nonseeded opponents. Notational analysis of stroke and error rates, winners, and serves, along with rating of perceived physical exertion (RPE) and mental exertion was measured postsession. Repeated-measures analyses of variance and effect-size analysis revealed that training sessions were significantly shorter in duration than tournament matches (P training and simulated match-play sessions were lower than in tournaments (P > .05; d = 1.26, d = 1.05, respectively). Mental exertion in training was lower than in both simulated match play and tournaments (P > .05; d = 1.10, d = 0.86, respectively). Stroke rates during tournaments exceeded those observed in training (P .05, d Training in the form of drills or simulated match play appeared to inadequately replicate tournament demands in this cohort of players. Coaches should be mindful of match demands to best prescribe sessions of relevant duration, as well as internal (RPE) and technical (stroke rate) load, to aid tournament preparation.

  4. Mathematical modelling of plant transients in the PWR for simulator purposes

    International Nuclear Information System (INIS)

    Hartel, K.

    1984-01-01

    This chapter presents the results of the testing of anticipated and abnormal plant transients in pressurized water reactors (PWRs) of the type WWER 440 by means of the numerical simulation of 32 different, stationary and nonstationary, operational regimes. Topics considered include the formation of the PWR mathematical model, the physical approximation of the reactor core, the structure of the reactor core model, a mathematical approximation of the reactor model, the selection of numerical methods, and a computerized simulation system. The necessity of a PWR simulator in Czechoslovakia is justified by the present status and the outlook for the further development of the Czechoslovak nuclear power complex

  5. Mathematics of large eddy simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Berselli, L.C. [Pisa Univ. (Italy). Dept. of Applied Mathematics ' ' U. Dini' ' ; Iliescu, T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mathematics; Layton, W.J. [Pittsburgh Univ., PA (United States). Dept. of Mathematics

    2006-07-01

    Large eddy simulation (LES) is a method of scientific computation seeking to predict the dynamics of organized structures in turbulent flows by approximating local, spatial averages of the flow. Since its birth in 1970, LES has undergone an explosive development and has matured into a highly-developed computational technology. It uses the tools of turbulence theory and the experience gained from practical computation. This book focuses on the mathematical foundations of LES and its models and provides a connection between the powerful tools of applied mathematics, partial differential equations and LES. Thus, it is concerned with fundamental aspects not treated so deeply in the other books in the field, aspects such as well-posedness of the models, their energy balance and the connection to the Leray theory of weak solutions of the Navier-Stokes equations. The authors give a mathematically informed and detailed treatment of an interesting selection of models, focusing on issues connected with understanding and expanding the correctness and universality of LES. This volume offers a useful entry point into the field for PhD students in applied mathematics, computational mathematics and partial differential equations. Non-mathematicians will appreciate it as a reference that introduces them to current tools and advances in the mathematical theory of LES. (orig.)

  6. Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics

    Science.gov (United States)

    Wu, Yinghua; Herman, Michael F.; Batista, Victor S.

    2005-03-01

    A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.

  7. Mathematical and computational modeling and simulation fundamentals and case studies

    CERN Document Server

    Moeller, Dietmar P F

    2004-01-01

    Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces to the use of Mathematical and Computational Modeling and Simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for University courses of different level as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses...

  8. Movement patterns and muscle damage during simulated rugby sevens matches in National team players.

    Science.gov (United States)

    Pereira, Lucas A; Nakamura, Fábio Y; Moraes, José E; Kitamura, Katia; Ramos, Solange P; Loturco, Irineu

    2017-02-23

    The aim of this study was to analyze the match performance (i.e., distance covered in different intensities), signs of muscle damage (assessed by means of creatine kinase [CK] activity and rate of force development [RFD]), and neuromuscular fatigue (using linear sprint and vertical jump performances) following three single-day simulated matches performed by rugby sevens players from the Brazilian National Team. Ten male rugby sevens players (25.2 ± 3.6 years; 88.7 ± 7.1 kg; 182.2 ± 6.3 cm) participated in this study. On the day prior to the matches, the athletes performed a 40-m sprint, a vertical jump assessment and a maximal isometric force test. In the morning of the match day, blood samples were collected to analyze the CK activity. Afterwards, three simulated rugby sevens' matches were performed with 2-h intermission periods. The match performance (encompassing total distance and distance covered in different velocity ranges and body loads [BL]) were obtained from global positioning system units. The statistical analysis was performed by using a mixed model approach and the effect sizes (ES) of the differences. The statistical significance level was set at P0.8) and significant (P< 0.05) reductions were demonstrated in the total distance and BL when comparing the 2 with the 1 halves. Decrements in the explosive force capacity (assessed by means of RFD) and the squat jump were noticed (ES varying from 0.55 to 1.14; P< 0.05). The CK activity increased after the matches (ES = 1.29; P< 0.05). The rugby sevens players were able to maintain the physical performance across three successive matches simulating the first day of a tournament. The augmented CK activity and the decreases in the squat jump and RFD suggest that increased levels of muscle damage were experienced on the day after the matches. Therefore, the technical staff are encouraged to implement recovery strategies and planned substitutions during multi-day tournaments in order to reduce the impact of

  9. Mathematical simulation of cascade-probabilistic functions for charged particles

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Smygaleva, T.A.

    1998-01-01

    Analytical expressions for cascade-probabilistic functions (CPF) for electrons, protons, α-particles and ions with taking into account energy losses are received. Mathematical analysis of these functions is carried out and main properties of function are determined. Algorithms of CPF are developed and their computer calculation were conducted. Regularities in behavior of function in dependence on initial particles energy, atomic number and registration depth are established. Book is intended to specialists on mathematical simulation of radiation defects, solid state physics, elementary particle physics and applied mathematics. There are 3 chapters in the book: 1. Cascade-probabilistic functions for electrons; 2. CPF for protons and α-particles; 3. CPF with taking unto account energy losses of ions. (author)

  10. Some Fundamental Issues of Mathematical Simulation in Biology

    Science.gov (United States)

    Razzhevaikin, V. N.

    2018-02-01

    Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.

  11. Biochemical Differences Between Official and Simulated Mixed Martial Arts (MMA) Matches.

    Science.gov (United States)

    Silveira Coswig, Victor; Hideyoshi Fukuda, David; de Paula Ramos, Solange; Boscolo Del Vecchio, Fabricio

    2016-06-01

    One of the goals for training in combat sports is to mimic real situations. For mixed martial arts (MMA), simulated sparring matches are a frequent component during training, but a there is a lack of knowledge considering the differences in sparring and competitive environments. The main objective of this study was to compare biochemical responses to sparring and official MMA matches. Twenty five male professional MMA fighters were evaluated during official events (OFF = 12) and simulated matches (SIM = 13). For both situations, blood samples were taken before (PRE) and immediately after (POST) matches. For statistical analysis, two-way analysis of variance (time x group and time x winner) were used to compare the dependent parametric variables. For non-parametric data, the Kruskal-Wallis test was used and differences were confirmed by Mann-Whitney tests. No significant differences were observed among the groups for demographic variables. The athletes were 26.5 ± 5 years with 80 ± 10 kg, 1.74 ± 0.05 m and had 39.4 ± 25 months of training experience. Primary results indicated higher blood glucose concentration prior to fights for OFF group (OFF= 6.1 ± 1.2 mmol/L and SIM= 4.4 ± 0.7 mmol/L; P < 0.01) and higher ALT values for OFF group at both time points (OFF: PRE = 41.2 ± 12 U/L, POST = 44.2 ± 14.1 U/L; SIM: PRE = 28.1 ± 13.8 U/L, POST = 30.5 ± 12.5 U/L; P = 0.001). In addition, the blood lactate showed similar responses for both groups (OFF: PRE= 4 [3.4 - 4.4] mmol/L, POST= 16.9 [13.8 - 23.5] mmol/L; SIM: PRE = 3.8 [2.8 - 5.5] mmol/L, POST= 16.8 [12.3 - 19.2] mmol/L; P < 0.001). In conclusion, MMA official and simulated matches induce similar high intensity glycolytic demands and minimal changes to biochemical markers of muscle damage immediately following the fights. Glycolytic availability prior to the fights was raised exclusively in response to official matches.

  12. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    Science.gov (United States)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  13. Mathematical models for photovoltaic solar panel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br

    2008-07-01

    A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)

  14. Hydrology and geochemistry of the uranium mill tailings pile at Riverton, Wyoming. Part II. History matching

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; White, A.F.; Tokunaga, T.

    1985-02-01

    In Part I of this series of two reports the observed fluid potential and geochemical characteristics in and around the inactive uranium mill tailings pile at Riverton, Wyoming were presented. The prupose of the present work is to attempt to simulate field observations using mathematical models. The results of the studies have not only helped identify the physicochemical mechanisms govering contaminant migration around the inactive mill tailings pile in Riverton, but also have indicated the feasibility of quantifying these mechanisms with the help of newly developed mathematical models. Much work needs to be done to validate and benchmark these models. The history-matching effort on hand involves the mathematical simulation of the observed fluid potentials within the tailings, and the observed distribution of various chemical species within and around the inactive uranium mill tailings. The simulation problem involves consideration of transient fluid flow and transient, reactive chemical transport in a variably saturated ground water system with time-dependent boundary conditions. 15 refs., 30 figs., 3 tabs

  15. Multiple Constraints Based Robust Matching of Poor-Texture Close-Range Images for Monitoring a Simulated Landslide

    Directory of Open Access Journals (Sweden)

    Gang Qiao

    2016-05-01

    Full Text Available Landslides are one of the most destructive geo-hazards that can bring about great threats to both human lives and infrastructures. Landslide monitoring has been always a research hotspot. In particular, landslide simulation experimentation is an effective tool in landslide research to obtain critical parameters that help understand the mechanism and evaluate the triggering and controlling factors of slope failure. Compared with other traditional geotechnical monitoring approaches, the close-range photogrammetry technique shows potential in tracking and recording the 3D surface deformation and failure processes. In such cases, image matching usually plays a critical role in stereo image processing for the 3D geometric reconstruction. However, the complex imaging conditions such as rainfall, mass movement, illumination, and ponding will reduce the texture quality of the stereo images, bringing about difficulties in the image matching process and resulting in very sparse matches. To address this problem, this paper presents a multiple-constraints based robust image matching approach for poor-texture close-range images particularly useful in monitoring a simulated landslide. The Scale Invariant Feature Transform (SIFT algorithm was first applied to the stereo images for generation of scale-invariate feature points, followed by a two-step matching process: feature-based image matching and area-based image matching. In the first feature-based matching step, the triangulation process was performed based on the SIFT matches filtered by the Fundamental Matrix (FM and a robust checking procedure, to serve as the basic constraints for feature-based iterated matching of all the non-matched SIFT-derived feature points inside each triangle. In the following area-based image-matching step, the corresponding points of the non-matched features in each triangle of the master image were predicted in the homologous triangle of the searching image by using geometric

  16. Influence of carbohydrate supplementation on skill performance during a soccer match simulation.

    Science.gov (United States)

    Russell, Mark; Benton, David; Kingsley, Michael

    2012-07-01

    This study investigated the influence of carbohydrate supplementation on skill performance throughout exercise that replicates soccer match-play. Experimentation was conducted in a randomised, double-blind and cross-over study design. After familiarization, 15 professional academy soccer players completed a soccer match simulation incorporating passing, dribbling and shooting on two separate occasions. Participants received a 6% carbohydrate-electrolyte solution (CHO) or electrolyte solution (PL). Precision, success rate, ball speed and an overall index (speed-precision-success; SPS) were determined for all skills. Blood samples were taken at rest, immediately before exercise, every 15 min during exercise (first half: 15, 30 and 45 min; second half: 60, 75 and 90 min), and 10 min into the half time (half-time). Carbohydrate supplementation influenced shooting (time×treatment interaction: pinteraction: pCarbohydrate supplementation attenuated decrements in shooting performance during simulated soccer match-play; however, further research is warranted to optimise carbohydrate supplementation regimes for high-intensity intermittent sports. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  18. Preservice Teachers' Video Simulations and Subsequent Noticing: A Practice-Based Method to Prepare Mathematics Teachers

    Science.gov (United States)

    Amador, Julie M.

    2017-01-01

    The purpose of this study was to implement a Video Simulation Task in a mathematics methods teacher education course to engage preservice teachers in considering both the teaching and learning aspects of mathematics lesson delivery. Participants anticipated student and teacher thinking and created simulations, in which they acted out scenes on a…

  19. Mathematical modelling and numerical simulation of forces in milling process

    Science.gov (United States)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  20. Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa

    Directory of Open Access Journals (Sweden)

    Amira Rachah

    2015-01-01

    it is crucial to modelize the virus and simulate it. In this paper, we begin by studying a simple mathematical model that describes the 2014 Ebola outbreak in Liberia. Then, we use numerical simulations and available data provided by the World Health Organization to validate the obtained mathematical model. Moreover, we develop a new mathematical model including vaccination of individuals. We discuss different cases of vaccination in order to predict the effect of vaccination on the infected individuals over time. Finally, we apply optimal control to study the impact of vaccination on the spread of the Ebola virus. The optimal control problem is solved numerically by using a direct multiple shooting method.

  1. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match.

    Science.gov (United States)

    Del Coso, Juan; Ramírez, Juan A; Muñoz, Gloria; Portillo, Javier; Gonzalez-Millán, Cristina; Muñoz, Víctor; Barbero-Álvarez, José C; Muñoz-Guerra, Jesús

    2013-04-01

    The purpose of this study was to investigate the effectiveness of a caffeine-containing energy drink in enhancing rugby players' physical performance during a simulated match. A second purpose was to determine the urinary caffeine excretion derived from the energy drink intake. In a randomized and counterbalanced order, 26 elite rugby players (mean ± SD for age and body mass, 25 ± 2 y and 93 ± 15 kg) played 2 simulated rugby games (2 × 30 min) 60 min after ingesting (i) 3 mg of caffeine per kilogram of body mass in the form of an energy drink (Fure, ProEnergetics) or (ii) the same drink without caffeine (placebo). During the matches, the individual running distance and the instantaneous speed were measured, and the number of running actions above 20 km·h(-1) (i.e., sprints) were determined, using global positioning system devices. The number of impacts above 5 g during the matches was determined by accelerometry. The ingestion of the energy drink, compared with the placebo, increased the total distance covered during the match (4749 ± 589 vs 5139 ± 475 m, p caffeine concentration (0.1 ± 0.1 vs 2.4 ± 0.9 μg·mL(-1), p caffeine dose equivalent to 3 mg·kg(-1) considerably enhanced the movement patterns of rugby players during a simulated match.

  2. 9th Annual Conference of the North East Polytechnics Mathematical Modelling & Computer Simulation Group

    CERN Document Server

    Bradley, R

    1987-01-01

    In recent years, mathematical modelling allied to computer simulation has emerged as en effective and invaluable design tool for industry and a discipline in its own right. This has been reflected in the popularity of the growing number of courses and conferences devoted to the area. The North East Polytechnics Mathematical Modelling and Computer Simulation Group has a balanced representation of academics and industrialists and, as a Group, has the objective of promoting a continuing partnership between the Polytechnics in the North East and local industry. Prior to the present conference the Group has organised eight conferences with a variety of themes related to mathematical modelling and computer simulation. The theme chosen for the Polymodel 9 Conference held in Newcastle upon Tyne in May 1986 was Industrial Vibration Modelling, which is particularly approp riate for 'Industry Year' and is an area which continues to present industry and academics with new and challenging problems. The aim of the Conferen...

  3. Time-Motion and Biological Responses in Simulated Mixed Martial Arts Sparring Matches.

    Science.gov (United States)

    Coswig, Victor S; Ramos, Solange de P; Del Vecchio, Fabrício B

    2016-08-01

    Coswig, VS, Ramos, SdP, and Del Vecchio, FB. Time-motion and biological responses in simulated mixed martial arts sparring matches. J Strength Cond Res 30(8): 2156-2163, 2016-Simulated matches are a relevant component of training for mixed martial arts (MMA) athletes. This study aimed to characterize time-motion responses and investigate physiological stress and neuromuscular changes related to MMA sparring matches. Thirteen athletes with an average age of 25 ± 5 years, body mass of 81.3 ± 9.5 kg, height of 176.2 ± 5.5 cm, and time of practice in MMA of 39 ± 25 months participated in the study. The fighters executed three 5-minute rounds with 1-minute intervals. Blood and salivary samples were collected and physical tests and psychometric questionnaires administered at 3 time points: before (PRE), immediately after (POST), and 48 hours after the combat (48 h). Statistical analysis applied analysis of variance for repeated measurements. In biochemical analysis, significant changes (p ≤ 0.05) were identified between PRE and POST (glucose: 80.3 ± 12.7 to 156.5 ± 19.1 mg·ml; lactate: 4 ± 1.7 to 15.6 ± 4.8 mmol·dl), POST and 48 hours (glucose: 156.5 ± 19.1 to 87.6 ± 15.5 mg·ml; lactate: 15.6 ± 4.8 to 2.9 ± 3.5 mmol·dl; urea: 44.1 ± 8.9 to 36.3 ± 7.8 mg·ml), and PRE and 48 hours (creatine kinase [CK]: 255.8 ± 137.4 to 395.9 ± 188.7 U/L). In addition, time-motion analyses showed a total high:low intensity of 1:2 and an effort:pause ratio of 1:3. In conclusion, simulated MMA sparring matches feature moderate to high intensity and a low degree of musculoskeletal damage, which can be seen by absence of physical performance and decrease in CK. Results of the study indicate that sparring training could be introduced into competitive microcycles to improve technical and tactical aspects of MMA matches, due to the high motor specificity and low muscle damage.

  4. Monitoring Salivary Immunoglobulin A Responses to Official and Simulated Matches In Elite Young Soccer Players

    Directory of Open Access Journals (Sweden)

    Freitas Camila G.

    2016-12-01

    Full Text Available The purpose of the present study was to examine SIgA responses (concentration [SIgAabs] and a secretion rate [SIgArate] to official and simulated competitive matches in young soccer players. The sample was composed of 26 male soccer players (age 15.6 ± 1.1 yrs, stature 177.0 ± 6.1 cm, body mass 70.5 ± 5.7 kg. Four soccer matches (two simulated matches [SM] and two official matches [OM] were conducted. The matches consisted of two halves of 35 min with a 10 min rest interval. Each assessed player participated in only one SM and one OM. All matches were performed in the same week, during the competitive season, and at the same time of the day (9:00 am, separated by 48 h. Saliva samples were collected before and after every match. The session rating of perceived exertion was reported 30 min after each match in order to determine the internal training load (ITL. A significant decrease in SIgAabs and SIgArate after OM was observed when compared to the pre-match value. In addition, the SIgArate was higher at pre-OM when compared to pre-SM. A higher ITL for OM was observed compared to SM. The current findings indicate that OM may lead to a decrease in the main mucosal immunity function parameter of young soccer players that could increase the risk of URTI. Coaches should be aware of it in order to plan appropriate training loads and recovery procedures to avoid or minimize the likelihood of upper respiratory tract infection occurrences.

  5. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  6. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  7. Bringing Reality into Calculus Classrooms: Mathematizing a Real-life Problem Simulated in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    Olga V. Shipulina

    2013-01-01

    Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.

  8. Mathematical and Computational Aspects Related to Soil Modeling and Simulation

    Science.gov (United States)

    2017-09-26

    and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...topics: a) Visco-elasto-plastic continuum models of geo-surface materials b) Discrete models of geo-surface materials (rocks/gravel/sand) c) Mixed...continuum- discrete representations. Coarse-graining and fine-graining mathematical formulations d) Multi-physics aspects related to the modeling of

  9. First steps in combinatorial optimization on graphons: matchings

    Czech Academy of Sciences Publication Activity Database

    Doležal, Martin; Hladký, J.; Hu, P.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 359-365 ISSN 1571-0653 R&D Projects: GA ČR GA16-07378S; GA ČR GJ16-07822Y EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : graphon * graph limits * matching * combinatorial optimization Subject RIV: BA - General Mathematics ; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics ; Pure mathematics (UIVT-O) http://www.sciencedirect.com/science/article/pii/S1571065317301452

  10. First steps in combinatorial optimization on graphons: matchings

    Czech Academy of Sciences Publication Activity Database

    Doležal, Martin; Hladký, J.; Hu, P.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 359-365 ISSN 1571-0653 R&D Projects: GA ČR GA16-07378S; GA ČR GJ16-07822Y EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : graphon * graph limits * matching * combinatorial optimization Subject RIV: BA - General Mathematics; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics; Pure mathematics (UIVT-O) http://www.sciencedirect.com/science/article/pii/S1571065317301452

  11. Xyce parallel electronic simulator design : mathematical formulation, version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, Robert John; Waters, Lon J.; Hutchinson, Scott Alan; Keiter, Eric Richard; Russo, Thomas V.

    2004-06-01

    This document is intended to contain a detailed description of the mathematical formulation of Xyce, a massively parallel SPICE-style circuit simulator developed at Sandia National Laboratories. The target audience of this document are people in the role of 'service provider'. An example of such a person would be a linear solver expert who is spending a small fraction of his time developing solver algorithms for Xyce. Such a person probably is not an expert in circuit simulation, and would benefit from an description of the equations solved by Xyce. In this document, modified nodal analysis (MNA) is described in detail, with a number of examples. Issues that are unique to circuit simulation, such as voltage limiting, are also described in detail.

  12. Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials

    International Nuclear Information System (INIS)

    Toth, Gergely

    2007-01-01

    The projection of complex interactions onto simple distance-dependent or angle-dependent classical mechanical functions is a long-standing theoretical challenge in the field of computational sciences concerning biomolecules, colloids, aggregates and simple systems as well. The construction of an effective potential may be based on theoretical assumptions, on the application of fitting procedures on experimental data and on the simplification of complex molecular simulations. Recently, a force-matching method was elaborated to project the data of Car-Parrinello ab initio molecular dynamics simulations onto two-particle classical interactions (Izvekov et al 2004 J. Chem. Phys. 120 10896). We have developed a potential-matching algorithm as a practical analogue of this force-matching method. The algorithm requires a large number of configurations (particle positions) and a single value of the potential energy for each configuration. We show the details of the algorithm and the test calculations on simple systems. The test calculation on water showed an example in which a similar structure was obtained for qualitatively different pair interactions. The application of the algorithm on reverse Monte Carlo configurations was tried as well. We detected inconsistencies in a part of our calculations. We found that the coarse graining of potentials cannot be performed perfectly both for the structural and the thermodynamic data. For example, if one applies an inverse method with an input of the pair-correlation function, it provides energetics data for the configurations uniquely. These energetics data can be different from the desired ones obtained by all atom simulations, as occurred in the testing of our potential-matching method

  13. IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2012-09-01

    Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization

  14. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  15. Semantic Data Matching: Principles and Performance

    Science.gov (United States)

    Deaton, Russell; Doan, Thao; Schweiger, Tom

    Automated and real-time management of customer relationships requires robust and intelligent data matching across widespread and diverse data sources. Simple string matching algorithms, such as dynamic programming, can handle typographical errors in the data, but are less able to match records that require contextual and experiential knowledge. Latent Semantic Indexing (LSI) (Berry et al. ; Deerwester et al. is a machine intelligence technique that can match data based upon higher order structure, and is able to handle difficult problems, such as words that have different meanings but the same spelling, are synonymous, or have multiple meanings. Essentially, the technique matches records based upon context, or mathematically quantifying when terms occur in the same record.

  16. Mathematical model of small water-plane area twin-hull and application in marine simulator

    Science.gov (United States)

    Zhang, Xiufeng; Lyu, Zhenwang; Yin, Yong; Jin, Yicheng

    2013-09-01

    Small water-plane area twin-hull (SWATH) has drawn the attention of many researchers due to its good sea-keeping ability. In this paper, MMG's idea of separation was used to perform SWATH movement modeling and simulation; respectively the forces and moment of SWATH were divided into bare hull, propeller, rudder at the fluid hydrodynamics, etc. Wake coefficient at the propellers which reduces thrust coefficient, and rudder mutual interference forces among the hull and propeller, for the calculation of SWATH, were all considered. The fourth-order Runge-Kutta method of integration was used by solving differential equations, in order to get SWATH's movement states. As an example, a turning test at full speed and full starboard rudder of `Seagull' craft is shown. The simulation results show the SWATH's regular pattern and trend of motion. It verifies the correctness of the mathematical model of the turning movement. The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen, or safety assessment for ocean engineering project. Lastly, the full mission navigation simulating system (FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.

  17. Simulation of 3D-treatment plans in head and neck tumors aided by matching of digitally reconstructed radiographs (DRR) and on-line distortion corrected simulator images

    International Nuclear Information System (INIS)

    Lohr, Frank; Schramm, Oliver; Schraube, Peter; Sroka-Perez, Gabriele; Seeber, Steffen; Schlepple, Gerd; Schlegel, Wolfgang; Wannenmacher, Michael

    1997-01-01

    Background and purpose: Simulation of 3D-treatment plans for head and neck malignancy is difficult due to complex anatomy. Therefore, CT-simulation and stereotactic techniques are becoming more common in the treatment preparation, overcoming the need for simulation. However, if simulation is still performed, it is an important step in the treatment preparation/execution chain, since simulation errors, if not detected immediately, can compromise the success of treatment. A recently developed PC-based system for on-line image matching and comparison of digitally reconstructed radiographs (DRR) and distortion corrected simulator monitor images that enables instant correction of field placement errors during the simulation process was evaluated. The range of field placement errors with noncomputer aided simulation is reported. Materials and methods: For 14 patients either a primary 3D-treatment plan or a 3D-boost plan after initial treatment with opposing laterals for head and neck malignancy with a coplanar or non-coplanar two- or three-field technique was simulated. After determining the robustness of the matching process and the accuracy of field placement error detection with phantom measurements, DRRs were generated from the treatment planning CT-dataset of each patient and were interactively matched with on-line simulator images that had undergone correction for geometrical distortion, using a landmark algorithm. Translational field placement errors in all three planes as well as in-plane rotational errors were studied and were corrected immediately. Results: The interactive matching process is very robust with a tolerance of <2 mm when suitable anatomical landmarks are chosen. The accuracy for detection of translational errors in phantom measurements was <1 mm and for in-plane rotational errors the accuracy had a maximum of only 1.5 deg.. For patient simulation, the mean absolute distance of the planned versus simulated isocenter was 6.4 ± 3.9 mm. The in

  18. Load/resource matching for period-of-record computer simulation

    International Nuclear Information System (INIS)

    Lindsey, E.D. Jr.; Robbins, G.E. III

    1991-01-01

    The Southwestern Power Administration (Southwestern), an agency of the Department of Energy, is responsible for marketing the power and energy produced at Federal hydroelectric power projects developed by the U.S. Army Corps of Engineers in the southwestern United States. This paper reports that in order to maximize benefits from limited resources, to evaluate proposed changes in the operation of existing projects, and to determine the feasibility and marketability of proposed new projects, Southwestern utilizes a period-of-record computer simulation model created in the 1960's. Southwestern is constructing a new computer simulation model to take advantage of changes in computers, policy, and procedures. Within all hydroelectric power reservoir systems, the ability of the resources to match the load demand is critical and presents complex problems. Therefore, the method used to compare available energy resources to energy load demands is a very important aspect of the new model. Southwestern has developed an innovative method which compares a resource duration curve with a load duration curve, adjusting the resource duration curve to make the most efficient use of the available resources

  19. The Mathematical State of the World

    DEFF Research Database (Denmark)

    Christensen, Ole Ravn; Skovsmose, Ole; Yasukawa, Keiko

    2009-01-01

    the concepts of “mathematical description” and “mathematical model” are inadequate to evaluate the use of mathematics in decision-making processes. As a result we develop a conceptual framework that is complex enough to match what goes on in scenarios involving applications of mathematics.......In this article we try to analyse the conditions for describing the world mathematically. We consider the role played by mathematics in discussing and analysing “the state of the world.” We use this discussion to clarify what it means to use a mathematical description. We illustrate why...

  20. An expert system for automated flavour matching - Prioritizer

    DEFF Research Database (Denmark)

    Silva, Bárbara Santos; Tøstesen, Marie; Petersen, Mikael Agerlin

    2017-01-01

    Flavour matching can be viewed as trying to reproduce a specific flavour. This is a time consuming task and may lead to flavour mixtures that are too complex or too expensive to be commercialized. In order to facilitate the matching, we have developed a new mathematical model, called Prioritizer....

  1. Numerical simulation and experimental verification of oil recovery by macro-emulsion floods

    Energy Technology Data Exchange (ETDEWEB)

    Khamharatana, F. [Chulalongkorn Univ., Bangkok (Thailand); Thomas, S.; Farouq Ali, S. M. [Alberta Univ., Edmonton, AB (Canada)

    1997-08-01

    The process of emulsion flooding as an enhanced oil recovery method was described. The process involves several mechanisms that occur at the same time during displacement, therefore, simulation by emulsion flooding requires a good understanding of flow mechanics of emulsions in porous media. This paper provides a description of the process and its mathematical representation. Emulsion rheology, droplet capture and surfactant adsorption are represented mathematically and incorporated into a one-dimensional, three-phase mathematical model to account for interactions of surfactant, oil, water and the rock matrix. The simulator was validated by comparing simulation results with the results from linear core floods performed in the laboratory. Best match was achieved by a multi-phase non-Newtonian rheological model of an emulsion with interfacial tension-dependent relative permeabilities and time-dependent capture. 13 refs., 1 tab., 42 figs.

  2. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  3. A Vision/Inertia Integrated Positioning Method Using Position and Orientation Matching

    Directory of Open Access Journals (Sweden)

    Xiaoyue Zhang

    2017-01-01

    Full Text Available A vision/inertia integrated positioning method using position and orientation matching which can be adopted on intelligent vehicle such as automated guided vehicle (AGV and mobile robot is proposed in this work. The method is introduced firstly. Landmarks are placed into the navigation field and camera and inertial measurement unit (IMU are installed on the vehicle. Vision processor calculates the azimuth and position information from the pictures which include artificial landmarks with the known direction and position. Inertial navigation system (INS calculates the azimuth and position of vehicle in real time and the calculated pixel position of landmark can be computed from the INS output position. Then the needed mathematical models are established and integrated navigation is implemented by Kalman filter with the observation of azimuth and the calculated pixel position of landmark. Navigation errors and IMU errors are estimated and compensated in real time so that high precision navigation results can be got. Finally, simulation and test are performed, respectively. Both simulation and test results prove that this vision/inertia integrated positioning method using position and orientation matching has feasibility and it can achieve centimeter-level autonomic continuous navigation.

  4. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    Science.gov (United States)

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems. © 2015 John Wiley & Sons Ltd.

  5. Matching the reaction-diffusion simulation to dynamic [18F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model.

    Science.gov (United States)

    Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I

    2017-02-01

    Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated

  6. A Self-Paced Team Sport Match Simulation Results In Reductions In Voluntary Activation And Modifications To Biological, Perceptual And Performance Measures At Half-Time, And For Up To 96 Hours Post-Match.

    Science.gov (United States)

    Tofari, Paul; Kemp, Justin; Cormack, Stuart

    2017-02-23

    Assessing responses to soccer match-play is limited by match variability or unrealistic simulations. To address this, the biological, perceptual, and performance response were assessed using a self-paced, simulated soccer match protocol using a non-motorized treadmill. Twelve male team-sport athletes performed the 90-min simulation. Match activity; quadriceps twitch interpolation [voluntary activation (%VA) and potentiated twitch (POT)]; biochemical markers; strength and power performance; rating of perceived exertion (RPE) and self-report wellness were collected pre-, half-time, post-, and 2, 24, 48, 72 and 96-h post-match. Change compared to pre-match was calculated using effect size (ES) ±90% confidence limit, and relationships were assessed using regression analysis. Subjects covered 12445.8±768.7 m at 87.1±3.2% maximal HR (mean±SD). Reductions in %VA and POT was present at half-time (-0.38±0.46 and -0.79±0.30, respectively), and persisted post-match. Squat jump height decreased at half-time (-0.42±0.31) and was decreased until Post96. Perceptual fatigue, soreness (-0.92±0.88 and -1.49±0.76, respectively) and creatine kinase (CK, 1.11±0.43) peaked at Post24. Pre-test strength (N.kg) correlated with changes in CK (r=-0.58 to -0.81), peak oxygen consumption (V˙ O2peak) correlated with reduced perceived wellness at Post24 (r=0.44 to 0.58) and RPE post (r=-0.71±0.28). High-speed running correlated with soreness (r=0.42) and very high speed running with reduced POT (r=0.61). Previously unreported half-time reductions in %VA and POT plateaued by post-match, suggesting a role in regulating second-half performance. Perceptual and neuromuscular responses appear related to running intensity. Greater lower-body strength and V˙ O2peak were associated with less CK (i.e., muscle damage) and perceptual responses post-match, respectively, suggesting a training focus should be placed on these capacities.

  7. A review of mathematical modeling and simulation of controlled-release fertilizers.

    Science.gov (United States)

    Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N

    2018-02-10

    Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mathematical Modeling and Simulations of Phase Change Materials in Basic Orthogonal Coordinate Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, Daniel; Dutil, Yvan; Ben Salah, Nizar; Lassue, Stephane

    2010-09-15

    Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. Phase change materials are attractive since they provide a high energy storage density at constant temperatures. Nevertheless, the incorporation of such materials in a particular application often calls for numerical analyses due to the non-linear nature of the problem. The review of the mathematical models will include selected results to enable one to start his/her research with an exhaustive overview of the subject. This overview also stresses the need to match experimental investigations with recent numerical analyses.

  9. Hamstring Muscle Fatigue and Central Motor Output during a Simulated Soccer Match

    Science.gov (United States)

    Marshall, Paul W. M.; Lovell, Ric; Jeppesen, Gitte K.; Andersen, Kristoffer; Siegler, Jason C.

    2014-01-01

    Purpose To examine changes in hamstring muscle fatigue and central motor output during a 90-minute simulated soccer match, and the concomitant changes in hamstring maximal torque and rate of torque development. Method Eight amateur male soccer players performed a 90-minute simulated soccer match, with measures performed at the start of and every 15-minutes during each half. Maximal torque (Nm) and rate of torque development (RTD; Nm.s–1) were calculated from maximal isometric knee flexor contractions performed at 10° of flexion. Hamstring peripheral fatigue was assessed from changes in the size and shape of the resting twitch (RT). Hamstring central motor output was quantified from voluntary activation (%) and normalized biceps femoris (BF) and medial hamstrings (MH) electromyographic amplitudes (EMG/M). Results Maximal torque was reduced at 45-minutes by 7.6±9.4% (phamstring peripheral fatigue. Conclusion Centrally mediated reductions in maximal torque and rate of torque development provide insight into factors that may explain hamstring injury risk during soccer. Of particular interest were early reductions during the first-half of hamstring rate of torque development, and the decline in maximal EMG/M of biceps femoris in the latter stages of the half. These are important findings that may help explain why the hamstrings are particularly vulnerable to strain injury during soccer. PMID:25047547

  10. Matched-Filter Thermography

    Directory of Open Access Journals (Sweden)

    Nima Tabatabaei

    2018-04-01

    Full Text Available Conventional infrared thermography techniques, including pulsed and lock-in thermography, have shown great potential for non-destructive evaluation of broad spectrum of materials, spanning from metals to polymers to biological tissues. However, performance of these techniques is often limited due to the diffuse nature of thermal wave fields, resulting in an inherent compromise between inspection depth and depth resolution. Recently, matched-filter thermography has been introduced as a means for overcoming this classic limitation to enable depth-resolved subsurface thermal imaging and improving axial/depth resolution. This paper reviews the basic principles and experimental results of matched-filter thermography: first, mathematical and signal processing concepts related to matched-fileting and pulse compression are discussed. Next, theoretical modeling of thermal-wave responses to matched-filter thermography using two categories of pulse compression techniques (linear frequency modulation and binary phase coding are reviewed. Key experimental results from literature demonstrating the maintenance of axial resolution while inspecting deep into opaque and turbid media are also presented and discussed. Finally, the concept of thermal coherence tomography for deconvolution of thermal responses of axially superposed sources and creation of depth-selective images in a diffusion-wave field is reviewed.

  11. CT simulation in nodal positive breast cancer

    International Nuclear Information System (INIS)

    Horst, E.; Schuck, A.; Moustakis, C.; Schaefer, U.; Micke, O.; Kronholz, H.L.; Willich, N.

    2001-01-01

    Background: A variety of solutions are used to match tangential fields and opposed lymph node fields in irradiation of nodal positive breast cancer. The choice is depending on the technical equipment which is available and the clinical situation. The CT simulation of a non-monoisocentric technique was evaluated in terms of accuracy and reproducibility. Patients, Material and Methods: The field match parameters were adjusted virtually at CT simulation and were compared with parameters derived mathematically. The coordinate transfer from the CT simulator to the conventional simulator was analyzed in 25 consecutive patients. Results: The angles adjusted virtually for a geometrically exact coplanar field match corresponded with the angles calculated for each set-up. The mean isocenter displacement was 5.7 mm and the total uncertainty of the coordinate transfer was 6.7 mm (1 SD). Limitations in the patient set-up became obvious because of the steep arm abduction necessary to fit the 70 cm CT gantry aperture. Required modifications of the arm position and coordinate transfer errors led to a significant shift of the marked matchline of >1.0 cm in eight of 25 patients (32%). Conclusion: The virtual CT simulation allows a precise and graphic definition of the field match parameters. However, modifications of the virtual set-up basically due to technical limitations were required in a total of 32% of cases, so that a hybrid technique was adapted at present that combines virtual adjustment of the ideal field alignment parameters with conventional simulation. (orig.) [de

  12. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  13. Railway bogie vibration analysis by mathematical simulation model and a scaled four-wheel railway bogie set

    Science.gov (United States)

    Visayataksin, Noppharat; Sooklamai, Manon

    2018-01-01

    The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.

  14. Free-Space Squeezing Assists Perfectly Matched Layers in Simulations on a Tight Domain

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Ivinskaya, Aliaksandra; Lavrinenko, Andrei

    2010-01-01

    outside the object, as in simulations of eigenmodes or scattering at a wavelength comparable to or larger than the object itself. Here, we show how, in addition to applying the perfectly matched layers (PMLs), outer free space can be squeezed to avoid cutting the evanescent field tails by the PMLs...... or computational domain borders. Adding the squeeze-transform layers to the standard PMLs requires no changes to the finite-difference algorithms....

  15. A stochastic Markov chain approach for tennis: Monte Carlo simulation and modeling

    Science.gov (United States)

    Aslam, Kamran

    This dissertation describes the computational formulation of probability density functions (pdfs) that facilitate head-to-head match simulations in tennis along with ranking systems developed from their use. A background on the statistical method used to develop the pdfs , the Monte Carlo method, and the resulting rankings are included along with a discussion on ranking methods currently being used both in professional sports and in other applications. Using an analytical theory developed by Newton and Keller in [34] that defines a tennis player's probability of winning a game, set, match and single elimination tournament, a computational simulation has been developed in Matlab that allows further modeling not previously possible with the analytical theory alone. Such experimentation consists of the exploration of non-iid effects, considers the concept the varying importance of points in a match and allows an unlimited number of matches to be simulated between unlikely opponents. The results of these studies have provided pdfs that accurately model an individual tennis player's ability along with a realistic, fair and mathematically sound platform for ranking them.

  16. Photon signature analysis using template matching

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saripan, M.I. [Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Wells, K. [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH (United Kingdom); Dunn, W.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506 (United States)

    2011-10-01

    We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming {gamma} photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP{sup TM}) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly.

  17. Physiological responses and energy cost during a simulation of a Muay Thai boxing match.

    Science.gov (United States)

    Crisafulli, Antonio; Vitelli, Stefano; Cappai, Ivo; Milia, Raffaele; Tocco, Filippo; Melis, Franco; Concu, Alberto

    2009-04-01

    Muay Thai is a martial art that requires complex skills and tactical excellence for success. However, the energy demand during a Muay Thai competition has never been studied. This study was devised to obtain an understanding of the physiological capacities underlying Muay Thai performance. To that end, the aerobic energy expenditure and the recruitment of anaerobic metabolism were assessed in 10 male athletes during a simulation match of Muay Thai. Subjects were studied while wearing a portable gas analyzer, which was able to provide data on oxygen uptake, carbon dioxide production, and heart rate (HR). The excess of CO2 production (CO2 excess) was also measured to obtain an index of anaerobic glycolysis. During the match, group energy expenditure was, on average (mean +/- standard error of the mean), 10.75 +/- 1.58 kcal.min-1, corresponding to 9.39 +/- 1.38 metabolic equivalents. Oxygen uptake and HRs were always above the level of the anaerobic threshold assessed in a preliminary incremental test. CO2 excess showed an abrupt increase in the first round, and reached a value of 636 +/- 66.5 mL.min-1. This parameter then gradually decreased throughout the simulation match. These data suggest that Muay Thai is a physically demanding activity with great involvement of both the aerobic metabolism and anaerobic glycolysis. In particular, it appears that, after an initial burst of anaerobic glycolysis, there was a progressive increase in the aerobic energy supply. Thus, training protocols should include exercises that train both aerobic and anaerobic energetic pathways.

  18. Causes and cures for errors in the simulation of ion extraction from plasmas

    International Nuclear Information System (INIS)

    Becker, R.

    2006-01-01

    For many years, computer programs have been available to simulate the extraction of positive ions from plasmas. The results of such simulations may not always agree with measurements. There are different reasons for this: the mathematical formulation must match with the simulated physics, the number of meshes must be high enough to correctly take into account the nonlinear space charge in the sheath, and ray tracing must be done in sufficiently small steps, using numerically correct field components and partial derivatives. In addition to these hidden problems the user may create errors by a wrong choice of parameters, which are not matching the assumptions of the mathematical formulation. Examples are the use of a positive ion extraction program for the extraction of negative ones, the choice of a wrong angle between the plasma electrode and the beam boundary in the vicinity of the meniscus, and the use of too few trajectories. The design of extraction electrodes generally has the aim to optimize the optical properties and the current of the ion beam. However, it is also important to take into account the surface fields in order to avoid dark currents and sparking

  19. Simulation of a coal-fired power plant using mathematical programming algorithms in order to optimize its efficiency

    International Nuclear Information System (INIS)

    Tzolakis, G.; Papanikolaou, P.; Kolokotronis, D.; Samaras, N.; Tourlidakis, A.; Tomboulides, A.

    2012-01-01

    Since most of the world's electric energy production is mainly based on fossil fuels and need for better efficiency of the energy conversion systems is imminent, mathematical programming algorithms were applied for the simulation and optimization of a detailed model of an existing lignite-fired power plant in Kozani, Greece (KARDIA IV). The optimization of its overall thermal efficiency, using as control variables the mass flow rates of the steam turbine extractions and the fuel consumption, was performed with the use of the simulation and optimization software gPROMS. The power plant components' mathematical models were imported in software by the authors and the results showed that further increase to the overall thermal efficiency of the plant can be achieved (a 0.55% absolute increase) through reduction of the HP turbine's and increase of the LP turbine's extractions mass flow rates and the parallel reduction of the fuel consumption by 2.05% which also results to an equivalent reduction of the greenhouse gasses. The setup of the mathematical model and the flexibility of gPROMS, make this software applicable to various power plants. - Highlights: ► Modeling and simulation of the flue gases circuit of a specific plant. ► Designing of modules in gPROMS FO (Foreign Objects). ► Simulation of the complete detailed plant with gPROMS. ► Optimization using a non-linear optimization algorithm of the plant's efficiency.

  20. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    Science.gov (United States)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  1. ShinyKGode: an Interactive Application for ODE Parameter Inference Using Gradient Matching.

    Science.gov (United States)

    Wandy, Joe; Niu, Mu; Giurghita, Diana; Daly, Rónán; Rogers, Simon; Husmeier, Dirk

    2018-02-27

    Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualised alongside diagnostic plots to assess convergence. The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. dirk.husmeier@glasgow.ac.uk. None.

  2. Improving multiple-point-based a priori models for inverse problems by combining Sequential Simulation with the Frequency Matching Method

    DEFF Research Database (Denmark)

    Cordua, Knud Skou; Hansen, Thomas Mejer; Lange, Katrine

    In order to move beyond simplified covariance based a priori models, which are typically used for inverse problems, more complex multiple-point-based a priori models have to be considered. By means of marginal probability distributions ‘learned’ from a training image, sequential simulation has...... proven to be an efficient way of obtaining multiple realizations that honor the same multiple-point statistics as the training image. The frequency matching method provides an alternative way of formulating multiple-point-based a priori models. In this strategy the pattern frequency distributions (i.......e. marginals) of the training image and a subsurface model are matched in order to obtain a solution with the same multiple-point statistics as the training image. Sequential Gibbs sampling is a simulation strategy that provides an efficient way of applying sequential simulation based algorithms as a priori...

  3. Graph Theory to Pure Mathematics: Some Illustrative Examples

    Indian Academy of Sciences (India)

    Graph Theory to Pure Mathematics: Some. Illustrative Examples v Yegnanarayanan is a. Professor of Mathematics at MNM Jain Engineering. College, Chennai. His research interests include graph theory and its applications to both pure maths and theoretical computer science. Keywords. Graph theory, matching theory,.

  4. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2006-01-01

    In this work we present the development and implementation of an integrated approach for mathematical exergoeconomic optimization of complex thermal systems. By exploiting the computational power of a professional process simulator, the proposed integrated approach permits the optimization routine to ignore the variables associated with the thermodynamic balance equations and thus deal only with the decision variables. To demonstrate the capabilities of the integrated approach, it is here applied to a complex cogeneration system, which includes all the major components of a typical thermal plant, and requires more than 800 variables for its simulation

  5. Study of silicon microstrips detector quantum efficiency using mathematical simulation

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana Ester; Pinnera Hernandez, Ibrahin; Fabelo, Antonio Leyva; Abreu Alfonso, Yamiel; Cruz Inclan, Carlos M.

    2011-01-01

    The paper shows the results from the application of mathematical simulation to study the quantum efficiency of a microstrips crystalline silicon detector, intended for medical imaging and the development of other applications such as authentication and dating of cultural heritage. The effects on the quantum efficiency of some parameters of the system, such as the detector-source geometry, X rays energy and detector dead zone thickness, were evaluated. The simulation results were compared with the theoretical prediction and experimental available data, resulting in a proper correspondence. It was concluded that the use of frontal configuration for incident energies lower than 17 keV is more efficient, however the use of the edge-on configuration for applications requiring the detection of energy above this value is recommended. It was also found that the reduction of the detector dead zone led to a considerable increase in quantum efficiency for any energy value in the interval from 5 to 100 keV.(author)

  6. Introduction to mathematical biology modeling, analysis, and simulations

    CERN Document Server

    Chou, Ching Shan

    2016-01-01

    This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to t...

  7. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

    Science.gov (United States)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-01

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  8. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.

    Science.gov (United States)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-06

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  9. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    Science.gov (United States)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  10. Mathematical simulation of the drying of suspensions and colloidal solutions by their depressurization

    Science.gov (United States)

    Lashkov, V. A.; Levashko, E. I.; Safin, R. G.

    2006-05-01

    The heat and mass transfer in the process of drying of high-humidity materials by their depressurization has been investigated. The results of experimental investigation and mathematical simulation of the indicated process are presented. They allow one to determine the regularities of this process and predict the quality of the finished product. A technological scheme and an engineering procedure for calculating the drying of the liquid base of a soap are presented.

  11. Reducing the likelihood of long tennis matches.

    Science.gov (United States)

    Barnett, Tristan; Alan, Brown; Pollard, Graham

    2006-01-01

    Long matches can cause problems for tournaments. For example, the starting times of subsequent matches can be substantially delayed causing inconvenience to players, spectators, officials and television scheduling. They can even be seen as unfair in the tournament setting when the winner of a very long match, who may have negative aftereffects from such a match, plays the winner of an average or shorter length match in the next round. Long matches can also lead to injuries to the participating players. One factor that can lead to long matches is the use of the advantage set as the fifth set, as in the Australian Open, the French Open and Wimbledon. Another factor is long rallies and a greater than average number of points per game. This tends to occur more frequently on the slower surfaces such as at the French Open. The mathematical method of generating functions is used to show that the likelihood of long matches can be substantially reduced by using the tiebreak game in the fifth set, or more effectively by using a new type of game, the 50-40 game, throughout the match. Key PointsThe cumulant generating function has nice properties for calculating the parameters of distributions in a tennis matchA final tiebreaker set reduces the length of matches as currently being used in the US OpenA new 50-40 game reduces the length of matches whilst maintaining comparable probabilities for the better player to win the match.

  12. Steel heat treating: mathematical modelling and numerical simulation of a problem arising in the automotive industry

    Directory of Open Access Journals (Sweden)

    Jose Manuel Diaz Moreno

    2017-12-01

    Full Text Available We describe a mathematical model for the industrial heating and cooling processes of a steel workpiece representing the steering rack of an automobile. The goal of steel heat treating is to provide a hardened surface on critical parts of the workpiece while keeping the rest soft and ductile in order to reduce fatigue. The high hardness is due to the phase transformation of steel accompanying the rapid cooling. This work takes into account both heating-cooling stage and viscoplastic model. Once the general mathematical formulation is derived, we can perform some numerical simulations.

  13. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  14. MATHEMATICS EDUCATION FOR LOGISTICS ENGINEERING

    OpenAIRE

    BÉLA ILLÉS; GABRIELLA BOGNÁR

    2012-01-01

    Mathematics is a crucial language in all engineering courses and researches where mathematical modeling, simulation and manipulation are commonly used. Engineering Mathematics courses are considered difficult courses in engineering curricula. This is reflected in engineering students’ performance at the end of each semester for these courses. Our goal is to overview a few questions on mathematics as a core subject of engineering.

  15. A mathematical model for the simulation of thermal transients in the water loop of IPEN

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.

    1980-01-01

    A mathematical model for simulation of thermal transients in the water loop at the Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brasil, is developed. The model is based on energy equations applied to the components of the experimental water loop. The non-linear system of first order diferencial equations and of non-linear algebraic equations obtained through the utilization of the IBM 'System/360-Continous System Modeling Program' (CSMP) is resolved. An optimization of the running time of the computer is made and a typical simulation of the water loop is executed. (Author) [pt

  16. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  17. Hard and soft mathematical models for simulation in some analytical chemical system. Modelos matematicos duros y blandos para la simulacion de sistemas quimicos analiticos

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, P.

    1989-07-01

    In order to determine ion-metallic species with xantene derivates as reagents, different mathematical models in some ion-pair spectrophotometric system have been applied haro mathematical models-based in physical-chemical laws-versus soft mathematical models-empirical and ranoom-have been compared explicits mathematical functions for simulation and optimization of the studied system have been obtained. That optimization has been done using some derivaties methods. Stochastics models in time-dependent systems have been applied. (Author)

  18. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  19. MUSCLE DAMAGE AFTER A TENNIS MATCH IN YOUNG PLAYERS

    Directory of Open Access Journals (Sweden)

    R.V. Gomes

    2014-07-01

    Full Text Available The present study investigated changes in indirect markers of muscle damage following a simulated tennis match play using nationally ranked young (17.6 ± 1.4 years male tennis players. Ten young athletes played a 3-hour simulated match play on outdoor red clay courts following the International Tennis Federation rules. Muscle soreness, plasma creatine kinase activity (CK, serum myoglobin concentration (Mb, one repetition maximum (1RM squat strength, and squat jump (SJ and counter movement jump (CMJ heights were assessed before, immediately after, and 24 and 48 h after the simulated match play. All parameters were also evaluated in a non-exercised group (control group. A small increase in the indirect markers of muscle damage (muscle soreness, CK and Mb was detected at 24-48 hours post-match (p<0.05. A marked acute decrement in neuromuscular performance (1RM squat strength: -35.2 ± 10.4%, SJ: -7.0 ± 6.0%, CMJ: -10.0 ± 6.3% was observed immediately post-match (p<0.05. At 24 h post-match, the 1RM strength and jump heights were not significantly different from the baseline values. However, several players showed a decrease of these measures at 24 h after the match play. The simulated tennis match play induced mild muscle damage in young players. Coaches could monitor changes in the indirect markers of muscle damage to assess athletes’ recovery status during training and competition.

  20. Modeling and simulation for fewer-axis grinding of complex surface

    Science.gov (United States)

    Li, Zhengjian; Peng, Xiaoqiang; Song, Ci

    2017-10-01

    As the basis of fewer-axis grinding of complex surface, the grinding mathematical model is of great importance. A mathematical model of the grinding wheel was established, and then coordinate and normal vector of the wheel profile could be calculated. Through normal vector matching at the cutter contact point and the coordinate system transformation, the grinding mathematical model was established to work out the coordinate of the cutter location point. Based on the model, interference analysis was simulated to find out the right position and posture of workpiece for grinding. Then positioning errors of the workpiece including the translation positioning error and the rotation positioning error were analyzed respectively, and the main locating datum was obtained. According to the analysis results, the grinding tool path was planned and generated to grind the complex surface, and good form accuracy was obtained. The grinding mathematical model is simple, feasible and can be widely applied.

  1. Mathematical analysis I

    CERN Document Server

    Zorich, Vladimir A

    2015-01-01

    VLADIMIR A. ZORICH is professor of mathematics at Moscow State University. His areas of specialization are analysis, conformal geometry, quasiconformal mappings, and mathematical aspects of thermodynamics. He solved the problem of global homeomorphism for space quasiconformal mappings. He holds a patent in the technology of mechanical engineering, and he is also known by his book Mathematical Analysis of Problems in the Natural Sciences . This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems...

  2. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul

    2016-01-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  3. Application of Local Fourier Transform to Mathematical Simulation of Synchronous Machines with Valve Excitation Systems

    Directory of Open Access Journals (Sweden)

    Fedotov A.

    2017-02-01

    Full Text Available The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.

  4. MATHEMATICAL SIMULATION OF CONCURRENT TWO-SIDED LENS PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Kozeruk

    2015-01-01

    Full Text Available The purpose of the paper is to modernize technology for obtaining high-accuracy lenses with fine centre. Presently their operating surfaces are fixed  to an accessory with the help of adhesive substance that leads to elastic deformation in glass and causes local errors in lens parts.A mathematical model for concurrent two-sided processing of high-accuracy optical parts with spherical surfaces has been developed in the paper. The paper presents analytical expressions that permit to calculate sliding speed at any point on the processed spherical surface depending on type and value of technological equipment settings. Calculation of parameter Q = Pv in a diametric section of the convexo-concave lens has been carried out while using these expressions together with functional dependence of pressure on contact zone еarea of tool and part bedding surfaces.Theoretical and experimental investigations have been carried out with the purpose to study changes in Q parameter according to the processed lens surface for various setting parameters of the technological equipment and their optimum values ensuring preferential stock removal in the central or boundary part zone or uniform distribution of the removal along the whole processed surface have been determined in the paper.The paper proposes a machine tool scheme for concurrent two-sided grinding and polishing of lenses while fixing their side (cylindrical surface. Machine tool kinematics makes it possible flexibly and within wide limits to change its setting parameters  that significantly facilitates the control of form-building process of parts with highly-precise spherical surfaces.Methodology for investigations presupposes the following: mathematical simulation of highly-precise spherical surface form-building process under conditions of forced closing, execution of numerical and experimental studies.  

  5. Mathematical modelling and numerical simulation of oil pollution problems

    CERN Document Server

    2015-01-01

    Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics,  together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems.   The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...

  6. Sampling for Patient Exit Interviews: Assessment of Methods Using Mathematical Derivation and Computer Simulations.

    Science.gov (United States)

    Geldsetzer, Pascal; Fink, Günther; Vaikath, Maria; Bärnighausen, Till

    2018-02-01

    (1) To evaluate the operational efficiency of various sampling methods for patient exit interviews; (2) to discuss under what circumstances each method yields an unbiased sample; and (3) to propose a new, operationally efficient, and unbiased sampling method. Literature review, mathematical derivation, and Monte Carlo simulations. Our simulations show that in patient exit interviews it is most operationally efficient if the interviewer, after completing an interview, selects the next patient exiting the clinical consultation. We demonstrate mathematically that this method yields a biased sample: patients who spend a longer time with the clinician are overrepresented. This bias can be removed by selecting the next patient who enters, rather than exits, the consultation room. We show that this sampling method is operationally more efficient than alternative methods (systematic and simple random sampling) in most primary health care settings. Under the assumption that the order in which patients enter the consultation room is unrelated to the length of time spent with the clinician and the interviewer, selecting the next patient entering the consultation room tends to be the operationally most efficient unbiased sampling method for patient exit interviews. © 2016 The Authors. Health Services Research published by Wiley Periodicals, Inc. on behalf of Health Research and Educational Trust.

  7. Hemomath the mathematics of blood

    CERN Document Server

    Fasano, Antonio

    2017-01-01

    This book illustrates applications of mathematics to various processes (physiological or artificial) involving flowing blood, including hemorheology, microcirculation, coagulation, kidney filtration and dialysis, offering a historical overview of each topic. Mathematical models are used to simulate processes normally occurring in flowing blood and to predict the effects of dysfunctions (e.g. bleeding disorders, renal failure), as well as the effects of therapies with an eye to improving treatments. Most of the models have a completely new approach that makes patient-specific simulations possible. The book is mainly intended for mathematicians interested in medical applications, but it is also useful for clinicians such as hematologists, nephrologists, cardio-surgeons, and bioengineers. Some parts require no specific knowledge of mathematics. The book is a valuable addition to mathematics, medical, biology, and bioengineering libraries.

  8. Current problems in applied mathematics and mathematical physics

    Science.gov (United States)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  9. Comparison among mathematical models of the photovoltaic cell for computer simulation purposes

    Science.gov (United States)

    Tofoli, Fernando Lessa; Pereira, Denis de Castro; Josias De Paula, Wesley; Moreira Vicente, Eduardo; Vicente, Paula dos Santos; Braga, Henrique Antonio Carvalho

    2017-07-01

    This paper presents a comparison among mathematical models used in the simulation of solar photovoltaic modules that can be easily integrated with power electronic converters. In order to perform the analysis, three models available in literature and also the physical model of the module in software PSIM® are used. Some results regarding the respective I × V and P × V curves are presented, while some advantages and eventual limitations are discussed. Besides, a DC-DC buck converter performs maximum power point tracking by using perturb and observe method, while the performance of each one of the aforementioned models is investigated.

  10. A Mathematical Model to Estimate the Position of Mobile Robot by Sensing Caster Wheel Motion

    Directory of Open Access Journals (Sweden)

    Amarendra Jnana H.

    2018-01-01

    Full Text Available This paper describes the position estimation of mobile robot by sensing caster wheel motion. A mathematical model is developed to determine the position of mobile robot by sensing the angular velocity and heading angle of the caster wheel. Using the established equations, simulations were carried out using MATLAB version 8.6 to observe and verify the position coordinates of mobile robot and in turn obtain its trajectory. The simulation results show that the angular velocity of caster wheel and heading angle calculated from the sensor output readings with the help of inverse kinematics equations matches well with that of actual values given as input for simulation. Simulation result of tracking rectangular trajectory implies that the path traced by the mobile robot can also be determined from the sensor output readings. This concept can be implemented on a real mobile robot for estimation of its position.

  11. Changes in Passive Tension of the Hamstring Muscles During a Simulated Soccer Match.

    Science.gov (United States)

    Marshall, Paul W; Lovell, Ric; Siegler, Jason C

    2016-07-01

    Passive muscle tension is increased after damaging eccentric exercise. Hamstring-strain injury is associated with damaging eccentric muscle actions, but no research has examined changes in hamstring passive muscle tension throughout a simulated sport activity. The authors measured hamstring passive tension throughout a 90-min simulated soccer match (SAFT90), including the warm-up period and every 15 min throughout the 90-min simulation. Passive hamstring tension of 15 amateur male soccer players was measured using the instrumented straight-leg-raise test. Absolute torque (Nm) and slope (Nm/°) of the recorded torque-angular position curve were used for data analysis, in addition to total leg range of motion (ROM). Players performed a 15-min prematch warm-up, then performed the SAFT90 including a 15-min halftime rest period. Reductions in passive stiffness of 20-50° of passive hip flexion of 22.1-29.2% (P hamstring ROM (P = .0009). The findings of this study imply that hamstring passive tension is reduced after an active warm-up that includes dynamic stretching but does not increase in a pattern suggestive of eccentric induced muscle damage during soccer-specific intermittent exercise. Hamstring ROM and passive tension increases are best explained by improved stretch tolerance.

  12. Bio-imaging and visualization for patient-customized simulations

    CERN Document Server

    Luo, Xiongbiao; Li, Shuo

    2014-01-01

    This book contains the full papers presented at the MICCAI 2013 workshop Bio-Imaging and Visualization for Patient-Customized Simulations (MWBIVPCS 2013). MWBIVPCS 2013 brought together researchers representing several fields, such as Biomechanics, Engineering, Medicine, Mathematics, Physics and Statistic. The contributions included in this book present and discuss new trends in those fields, using several methods and techniques, including the finite element method, similarity metrics, optimization processes, graphs, hidden Markov models, sensor calibration, fuzzy logic, data mining, cellular automation, active shape models, template matching and level sets. These serve as tools to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modelling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis.  This boo...

  13. A string matching based algorithm for performance evaluation of ...

    Indian Academy of Sciences (India)

    In this paper, we have addressed the problem of automated performance evaluation of Mathematical Expression (ME) recognition. Automated evaluation requires that recognition output and ground truth in some editable format like LaTeX, MathML, etc. have to be matched. But standard forms can have extraneous symbols ...

  14. ECMOR 4. 4th European conference on the mathematics of oil recovery. Topic A: Geometrical characterization. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The report with collected proceedings from a conference, deals with mathematics of oil recovery with the focus on geometrical characterization. Topics of proceedings are as follow: Random functions and geological subsurfaces; modelling faults in reservoir simulation; building, managing, and history matching very large and complex grids with examples from the Gullfaks Field (Norway); optimal gridding of stochastic models for scale-up; combining Gaussian fields and fibre processes for modelling of sequence stratigraphic bounding surfaces. Five papers are prepared. 76 refs., 61 figs., 1 tab.

  15. The Probability of a General Education Student Placed in a Co-Taught Inclusive Classroom of Passing the 2014 New York State ELA and Mathematics Assessment in Grades 6-8

    Science.gov (United States)

    St. John, Michael M.; Babo, Gerard

    2015-01-01

    This study examined the influence of placement in a co-taught inclusive classroom on the academic achievement of general education students in grades 6-8 in a suburban New York school district on the 2014 New York State ELA and Mathematics Assessments. Propensity Score Matching (PSM) was utilized for sample selection in order to simulate a more…

  16. Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/GaN heterostructures

    Science.gov (United States)

    Rong, Taotao; Yang, Lin-An; Yang, Lin; Hao, Yue

    2018-01-01

    In this work, we report an investigation of resonant tunneling diodes (RTDs) with lattice-matched and polarization-matched AlInN/GaN heterostructures using the numerical simulation. Compared with the lattice-matched AlInN/GaN RTDs, the RTDs based on polarization-matched AlInN/GaN hetero-structures exhibit symmetrical conduction band profiles due to eliminating the polarization charge discontinuity, which achieve the equivalence of double barrier transmission coefficients, thereby the relatively high driving current, the high symmetry of current density, and the high peak-to-valley current ratio (PVCR) under the condition of the positive and the negative sweeping voltages. Simulations show that the peak current density approaches 1.2 × 107 A/cm2 at the bias voltage of 0.72 V and the PVCR approaches 1.37 at both sweeping voltages. It also shows that under the condition of the same shallow energy level, when the trap density reaches 1 × 1019 cm-3, the polarization-matched RTDs still have acceptable negative differential resistance (NDR) characteristics, while the NDR characteristics of lattice-matched RTDs become irregular. After introducing the deeper energy level of 1 eV into the polarization-matched and lattice-matched RTDs, 60 scans are performed under the same trap density. Simulation results show that the degradation of the polarization-matched RTDs is 22%, while lattice-matched RTDs have a degradation of 55%. It can be found that the polarization-matched RTDs have a greater defect tolerance than the lattice-matched RTDs, which is beneficial to the available manufacture of actual terahertz RTD devices.

  17. Mathematical manipulative models: in defense of "beanbag biology".

    Science.gov (United States)

    Jungck, John R; Gaff, Holly; Weisstein, Anton E

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.

  18. Detailed Simulation of Complex Hydraulic Problems with Macroscopic and Mesoscopic Mathematical Methods

    Directory of Open Access Journals (Sweden)

    Chiara Biscarini

    2013-01-01

    Full Text Available The numerical simulation of fast-moving fronts originating from dam or levee breaches is a challenging task for small scale engineering projects. In this work, the use of fully three-dimensional Navier-Stokes (NS equations and lattice Boltzmann method (LBM is proposed for testing the validity of, respectively, macroscopic and mesoscopic mathematical models. Macroscopic simulations are performed employing an open-source computational fluid dynamics (CFD code that solves the NS combined with the volume of fluid (VOF multiphase method to represent free-surface flows. The mesoscopic model is a front-tracking experimental variant of the LBM. In the proposed LBM the air-gas interface is represented as a surface with zero thickness that handles the passage of the density field from the light to the dense phase and vice versa. A single set of LBM equations represents the liquid phase, while the free surface is characterized by an additional variable, the liquid volume fraction. Case studies show advantages and disadvantages of the proposed LBM and NS with specific regard to the computational efficiency and accuracy in dealing with the simulation of flows through complex geometries. In particular, the validation of the model application is developed by simulating the flow propagating through a synthetic urban setting and comparing results with analytical and experimental laboratory measurements.

  19. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    Science.gov (United States)

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  20. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    Science.gov (United States)

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  1. Matching by Monotonic Tone Mapping.

    Science.gov (United States)

    Kovacs, Gyorgy

    2018-06-01

    In this paper, a novel dissimilarity measure called Matching by Monotonic Tone Mapping (MMTM) is proposed. The MMTM technique allows matching under non-linear monotonic tone mappings and can be computed efficiently when the tone mappings are approximated by piecewise constant or piecewise linear functions. The proposed method is evaluated in various template matching scenarios involving simulated and real images, and compared to other measures developed to be invariant to monotonic intensity transformations. The results show that the MMTM technique is a highly competitive alternative of conventional measures in problems where possible tone mappings are close to monotonic.

  2. The tangential breast match plane: Practical problems and solutions

    International Nuclear Information System (INIS)

    Norris, M.

    1989-01-01

    The three-field breast set-up, in which tangential oblique opposed fields are joined to an anterior supraclavicular field, has been the method of choice for treatment of breast cancer for many years. In the last several years many authors have suggested refinements to the technique that improve the accuracy with which fields join at a match plane. The three-field breast set-up, using a rotatable half-beam block is the technique used at our institution. In instituting this procedure, several practical problems were encountered. Due to the small collimator rotation angles used it is possible to clinically reverse the collimator angle without observing an error noticeable on fluoroscopy. A second error can occur when the table base angle is used to compensate for the incorrect collimator rotation. These potential sources of error can be avoided if a programmable calculator or computer program is used to assist the dosimetrist during the simulation. Utilization of fluoroscopy, digital table position displays and a caliper provide accurate input for the computer program. This paper will present a hybrid procedure that combines practical set-up procedures with the mathematical calculation of ideal angles to result in an accurate and practical approach to breast simulation

  3. TUTOR SUPPORT OF TEACHING MATHEMATICS WITH INFORMATION AND COMMUNICATION TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Kateryna P. Osadcha

    2017-10-01

    Full Text Available The paper describes the tutor activity in the process of mathematics teaching support on the basis of the use of information and communication technologies (ICT. The author has analysed the available Internet resources and mobile applications in mathematics, which are classified according to their functional purposes into groups: systems of mass open courses, platforms for adaptive learning, video channels, mathematical online simulators, online tasks, mathematical games, mathematical portals, online platforms, mathematical sites, mathematical online platforms, mathematical services, mobile applications in mathematics (simulators, games, generators of example, assistant programs, training complexes, calculators. In accordance with the student age categories mathematical information and communication technologies are divided into three groups: for elementary school students, secondary school students and high school students. The basic ICT tools for teaching mathematics are outlined. The algorithm for constructing tutorial classes with their application is presented.

  4. The Impact of Virtual Simulations, Communication and Peer Reviewing on Spatial Intelligence and Mathematical Achievements

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2011-12-01

    Full Text Available The research is aimed at enabling special education pupils to use computers in everyday life, and improving spatial intelligence and mathematical achievements through computers. The method of training focuses on enabling pupils to create computer simulations, communicate by electronic mail while evaluating each other’s products and navigate Internet sites. The creation of such simulations is based on manipulations of the virtual environment similar to the real world as much as possible in order to utilize the unique characteristics of the computer such as spatial visualization. The researcher taught the teachers the basics of the use of computer and trained them how to use the method in their classroom. Then the teachers used the method with their special education pupils in accordance with their cognitive and motor abilities. The objects were taken from the pupils’ everyday environment. The teachers trained the pupils in pairs. Such procedures were held among different populations. The teachers improved their mastery of computers. In spite of their lack of experience before the experiment, they built high-level PowerPoint presentations and used them with their pupils in the classroom including even virtual simulations. They sent their products by Electronic mail (E-Mail for the peer reviewing process and navigated relevant Internet sites. The teachers reported pupils’ high motivation and their success in the various virtual activities. As a result, the spatial intelligence and mathematical achievements of the pupils were improved. The teacher-pupil interaction and the social relationships between the pupils were also improved.

  5. The Link between Logic, Mathematics and Imagination: Evidence from Children with Developmental Dyscalculia and Mathematically Gifted Children

    Science.gov (United States)

    Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szucs, Denes

    2013-01-01

    This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized…

  6. Heuristic Biases in Mathematical Reasoning

    Science.gov (United States)

    Inglis, Matthew; Simpson, Adrian

    2005-01-01

    In this paper we briefly describe the dual process account of reasoning, and explain the role of heuristic biases in human thought. Concentrating on the so-called matching bias effect, we describe a piece of research that indicates a correlation between success at advanced level mathematics and an ability to override innate and misleading…

  7. Characteristics of economic and mathematical simulation of development of working mines

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichiy, V G

    1979-01-01

    Economic and mathematical simulation is promoted by a standard procedure of computations to optimize development of production for the future as the principal method of solution of a problem. However traditional approaches to design of models need refinement which take into account the dynamic nature of a coal mine. First, the characteristics of the elements in subsystems change; second, as time passes the very structure of the system is transformed. Consequently, these processes should be reflected in the simulation in a corresponding manner. In practical terms this is expressed in the formation of files of forecast information used in computations according to a model and also in development of procedures of transformation of the model structure with a change of the structure of the subject mine with time. Let us note that the invariability of the state of the principal elements of the technological scheme of a mine with time is the necessary condition of acceptability of a model of the evolution type which is most common. For working mines the freedom of selecting solutions is considerably less than the analogous one in design.

  8. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  9. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Science.gov (United States)

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  10. Matching bunched beams to alternating gradient focusing systems

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1980-07-01

    A numerical procedure for generating phase-space distributions matched to alternating gradient focusing systems has been tested. For a smooth-focusing system a matched distribution can be calculated. With a particle tracing simulation code such a distribution can be followed while adiabatically deforming the focusing forces until an alternating gradient configuration is reached. The distribution remains matched; that is, the final distribution is periodic with the structure period. This method is useful because it can produce distributions matched to nonlinear forces. This is a feature that elliptical distributions, with ellipse parameters obtained from the Courant-Snyder theory, do not have. External nonlinearities, including nonlinear couplings, were included in our examples but space charge was not. This procedure is expected to work with space charge but will require a three-dimensional space charge calculation in the simulation code

  11. The effects of an increased calorie breakfast consumed prior to simulated match-play in Academy soccer players.

    Science.gov (United States)

    Briggs, Marc A; Harper, Liam D; McNamee, Ged; Cockburn, Emma; Rumbold, Penny L S; Stevenson, Emma J; Russell, Mark

    2017-08-01

    Dietary analysis of Academy soccer players highlights that total energy and carbohydrate intakes are less than optimal, especially, on match-days. As UK Academy matches predominantly kick-off at ∼11:00 h, breakfast is likely the last pre-exercise meal and thus may provide an intervention opportunity on match-day. Accordingly, the physiological and performance effects of an increased calorie breakfast consumed ∼135-min before soccer-specific exercise was investigated. English Premier League Academy soccer players (n = 7) repeated a 90-min soccer match simulation on two occasions after consumption of habitual (B hab ; ∼1100 kJ) or increased (B inc ; ∼2100 kJ) energy breakfasts standardised for macronutrient contributions (∼60% carbohydrates, ∼15% proteins and ∼25% fats). Countermovement jump height, sprint velocities (15-m and 30-m), 30-m repeated sprint maintenance, gut fullness, abdominal discomfort and soccer dribbling performances were measured. Blood samples were taken at rest, pre-exercise, half-time and every 15-min during exercise. Although dribbling precision (P = .522; 29.9 ± 5.5 cm) and success (P = .505; 94 ± 8%) were unchanged throughout all time-points, mean dribbling speed was faster (4.3 ± 5.7%) in B inc relative to B hab (P = .023; 2.84 vs 2.75 m s -1 ). Greater feelings of gut fullness (67 ± 17%, P = .001) were observed in B inc without changes in abdominal discomfort (P = .595). All other physical performance measures and blood lactate and glucose concentrations were comparable between trials (all P > .05). Findings demonstrate that Academy soccer players were able to increase pre-match energy intake without experiencing abdominal discomfort; thus, likely contributing to the amelioration of energy deficits on match-days. Furthermore, whilst B inc produced limited benefits to physical performance, increased dribbling speed was identified, which may be of benefit to match-play.

  12. A mathematical model, algorithm, and package of programs for simulation and prompt estimation of the atmospheric dispersion of radioactive pollutants

    International Nuclear Information System (INIS)

    Nikolaev, V.I.; Yatsko, S.N.

    1995-01-01

    A mathematical model and a package of programs are presented for simulating the atmospheric turbulent diffusion of contaminating impurities from land based and other sources. Test calculations and investigations of the effect of various factors are carried out

  13. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  14. The Development Of Mathematical Model For Automated Fingerprint Identification Systems Analysis

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2001-01-01

    Fingerprint has a strong oriented and periodic structure composed of dark lines of raised skin (ridges) and clear lines of lowered skin (furrows)that twist to form a distinct pattern. Although the manner in which the ridges flow is distinctive, other characteristics of the fingerprint called m inutiae a re what are most unique to the individual. These features are particular patterns consisting of terminations or bifurcations of the ridges. To assert if two fingerprints are from the same finger or not, experts detect those minutiae. AFIS (Automated Fingerprint Identification Systems) extract and compare these features for determining a match. The classic methods of fingerprints recognition are not suitable for direct implementation in form of computer algorithms. The creation of a finger's model was however the necessity of development of new, better algorithms of analysis. This paper presents a new numerical methods of fingerprints' simulation based on mathematical model of arrangement of dermatoglyphics and creation of minutiae. This paper describes also the design and implementation of an automated fingerprint identification systems which operates in two stages: minutiae extraction and minutiae matching

  15. Mathematical Simulation of Contaminant Flow in Closed Reservoir

    Science.gov (United States)

    Agranat, V. M.; Goudov, A. M.; Perminov, V. A.

    2016-01-01

    A mathematical model of the propagation in flooded mine lightweight contaminant due to allocation of groundwater is considered. Mathematical model was based on an analysis of experimental data and using concept and methods from reactive media mechanics. The boundary-value problem is solved numerically using the finite volume method. The distribution of fields of velocities and concentration of impurity particles in a flooded mine have been obtained at different times. These results can be used to analyze mining water treatment process due to environment and evaluate its further possible improvements.

  16. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  17. Short report The DeDiMa battery: a tool for identifying students’ mathematical learning profiles

    Directory of Open Access Journals (Sweden)

    Giannis Karagiannakis

    2014-10-01

    Full Text Available Background The DeDiMa battery is designed for assessing students’ mathematical learning profiles, and it has been used to validate a 4-dimensional model for classifying mathematical learning difficulties. The model arises from existing hypotheses in the cognitive psychology and neuroscience literature, while the DeDiMa battery provides a reliable set of mathematical tasks that help to match characteristics of students’ mathematical performances to their more basic learning difficulties. Participants and procedure In this report we address the question of how these tools can help sketch out a student’s mathematical learning profile. The participants are 5th and 6th grade students. Results We compare the emerging profiles of two students with mathematical learning difficulties (MLD matched for age, performance on a standardized test, non-verbal IQ, and educational experiences. The profiles are very different. Conclusions We believe that this approach can inform the design of individualized remedial interventions for MLD students.

  18. Pre-Service Teachers' Developing Conceptions about the Nature and Pedagogy of Mathematical Modeling in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc

    2016-01-01

    Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…

  19. How convincing is a matching Y-chromosome profile?

    DEFF Research Database (Denmark)

    Andersen, Mikkel Meyer; Balding, David J.

    2017-01-01

    , yet the number of matching relatives is fixed as population size varies, it is typically infeasible to derive population-based match probabilities relevant to a specific crime. We propose a conceptually simple solution, based on a simulation model and software to approximate the distribution...

  20. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  1. Mathematical simulation of processes in horizontal steam generator and the program of calculation of its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.F.; Zorin, V.M.; Gorburov, V.I. [OKB Gidropress, Moscow Energy Inst. (Russian Federation)

    1995-12-31

    On the basis of mathematical models describing the processes in horizontal steam generator (SG) the code giving the possibility to calculate the hydrodynamical characteristics in any point of water volume, has been developed. The code simulates the processes in SG in the stationary (or quasi-stationary) mode or operation only. The code may be used as a next step to calculations of the SG characteristics in the non-stationary modes of operation.

  2. Mathematical simulation of processes in horizontal steam generator and the program of calculation of its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V F; Zorin, V M; Gorburov, V I [OKB Gidropress, Moscow Energy Inst. (Russian Federation)

    1996-12-31

    On the basis of mathematical models describing the processes in horizontal steam generator (SG) the code giving the possibility to calculate the hydrodynamical characteristics in any point of water volume, has been developed. The code simulates the processes in SG in the stationary (or quasi-stationary) mode or operation only. The code may be used as a next step to calculations of the SG characteristics in the non-stationary modes of operation.

  3. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  4. Mass Transport Properties of LiD-U Mixtures from Orbital FreeMolecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    International Nuclear Information System (INIS)

    Burakovsky, Leonid; Kress, Joel D.; Collins, Lee A.

    2012-01-01

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD) x U (1-x) compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, ρ, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk B T/V + P e , is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species α, D α , the mutual diffusion coefficient for species α and β, Dαβ, and the shear viscosity, η, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  5. Final Stage Development of Reactor Console Simulator

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Nurfarhana Ayuni Joha

    2013-01-01

    The Reactor Console Simulator PUSPATI TRIGA Reactor was developed since end of 2011 and now in the final stage of development. It is will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behavior and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of human system interface (HSI) is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate and estimated reactor console parameters. The capabilities in user interface, reactor physics and thermal-hydraulics can be expanded and explored to simulation as well as modeling for New Reactor Console, Research Reactor and Nuclear Power Plant. (author)

  6. Mathematical modeling and Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum spores during continuous microwave-assisted pasteurization

    Science.gov (United States)

    The objective of this study is to develop a mathematical method to simulate the internal temperature history of products processed in a prototype microwave-assisted pasteurization system (MAPS) developed by Washington State University. Two products (10 oz. beef meatball trays and 16 oz. salmon fill...

  7. Dynamic bioconversion mathematical modelling and simulation of urban organic waste co-digestion in continuously stirred tank reactor

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.

    of this study was to apply a dynamic mathematical model to simulate the co-digestion of different urban organic wastes (UOW). The modelling was based on experimental activities, during which two reactors (R1, R2) were operated at hydraulic retention times (HRT) of 30, 20, 15, 10 days, in thermophilic conditions......The application of anaerobic digestion (AD) as process technology is increasing worldwide: the production of biogas, a versatile form of renewable energy, from biomass and organic waste materials allows mitigating greenhouse gas emission from the energy and transportation sectors while treating...... waste. However, the successful operation of AD processes is challenged by economic and technological issues. To overcome these barriers, mathematical modelling of the bioconversion process can provide support to develop strategies for controlling and optimizing the AD process. The objective...

  8. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1989-01-01

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed [fr

  9. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players.

    Science.gov (United States)

    Kingsley, Michael; Penas-Ruiz, Carlos; Terry, Chris; Russell, Mark

    2014-03-01

    This study compared the effects of three carbohydrate-hydration strategies on blood glucose concentration, exercise performance and hydration status throughout simulated soccer match-play. A randomized, double-blind and cross-over study design was employed. After familiarization, 14 recreational soccer players completed the soccer match simulation on three separate occasions. Participants consumed equal volumes of 9.6% carbohydrate-caffeine-electrolyte (∼ 6 mg/kg BW caffeine) solution with carbohydrate-electrolyte gels (H-CHO), 5.6% carbohydrate-electrolyte solution with electrolyte gels (CHO) or electrolyte solution and electrolyte gels (PL). Blood samples were taken at rest, immediately before exercise and every 15 min during exercise (first half: 15, 30, 45 min; second half: 60, 75, 90 min). Supplementation influenced blood glucose concentration (time × treatment interaction: pcarbohydrate availability with caffeine resulted in improved sprint performance and elevated blood glucose concentrations throughout the first half and at 90 min of exercise; however, this supplementation strategy negatively influenced hydration status when compared with 5.6% carbohydrate-electrolyte and electrolyte solutions. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Mathematical simulation of column flotation in pilot scale

    International Nuclear Information System (INIS)

    Simpson, J.; Jordan, D.; Cifuentes, G.; Morales, A.; Briones, L.

    2010-01-01

    The Procemin-I area of the Centro Minero Metalurgico Tecnologia y Servicio (CIMM T and S), has a full milling and flotation pilot plant in which several experiences are developed as: optimization of circuits, plant design, procurement of operating parameters, etc. Ones of the equipment in operation is the column flotation to pilot scale, witch have a medium level of automation. The problem presented in the operation of the column flotation is the low relationship during the operation between the operating basis parameters and the metallurgical results. The mathematical models used today to estimate the metallurgical results (i.e.: concentrate, tailing, enrichment and recovery) depending on variables that are manipulated by hand according the operator experience. But the process engineer needs tools without subjective vision to obtain the best performance of the column. The method used to help the column operation was a mathematical model based on the Stepwise Regression then considering empirical relationships between operational variables and experimental results. All the mathematical relationship developed in this study have a good correlation (up 90 % of precision), except one (up 70 %) due by non regular mineralogical feed. (Author) 7 refs.

  11. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study.

    Science.gov (United States)

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília Dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg(-1) · min(-1) ± 7.2 mL · kg(-1) · min(-1)) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 boxing practitioners and other athletes.

  12. Time Estimation Deficits in Childhood Mathematics Difficulties

    Science.gov (United States)

    Hurks, Petra P. M.; van Loosbroek, Erik

    2014-01-01

    Time perception has not been comprehensively examined in mathematics difficulties (MD). Therefore, verbal time estimation, production, and reproduction were tested in 13 individuals with MD and 16 healthy controls, matched for age, sex, and intellectual skills. Individuals with MD performed comparably to controls in time reproduction, but showed a…

  13. MATHEMATICAL MODEL FOR THE SIMULATION OF WATER QUALITY IN RIVERS USING THE VENSIM PLE® SOFTWARE

    Directory of Open Access Journals (Sweden)

    Julio Cesar de S. I. Gonçalves

    2013-06-01

    Full Text Available Mathematical modeling of water quality in rivers is an important tool for the planning and management of water resources. Nevertheless, the available models frequently show structural and functional limitations. With the objective of reducing these drawbacks, a new model has been developed to simulate water quality in rivers under unsteady conditions; this model runs on the Vensim PLE® software and can also be operated for steady-state conditions. The following eighteen water quality variables can be simulated: DO, BODc, organic nitrogen (No, ammonia nitrogen (Na, nitrite (Ni, nitrate (Nn, organic and inorganic phosphorus (Fo and Fi, respectively, inorganic solids (Si, phytoplankton (F, zooplankton (Z, bottom algae (A, detritus (D, total coliforms (TC, alkalinity (Al., total inorganic carbon (TIC, pH, and temperature (T. Methane as well as nitrogen and phosphorus compounds that are present in the aerobic and anaerobic layers of the sediment can also be simulated. Several scenarios were generated for computational simulations produced using the new model by using the QUAL2K program, and, when possible, analytical solutions. The results obtained using the new model strongly supported the results from the QUAL family and analytical solutions.

  14. Generating Models of a Matched Formula with a Polynomial Delay

    Czech Academy of Sciences Publication Activity Database

    Savický, Petr; Kučera, P.

    2016-01-01

    Roč. 56, č. 6 (2016), s. 379-402 ISSN 1076-9757 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA ČR(CZ) GA15-15511S Institutional support: RVO:67985807 Keywords : conjunctive normal form * matched formula * pure literal satisfiable formula Subject RIV: BA - General Mathematics Impact factor: 2.284, year: 2016

  15. Mathematics for engineering

    CERN Document Server

    Bolton, W

    2012-01-01

    Mathematics for Engineering has been carefully designed to provide a maths course for a wide ability range, and does not go beyond the requirements of Advanced GNVQ. It is an ideal text for any pre-degree engineering course where students require revision of the basics and plenty of practice work. Bill Bolton introduces the key concepts through examples set firmly in engineering contexts, which students will find relevant and motivating. The second edition has been carefully matched to the Curriculum 2000 Advanced GNVQ units:

  16. Mathematical and numerical foundations of turbulence models and applications

    CERN Document Server

    Chacón Rebollo, Tomás

    2014-01-01

    With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...

  17. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  18. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  19. Mathematical models in medicine: Diseases and epidemics

    International Nuclear Information System (INIS)

    Witten, M.

    1987-01-01

    This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling

  20. Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    2013-05-01

    Full Text Available The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of action-potential arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic action potential, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.

  1. Wind tunnel modeling of roadways: Comparison with mathematical models

    International Nuclear Information System (INIS)

    Heidorn, K.; Davies, A.E.; Murphy, M.C.

    1991-01-01

    The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted

  2. Applications of the soft computing in the automated history matching

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.C.; Maschio, C.; Schiozer, D.J. [Unicamp (Brazil)

    2006-07-01

    Reservoir management is a research field in petroleum engineering that optimizes reservoir performance based on environmental, political, economic and technological criteria. Reservoir simulation is based on geological models that simulate fluid flow. Models must be constantly corrected to yield the observed production behaviour. The process of history matching is controlled by the comparison of production data, well test data and measured data from simulations. Parametrization, objective function analysis, sensitivity analysis and uncertainty analysis are important steps in history matching. One of the main challenges facing automated history matching is to develop algorithms that find the optimal solution in multidimensional search spaces. Optimization algorithms can be either global optimizers that work with noisy multi-modal functions, or local optimizers that cannot work with noisy multi-modal functions. The problem with global optimizers is the very large number of function calls, which is an inconvenience due to the long reservoir simulation time. For that reason, techniques such as least squared, thin plane spline, kriging and artificial neural networks (ANN) have been used as substitutes to reservoir simulators. This paper described the use of optimization algorithms to find optimal solution in automated history matching. Several ANN were used, including the generalized regression neural network, fuzzy system with subtractive clustering and radial basis network. The UNIPAR soft computing method was used along with a modified Hooke- Jeeves optimization method. Two case studies with synthetic and real reservoirs are examined. It was concluded that the combination of global and local optimization has the potential to improve the history matching process and that the use of substitute models can reduce computational efforts. 15 refs., 11 figs.

  3. A comparative study between matched and mis-matched projection/back projection pairs used with ASIRT reconstruction method

    International Nuclear Information System (INIS)

    Guedouar, R.; Zarrad, B.

    2010-01-01

    For algebraic reconstruction techniques both forward and back projection operators are needed. The ability to perform accurate reconstruction relies fundamentally on the forward projection and back projection methods which are usually, the transpose of each other. Even though the mis-matched pairs may introduce additional errors during the iterative process, the usefulness of mis-matched projector/back projector pairs has been proved in image reconstruction. This work investigates the performance of matched and mis-matched reconstruction pairs using popular forward projectors and their transposes when used in reconstruction tasks with additive simultaneous iterative reconstruction techniques (ASIRT) in a parallel beam approach. Simulated noiseless phantoms are used to compare the performance of the investigated pairs in terms of the root mean squared errors (RMSE) which are calculated between reconstructed slices and the reference in different regions. Results show that mis-matched projection/back projection pairs can promise more accuracy of reconstructed images than matched ones. The forward projection operator performance seems independent of the choice of the back projection operator and vice versa.

  4. A comparative study between matched and mis-matched projection/back projection pairs used with ASIRT reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Guedouar, R., E-mail: raja_guedouar@yahoo.f [Higher School of Health Sciences and Techniques of Monastir, Av. Avicenne, 5060 Monastir, B.P. 128 (Tunisia); Zarrad, B., E-mail: boubakerzarrad@yahoo.f [Higher School of Health Sciences and Techniques of Monastir, Av. Avicenne, 5060 Monastir, B.P. 128 (Tunisia)

    2010-07-21

    For algebraic reconstruction techniques both forward and back projection operators are needed. The ability to perform accurate reconstruction relies fundamentally on the forward projection and back projection methods which are usually, the transpose of each other. Even though the mis-matched pairs may introduce additional errors during the iterative process, the usefulness of mis-matched projector/back projector pairs has been proved in image reconstruction. This work investigates the performance of matched and mis-matched reconstruction pairs using popular forward projectors and their transposes when used in reconstruction tasks with additive simultaneous iterative reconstruction techniques (ASIRT) in a parallel beam approach. Simulated noiseless phantoms are used to compare the performance of the investigated pairs in terms of the root mean squared errors (RMSE) which are calculated between reconstructed slices and the reference in different regions. Results show that mis-matched projection/back projection pairs can promise more accuracy of reconstructed images than matched ones. The forward projection operator performance seems independent of the choice of the back projection operator and vice versa.

  5. Marriage and Divorce in a Model of Matching

    OpenAIRE

    Mumcu, Ayse; Saglam, Ismail

    2006-01-01

    We study the problem of marriage formation and marital distribution in a two-period model of matching, extending the matching with bargaining framework of Crawford and Rochford (1986). We run simulations to find the effects of alimony rate, legal cost of divorce, initial endowments, couple and single productivity parameters on the payoffs and marital status in the society.

  6. Geometry optimization of a fibrous scaffold based on mathematical modelling and CFD simulation of a dynamic cell culture

    DEFF Research Database (Denmark)

    Tajsoleiman, Tannaz; J. Abdekhodaie, Mohammad; Gernaey, Krist

    2016-01-01

    simulation of cartilage cell culture under a perfusion flow, which allows not only to characterize the supply of nutrients and metabolic products inside a fibrous scaffold, but also to assess the overall culture condition and predict the cell growth rate. Afterwards, the simulation results supported finding...... an optimized design of the scaffold within a new mathematical optimization algorithm that is proposed. The main concept of this optimization routine isto maintain a large effective surface while simultaneously keeping the shear stress levelin an operating range that is expected to be supporting growth....... Therewith, it should bepossible to gradually reach improved culture efficiency as defined in the objective function....

  7. Mathematical models for therapeutic approaches to control HIV disease transmission

    CERN Document Server

    Roy, Priti Kumar

    2015-01-01

    The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

  8. CMOS Silicon-on-Sapphire RF Tunable Matching Networks

    Directory of Open Access Journals (Sweden)

    Chamseddine Ahmad

    2006-01-01

    Full Text Available This paper describes the design and optimization of an RF tunable network capable of matching highly mismatched loads to 50 at 1.9 GHz. Tuning was achieved using switched capacitors with low-loss, single-transistor switches. Simulations show that the performance of the matching network depends strongly on the switch performances and on the inductor losses. A 0.5 m silicon-on-sapphire (SOS CMOS technology was chosen for network implementation because of the relatively high-quality monolithic inductors achievable in the process. The matching network provides very good matching for inductive loads, and acceptable matching for highly capacitive loads. A 1 dB compression point greater than dBm was obtained for a wide range of load impedances.

  9. Transverse Matching Progress Of The SNS Superconducting Linac

    International Nuclear Information System (INIS)

    Zhang, Yan; Cousineau, Sarah M.; Liu, Yun

    2011-01-01

    Experience using laser-wire beam profile measurement to perform transverse beam matching in the SNS superconducting linac is discussed. As the SNS beam power is ramped up to 1 MW, transverse beam matching becomes a concern to control beam loss and residual activation in the linac. In our experiments, however, beam loss is not very sensitive to the matching condition. In addition, we have encountered difficulties in performing a satisfactory transverse matching with the envelope model currently available in the XAL software framework. Offline data analysis from multi-particle tracking simulation shows that the accuracy of the current online model may not be sufficient for modeling the SC linac.

  10. Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol.

    Science.gov (United States)

    Ansdell, Paul; Dekerle, Jeanne

    2017-10-10

    To investigate the development of neuromuscular fatigue during a basketball game simulation and ascertain whether sodium bicarbonate (NaHCO3) supplementation attenuates any neuromuscular fatigue that persists. Ten participants ingested 0.2 g.kg of NaHCO3 (or an equimolar placebo dosage of sodium chloride [NaCl]) 90 and 60 minutes prior to commencing a basketball game simulation (ALK-T vs PLA-T). Isometric maximal voluntary contractions of the knee extensors (MVIC) and potentiated high (100 Hz) and low (10 Hz) frequency doublet twitches were recorded before and after each match quarter for both trials. In addition, 15 m sprint times and layup completion (%) were recorded during each quarter. MVIC, 100 and 10 Hz twitch forces declined progressively in both trials (P0.05). A basketball simulation protocol induces a substantial amount of neuromuscular (reduction in knee extensor MVICs) and peripheral fatigue with a concomitant increase in 15 m sprint time over the protocol. NaHCO3 supplementation attenuated the rate of fatigue development by protecting contractile elements of the muscle fibres. This study provides coaches with information about the magnitude of fatigue induced by a simulated basketball game, and provides evidence of the efficacy of NaHCO3 in attenuating fatigue.

  11. An Implementation of Bigraph Matching

    DEFF Research Database (Denmark)

    Glenstrup, Arne John; Damgaard, Troels Christoffer; Birkedal, Lars

    We describe a provably sound and complete matching algorithm for bigraphical reactive systems. The algorithm has been implemented in our BPL Tool, a first implementation of bigraphical reactive systems. We describe the tool and present a concrete example of how it can be used to simulate a model...

  12. Calibration of mathematical models for simulation of thermal, seepage and mechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Baldi, G.; Borsetto, M.; Hueckel, T.

    1987-01-01

    This report presents results of research on the verification of the validity of a generalized thermo-elastoplastic-hydraulic mathematical model elaborated at Ismes for description of the behaviour of boom clay. The model is described in Section 2. Experimental results performed at Ismes for the identification of the material constants in athermal and thermal drained conditions are then presented. Procedures for the identification are described in Section 4. The undrained consolidated constant total stress heating test is then discussed. The undrained test shows the possibility of clay yielding due to effective pressure decrease during heating, caused by water pressure growth. The test has been simulated numerically, confirming the interpretation of the experiment. Further simulation of plane strain and plane stress central heating axisymmetric problem shows again a formation of a yielded clay zone around the heater. Interpretation of the results and recommendations for further research are given

  13. Mathematical methods for cancer evolution

    CERN Document Server

    Suzuki, Takashi

    2017-01-01

    The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools. The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematica...

  14. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  15. Peculiarities of different-ligand complexing of rare earths with nitrilotriacetate and adenosine-5'-triphosphate according to the mathematical simulation data

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Dobrynina, N.A.; Smirnova, N.S.; Martynenko, L.I.; Evseev, A.M.

    1988-01-01

    By the method of pH-metric titration using mathematical simulation different-ligand complexing of rare earths with nitrilotriacetate and adenosine-5'-triphosphate is studied. It is shown that the ligands interact with the formation of protonated associates. The composition of different complexes is determined, their stability constants are calculated, their existence regions are found

  16. The Use of Model Matching Video Analysis and Computational Simulation to Study the Ankle Sprain Injury Mechanism

    Directory of Open Access Journals (Sweden)

    Daniel Tik-Pui Fong

    2012-10-01

    Full Text Available Lateral ankle sprains continue to be the most common injury sustained by athletes and create an annual healthcare burden of over $4 billion in the U.S. alone. Foot inversion is suspected in these cases, but the mechanism of injury remains unclear. While kinematics and kinetics data are crucial in understanding the injury mechanisms, ligament behaviour measures – such as ligament strains – are viewed as the potential causal factors of ankle sprains. This review article demonstrates a novel methodology that integrates model matching video analyses with computational simulations in order to investigate injury-producing events for a better understanding of such injury mechanisms. In particular, ankle joint kinematics from actual injury incidents were deduced by model matching video analyses and then input into a generic computational model based on rigid bone surfaces and deformable ligaments of the ankle so as to investigate the ligament strains that accompany these sprain injuries. These techniques may have the potential for guiding ankle sprain prevention strategies and targeted rehabilitation therapies.

  17. Selection method of terrain matching area for TERCOM algorithm

    Science.gov (United States)

    Zhang, Qieqie; Zhao, Long

    2017-10-01

    The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%

  18. ECMOR 4. 4th European conference on the mathematics of oil recovery. Topic D: Simulation of fluid flow. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The report with collected proceedings from a conference, deals with mathematics of oil recovery with the focus on simulation of fluid flow. Topics of proceedings are as follow: Validity of macroscopic viscous fingering models for 2D and 3D-flows; pressure equation for fluid flow in a stochastic medium; predicting multicomponent, multiphase flow in heterogeneous systems using streamtubes; analytic techniques in pressure transient testing; global triangular structure in four-component conservation laws; exact solution of the problem on hydrodynamic interaction between noncommunicating layers under conditions of their joint development; fluid rate in flowing granular medium with moving boundary; complex variable boundary element method for tracking streamlines across fractures; transport equations for miscible displacements in heterogeneous porous media - a streamtube approach; mathematical modelling of condensate film flow by gravity drainage; effect of capillary forces on immiscible two-phase flow in strongly heterogeneous porous media; multidomain direct method and local time steps in reservoir simulation; adaptive methods for chemical flooding; flux continuous for the full tensor equation; discretization on non-orthogonal, curvilinear grids for multi-phase flow; blending finite elements and finite volumes for the solution of miscible incompressible flow. 16 papers are prepared. 240 refs., 122 figs., 6 tabs.

  19. Mathematical modelling, variational formulation and numerical simulation of the energy transfer process in a gray plate in the presence of a thermal radiant source

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-05-01

    The energy transfer process in a gray, opaque and rigid plate, heated by an external thermal radiant source, is considered. The source is regarded as a spherical black body, with radius a (a → 0) and uniform heat generation, placed above the plate. A mathematical model is constructed, assuming that the heat transfer from/to the plate takes place by thermal radiation. The obtained mathematical model is nonlinear. Is presented a suitable variational principle which is employed for simulating some particular cases. (author)

  20. Mathematical simulation for compensation capacities area of pipeline routes in ship systems

    Science.gov (United States)

    Ngo, G. V.; Sakhno, K. N.

    2018-05-01

    In this paper, the authors considered the problem of manufacturability’s enhancement of ship systems pipeline at the designing stage. The analysis of arrangements and possibilities for compensation of deviations for pipeline routes has been carried out. The task was set to produce the “fit pipe” together with the rest of the pipes in the route. It was proposed to compensate for deviations by movement of the pipeline route during pipe installation and to calculate maximum values of these displacements in the analyzed path. Theoretical bases of deviation compensation for pipeline routes using rotations of parallel section pairs of pipes are assembled. Mathematical and graphical simulations of compensation area capacities of pipeline routes with various configurations are completed. Prerequisites have been created for creating an automated program that will allow one to determine values of the compensatory capacities area for pipeline routes and to assign quantities of necessary allowances.

  1. FEMME, a flexible environment for mathematically modelling the environment

    NARCIS (Netherlands)

    Soetaert, K.E.R.; DeClippele, V.; Herman, P.M.J.

    2002-01-01

    A new, FORTRAN-based, simulation environment called FEMME (Flexible Environment for Mathematically Modelling the Environment), designed for implementing, solving and analysing mathematical models in ecology is presented. Three separate phases in ecological modelling are distinguished: (1) the model

  2. The utility of imputed matched sets. Analyzing probabilistically linked databases in a low information setting.

    Science.gov (United States)

    Thomas, A M; Cook, L J; Dean, J M; Olson, L M

    2014-01-01

    To compare results from high probability matched sets versus imputed matched sets across differing levels of linkage information. A series of linkages with varying amounts of available information were performed on two simulated datasets derived from multiyear motor vehicle crash (MVC) and hospital databases, where true matches were known. Distributions of high probability and imputed matched sets were compared against the true match population for occupant age, MVC county, and MVC hour. Regression models were fit to simulated log hospital charges and hospitalization status. High probability and imputed matched sets were not significantly different from occupant age, MVC county, and MVC hour in high information settings (p > 0.999). In low information settings, high probability matched sets were significantly different from occupant age and MVC county (p sets were not (p > 0.493). High information settings saw no significant differences in inference of simulated log hospital charges and hospitalization status between the two methods. High probability and imputed matched sets were significantly different from the outcomes in low information settings; however, imputed matched sets were more robust. The level of information available to a linkage is an important consideration. High probability matched sets are suitable for high to moderate information settings and for situations involving case-specific analysis. Conversely, imputed matched sets are preferable for low information settings when conducting population-based analyses.

  3. Science modelling in pre-calculus: how to make mathematics problems contextually meaningful

    Science.gov (United States)

    Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen

    2011-04-01

    of computer-based science simulations. Although there are several exceptional computer-based science simulations designed for mathematics classes (see, e.g. Kinetic Book (http://www.kineticbooks.com/) or Gizmos (http://www.explorelearning.com/)), we concentrate mainly on the PhET Interactive Simulations developed at the University of Colorado at Boulder (http://phet.colorado.edu/) in generating our argument that computer simulations more accurately represent the contextual characteristics of scientific phenomena than their textual descriptions.

  4. A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids

    International Nuclear Information System (INIS)

    Bracco, Stefano; Delfino, Federico

    2017-01-01

    Microturbines represent a suitable technology to be adopted in smart microgrids since they are characterized by affordable capital and maintenance costs, high reliability and flexibility, and low environmental impact; moreover, they can be fed by fossil fuels or biofuels. They can operate in cogeneration and trigeneration mode, thus permitting to attain high global efficiency values of the energy conversion system from primary energy to electrical and thermal energy; from the electrical point of view, microturbines can operate connected to the distribution grid but also in islanded mode, thus enabling their use in remote areas without electrification. The paper describes the mathematical model that has been developed to simulate in off-design and transient conditions the operation of a 65 kW_e_l cogeneration microturbine installed within a smart microgrid. The dynamic simulation model is characterized by a flexible architecture that permits to simulate other different size single-shaft microturbines. The paper reports the main equations of the model, focusing on the architecture of the simulator and the microturbine control system; furthermore the most significant results derived from the validation phase are reported too, referring to the microturbine installed in the Smart Polygeneration Microgrid of the Savona Campus at the University of Genoa in Italy. - Highlights: • Dynamic simulation model of a cogeneration microturbine. • Off-design and transient performances of the microturbine. • Simulator validated on the Smart Polygeneration Microgrid at the Savona Campus.

  5. A feature matching and fusion-based positive obstacle detection algorithm for field autonomous land vehicles

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2017-03-01

    Full Text Available Positive obstacles will cause damage to field robotics during traveling in field. Field autonomous land vehicle is a typical field robotic. This article presents a feature matching and fusion-based algorithm to detect obstacles using LiDARs for field autonomous land vehicles. There are three main contributions: (1 A novel setup method of compact LiDAR is introduced. This method improved the LiDAR data density and reduced the blind region of the LiDAR sensor. (2 A mathematical model is deduced under this new setup method. The ideal scan line is generated by using the deduced mathematical model. (3 Based on the proposed mathematical model, a feature matching and fusion (FMAF-based algorithm is presented in this article, which is employed to detect obstacles. Experimental results show that the performance of the proposed algorithm is robust and stable, and the computing time is reduced by an order of two magnitudes by comparing with other exited algorithms. This algorithm has been perfectly applied to our autonomous land vehicle, which has won the champion in the challenge of Chinese “Overcome Danger 2014” ground unmanned vehicle.

  6. Using crosswell data to enhance history matching

    KAUST Repository

    Ravanelli, Fabio M.

    2014-01-01

    One of the most challenging tasks in the oil industry is the production of reliable reservoir forecast models. Due to different sources of uncertainties in the numerical models and inputs, reservoir simulations are often only crude approximations of the reality. This problem is mitigated by conditioning the model with data through data assimilation, a process known in the oil industry as history matching. Several recent advances are being used to improve history matching reliability, notably the use of time-lapse data and advanced data assimilation techniques. One of the most promising data assimilation techniques employed in the industry is the ensemble Kalman filter (EnKF) because of its ability to deal with non-linear models at reasonable computational cost. In this paper we study the use of crosswell seismic data as an alternative to 4D seismic surveys in areas where it is not possible to re-shoot seismic. A synthetic reservoir model is used in a history matching study designed better estimate porosity and permeability distributions and improve the quality of the model to predict future field performance. This study is divided in three parts: First the use of production data only is evaluated (baseline for benchmark). Second the benefits of using production and 4D seismic data are assessed. Finally, a new conceptual idea is proposed to obtain time-lapse information for history matching. The use of crosswell time-lapse seismic tomography to map velocities in the interwell region is demonstrated as a potential tool to ensure survey reproducibility and low acquisition cost when compared with full scale surface surveys. Our numerical simulations show that the proposed method provides promising history matching results leading to similar estimation error reductions when compared with conventional history matched surface seismic data.

  7. Introduction of hypermatrix and operator notation into a discrete mathematics simulation model of malignant tumour response to therapeutic schemes in vivo. Some operator properties.

    Science.gov (United States)

    Stamatakos, Georgios S; Dionysiou, Dimitra D

    2009-10-21

    The tremendous rate of accumulation of experimental and clinical knowledge pertaining to cancer dictates the development of a theoretical framework for the meaningful integration of such knowledge at all levels of biocomplexity. In this context our research group has developed and partly validated a number of spatiotemporal simulation models of in vivo tumour growth and in particular tumour response to several therapeutic schemes. Most of the modeling modules have been based on discrete mathematics and therefore have been formulated in terms of rather complex algorithms (e.g. in pseudocode and actual computer code). However, such lengthy algorithmic descriptions, although sufficient from the mathematical point of view, may render it difficult for an interested reader to readily identify the sequence of the very basic simulation operations that lie at the heart of the entire model. In order to both alleviate this problem and at the same time provide a bridge to symbolic mathematics, we propose the introduction of the notion of hypermatrix in conjunction with that of a discrete operator into the already developed models. Using a radiotherapy response simulation example we demonstrate how the entire model can be considered as the sequential application of a number of discrete operators to a hypermatrix corresponding to the dynamics of the anatomic area of interest. Subsequently, we investigate the operators' commutativity and outline the "summarize and jump" strategy aiming at efficiently and realistically address multilevel biological problems such as cancer. In order to clarify the actual effect of the composite discrete operator we present further simulation results which are in agreement with the outcome of the clinical study RTOG 83-02, thus strengthening the reliability of the model developed.

  8. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  9. DEVELOPMENT OF MAPLE IN TRAINING HIGHER MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Volodymyr M. Mykhalevych

    2011-03-01

    Full Text Available The relevance of the material presented in this paper due to the need to develop and implement new information technologies in teaching higher mathematics with the use of systems of symbolic mathematics. Brief analysis of the Maple and Mathematica is given. The basic results of authors on working out of a training complex on higher mathematics are given. The complex was created in an environment of symbolic mathematics Maple. Procedure simulators, which give the whole process of model solutions of mathematical problems are a major element of the complex. The results of such procedures for typical problems from different sections of higher mathematics in accordance with the program for technical universities are represented. Questions the benefits and methods of using such programs, in particular those related to deficits of licensed copies of Maple was touched.

  10. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children.

    Science.gov (United States)

    Passolunghi, Maria C; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C

    2016-01-01

    Mathematics anxiety (MA) has been defined as "a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations." Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  11. Mathematics Anxiety, Working Memory and Mathematics Performance in Secondary-School Children

    Directory of Open Access Journals (Sweden)

    Maria Chiara ePassolunghi

    2016-02-01

    Full Text Available Mathematics anxiety (MA has been defined as a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations. Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM also plays an important part in such anxious feelings.The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA and low math anxiety (LMA. Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  12. Fractured reservoir history matching improved based on artificial intelligent

    Directory of Open Access Journals (Sweden)

    Sayyed Hadi Riazi

    2016-12-01

    Full Text Available In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (PSO and Imperialist Competitive Algorithm (ICA. In automatic history matching, sensitive analysis is often performed on full simulation model. In this work, to get new range of the uncertain parameters (matching parameters in which the objective function has a minimum value, sensitivity analysis is also performed on the proxy model. By applying the modified ranges to the optimization methods, optimization of the objective function will be faster and outputs of the optimization methods (matching parameters are produced in less time and with high precision. This procedure leads to matching of history of the field in which a set of reservoir parameters is used. The final sets of parameters are then applied for the full simulation model to validate the technique. The obtained results show that the present procedure in this work is effective for history matching process due to its robust dependability and fast convergence speed. Due to high speed and need for small data sets, LSSVM is the best tool to build a proxy model. Also the comparison of PSO and ICA shows that PSO is less time-consuming and more effective.

  13. Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM

    Science.gov (United States)

    Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno

    2015-01-01

    Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.

  14. A two-parameter preliminary optimization study for a fluidized-bed boiler through a comprehensive mathematical simulator

    Energy Technology Data Exchange (ETDEWEB)

    Rabi, Jose A.; Souza-Santos, Marcio L. de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: jrabi@fem.unicamp.br; dss@fem.unicamp.br

    2000-07-01

    Modeling and simulation of fluidized-bed equipment have demonstrated their importance as a tool for design and optimization of industrial equipment. Accordingly, this work carries on an optimization study of a fluidized-bed boiler with the aid of a comprehensive mathematical simulator. The configuration data of the boiler are based on a particular Babcock and Wilcox Co. (USA) test unit. Due to their importance, the number of tubes in the bed section and the air excess are chosen as the parameters upon which the optimization study is based. On their turn, the fixed-carbon conversion factor and the boiler efficiency are chosen as two distinct optimization objectives. The results from both preliminary searches are compared. The present work is intended to be just a study on possible routes for future optimization of larger boilers. Nonetheless, the present discussion might give some insight on the equipment behavior. (author)

  15. Mathematical modeling and dynamic simulation of a class of drive systems with permanent magnet synchronous motors

    Directory of Open Access Journals (Sweden)

    Mikhov M.

    2009-12-01

    Full Text Available The performance of a two-coordinate drive system with permanent magnet synchronous motors is analyzed and discussed in this paper. Both motors have been controlled in brushless DC motor mode in accordance with the rotor positions. Detailed study has been carried out by means of mathematical modeling and computer simulation for the respective transient and steady-state regimes at various load and work conditions. The research carried out as well as the results obtained can be used in the design, optimization and tuning of such types of drive systems. They could be also applied in the teaching process.

  16. Multi data reservior history matching and uncertainty quantification framework

    KAUST Repository

    Katterbauer, Klemens

    2015-11-26

    A multi-data reservoir history matching and uncertainty quantification framework is provided. The framework can utilize multiple data sets such as production, seismic, electromagnetic, gravimetric and surface deformation data for improving the history matching process. The framework can consist of a geological model that is interfaced with a reservoir simulator. The reservoir simulator can interface with seismic, electromagnetic, gravimetric and surface deformation modules to predict the corresponding observations. The observations can then be incorporated into a recursive filter that subsequently updates the model state and parameters distributions, providing a general framework to quantify and eventually reduce with the data, uncertainty in the estimated reservoir state and parameters.

  17. International seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications

    CERN Document Server

    Rancic, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused interna...

  18. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1997-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  19. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1998-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  20. Mathematical model simulation of a diesel spill in the Potomac River

    International Nuclear Information System (INIS)

    Feng, S.S.; Nicolette, J.P.; Markarian, R.K.

    1995-01-01

    A mathematical modeling technique was used to simulate the transport and fate of approximately 400,000 gallons of spilled diesel fuel and its impact on the aquatic biota in the Potomac River and Sugarland Run. Sugarland Run is a tributary about 21 miles upstream from Washington, DC. The mass balance model predicted the dynamic (spatial and temporal) distribution of spilled oil. The distributions were presented in terms of surface oil slick and sheen, dissolved and undissolved total petroleum hydrocarbons (TPH) in the water surface, water column, river sediments, shoreline and atmosphere. The processes simulated included advective movement, dispersion, dissolution, evaporation, volatilization, sedimentation, shoreline deposition, biodegradation, and removal of oil from cleanup operations. The model predicted that the spill resulted in a water column dissolved TPH concentration range of 0.05 to 18.6 ppm in Sugarland Run. The spilled oil traveled 10 miles along Sugarland Run before it reached the Potomac River. At the Potomac River, the water column TPH concentration was predicted to have decreased to the range of 0.0 to 0.43 ppm. These levels were consistent with field samples. To assess biological injury, the model used 4, 8, 24, 48, and 96-hr LC values in computing the fish injury caused by the fuel oil. The model used the maximum running average of dissolved TPH and exposure time to predict levels of fish mortality in the range of 38 to 40% in Sugarland Run. This prediction was consistent with field fisheries surveys. The model also computed the amount of spilled oil that adsorbed and settled into the river sediments

  1. Proceedings of the workshop on applied mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H C; Couture, M; Douglas, S; Leivo, H P

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics.

  2. Proceedings of the workshop on applied mathematics

    International Nuclear Information System (INIS)

    Lee, H.C.; Couture, M.; Douglas, S.; Leivo, H.P.

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics

  3. The mathematics of banking and finance

    CERN Document Server

    Cox, Dennis

    2006-01-01

    Throughout banking, mathematical techniques are used. Some of these are within software products or models; mathematicians use others to analyse data. The current literature on the subject is either very basic or very advanced. The Mathematics of Banking offers an intermediate guide to the various techniques used in the industry, and a consideration of how each one should be approached. Written in a practical style, it will enable readers to quickly appreciate the purpose of the techniques and, through illustrations, see how they can be applied in practice. Coverage is extensive and includes techniques such as VaR analysis, Monte Carlo simulation, extreme value theory, variance and many others.A practical review of mathematical techniques needed in banking which does not expect a high level of mathematical competence from the reader

  4. Introduction of Hypermatrix and Operator Notation into a Discrete Mathematics Simulation Model of Malignant Tumour Response to Therapeutic Schemes In Vivo. Some Operator Properties

    Directory of Open Access Journals (Sweden)

    Georgios S. Stamatakos

    2009-10-01

    Full Text Available The tremendous rate of accumulation of experimental and clinical knowledge pertaining to cancer dictates the development of a theoretical framework for the meaningful integration of such knowledge at all levels of biocomplexity. In this context our research group has developed and partly validated a number of spatiotemporal simulation models of in vivo tumour growth and in particular tumour response to several therapeutic schemes. Most of the modeling modules have been based on discrete mathematics and therefore have been formulated in terms of rather complex algorithms (e.g. in pseudocode and actual computer code. However, such lengthy algorithmic descriptions, although sufficient from the mathematical point of view, may render it difficult for an interested reader to readily identify the sequence of the very basic simulation operations that lie at the heart of the entire model. In order to both alleviate this problem and at the same time provide a bridge to symbolic mathematics, we propose the introduction of the notion of hypermatrix in conjunction with that of a discrete operator into the already developed models. Using a radiotherapy response simulation example we demonstrate how the entire model can be considered as the sequential application of a number of discrete operators to a hypermatrix corresponding to the dynamics of the anatomic area of interest. Subsequently, we investigate the operators’ commutativity and outline the “summarize and jump” strategy aiming at efficiently and realistically address multilevel biological problems such as cancer. In order to clarify the actual effect of the composite discrete operator we present further simulation results which are in agreement with the outcome of the clinical study RTOG 83–02, thus strengthening the reliability of the model developed.

  5. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    Science.gov (United States)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  6. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang

    2014-04-01

    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  7. Experiments with mathematical models to simulate hepatitis A population dynamics under different levels of endemicity

    Directory of Open Access Journals (Sweden)

    Mariana Alves de Guimaraens

    Full Text Available Heterogeneous access to sanitation services is a characteristic of communities in Brazil. This heterogeneity leads to different patterns of hepatitis A endemicity: areas with low infection rates have higher probability of outbreaks, and areas with higher infection rates have high prevalence and low risk of outbreaks. Here we develop a mathematical model to study the effect of variable exposure to infection on the epidemiological dynamics of hepatitis A. Differential equations were used to simulate population dynamics and were numerically solved using the software StellaTM. The model uses parameters from serological surveys in the Greater Metropolitan Rio de Janeiro, in areas with different sanitation conditions. Computer simulation experiments show that the range of infection rates observed in these communities are characteristic of high and low levels of hepatitis A endemicity. We also found that the functional relationship between sanitation and exposure to infection is an important component of the model. The analysis of the public health impact of partial sanitation requires a better understanding of this relationship.

  8. Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

    Directory of Open Access Journals (Sweden)

    Mohammad Mesbah

    2017-10-01

    Full Text Available Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite element method (FEM. To ensure the accuracy of the developed model, the simulation results were validated using the reported experimental data for potassium glycinate (PG, monoethanol amine (MEA, and methyldiethanol amine (MDEA. The results of the proposed model indicated that PG absorbent has the highest removal efficiency of CO2, followed by potassium threonate (PT, MEA, amino-2-methyl-1-propanol (AMP, diethanol amine (DEA, and MDEA in sequence. In addition, the results revealed that the CO2 removal efficiency was favored by absorbent flow rate and liquid temperature, while the gas flow rate has a reverse effect. The simulation results proved that the hollow fiber membrane contactors have a good potential in the area of CO2 capture.

  9. The match-to-match variation of match-running in elite female soccer.

    Science.gov (United States)

    Trewin, Joshua; Meylan, César; Varley, Matthew C; Cronin, John

    2018-02-01

    The purpose of this study was to examine the match-to-match variation of match-running in elite female soccer players utilising GPS, using full-match and rolling period analyses. Longitudinal study. Elite female soccer players (n=45) from the same national team were observed during 55 international fixtures across 5 years (2012-2016). Data was analysed using a custom built MS Excel spreadsheet as full-matches and using a rolling 5-min analysis period, for all players who played 90-min matches (files=172). Variation was examined using co-efficient of variation and 90% confidence limits, calculated following log transformation. Total distance per minute exhibited the smallest variation when both the full-match and peak 5-min running periods were examined (CV=6.8-7.2%). Sprint-efforts were the most variable during a full-match (CV=53%), whilst high-speed running per minute exhibited the greatest variation in the post-peak 5-min period (CV=143%). Peak running periods were observed as slightly more variable than full-match analyses, with the post-peak period very-highly variable. Variability of accelerations (CV=17%) and Player Load (CV=14%) was lower than that of high-speed actions. Positional differences were also present, with centre backs exhibiting the greatest variation in high-speed movements (CV=41-65%). Practitioners and researchers should account for within player variability when examining match performances. Identification of peak running periods should be used to assist worst case scenarios. Whilst micro-sensor technology should be further examined as to its viable use within match-analyses. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  11. Mathematical paradigms of climate science

    CERN Document Server

    Cannarsa, Piermarco; Jones, Christopher; Portaluri, Alessandro

    2016-01-01

    This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 (“Mathematics of Planet Earth 2013”). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth’s environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation te...

  12. Mix-and-match holography

    KAUST Repository

    Peng, Yifan; Dun, Xiong; Sun, Qilin; Heidrich, Wolfgang

    2017-01-01

    target images into pairs of front and rear phase-distorting surfaces. Different target holograms can be decoded by mixing and matching different front and rear surfaces under specific geometric alignments. Our approach, which we call mixWe derive a detailed image formation model for the setting of holographic projection displays, as well as a multiplexing method based on a combination of phase retrieval methods and complex matrix factorization. We demonstrate several application scenarios in both simulation and physical prototypes.

  13. An Integrated Approach to Mathematical Modeling: A Classroom Study.

    Science.gov (United States)

    Doerr, Helen M.

    Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…

  14. Videogames as an incipient research object inMathematics Education

    Directory of Open Access Journals (Sweden)

    Lluís Albarracín

    2017-01-01

    Full Text Available This article presents a review of research made in the field of mathematics education on the use of video games in the classroom. These investigations have focused on four areas: impact in academic performance focused on mathematical contents, specific mathematical contents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving.  Finally,  we  propose  two  research  new  approaches that  have  not  been  explored  so  far,  like  the  use  of  commercial  videogames  for  mathematical  activities  or  the  use  of  simulation  games  as  environment  to  promote  mathematical modeling.

  15. Fast group matching for MR fingerprinting reconstruction.

    Science.gov (United States)

    Cauley, Stephen F; Setsompop, Kawin; Ma, Dan; Jiang, Yun; Ye, Huihui; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L

    2015-08-01

    MR fingerprinting (MRF) is a technique for quantitative tissue mapping using pseudorandom measurements. To estimate tissue properties such as T1 , T2 , proton density, and B0 , the rapidly acquired data are compared against a large dictionary of Bloch simulations. This matching process can be a very computationally demanding portion of MRF reconstruction. We introduce a fast group matching algorithm (GRM) that exploits inherent correlation within MRF dictionaries to create highly clustered groupings of the elements. During matching, a group specific signature is first used to remove poor matching possibilities. Group principal component analysis (PCA) is used to evaluate all remaining tissue types. In vivo 3 Tesla brain data were used to validate the accuracy of our approach. For a trueFISP sequence with over 196,000 dictionary elements, 1000 MRF samples, and image matrix of 128 × 128, GRM was able to map MR parameters within 2s using standard vendor computational resources. This is an order of magnitude faster than global PCA and nearly two orders of magnitude faster than direct matching, with comparable accuracy (1-2% relative error). The proposed GRM method is a highly efficient model reduction technique for MRF matching and should enable clinically relevant reconstruction accuracy and time on standard vendor computational resources. © 2014 Wiley Periodicals, Inc.

  16. MATHEMATICAL SIMULATION AND AUTOMATION OF PROCESS ENGINEERING FOR WELDED STRUCTURE PRODUCTION

    Directory of Open Access Journals (Sweden)

    P. V. Zankovets

    2017-01-01

    Full Text Available Models and methods for presentation of database and knowledge base have been developed on the basis of composition and structure of data flow in technological process of welding. The information in data and knowledge base is presented in the form of multilevel hierarchical structure and it is organized according to its functionality in the form of separate files. Each file contains a great number of tables. While using mathematical simulation and information technologies an expert system has been developed with the purpose to take decisions in designing and process engineering for production of welded ructures. The system makes it possible to carry out technically substantiated selection of welded and welding materials, sttypes of welded connections, welding methods, parameters and modes of welding. The developed system allows to improve quality of the accepted design decisions due to reduction of manual labour costs for work with normative-reference documentation, analysis and evaluation of dozens of possible alternatives. The system also permits to reduce labour inputs for testing structures on technological effectiveness, to ensure reduction of materials consumption for welded structures, to guarantee faultless formation of welded connections at this stage.

  17. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  18. A digital matched filter for reverse time chaos.

    Science.gov (United States)

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  19. Mathematical model of compact type evaporator

    Science.gov (United States)

    Borovička, Martin; Hyhlík, Tomáš

    2018-06-01

    In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.

  20. MODELING CONTROLLED ASYNCHRONOUS ELECTRIC DRIVES WITH MATCHING REDUCERS AND TRANSFORMERS

    Directory of Open Access Journals (Sweden)

    V. S. Petrushin

    2015-04-01

    Full Text Available Purpose. Working out of mathematical models of the speed-controlled induction electric drives ensuring joint consideration of transformers, motors and loadings, and also matching reducers and transformers, both in static, and in dynamic regimes for the analysis of their operating characteristics. Methodology. At mathematical modelling are considered functional, mass, dimensional and cost indexes of reducers and transformers that allows observing engineering and economic aspects of speed-controlled induction electric drives. The mathematical models used for examination of the transitive electromagnetic and electromechanical processes, are grounded on systems of nonlinear differential equations with nonlinear coefficients (parameters of equivalent circuits of motors, varying in each operating point, including owing to appearances of saturation of magnetic system and current displacement in a winding of a rotor of an induction motor. For the purpose of raise of level of adequacy of models a magnetic circuit iron, additional and mechanical losses are considered. Results. Modelling of the several speed-controlled induction electric drives, different by components, but working on a loading equal on character, magnitude and a demanded control range is executed. At use of characteristic families including mechanical, at various parameters of regulating on which performances of the load mechanism are superimposed, the adjusting characteristics representing dependences of a modification of electrical, energy and thermal magnitudes from an angular speed of motors are gained. Originality. The offered complex models of speed-controlled induction electric drives with matching reducers and transformers, give the chance to realize well-founded sampling of components of drives. They also can be used as the design models by working out of speed-controlled induction motors. Practical value. Operating characteristics of various speed-controlled induction electric

  1. Simulators IV

    International Nuclear Information System (INIS)

    Fairchild, B.T.

    1987-01-01

    These proceedings contain papers on simulators with artificial intelligence, and the human decision making process; visuals for simulators: human factors, training, and psycho-physical impacts; the role of institutional structure on simulation projects; maintenance trainers for economic value and safety; biomedical simulators for understanding nature, for medical benefits, and the physiological effects of simulators; the mathematical models and numerical techniques that drive today's simulators; and the demography of simulators, with census papers identifying the population of real-time simulator training devices; nuclear reactors

  2. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  3. Method of electric powertrain matching for battery-powered electric cars

    Science.gov (United States)

    Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping

    2013-05-01

    The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.

  4. Development of a mathematical model simulating the multiply connected automatic control system of a coal-fired power unit equipped with a direct-injection dust feed system

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Shorokhov; A.P. Smol' nikov; D.A. Kurochkin; N.N. Komarova; A.S. Mar' yasov; A.R. Gudovich; S.N. Bartosh [ZAO SibKOTES, Krasnoyarsk (Russian Federation)

    2009-07-01

    Matters relating to development and identification of a mathematical model for simulating a power unit and its individual systems are discussed. Results obtained from a large series of the active experiments on an operating power unit are presented.

  5. 18th European Conference on Mathematics for Industry

    CERN Document Server

    Capasso, Vincenzo; Nicosia, Giuseppe; Romano, Vittorio

    2016-01-01

    This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance, and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies...

  6. Pre-Service Mathematics Teachers' Noticing Skills and Scaffolding Practices

    Science.gov (United States)

    Kilic, Hulya

    2018-01-01

    A 14-week course program was designed to investigate pre-service teachers' noticing skills and scaffolding practices. Six pre-service teachers were matched with a pair of sixth grade students to observe and scaffold students' mathematical understanding while they were working on the given tasks. Data was collected through pre-service teachers' own…

  7. Preview-based sampling for controlling gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Melek, Zeki; Keyser, John

    2011-01-01

    to maintain. During the high resolution simulation, a matching process ensures that the properties sampled from the low resolution simulation are maintained. This matching process keeps the different resolution simulations aligned even for complex systems

  8. A mathematical model for camera calibration based on straight lines

    Directory of Open Access Journals (Sweden)

    Antonio M. G. Tommaselli

    2005-12-01

    Full Text Available In other to facilitate the automation of camera calibration process, a mathematical model using straight lines was developed, which is based on the equivalent planes mathematical model. Parameter estimation of the developed model is achieved by the Least Squares Method with Conditions and Observations. The same method of adjustment was used to implement camera calibration with bundles, which is based on points. Experiments using simulated and real data have shown that the developed model based on straight lines gives results comparable to the conventional method with points. Details concerning the mathematical development of the model and experiments with simulated and real data will be presented and the results with both methods of camera calibration, with straight lines and with points, will be compared.

  9. Dynamical System Modeling to Simulate Donor T Cell Response to Whole Exome Sequencing-Derived Recipient Peptides Demonstrates Different Alloreactivity Potential in HLA-Matched and -Mismatched Donor-Recipient Pairs.

    Science.gov (United States)

    Abdul Razzaq, Badar; Scalora, Allison; Koparde, Vishal N; Meier, Jeremy; Mahmood, Musa; Salman, Salman; Jameson-Lee, Max; Serrano, Myrna G; Sheth, Nihar; Voelkner, Mark; Kobulnicky, David J; Roberts, Catherine H; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A

    2016-05-01

    Immune reconstitution kinetics and subsequent clinical outcomes in HLA-matched recipients of allogeneic stem cell transplantation (SCT) are variable and difficult to predict. Considering SCT as a dynamical system may allow sequence differences across the exomes of the transplant donors and recipients to be used to simulate an alloreactive T cell response, which may allow better clinical outcome prediction. To accomplish this, whole exome sequencing was performed on 34 HLA-matched SCT donor-recipient pairs (DRPs) and the nucleotide sequence differences translated to peptides. The binding affinity of the peptides to the relevant HLA in each DRP was determined. The resulting array of peptide-HLA binding affinity values in each patient was considered as an operator modifying a hypothetical T cell repertoire vector, in which each T cell clone proliferates in accordance with the logistic equation of growth. Using an iterating system of matrices, each simulated T cell clone's growth was calculated with the steady-state population being proportional to the magnitude of the binding affinity of the driving HLA-peptide complex. Incorporating competition between T cell clones responding to different HLA-peptide complexes reproduces a number of features of clinically observed T cell clonal repertoire in the simulated repertoire, including sigmoidal growth kinetics of individual T cell clones and overall repertoire, Power Law clonal frequency distribution, increase in repertoire complexity over time with increasing clonal diversity, and alteration of clonal dominance when a different antigen array is encountered, such as in SCT. The simulated, alloreactive T cell repertoire was markedly different in HLA-matched DRPs. The patterns were differentiated by rate of growth and steady-state magnitude of the simulated T cell repertoire and demonstrate a possible correlation with survival. In conclusion, exome wide sequence differences in DRPs may allow simulation of donor alloreactive T

  10. Individuation instructions decrease the Cross-Race Effect in a face matching task

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Conclusions: Individuation instructions are an effective moderator of the CRE even within a face matching paradigm. Since unfamiliar face matching tasks most closely simulate document verification tasks, specifically passport screening, instructional techniques such as these may improve task performance within applied settings of significant practical importance.

  11. Template match using local feature with view invariance

    Science.gov (United States)

    Lu, Cen; Zhou, Gang

    2013-10-01

    Matching the template image in the target image is the fundamental task in the field of computer vision. Aiming at the deficiency in the traditional image matching methods and inaccurate matching in scene image with rotation, illumination and view changing, a novel matching algorithm using local features are proposed in this paper. The local histograms of the edge pixels (LHoE) are extracted as the invariable feature to resist view and brightness changing. The merits of the LHoE is that the edge points have been little affected with view changing, and the LHoE can resist not only illumination variance but also the polution of noise. For the process of matching are excuded only on the edge points, the computation burden are highly reduced. Additionally, our approach is conceptually simple, easy to implement and do not need the training phase. The view changing can be considered as the combination of rotation, illumination and shear transformation. Experimental results on simulated and real data demonstrated that the proposed approach is superior to NCC(Normalized cross-correlation) and Histogram-based methods with view changing.

  12. Conventional QT Variability Measurement vs. Template Matching Techniques: Comparison of Performance Using Simulated and Real ECG

    Science.gov (United States)

    Baumert, Mathias; Starc, Vito; Porta, Alberto

    2012-01-01

    Increased beat-to-beat variability in the QT interval (QTV) of ECG has been associated with increased risk for sudden cardiac death, but its measurement is technically challenging and currently not standardized. The aim of this study was to investigate the performance of commonly used beat-to-beat QT interval measurement algorithms. Three different methods (conventional, template stretching and template time shifting) were subjected to simulated data featuring typical ECG recording issues (broadband noise, baseline wander, amplitude modulation) and real short-term ECG of patients before and after infusion of sotalol, a QT interval prolonging drug. Among the three algorithms, the conventional algorithm was most susceptible to noise whereas the template time shifting algorithm showed superior overall performance on simulated and real ECG. None of the algorithms was able to detect increased beat-to-beat QT interval variability after sotalol infusion despite marked prolongation of the average QT interval. The QTV estimates of all three algorithms were inversely correlated with the amplitude of the T wave. In conclusion, template matching algorithms, in particular the time shifting algorithm, are recommended for beat-to-beat variability measurement of QT interval in body surface ECG. Recording noise, T wave amplitude and the beat-rejection strategy are important factors of QTV measurement and require further investigation. PMID:22860030

  13. Conventional QT variability measurement vs. template matching techniques: comparison of performance using simulated and real ECG.

    Directory of Open Access Journals (Sweden)

    Mathias Baumert

    Full Text Available Increased beat-to-beat variability in the QT interval (QTV of ECG has been associated with increased risk for sudden cardiac death, but its measurement is technically challenging and currently not standardized. The aim of this study was to investigate the performance of commonly used beat-to-beat QT interval measurement algorithms. Three different methods (conventional, template stretching and template time shifting were subjected to simulated data featuring typical ECG recording issues (broadband noise, baseline wander, amplitude modulation and real short-term ECG of patients before and after infusion of sotalol, a QT interval prolonging drug. Among the three algorithms, the conventional algorithm was most susceptible to noise whereas the template time shifting algorithm showed superior overall performance on simulated and real ECG. None of the algorithms was able to detect increased beat-to-beat QT interval variability after sotalol infusion despite marked prolongation of the average QT interval. The QTV estimates of all three algorithms were inversely correlated with the amplitude of the T wave. In conclusion, template matching algorithms, in particular the time shifting algorithm, are recommended for beat-to-beat variability measurement of QT interval in body surface ECG. Recording noise, T wave amplitude and the beat-rejection strategy are important factors of QTV measurement and require further investigation.

  14. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  15. Mathematical and computational modeling simulation of solar drying Systems

    Science.gov (United States)

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  16. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    Science.gov (United States)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1

  17. SU-E-T-262: Planning for Proton Pencil Beam Scanning (PBS): Applications of Gradient Optimization for Field Matching

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Kirk, M; Zhai, H; Ding, X; Liu, H; Hill-Kayser, C; Lustig, R; Tochner, Z; Deville, C; Vapiwala, N; McDonough, J; Both, S [University Pennsylvania, Philadelphia, PA (United States)

    2014-06-01

    Purpose: To propose the gradient optimization(GO) approach in planning for matching proton PBS fields and present two commonly used applications in our institution. Methods: GO is employed for PBS field matching in the scenarios that when the size of the target is beyond the field size limit of the beam delivery system or matching is required for beams from different angles to either improve the sparing of important organs or to pass through a short and simple beam path. Overlap is designed between adjacent fields and in the overlapped junction, the dose was optimized such that it gradually decreases in one field and the decrease is compensated by increase from another field. Clinical applications of this approach on craniospinal irradiation(CSI) and whole pelvis treatment were presented. Mathematical model was developed to study the relationships between dose errors, setup errors and junction lengths. Results: Uniform and conformal dose coverage to the entire target volumes was achieved for both applications using GO approach. For CSI, the gradient matching (6.7cm junction) between fields overcame the complexity of planning associated with feathering match lines. A slow dose gradient in the junction area significantly reduced the sensitivity of the treatment to setup errors. For whole pelvis, gradient matching (4cm junction) between posterior fields for superior target and bilateral fields for inferior target provided dose sparing to organs such as bowel, bladder and rectum. For a setup error of 3 mm in longitudinal direction from one field, mathematical model predicted dose errors of 10%, 6% and 4.3% for junction length of 3, 5 and 7cm. Conclusion: This GO approach improves the quality of the PBS treatment plan with matching fields while maintaining the safety of treatment delivery relative to potential misalignments.

  18. SU-E-T-262: Planning for Proton Pencil Beam Scanning (PBS): Applications of Gradient Optimization for Field Matching

    International Nuclear Information System (INIS)

    Lin, H; Kirk, M; Zhai, H; Ding, X; Liu, H; Hill-Kayser, C; Lustig, R; Tochner, Z; Deville, C; Vapiwala, N; McDonough, J; Both, S

    2014-01-01

    Purpose: To propose the gradient optimization(GO) approach in planning for matching proton PBS fields and present two commonly used applications in our institution. Methods: GO is employed for PBS field matching in the scenarios that when the size of the target is beyond the field size limit of the beam delivery system or matching is required for beams from different angles to either improve the sparing of important organs or to pass through a short and simple beam path. Overlap is designed between adjacent fields and in the overlapped junction, the dose was optimized such that it gradually decreases in one field and the decrease is compensated by increase from another field. Clinical applications of this approach on craniospinal irradiation(CSI) and whole pelvis treatment were presented. Mathematical model was developed to study the relationships between dose errors, setup errors and junction lengths. Results: Uniform and conformal dose coverage to the entire target volumes was achieved for both applications using GO approach. For CSI, the gradient matching (6.7cm junction) between fields overcame the complexity of planning associated with feathering match lines. A slow dose gradient in the junction area significantly reduced the sensitivity of the treatment to setup errors. For whole pelvis, gradient matching (4cm junction) between posterior fields for superior target and bilateral fields for inferior target provided dose sparing to organs such as bowel, bladder and rectum. For a setup error of 3 mm in longitudinal direction from one field, mathematical model predicted dose errors of 10%, 6% and 4.3% for junction length of 3, 5 and 7cm. Conclusion: This GO approach improves the quality of the PBS treatment plan with matching fields while maintaining the safety of treatment delivery relative to potential misalignments

  19. Simulación físico-matemática del secado de la zeolita con microondas. // Physical-mathematical simulation of the zeolite drying with microwaves.

    Directory of Open Access Journals (Sweden)

    G. Quesada Ramos

    2004-01-01

    Full Text Available Se realiza una simulación físico-matemática del secado de la zeolita sometida a radiaciones de microondas utilizando la leyde Lambert. Las ecuaciones se expresan en un esquema implícito unidimensional, y se emplea el método numérico dediferencias finitas. La solución del sistema de ecuaciones se realiza por medio del método iterativo de Gauss-Seidel. Losresultados teóricos se comparan con los obtenidos experimentalmente.Palabras claves: Simulación, secado, zeolita, microondas._______________________________________________________________________________AbstractA physical-mathematical simulation of the zeolite drying with microwaves using the Lambert`s law is made. The equationsare expressed in an unidimensional implicit scheme, and the finite differences numeric method is used. The solution of theequations system is carried out by using the Gauss-Seidel´s iterativ method. The theoretical results are compared with thoseexperimentally obtained.Key words: Physical-mathematical simulation, drying, zeolite, microwaves.

  20. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    Science.gov (United States)

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  1. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Tingting Li

    2017-12-01

    Full Text Available Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  2. Transmission line matching simulation for 350 MHz RF driver for 400 KeV (deuterium) RFQ based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Sharma, Sonal; Pande, Manjiri; Handu, V.K.

    2009-01-01

    A 60 KW, 350 MHz tetrode based high power RF system is being developed for 400 KeV RFQ based 14 MeV neutron generator in Bhabha Atomic Research Centre to study physics of coupled neutron sources and subcritical assembly. This RF system requires a 2.5 kW RF driver which is being designed by using tetrode TH-393. At such high frequency i.e. 350 MHz, lumped components are not practically useful due to radiation losses. Therefore, techniques such as coaxial line with stub tuning are preferred, which minimizes these losses. Simulation of two such stub tuning based matched coaxial lines at the input and output of the tube has been done by using CST studio. CST STUDIO is a special tool for the 3D EM simulation of high frequency components

  3. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  4. A Propensity Score Matching Analysis of the Effects of Special Education Services.

    Science.gov (United States)

    Morgan, Paul L; Frisco, Michelle; Farkas, George; Hibel, Jacob

    2010-02-01

    We sought to quantify the effectiveness of special education services as naturally delivered in U.S. schools. Specifically, we examined whether children receiving special education services displayed (a) greater reading or mathematics skills, (b) more frequent learning-related behaviors, or (c) less frequent externalizing or internalizing problem behaviors than closely matched peers not receiving such services. To do so, we used propensity score matching techniques to analyze data from the Early Childhood Longitudinal-Study Kindergarten Cohort, 1998-1999, a large scale, nationally representative sample of U.S. schoolchildren. Collectively, results indicate that receipt of special education services has either a negative or statistically non-significant impact on children's learning or behavior. However, special education services do yield a small, positive effect on children's learning-related behaviors.

  5. Software for simulation of nuclear simulation of nuclear installations

    International Nuclear Information System (INIS)

    Castaneda, J.O.; Ramos, L.M.; Arjona, O.; Rodriguez, L.

    1993-01-01

    The software is an instrument to build conceptual-type simulators of low, medium and full scale for used in nuclear installations. The system is composed by composed by two basic modules: one for the edition and the other for the simulation. The first one allows to prepare the information to simulate: mathematical model, technological design (fundamentally, operation board or mnemotechnical design), parameters to be shown, failures to be simulated

  6. Assessing the accuracy of mathematical models used in thermoelectric simulation: Thermal influence of insulated air zone and radiation heat

    International Nuclear Information System (INIS)

    Gao, Junling; Du, Qungui; Chen, Min; Li, Bo; Zhang, Dongwen

    2015-01-01

    An accurate mathematical model of thermoelectric modules (TEMs) provides the basis for the analysis and design of thermoelectric conversion system. TEM models from the literature are only valid for the heat transfer of N-type and P-type thermoelectric couples without considering air around the actual thermoelectric couples of TEMs. In fact, air space imposes significant influence on the model computational accuracy, especially for a TEM with large air space inside. In this study, heat transfer analyses of air between the TEM cold and hot plates were carried out in order to propose a new mathematical model that minimises simulation errors. This model was applied to analyse characteristic parameters of two typical TEMs, and the ratio of cross-sectional area of air space to thermocouples were 48.2% and 80.0%, respectively. The average relative errors in simulation decreased from 5.2% to 2.8% and from 12.8% to 3.7%, respectively. It is noted that our new model gives result more accurate than models from the literature provided that higher temperature difference occurs between hot side and cold side of TEM. Thus, the proposed model is of theoretical significance in guiding future design of TEMs for high-power or large-temperature-difference thermoelectric conversion systems. - Highlights: • Built a new accurate model for thermoelectric modules with inner air heat transfer. • Analysed the influence on heat transfer of the air within the TEM ∗ . • Reduced simulation errors for high-power thermoelectric conversion systems. • Two typical TEMs were measured with a good agreement with theoretical results. • ∗ TEM is the abbreviation of thermoelectric module

  7. Matching theory

    CERN Document Server

    Plummer, MD

    1986-01-01

    This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.

  8. A fitting algorithm based on simulated annealing techniques for efficiency calibration of HPGe detectors using different mathematical functions

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, S. [Servicio de Radioisotopos, Centro de Investigacion, Tecnologia e Innovacion (CITIUS), Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: shurtado@us.es; Garcia-Leon, M. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Fisica, Universidad de Sevilla, Aptd. 1065, 41080 Sevilla (Spain); Garcia-Tenorio, R. [Departamento de Fisica Aplicada II, E.T.S.A. Universidad de Sevilla, Avda, Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-09-11

    In this work several mathematical functions are compared in order to perform the full-energy peak efficiency calibration of HPGe detectors using a 126cm{sup 3} HPGe coaxial detector and gamma-ray energies ranging from 36 to 1460 keV. Statistical tests and Monte Carlo simulations were used to study the performance of the fitting curve equations. Furthermore the fitting procedure of these complex functional forms to experimental data is a non-linear multi-parameter minimization problem. In gamma-ray spectrometry usually non-linear least-squares fitting algorithms (Levenberg-Marquardt method) provide a fast convergence while minimizing {chi}{sub R}{sup 2}, however, sometimes reaching only local minima. In order to overcome that shortcoming a hybrid algorithm based on simulated annealing (HSA) techniques is proposed. Additionally a new function is suggested that models the efficiency curve of germanium detectors in gamma-ray spectrometry.

  9. Mathematical simulation for estimating reduction of breast cancer mortality in mass screening using mammography

    International Nuclear Information System (INIS)

    Iinuma, Takeshi; Matsumoto, Tohru; Tateno, Yukio

    1999-01-01

    In Japan it is considered that mammography should be introduced with physical examination for the mass screening of breast cancer instead of physical examination alone, which is performed at present. Before the introduction of mammography, a mathematical simulation should be performed to show the reduction in breast cancer mortality by mass screening compared with an unscreened population. A mathematical model of cancer screening devised by the authors was used to estimate the number of deaths due to breast cancer (A) in the screened group and those (B) in the unscreened group within the same population. Then the relative risk (RR) and attributable risk (RD) were calculated as (A/B) and (B-A) respectively. Three methods of mass screening were compared: (1) physical examination (1-year interval), (2) mammography with physical examination (1-year interval), (3) mammography with physical examination (2-year interval). The calculated RR values were 0.85 for (1), 0.60 for (2) and 0.69 for (3). Assuming that the incidence of breast cancer was 100/10 5 person-years, the calculated RD values were 3.0, 8.1 and 6.2 persons/10 5 person-years for (1), (2) and (3), respectively. The 95% confidence interval of RR for three methods was over 1.0, and thus the reduction of breast cancer mortality was not statistically significant in the present population. In conclusion, mammography with physical examination may reduce breast cancer mortality in comparison with physical examination alone, but a larger number of women must be screened in order to obtain a significant RR value. (author)

  10. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors

    Directory of Open Access Journals (Sweden)

    Zoran Benić

    2016-01-01

    Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.

  11. Preview-based sampling for controlling gaseous simulations

    KAUST Repository

    Huang, Ruoguan

    2011-01-01

    In this work, we describe an automated method for directing the control of a high resolution gaseous fluid simulation based on the results of a lower resolution preview simulation. Small variations in accuracy between low and high resolution grids can lead to divergent simulations, which is problematic for those wanting to achieve a desired behavior. Our goal is to provide a simple method for ensuring that the high resolution simulation matches key properties from the lower resolution simulation. We first let a user specify a fast, coarse simulation that will be used for guidance. Our automated method samples the data to be matched at various positions and scales in the simulation, or allows the user to identify key portions of the simulation to maintain. During the high resolution simulation, a matching process ensures that the properties sampled from the low resolution simulation are maintained. This matching process keeps the different resolution simulations aligned even for complex systems, and can ensure consistency of not only the velocity field, but also advected scalar values. Because the final simulation is naturally similar to the preview simulation, only minor controlling adjustments are needed, allowing a simpler control method than that used in prior keyframing approaches. Copyright © 2011 by the Association for Computing Machinery, Inc.

  12. History Matching with Geostatistical Prior: A Smooth Formulation

    DEFF Research Database (Denmark)

    Melnikova, Yulia; Lange, Katrine; Zunino, Andrea

    2014-01-01

    We present a new method for solving the history matching problem by gradient-based optimization within a probabilistic framework. The focus is on minimizing the number of forward simulations and conserving geological realism of the solutions. Geological a priori information is taken into account...

  13. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  14. Mathematical modeling of a convective textile drying process

    Directory of Open Access Journals (Sweden)

    G. Johann

    2014-12-01

    Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.

  15. Introduction to mathematical models and methods

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, A. H.; Manchanda, P. [Gautam Budha University, Gautam Budh Nagar-201310 (India); Department of Mathematics, Guru Nanak Dev University, Amritsar (India)

    2012-07-17

    Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.

  16. Analogue circuits simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mendo, C

    1988-09-01

    Most analogue simulators have evolved from SPICE. The history and description of SPICE-like simulators are given. From a mathematical formulation of the electronic circuit the following analysis are possible: DC, AC, transient, noise, distortion, Worst Case and Statistical.

  17. Rapid matching of stereo vision based on fringe projection profilometry

    Science.gov (United States)

    Zhang, Ruihua; Xiao, Yi; Cao, Jian; Guo, Hongwei

    2016-09-01

    As the most important core part of stereo vision, there are still many problems to solve in stereo matching technology. For smooth surfaces on which feature points are not easy to extract, this paper adds a projector into stereo vision measurement system based on fringe projection techniques, according to the corresponding point phases which extracted from the left and right camera images are the same, to realize rapid matching of stereo vision. And the mathematical model of measurement system is established and the three-dimensional (3D) surface of the measured object is reconstructed. This measurement method can not only broaden application fields of optical 3D measurement technology, and enrich knowledge achievements in the field of optical 3D measurement, but also provide potential possibility for the commercialized measurement system in practical projects, which has very important scientific research significance and economic value.

  18. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  19. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  20. The new version of the Institute of Numerical Mathematics Sigma Ocean Model (INMSOM) for simulation of Global Ocean circulation and its variability

    Science.gov (United States)

    Gusev, Anatoly; Fomin, Vladimir; Diansky, Nikolay; Korshenko, Evgeniya

    2017-04-01

    In this paper, we present the improved version of the ocean general circulation sigma-model developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The previous version referred to as INMOM (Institute of Numerical Mathematics Ocean Model) is used as the oceanic component of the IPCC climate system model INMCM (Institute of Numerical Mathematics Climate Model (Volodin et al 2010,2013). Besides, INMOM as the only sigma-model was used for simulations according to CORE-II scenario (Danabasoglu et al. 2014,2016; Downes et al. 2015; Farneti et al. 2015). In general, INMOM results are comparable to ones of other OGCMs and were used for investigation of climatic variations in the North Atlantic (Gusev and Diansky 2014). However, detailed analysis of some CORE-II INMOM results revealed some disadvantages of the INMOM leading to considerable errors in reproducing some ocean characteristics. So, the mass transport in the Antarctic Circumpolar Current (ACC) was overestimated. As well, there were noticeable errors in reproducing thermohaline structure of the ocean. After analysing the previous results, the new version of the OGCM was developed. It was decided to entitle is INMSOM (Institute of Numerical Mathematics Sigma Ocean Model). The new title allows one to distingwish the new model, first, from its older version, and second, from another z-model developed in the INM RAS and referred to as INMIO (Institute of Numerical Mathematics and Institute of Oceanology ocean model) (Ushakov et al. 2016). There were numerous modifications in the model, some of them are as follows. 1) Formulation of the ocean circulation problem in terms of full free surface with taking into account water amount variation. 2) Using tensor form of lateral viscosity operator invariant to rotation. 3) Using isopycnal diffusion including Gent-McWilliams mixing. 4) Using atmospheric forcing computation according to NCAR methodology (Large and Yeager 2009). 5

  1. Cell light scattering characteristic numerical simulation research based on FDTD algorithm

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Zhu, Hao; Weng, Lingdong

    2017-01-01

    In this study, finite-difference time-domain (FDTD) algorithm has been used to work out the cell light scattering problem. Before beginning to do the simulation contrast, finding out the changes or the differences between normal cells and abnormal cells which may be cancerous or maldevelopment is necessary. The preparation of simulation are building up the simple cell model of cell which consists of organelles, nucleus and cytoplasm and setting up the suitable precision of mesh. Meanwhile, setting up the total field scattering field source as the excitation source and far field projection analysis group is also important. Every step need to be explained by the principles of mathematic such as the numerical dispersion, perfect matched layer boundary condition and near-far field extrapolation. The consequences of simulation indicated that the position of nucleus changed will increase the back scattering intensity and the significant difference on the peak value of scattering intensity may result from the changes of the size of cytoplasm. The study may help us find out the regulations based on the simulation consequences and the regulations can be meaningful for early diagnosis of cancers.

  2. Tracer kinetic modelling of receptor data with mathematical metabolite correction

    International Nuclear Information System (INIS)

    Burger, C.; Buck, A.

    1996-01-01

    Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)

  3. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Qingyun [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Abu-Reesh, Ibrahim M. [Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar); He, Zhen, E-mail: zhenhe@vt.edu [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level < 2 mg L{sup −} {sup 1}. The ratio between the anolyte and the catholyte flow rates should be kept > 22.2 in order to avoid boron accumulation in the anolyte effluent. - Highlights: • Mathematical models are developed to understand boron removal in BES. • Boron removal can be driven by electromigration induced by current generation. • Diffusion induced by a salt concentration gradient also contributes to boron removal. • Osmosis and current driven convection transport play diverse roles in different BES.

  4. Privacy-Preserving Matching of Spatial Datasets with Protection against Background Knowledge

    DEFF Research Database (Denmark)

    Ghinita, Gabriel; Vicente, Carmen Ruiz; Shang, Ning

    2010-01-01

    should be disclosed. Previous research efforts focused on private matching for relational data, and rely either on spaceembedding or on SMC techniques. Space-embedding transforms data points to hide their exact attribute values before matching is performed, whereas SMC protocols simulate complex digital...... circuits that evaluate the matching condition without revealing anything else other than the matching outcome. However, existing solutions have at least one of the following drawbacks: (i) they fail to protect against adversaries with background knowledge on data distribution, (ii) they compromise privacy...... by returning large amounts of false positives and (iii) they rely on complex and expensive SMC protocols. In this paper, we introduce a novel geometric transformation to perform private matching on spatial datasets. Our method is efficient and it is not vulnerable to background knowledge attacks. We consider...

  5. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  6. University Reactor Matching Grants Program

    International Nuclear Information System (INIS)

    John Valentine; Farzad Rahnema; Said Abdel-Khalik

    2003-01-01

    During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given

  7. Steelmaking-Casting of Molten Steel by Decarburization Ladle Matching

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-01-01

    Full Text Available Steelmaking–continuous casting is a complex process. The method of selecting a ladle, which also functions as a storage device, follows a specific process of the production plan. In ladle matching, several ladle attributes are considered. However, matching objectives are difficult to achieve simultaneously. Different molten steel properties have contributed to the complexity of matching constraints, and, thus, matching optimization is regarded a multiconflict goal problem. In the process of optimization, the first-order rule learning method is first used to extract key ladle attributes (performance indicators, including highest temperature, usage frequency, lowest-level material, and outlet. On the basis of a number of indicators, such as ladle temperature, quantity, material, and usage frequency, as well as skateboard quantity, the ladle matching model is established. Second, the rule of ladle selection is determined by the method of least-generalization rule learning. Third, a simulation experiment is carried out according to various scheduling order strategies and matching priority combinations. Finally, the heuristic ladle matching method based on the rule priority (RP is determined for possible industrial applications. Results show that the accuracy of ladle selection can be improved. In particular, the numbers of ladles and maintenance times are reduced. Consequently, furnace production efficiency is also enhanced.

  8. Are Clade Specific HIV Vaccines a Necessity? An Analysis Based on Mathematical Models

    Directory of Open Access Journals (Sweden)

    Dobromir Dimitrov

    2015-12-01

    Full Text Available As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy compared to constructing clade specific vaccines, which would take considerable time to manufacture and test in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF and South Africa (SA and projected effectiveness of three vaccination strategies: i immediate intervention with a 20–40% vaccine efficacy (VE non-matched vaccine, ii delayed intervention by developing a 50% VE clade-specific vaccine, and iii immediate intervention with a non-matched vaccine replaced by a clade-specific vaccine when developed. Immediate vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and 12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass the impact of immediate 40% VE vaccination over 30 years. Replacing a 30% VE with a 50% VE vaccine after 5 years reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with reduced VE in high risk communities appears desirable over a short time line but higher VE should be the pursued to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers (correlates of protection to allow bridging types of immunogenicity studies to support more rapid assessment of clade specific vaccines.

  9. A mathematical model for postirradiation immunity

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1988-01-01

    A mathematical model of autoimmune processes in exposed mammals was developed. In terms of this model a study was made of the dependence of the autoimmunity kinetics on radiation dose and radiosensitivity of autologous tissues. The model simulates the experimentally observed dynamics of autoimmune diseases

  10. PLANE MATCHING WITH OBJECT-SPACE SEARCHING USING INDEPENDENTLY RECTIFIED IMAGES

    Directory of Open Access Journals (Sweden)

    H. Takeda

    2012-07-01

    Full Text Available In recent years, the social situation in cities has changed significantly such as redevelopment due to the massive earthquake and large-scale urban development. For example, numerical simulations can be used to study this phenomenon. Such simulations require the construction of high-definition three-dimensional city models that accurately reflect the real world. Progress in sensor technology allows us to easily obtain multi-view images. However, the existing multi-image matching techniques are inadequate. In this paper, we propose a new technique for multi-image matching. Since the existing method of feature searching is complicated, we have developed a rectification method that can be processed independently for each image does not depend on the stereo-pair. The object-space searching method that produces mismatches due to the occlusion or distortion of wall textures on images is the focus of our study. Our proposed technique can also match the building wall surface. The proposed technique has several advantages, and its usefulness is clarified through an experiment using actual images.

  11. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  12. Simulation of car movement along circular path

    Science.gov (United States)

    Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.

    2017-10-01

    Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.

  13. Kappa statistic for clustered matched-pair data.

    Science.gov (United States)

    Yang, Zhao; Zhou, Ming

    2014-07-10

    Kappa statistic is widely used to assess the agreement between two procedures in the independent matched-pair data. For matched-pair data collected in clusters, on the basis of the delta method and sampling techniques, we propose a nonparametric variance estimator for the kappa statistic without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed kappa statistic provides consistent estimation and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K ≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ ≥0.3), with more pronounced improvement when ρ is further increased. To illustrate the practical application of the proposed estimator, we analyze two real data examples of clustered matched-pair data. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Multiagent Reinforcement Learning with Regret Matching for Robot Soccer

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2013-01-01

    Full Text Available This paper proposes a novel multiagent reinforcement learning (MARL algorithm Nash- learning with regret matching, in which regret matching is used to speed up the well-known MARL algorithm Nash- learning. It is critical that choosing a suitable strategy for action selection to harmonize the relation between exploration and exploitation to enhance the ability of online learning for Nash- learning. In Markov Game the joint action of agents adopting regret matching algorithm can converge to a group of points of no-regret that can be viewed as coarse correlated equilibrium which includes Nash equilibrium in essence. It is can be inferred that regret matching can guide exploration of the state-action space so that the rate of convergence of Nash- learning algorithm can be increased. Simulation results on robot soccer validate that compared to original Nash- learning algorithm, the use of regret matching during the learning phase of Nash- learning has excellent ability of online learning and results in significant performance in terms of scores, average reward and policy convergence.

  15. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

    International Nuclear Information System (INIS)

    Owolabi, Kolade M.

    2016-01-01

    The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.

  16. A Propensity Score Matching Analysis of the Effects of Special Education Services

    Science.gov (United States)

    Morgan, Paul L.; Frisco, Michelle; Farkas, George; Hibel, Jacob

    2013-01-01

    We sought to quantify the effectiveness of special education services as naturally delivered in U.S. schools. Specifically, we examined whether children receiving special education services displayed (a) greater reading or mathematics skills, (b) more frequent learning-related behaviors, or (c) less frequent externalizing or internalizing problem behaviors than closely matched peers not receiving such services. To do so, we used propensity score matching techniques to analyze data from the Early Childhood Longitudinal—Study Kindergarten Cohort, 1998–1999, a large scale, nationally representative sample of U.S. schoolchildren. Collectively, results indicate that receipt of special education services has either a negative or statistically non-significant impact on children’s learning or behavior. However, special education services do yield a small, positive effect on children’s learning-related behaviors. PMID:23606759

  17. A mathematical framework for agent based models of complex biological networks.

    Science.gov (United States)

    Hinkelmann, Franziska; Murrugarra, David; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2011-07-01

    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models, it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis. This mathematical framework can also accommodate other model types such as Boolean networks and the more general logical models, as well as Petri nets.

  18. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  19. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  20. Computationally Secure Pattern Matching in the Presence of Malicious Adversaries

    DEFF Research Database (Denmark)

    Hazay, Carmit; Toft, Tomas

    2014-01-01

    for important variations of the secure pattern matching problem that are significantly more efficient than the current state of art solutions: First, we deal with secure pattern matching with wildcards. In this variant the pattern may contain wildcards that match both 0 and 1. Our protocol requires O......We propose a protocol for the problem of secure two-party pattern matching, where Alice holds a text t∈{0,1}∗ of length n, while Bob has a pattern p∈{0,1}∗ of length m. The goal is for Bob to (only) learn where his pattern occurs in Alice’s text, while Alice learns nothing. Private pattern matching...... is an important problem that has many applications in the area of DNA search, computational biology and more. Our construction guarantees full simulation in the presence of malicious, polynomial-time adversaries (assuming the hardness of DDH assumption) and exhibits computation and communication costs of O...

  1. Vein matching using artificial neural network in vein authentication systems

    Science.gov (United States)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  2. Mathematical Modelling of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  3. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Sarwar, S.; Rehman, S.U.

    2013-01-01

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  4. Physiological characteristics of badminton match play.

    Science.gov (United States)

    Faude, Oliver; Meyer, Tim; Rosenberger, Friederike; Fries, Markus; Huber, Günther; Kindermann, Wilfried

    2007-07-01

    The present study aimed at examining the physiological characteristics and metabolic demands of badminton single match play. Twelve internationally ranked badminton players (eight women and four men) performed an incremental treadmill test [VO(2peak = )50.3 +/- 4.1 ml min(-1) kg(-1) (women) and 61.8 +/- 5.9 ml min(-1) kg(-1) (men), respectively]. On a separate day, they played a simulated badminton match of two 15 min with simultaneous gas exchange (breath-by-breath) and heart rate measurements. Additionally, blood lactate concentrations were determined before, after 15 min and at the end of the match. Furthermore, the duration of rallies and rests in between, the score as well as the number of shots per rally were recorded. A total of 630 rallies was analysed. Mean rally and rest duration were 5.5 +/- 4.4 s and 11.4 +/- 6.0 s, respectively, with an average 5.1 +/- 3.9 shots played per rally. Mean oxygen uptake (VO(2)), heart rate (HR), and blood lactate concentrations during badminton matches were 39.6 +/- 5.7 ml min(-1) kg(-1) (73.3% VO(2peak)), 169 +/- 9 min(-1) (89.0% HR(peak)) and 1.9 +/- 0.7 mmol l(-1), respectively. For a single subject 95% confidence intervals for VO(2) and HR during match play were on average 45.7-100.9% VO(2peak) and 78.3-99.8% HR(peak). High average intensity of badminton match play and considerable variability of several physiological variables demonstrate the importance of anaerobic alactacid and aerobic energy production in competitive badminton. A well-developed aerobic endurance capacity seems necessary for fast recovery between rallies or intensive training workouts.

  5. 8th International Workshop on Simulation

    CERN Document Server

    Rasch, Dieter; Melas, Viatcheslav; Moder, Karl; Statistics and simulation

    2018-01-01

    This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 – 2009 and the 7th workshop was held in Rimini, Italy, in 2013.

  6. The choice of a 'Best' assisted history matching algorithm

    NARCIS (Netherlands)

    Hanea, R.G.; Przybysz-Jarnut, J.K.; Krymskaya, M.V.; Heemink, A.W.; Jansen, J.D.

    2010-01-01

    Computer-assisted history matching is the act of systematicalty adjusting a ‘prior’ reservoir model using measured data until its simulated production response closely reproduces the past behavior of the reservoir. Thereafler, the updated, ‘posterior’, model is expected to predict future reservoir

  7. Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System

    Directory of Open Access Journals (Sweden)

    Shuyuan Yang

    2008-04-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.

  8. Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System

    Directory of Open Access Journals (Sweden)

    Wang Wenyi

    2008-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.

  9. A quantitative method for measuring the quality of history matches

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, T.S. [Kerr-McGee Corp., Oklahoma City, OK (United States); Knapp, R.M. [Univ. of Oklahoma, Norman, OK (United States)

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  10. Comparison of the Physical and Technical Demands of Cricket Players During Training and Match-Play.

    Science.gov (United States)

    Vickery, Will; Duffield, Rob; Crowther, Rian; Beakley, David; Blanch, Peter; Dascombe, Ben J

    2018-03-01

    Vickery, W, Duffield, R, Crowther, R, Beakley, D, Blanch, P, and Dascombe, BJ. Comparison of the physical and technical demands of cricket players during training and match-play. J Strength Cond Res 32(3): 821-829, 2018-This study aimed to determine which training method (net-based sessions or center-wicket simulations) currently used in national level and U19 male players cricket provided a more physical and technical match-specific training response. The heart rate, rating of perceived exertion, and movement patterns of 42 male cricket players were measured across the various training and match formats. Video analysis was coded retrospectively to quantify technical loads based on the cricket skills performed. Magnitude-based inferences were based on the standardization of effect and presented with ±90% confidence intervals. Regardless of playing position, differences in physiological demands between training modes and match-play were unclear, with the exception of higher heart rates in fielders during traditional net sessions (mean heart rate: d = -2.7 [-4.7 to -0.7]; 75% of maximum heart rate: d = -1.7 [-3.2 to -0.2]). Typically, the movement demands of center-wicket simulations were similar or greater than match-play, which was most evident in the distance traveled at a high intensity within each playing position (batsmen: d = 6.4 [3.7-9.2]; medium-fast bowlers: d = 1.71 [0.1-3.3]; spin bowlers: d = 6.5 [0.01-13.0]; fielders: d = 0.8 [-0.2 to 1.7]). The technical demands of traditional net cricket training exceeded that of a typical match for each playing position. Specifically, fast bowlers delivered a greater number of balls during net-bowling compared with a match (d = -2.2 [-3.6 to 0.9]). In conclusion, center-wicket simulations more closely matched the physical demands of a One-Day match within batsmen and spin bowlers, whereas traditional cricket training often exceeded match-specific demands.

  11. ECMOR III: Third European Conference on the Mathematics of Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Christie, M.A.; Da Silva, F.V.; Farmer, C.L.; Guillon, O.; Heinemann, Z.E.; Lemonnier, P.; Regtien, J.M.M.; Van Spronsen, E. [eds.

    1992-12-31

    35 papers are presented in four groups: reservoir characterization (11), analytical methods (6), numerical methods (11), and reservoir simulation (7). With 11 papers the mathematical aspects of reservoir characterization are getting the attention they deserve. The geological and reservoir engineering concepts must be supplied by other disciplines, but no progress would be possible without mathematical modelling of these concepts. Analytical methods can be very helpful in deepening our insight. However, in this computer age they have a hard time competing with numerical methods. Fortunately this section is well presented with some very interesting papers. The numerical section covers a number of techniques aimed at improved reservoir simulation. Some are dealing with special applications: permeability prediction, steam injection, fractured reservoirs, hydrocarbons migration. In the reservoir simulation section the emphasis is on simulation of relatively small-scale features: fractures, fingering and wells

  12. Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability.

    Directory of Open Access Journals (Sweden)

    Michael R W Dawson

    Full Text Available Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent's environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned.

  13. Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability

    Science.gov (United States)

    2017-01-01

    Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent’s environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned. PMID:28212422

  14. Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability.

    Science.gov (United States)

    Dawson, Michael R W; Gupta, Maya

    2017-01-01

    Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent's environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned.

  15. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  16. Adaptation of Boynton's mathematical model to hydrogen isotope separation column by cryogenic distillation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    Boynton's mathematical simulation procedure for multi-component distillation calculations has the advantage that the Jacobian matrix is calculated analytically. The purpose of the present study is to adapt this procedure to hydrogen isotope separation columns by cryogenic distillation. The Boynton's model is modified so that the model can incorporate decay heat of tritium, nonideality of the hydrogen isotope solutions, multiple feeds and multiple sidestreams. Basic equations are derived and the mathematical simulation procedure is briefly explained. (author)

  17. Analysis of anatomic variability in children with low mathematical skills

    Science.gov (United States)

    Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.

    2008-03-01

    Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.

  18. 76 FR 5235 - Privacy Act of 1974, as Amended; Computer Matching Program (SSA Internal Match)-Match Number 1014

    Science.gov (United States)

    2011-01-28

    ...; Computer Matching Program (SSA Internal Match)--Match Number 1014 AGENCY: Social Security Administration... regarding protections for such persons. The Privacy Act, as amended, regulates the use of computer matching....C. 552a, as amended, and the provisions of the Computer Matching and Privacy Protection Act of 1988...

  19. A Line-Based Adaptive-Weight Matching Algorithm Using Loopy Belief Propagation

    Directory of Open Access Journals (Sweden)

    Hui Li

    2015-01-01

    Full Text Available In traditional adaptive-weight stereo matching, the rectangular shaped support region requires excess memory consumption and time. We propose a novel line-based stereo matching algorithm for obtaining a more accurate disparity map with low computation complexity. This algorithm can be divided into two steps: disparity map initialization and disparity map refinement. In the initialization step, a new adaptive-weight model based on the linear support region is put forward for cost aggregation. In this model, the neural network is used to evaluate the spatial proximity, and the mean-shift segmentation method is used to improve the accuracy of color similarity; the Birchfield pixel dissimilarity function and the census transform are adopted to establish the dissimilarity measurement function. Then the initial disparity map is obtained by loopy belief propagation. In the refinement step, the disparity map is optimized by iterative left-right consistency checking method and segmentation voting method. The parameter values involved in this algorithm are determined with many simulation experiments to further improve the matching effect. Simulation results indicate that this new matching method performs well on standard stereo benchmarks and running time of our algorithm is remarkably lower than that of algorithm with rectangle-shaped support region.

  20. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  1. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nano composites

    International Nuclear Information System (INIS)

    Li, X.; He, X.; Lv, J.; Wu, Y.; Luo, Y.; Chen, H.

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nano composites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased along the direction of microwave transmission when the unilateral microwave heating was applied, and the temperature difference along the thickness direction of wood was very significant; The temperature with wood firstly increased and then gradually decreased from the wood surface to interior when the bilateral microwave heating was applied. Compared with the unilateral microwave heating, bilateral microwave heating is a better microwave heating method for the more uniform wood microwave pretreatment.

  2. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  3. On the mathematical modeling of memristors

    KAUST Repository

    Radwan, Ahmed G.; Salama, Khaled N.; Zidan, Mohammed A.

    2012-01-01

    dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor's resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis

  4. Technical performance and match-to-match variation in elite football teams.

    Science.gov (United States)

    Liu, Hongyou; Gómez, Miguel-Angel; Gonçalves, Bruno; Sampaio, Jaime

    2016-01-01

    Recent research suggests that match-to-match variation adds important information to performance descriptors in team sports, as it helps measure how players fine-tune their tactical behaviours and technical actions to the extreme dynamical environments. The current study aims to identify the differences in technical performance of players from strong and weak teams and to explore match-to-match variation of players' technical match performance. Performance data of all the 380 matches of season 2012-2013 in the Spanish First Division Professional Football League were analysed. Twenty-one performance-related match actions and events were chosen as variables in the analyses. Players' technical performance profiles were established by unifying count values of each action or event of each player per match into the same scale. Means of these count values of players from Top3 and Bottom3 teams were compared and plotted into radar charts. Coefficient of variation of each match action or event within a player was calculated to represent his match-to-match variation of technical performance. Differences in the variation of technical performances of players across different match contexts (team and opposition strength, match outcome and match location) were compared. All the comparisons were achieved by the magnitude-based inferences. Results showed that technical performances differed between players of strong and weak teams from different perspectives across different field positions. Furthermore, the variation of the players' technical performance is affected by the match context, with effects from team and opposition strength greater than effects from match location and match outcome.

  5. A simulated rugby match protocol induces physiological fatigue ...

    African Journals Online (AJOL)

    Kathryn van Boom

    physiological fatigue may develop during a rugby simulation, no differences were ..... ensure player safety and was deemed safe to have live one-on- one scrummaging .... This work was supported by the National Research. Foundation under ...

  6. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  7. Decision process simulation in training systems

    International Nuclear Information System (INIS)

    Zajtsev, K.S.; Serov, A.A.; Ajnutdinov, V.A.

    1984-01-01

    One of the approaches to arrangement of training process an automated trainning systems (ATS) based on actjve use of knowledge of experienced operators is presented. Problems of mathematical model simulatjon of decision process by people not having special knowledge in mathematics are considered. A language of solution tables based on indistinct tables is suggested to the used as a simulation language. The problem of automation of decision process simulation in ATS is solued

  8. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  9. Mathematical modeling, analysis and Markov Chain Monte Carlo simulation of Ebola epidemics

    Science.gov (United States)

    Tulu, Thomas Wetere; Tian, Boping; Wu, Zunyou

    Ebola virus infection is a severe infectious disease with the highest case fatality rate which become the global public health treat now. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. In this article a new mathematical model incorporating both vaccination and quarantine to study the dynamics of Ebola epidemic has been developed and comprehensively analyzed. The existence as well as uniqueness of the solution to the model is also verified and the basic reproduction number is calculated. Besides, stability conditions are also checked and finally simulation is done using both Euler method and one of the top ten most influential algorithm known as Markov Chain Monte Carlo (MCMC) method. Different rates of vaccination to predict the effect of vaccination on the infected individual over time and that of quarantine are discussed. The results show that quarantine and vaccination are very effective ways to control Ebola epidemic. From our study it was also seen that there is less possibility of an individual for getting Ebola virus for the second time if they survived his/her first infection. Last but not least real data has been fitted to the model, showing that it can used to predict the dynamic of Ebola epidemic.

  10. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  11. Calibration method for a in vivo measurement system using mathematical simulation of the radiation source and the detector

    International Nuclear Information System (INIS)

    Hunt, John

    1998-01-01

    A Monte Carlo program which uses a voxel phantom has been developed to simulate in vivo measurement systems for calibration purposes. The calibration method presented here employs a mathematical phantom, produced in the form of volume elements (voxels), obtained through Magnetic Resonance Images of the human body. The calibration method uses the Monte Carlo technique to simulate the tissue contamination, the transport of the photons through the tissues and the detection of the radiation. The program simulates the transport and detection of photons between 0.035 and 2 MeV and uses, for the body representation, a voxel phantom with a format of 871 slices each of 277 x 148 picture elements. The Monte Carlo code was applied to the calibration of in vivo systems and to estimate differences in counting efficiencies between homogeneous and non-homogeneous radionuclide distributions in the lung. Calculations show a factor of 20 between deposition of 241 Am at the back compared with the front of the lung. The program was also used to estimate the 137 Cs body burden of an internally contaminated individual, counted with an 8 x 4 Nal (TI) detector and an 241 Am body burden of an internally contaminated individual, who was counted using a planar germanium detector. (author)

  12. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds

    Science.gov (United States)

    Altschuler, Martin D.; Kassaee, Alireza

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an `NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use `local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good `global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  13. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  14. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    developed a new automated algorithm for matching supernovae to their host galaxies. Their work builds on currently existing algorithms and makes use of information about the nearby galaxies, accounts for the uncertainty of the match, and even includes a machine learning component to improve the matching accuracy.Gupta and collaborators test their matching algorithm on catalogs of galaxies and simulated supernova events to quantify how well the algorithm is able to accurately recover the true hosts.Successful MatchingThe matching algorithms accuracy (purity) as a function of the true supernova-host separation, the supernova redshift, the true hosts brightness, and the true hosts size. [Gupta et al. 2016]The authors find that when the basic algorithm is run on catalog data, it matches supernovae to their hosts with 91% accuracy. Including the machine learning component, which is run after the initial matching algorithm, improves the accuracy of the matching to 97%.The encouraging results of this work which was intended as a proof of concept suggest that methods similar to this could prove very practical for tackling future survey data. And the method explored here has use beyond matching just supernovae to their host galaxies: it could also be applied to other extragalactic transients, such as gamma-ray bursts, tidal disruption events, or electromagnetic counterparts to gravitational-wave detections.CitationRavi R. Gupta et al 2016 AJ 152 154. doi:10.3847/0004-6256/152/6/154

  15. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    Science.gov (United States)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  16. A Mathematical Model, Implementation and Study of a Swarm System

    OpenAIRE

    Varghese, Blesson; McKee, Gerard

    2013-01-01

    The work reported in this paper is motivated towards the development of a mathematical model for swarm systems based on macroscopic primitives. A pattern formation and transformation model is proposed. The pattern transformation model comprises two general methods for pattern transformation, namely a macroscopic transformation and mathematical transformation method. The problem of transformation is formally expressed and four special cases of transformation are considered. Simulations to conf...

  17. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  18. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  19. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  20. Mathematical simulation for safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Brandstetter, A.; Raymond, J.R.; Benson, G.L.

    1979-01-01

    Mathematical models are being developed as part of the Waste Isolation Safety Assessment Program (WISAP) for assessing the post-closure safety of nuclear waste storage in geologic formations. The objective of this program is to develop the methods and data necessary to determine potential events that might disrupt the integrity of a waste repository and provide pathways for radionuclides to reach the bioshpere, primarily through groundwater transport. Four categories of mathematical models are being developed to assist in the analysis of potential release scenarios and consequences: (1) release scenario analysis models; (2) groundwater flow models; (3) contaminant transport models; and (4) radiation dose models. The development of the release scenario models is in a preliminary stage; the last three categories of models are fully operational. The release scenario models determine the bounds of potential future hydrogeologic changes, including potentially disruptive events. The groundwater flow and contaminant transport models compute the flowpaths, travel times, and concentrations of radionuclides that might migrate from a repository in the event of a breach and potentially reach the biosphere. The dose models compute the radiation doses to future populations. Reference site analyses are in progress to test the models for application to different geologies, including salt domes, bedded salt, and basalt

  1. 17th European Conference on Mathematics for Industry

    CERN Document Server

    Günther, Michael; Marheineke, Nicole

    2014-01-01

    This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia who promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists which will help them to solve similar problems, and offers modeling and simulation techniques ...

  2. Bayesian inference in mass flow simulations - from back calculation to prediction

    Science.gov (United States)

    Kofler, Andreas; Fischer, Jan-Thomas; Hellweger, Valentin; Huber, Andreas; Mergili, Martin; Pudasaini, Shiva; Fellin, Wolfgang; Oberguggenberger, Michael

    2017-04-01

    Mass flow simulations are an integral part of hazard assessment. Determining the hazard potential requires a multidisciplinary approach, including different scientific fields such as geomorphology, meteorology, physics, civil engineering and mathematics. An important task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The application of probabilistic methods allows one to develop a comprehensive simulation concept, ranging from back to forward calculation and finally to prediction of mass flow events. In this context optimized parameter sets for the used simulation model or intensities of the modeled mass flow process (e.g. runout distances) are represented by probability distributions. Existing deterministic flow models, in particular with respect to snow avalanche dynamics, contain several parameters (e.g. friction). Some of these parameters are more conceptual than physical and their direct measurement in the field is hardly possible. Hence, parameters have to be optimized by matching simulation results to field observations. This inverse problem can be solved by a Bayesian approach (Markov chain Monte Carlo). The optimization process yields parameter distributions, that can be utilized for probabilistic reconstruction and prediction of avalanche events. Arising challenges include the limited amount of observations, correlations appearing in model parameters or observed avalanche characteristics (e.g. velocity and runout) and the accurate handling of ensemble simulations, always taking into account the related uncertainties. Here we present an operational Bayesian simulation framework with r.avaflow, the open source GIS simulation model for granular avalanches and debris flows.

  3. Mathematics Learning Disability in Girls with Turner Syndrome or Fragile X Syndrome

    Science.gov (United States)

    Murphy, Melissa M.; Mazzocco, Michele M. M.; Gerner, Gwendolyn; Henry, Anne E.

    2006-01-01

    Two studies were carried out to examine the persistence (Study 1) and characteristics (Study 2) of mathematics learning disability (MLD) in girls with Turner syndrome or fragile X during the primary school years (ages 5-9 years). In Study 1, the rate of MLD for each syndrome group exceeded the rate observed in a grade-matched comparison group,…

  4. State of otolaryngology match: has competition increased since the "early" match?

    Science.gov (United States)

    Cabrera-Muffly, Cristina; Sheeder, Jeanelle; Abaza, Mona

    2015-05-01

    To examine fluctuations in supply and demand of otolaryngology residency positions after the shift from an "early match" coordinated by the San Francisco match to a "conventional" matching process through the National Residency Matching Program (NRMP). To determine whether competition among otolaryngology residency positions have changed during this time frame. Database analysis. Matching statistics from 1998 to 2013 were obtained for all first-year residency positions through the NRMP. Matching statistics from 1998 to 2005 were obtained for otolaryngology residency positions through the San Francisco match. Univariate analysis was performed, with a P value less than .05 determined as significant. The number of otolaryngology positions and applicants remained proportional to the overall number of positions and applicants in the NRMP match. Otolaryngology applicants per position and the matching rate of all applicants did not change between the 2 time periods studied. The overall match rate of US seniors applying to otolaryngology did not change, while the match rate of non-US seniors decreased significantly following initiation of the conventional match. There was no significant change in United States Medical Licensing Exam step 1 scores or percentage of unfilled otolaryngology residency positions between the 2 time periods. When comparing the early versus conventional otolaryngology match time periods, the only major change was the decreased percentage of matching among non-US senior applicants. Despite a significant shift in match timing after 2006, the supply, demand, and competitiveness of otolaryngology residency positions have not changed significantly. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  5. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  6. History Matching in Parallel Computational Environments

    Energy Technology Data Exchange (ETDEWEB)

    Steven Bryant; Sanjay Srinivasan; Alvaro Barrera; Sharad Yadav

    2004-08-31

    In the probabilistic approach for history matching, the information from the dynamic data is merged with the prior geologic information in order to generate permeability models consistent with the observed dynamic data as well as the prior geology. The relationship between dynamic response data and reservoir attributes may vary in different regions of the reservoir due to spatial variations in reservoir attributes, fluid properties, well configuration, flow constrains on wells etc. This implies probabilistic approach should then update different regions of the reservoir in different ways. This necessitates delineation of multiple reservoir domains in order to increase the accuracy of the approach. The research focuses on a probabilistic approach to integrate dynamic data that ensures consistency between reservoir models developed from one stage to the next. The algorithm relies on efficient parameterization of the dynamic data integration problem and permits rapid assessment of the updated reservoir model at each stage. The report also outlines various domain decomposition schemes from the perspective of increasing the accuracy of probabilistic approach of history matching. Research progress in three important areas of the project are discussed: {lg_bullet}Validation and testing the probabilistic approach to incorporating production data in reservoir models. {lg_bullet}Development of a robust scheme for identifying reservoir regions that will result in a more robust parameterization of the history matching process. {lg_bullet}Testing commercial simulators for parallel capability and development of a parallel algorithm for history matching.

  7. Using Video Prompting to Teach Mathematical Problem Solving of Real-World Video-Simulation Problems

    Science.gov (United States)

    Saunders, Alicia F.; Spooner, Fred; Ley Davis, Luann

    2018-01-01

    Mathematical problem solving is necessary in many facets of everyday life, yet little research exists on how to teach students with more severe disabilities higher order mathematics like problem solving. Using a multiple probe across participants design, three middle school students with moderate intellectual disability (ID) were taught to solve…

  8. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  9. PIV uncertainty quantification by image matching

    International Nuclear Information System (INIS)

    Sciacchitano, Andrea; Scarano, Fulvio; Wieneke, Bernhard

    2013-01-01

    A novel method is presented to quantify the uncertainty of PIV data. The approach is a posteriori, i.e. the unknown actual error of the measured velocity field is estimated using the velocity field itself as input along with the original images. The principle of the method relies on the concept of super-resolution: the image pair is matched according to the cross-correlation analysis and the residual distance between matched particle image pairs (particle disparity vector) due to incomplete match between the two exposures is measured. The ensemble of disparity vectors within the interrogation window is analyzed statistically. The dispersion of the disparity vector returns the estimate of the random error, whereas the mean value of the disparity indicates the occurrence of a systematic error. The validity of the working principle is first demonstrated via Monte Carlo simulations. Two different interrogation algorithms are considered, namely the cross-correlation with discrete window offset and the multi-pass with window deformation. In the simulated recordings, the effects of particle image displacement, its gradient, out-of-plane motion, seeding density and particle image diameter are considered. In all cases good agreement is retrieved, indicating that the error estimator is able to follow the trend of the actual error with satisfactory precision. Experiments where time-resolved PIV data are available are used to prove the concept under realistic measurement conditions. In this case the ‘exact’ velocity field is unknown; however a high accuracy estimate is obtained with an advanced interrogation algorithm that exploits the redundant information of highly temporally oversampled data (pyramid correlation, Sciacchitano et al (2012 Exp. Fluids 53 1087–105)). The image-matching estimator returns the instantaneous distribution of the estimated velocity measurement error. The spatial distribution compares very well with that of the actual error with maxima in the

  10. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study

    Directory of Open Access Journals (Sweden)

    de Lira CA

    2013-07-01

    Full Text Available Claudio Andre Barbosa de Lira,1 Luiz Fernando Peixinho-Pena,2 Rodrigo Luiz Vancini1,2 Rafael Júlio de Freitas Guina Fachina,3,4 Alexandre Aparecido de Almeida,2 Marília dos Santos Andrade,2 Antonio Carlos da Silva2 1Setor de Fisiologia Humana e do Exercício, Universidade Federal de Goiás (UFG, Câmpus Jataí, Jataí, GO, Brazil; 2Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP, São Paulo, SP, Brazil; 3Departamento de Ciência do Esporte, Faculdade de Educação Física (FEF, Universidade Estadual de Campinas (UNICAMP, Campinas, Brazil; 4Confederação Brasileira de Basketball (CBB, Rio de Janeiro, Brazil Abstract: The present study aimed to describe heart rate (HR responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg-1 · min-1 ± 7.2 mL · kg-1 · min-1 and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (VO2 was estimated during the match based on the HR response and the HR-VO2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and VO2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and VO2 as a function of round (round 3 < round 2 < round 1, P < 0.0001.These findings may direct individual training programs for boxing practitioners and other athletes. Keywords: heart rate, physiological profile, intermittent exercise, combat sports, boxing

  11. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  12. Mathematical Modeling of Biofilm Structures Using COMSTAT Data

    DEFF Research Database (Denmark)

    Verotta, Davide; Haagensen, Janus Anders Juul; Spormann, Alfred M.

    2017-01-01

    Mathematical modeling holds great potential for quantitatively describing biofilm growth in presence or absence of chemical agents used to limit or promote biofilm growth. In this paper, we describe a general mathematical/statistical framework that allows for the characterization of complex data...... in terms of few parameters and the capability to (i) compare different experiments and exposures to different agents, (ii) test different hypotheses regarding biofilm growth and interaction with different agents, and (iii) simulate arbitrary administrations of agents. The mathematical framework is divided...... to submodels characterizing biofilm, including new models characterizing live biofilm growth and dead cell accumulation; the interaction with agents inhibiting or stimulating growth; the kinetics of the agents. The statistical framework can take into account measurement and interexperiment variation. We...

  13. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  14. Mathematical modeling of a V-stack piezoelectric aileron actuation

    Directory of Open Access Journals (Sweden)

    Ioan URSU

    2016-12-01

    Full Text Available The article presents a mathematical modeling of aileron actuation that uses piezo V-shaped stacks. The aim of the actuation is the increasing of flutter speed in the context of a control law, in order to widen the flight envelope. In this way the main advantage of such a piezo actuator, the bandwidth is exploited. The mathematical model is obtained based on free body diagrams, and the numerical simulations allow a preliminary sizing of the actuator.

  15. Technique to match mantle and para-aortic fields

    International Nuclear Information System (INIS)

    Lutz, W.R.; Larsen, R.D.

    1983-01-01

    A technique is described to match the mantle and para-aortic fields used in treatment of Hodgkin's disease, when the patient is treated alternately in supine and prone position. The approach is based on referencing the field edges to a point close to the vertebral column, where uncontrolled motion is minimal and where accurate matching is particularly important. Fiducial surface points are established in the simulation process to accomplish the objective. Dose distributions have been measured to study the combined effect of divergence differences, changes in body angulation and setup errors. Even with the most careful technique, the use of small cord blocks of 50% transmission is an advisable precaution for the posterior fields

  16. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  17. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    Directory of Open Access Journals (Sweden)

    Belinda ePletzer

    2015-04-01

    Full Text Available Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret.Here we compared the BOLD-response of 18 participants with high (HMAs and 18 participants with low mathematics anxiety (LMAs matched for their mathematical performance to two numerical tasks (number comparison, number bisection. During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  18. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    Science.gov (United States)

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  19. Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tokunaga, T.; White, A.F.; Smith, A.R.

    1984-01-01

    The ultimate objective of the Uranium Mill Tailings Remedial Action Project (UMTRAP) is to minimize the potential environmental hazards due to the existing inactive uranium mill tailing piles. One of these sites, at Riverton, Wyoming, is located on the flood plain of the Wind River, with the water table lying within a few meters of the bottom of the tailings. Field data clearly indicates that contaminants, both radioactive and non-radioactive, are mobile within the tailings as well as in the adjacent ground water system. From the point of view of remedial action, the following important questions arise: At what rates and quantities will the contaminants continue to migrate in the ground water system over the next several hundred years. What will be the soil-water regime in the upper part of the tailings which controls the migration of radon gas to the atmosphere. In view of the projected system behavior, what are the economically viable and environmentally acceptable engineering solutions for remedy. The purpose of the mathematical modeling efforts at the Riverton site is to address the question of prediction; the transport of contaminants in the ground water system as well as the dynamic soil-water regime near the upper boundary. The use of mathematical models for the above purpose is dictated by the following questions: Do adequate computational models exist that can simulate the physico-chemical processes that characterize the mill tailings. Can these models reasonably explain the chemical evolution of the system since the beginning of the tailings emplacement. If so, can the historical behavior be used as the basis for predicting the behavior over the next several hundred years

  20. Modelling relationships between match events and match outcome in elite football.

    Science.gov (United States)

    Liu, Hongyou; Hopkins, Will G; Gómez, Miguel-Angel

    2016-08-01

    Identifying match events that are related to match outcome is an important task in football match analysis. Here we have used generalised mixed linear modelling to determine relationships of 16 football match events and 1 contextual variable (game location: home/away) with the match outcome. Statistics of 320 close matches (goal difference ≤ 2) of season 2012-2013 in the Spanish First Division Professional Football League were analysed. Relationships were evaluated with magnitude-based inferences and were expressed as extra matches won or lost per 10 close matches for an increase of two within-team or between-team standard deviations (SD) of the match event (representing effects of changes in team values from match to match and of differences between average team values, respectively). There was a moderate positive within-team effect from shots on target (3.4 extra wins per 10 matches; 99% confidence limits ±1.0), and a small positive within-team effect from total shots (1.7 extra wins; ±1.0). Effects of most other match events were related to ball possession, which had a small negative within-team effect (1.2 extra losses; ±1.0) but a small positive between-team effect (1.7 extra wins; ±1.4). Game location showed a small positive within-team effect (1.9 extra wins; ±0.9). In analyses of nine combinations of team and opposition end-of-season rank (classified as high, medium, low), almost all between-team effects were unclear, while within-team effects varied depending on the strength of team and opposition. Some of these findings will be useful to coaches and performance analysts when planning training sessions and match tactics.

  1. Job Searchers, Job Matches and the Elasticity of Matching

    NARCIS (Netherlands)

    Broersma, L.; van Ours, J.C.

    1998-01-01

    This paper stresses the importance of a specification of the matching function in which the measure of job matches corresponds to the measure of job searchers. In many empirical studies on the matching function this requirement has not been fulfilled because it is difficult to find information about

  2. Mathematical Constraints on the Use of Transmission Line Models for Simulating Initial Breakdown Pulses in Lightning Discharges

    Science.gov (United States)

    da Silva, C. L.; Merrill, R. A.; Pasko, V. P.

    2015-12-01

    A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been

  3. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  4. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  5. Parton shower and NLO-matching uncertainties in Higgs boson pair production

    Science.gov (United States)

    Jones, Stephen; Kuttimalai, Silvan

    2018-02-01

    We perform a detailed study of NLO parton shower matching uncertainties in Higgs boson pair production through gluon fusion at the LHC based on a generic and process independent implementation of NLO subtraction and parton shower matching schemes for loop-induced processes in the Sherpa event generator. We take into account the full top-quark mass dependence in the two-loop virtual corrections and compare the results to an effective theory approximation. In the full calculation, our findings suggest large parton shower matching uncertainties that are absent in the effective theory approximation. We observe large uncertainties even in regions of phase space where fixed-order calculations are theoretically well motivated and parton shower effects expected to be small. We compare our results to NLO matched parton shower simulations and analytic resummation results that are available in the literature.

  6. Implementation of an iteractive matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code

    International Nuclear Information System (INIS)

    Chilton, Sven H.

    2008-01-01

    The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths

  7. Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code

    International Nuclear Information System (INIS)

    Chilton, Sven; Chilton, Sven H.

    2008-01-01

    The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths

  8. Mathematical modeling of efficient protocols to control glioma growth.

    Science.gov (United States)

    Branco, J R; Ferreira, J A; de Oliveira, Paula

    2014-09-01

    In this paper we propose a mathematical model to describe the evolution of glioma cells taking into account the viscoelastic properties of brain tissue. The mathematical model is established considering that the glioma cells are of two phenotypes: migratory and proliferative. The evolution of the migratory cells is described by a diffusion-reaction equation of non Fickian type deduced considering a mass conservation law with a non Fickian migratory mass flux. The evolution of the proliferative cells is described by a reaction equation. A stability analysis that leads to the design of efficient protocols is presented. Numerical simulations that illustrate the behavior of the mathematical model are included. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. 78 FR 73195 - Privacy Act of 1974: CMS Computer Matching Program Match No. 2013-01; HHS Computer Matching...

    Science.gov (United States)

    2013-12-05

    ... 1974: CMS Computer Matching Program Match No. 2013-01; HHS Computer Matching Program Match No. 1312 AGENCY: Centers for Medicare & Medicaid Services (CMS), Department of Health and Human Services (HHS... Privacy Act of 1974 (5 U.S.C. 552a), as amended, this notice announces the renewal of a CMP that CMS plans...

  10. Active Learning Strategies for the Mathematics Classroom

    Science.gov (United States)

    Kerrigan, John

    2018-01-01

    Active learning involves students engaging with course content beyond lecture: through writing, applets, simulations, games, and more (Prince, 2004). As mathematics is often viewed as a subject area that is taught using more traditional methods (Goldsmith & Mark, 1999), there are actually many simple ways to make undergraduate mathematics…

  11. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  12. Effect of Ramadan Fasting on Body Water Status Markers after a Rugby Sevens Match

    OpenAIRE

    Trabelsi, Khaled; Rebai, Haithem; el-Abed, Kais; Stannard, Stephen R.; Khannous, Hamdi; Masmoudi, Liwa; Sahnoun, Zouheir; Hakim, Ahmed; Fellman, Nicole; Tabka, Zouhair

    2011-01-01

    Purpose To evaluate the effect of Ramadan fasting on body water status markers of rugby players at basal condition and following a simulation of rugby sevens match. Methods Twelve recreational rugby sevens players played three matches: one day before Ramadan (before Ramadan), at the end of the first week of Ramadan (Beg-R) and at the end of Ramadan (End-R). Before and immediately after each match, body weight was determined and blood samples were taken for the measurement of body water status...

  13. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  14. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  15. Mathematical simulation of the behaviour of the spent organic extractive solution near the injection well area in the case of underground disposal

    International Nuclear Information System (INIS)

    Istomin, A.D.; Noskov, M.D.; Balakhonov, V.G.; Zubkov, A.A.; Egorov, G.F.

    2005-01-01

    A mathematical model is presented of the processes in the collector seam under combined disposal of organic and radioactive wastes in porous geological strata of deep bedding. The model describes filtration, mass transfer, sorption and desorption of radionuclides, radioactive decay, decomposition of organic components and heat transfer. The computer software is developed. The results of simulating the thermal field dynamics, behaviour of the components of the spent organic extractive solution and water radioactive wastes in the collector seam of deep bedding are presented [ru

  16. Evaluation of bistable systems versus matched filters in detecting bipolar pulse signals

    OpenAIRE

    Duan, Fabing; Abbott, Derek; Gao, Qisheng

    2004-01-01

    This paper presents a thorough evaluation of a bistable system versus a matched filter in detecting bipolar pulse signals. The detectability of the bistable system can be optimized by adding noise, i.e. the stochastic resonance (SR) phenomenon. This SR effect is also demonstrated by approximate statistical detection theory of the bistable system and corresponding numerical simulations. Furthermore, the performance comparison results between the bistable system and the matched filter show that...

  17. Complexity Triggered by Economic Globalisation— The Issue of On-Line Betting-Related Match Fixing

    OpenAIRE

    Wladimir Andreff

    2017-01-01

    Complexity in mainstream economics consists in high intermediary consumption of mathematics. A new approach to complexity economics dwells upon path-dependent global systems; their emergence and evolving organisation. The focus here is on the complexity of the real economic world due to globalisation. On-line betting related match-fixing is a case in point about which the article presents non-exhaustive empirical evidence and shows how it is analysed with the standard model of the economics o...

  18. Mathematical simulation of a waste rock heap

    International Nuclear Information System (INIS)

    Scharer, J.M.; Pettit, C.M.; Chambers, D.B.; Kwong, E.C.

    1994-01-01

    A computer model has been developed to simulate the generation of acidic drainage in waste rock piles. The model considers the kinetic rates of biological and chemical oxidation of sulfide minerals (pyrite, pyrrhotite) present as fines and rock particles, as well as chemical processes such as dissolution (kinetic or equilibrium controlled), complexation (from equilibrium and stoichiometry of several complexes), and precipitation (formation of complexes and secondary minerals). Through mass balance equations and solubility constraints (e.g., pH, phase equilibria) the model keeps track of the movement of chemical species through the waste pile and provides estimates of the quality of seepage (pH, sulfate, iron, acidity, etc.) leaving the heap. The model has been expanded to include the dissolution (thermodynamic and sorption equilibrium), adsorption and coprecipitation of uranium and radium. The model was applied to simulate waste rock heaps in British Columbia, Canada and in Thueringia, Germany. To improve the accuracy and confidence of long-term predictions of seepage quality, the entire history of the heaps was simulated. Cumulative acidity loads and water treatment considerations were used as a basis for evaluation of various decommissioning alternatives. Simulation of the technical leaching history of a heap in Germany showed it will generate contaminated leachate requiring treatment for acidity and radioactivity for several hundred years; cover installation was shown to provide a significant reduction of potential burdens, although chemical treatment would still be required beyond 100 years

  19. Simulation for nuclear reactor technology

    International Nuclear Information System (INIS)

    Walton, D.G.

    1985-01-01

    Mathematical modelling forms the cornerstone of both the physical sciences and the engineering sciences. Computer modelling represents an extension of mathematical modelling into areas which are either not sufficiently accurate or not conveniently modelled by analytical techniques and where highly complex models can be investigated on a sufficiently short timescale. Simulation represents the application of these modelling techniques to real systems, thus enabling information on plant characteristics to be gained without either constructing or operating the full-scale plant or system under consideration. Developments in computer systems modelling techniques, safety and operating philosophy, and human psychology studies lead to improvements in simulation practice. New concepts in simulation also lead to a demand for new types of computers, dedicated computer systems are increasingly being developed for plant analysis, and the advent and development of microprocessors has also led to new techniques both in simulation and simulators. Progress in these areas is presented in this book

  20. Analysis of Mathematics and Sustainability in an Impulsive Eutrophication Controlling System

    Directory of Open Access Journals (Sweden)

    Hengguo Yu

    2013-01-01

    quite accurate to describe the interaction effect of some critical factors (fishermen catch and releasing small fry, etc., which enables a systematic and logical procedure for fitting eutrophication mathematical system to real monitoring data and experiment data. Mathematical theoretical works have been pursuing the investigation of two threshold functions of some critical parameters under the condition of all species persistence, which can in turn provide a theoretical basis for the numerical simulation. Using numerical simulation works, we mainly focus on how to choose the best value of some critical parameters to ensure the sustainability of the eutrophication system so that the eutrophication removal process can be well developed with maximizing economic benefit. These results may be further extended to provide a basis for simulating the algal bloom in the laboratory and understanding the application of some impulsive controlling models about eutrophication removal problems.

  1. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  2. Mathematical modelling and simulation of the operation in sugar and alcohol industry: 2 - evaporation; Modelagem matematica e simulacao das operacoes da industria de acucar e alcool: 2 - evaporacao

    Energy Technology Data Exchange (ETDEWEB)

    Chiappetta, A; Giudici, R; Nascimento, C A.O. do [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1987-12-31

    A mathematical model is presented for steady-state simulation of multiple-effects evaporators systems used for concentration of sugar solution. The model basis are the fundamental energy and mass balances equations, as well as empirical correlations for the problem being handled. The evaporation system simulation is performed with an executive program which allows different process configurations. For one typical case, some process parameters (volumetric rate and concentration of feed;exhaust steam temperature) influences on syrup concentration and solution temperature were studied. (author) 8 figs., 2 refs.

  3. The Impact of Drama on Pupils' Language, Mathematics, and Attitude in Two Primary Schools

    Science.gov (United States)

    Fleming, Mike; Merrell, Christine; Tymms, Peter

    2004-01-01

    This article reports on research which examined the impact of The National Theatre's Transformation drama project on young pupils' reading, mathematics, attitude, self-concept and creative writing in primary schools. Two of the schools taking part in Transformation were matched to two Control schools in the first two years of the project.…

  4. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    Science.gov (United States)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  5. Multi-data reservoir history matching of crosswell seismic, electromagnetics and gravimetry data

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Reservoir engineering has become of prime importance for oil and gas field development projects. With rising complexity, reservoir simulations and history matching have become critical for fine-tuning reservoir production strategies, improved

  6. Mathematical modeling and optimization of complex structures

    CERN Document Server

    Repin, Sergey; Tuovinen, Tero

    2016-01-01

    This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

  7. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  8. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  9. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  10. Efficient direct-matching rectenna design for RF power transfer applications

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.

    2013-01-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an

  11. Using Digital Games to Learn Mathematics – What students think?

    Directory of Open Access Journals (Sweden)

    Su Ting Yong

    2016-06-01

    Full Text Available The aim of this study was to explore how university foundation students perceive the use of digital games in learning mathematics. Data was collected using an online questionnaire and 209 foundation university students participated in this study.  The questionnaire was used to explore students’ gaming experience and students’ attitude towards mathematics learning with digital games.  It was found that most of the university foundation students liked to play different types of digital games.  Males preferred playing digital games in more traditional male genres namely sport, racing, shooter, action adventure, role play and strategy games.  As for females, they generally preferred playing puzzle and simulation games.  Astonishingly, the foundation students were not very positive towards the use of digital games in learning mathematics, and their attitude was essentially influenced by their mathematics interest.  Students with greater interest in mathematics were more likely to support the use of digital games in learning. 

  12. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  13. Drape simulation and subjective assessment of virtual drape

    Science.gov (United States)

    Buyukaslan, E.; Kalaoglu, F.; Jevsnik, S.

    2017-10-01

    In this study, a commercial 3D virtual garment simulation software (Optitex) is used to simulate drape behaviours of five different fabrics. Mechanical properties of selected fabrics are measured by Fabric Assurance by Simple Testing (FAST) method. Measured bending, shear and extension properties of fabrics are inserted to the simulation software to achieve more realistic simulations. Simulation images of fabrics are shown to 27 people and they are asked to match real drape images of fabrics with simulated drape images. Fabric simulations of two fabrics were correctly matched by the majority of the test group. However, the other three fabrics’ simulations were mismatched by most of the people.

  14. The mathematical simulation of carbohydrate translocation in natural ...

    African Journals Online (AJOL)

    The growth functions required for the simulation of production in Themeda triandra grassland were developed for the PUTU 11 growth model. The model was developed using veld production data collected during the 1980/81 growing season. The theory successfully simulated production in three subsequent years, each ...

  15. A comparison of semiglobal and local dense matching algorithms for surface reconstruction

    Directory of Open Access Journals (Sweden)

    E. Dall'Asta

    2014-06-01

    Full Text Available Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM, which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.

  16. A comparison of semiglobal and local dense matching algorithms for surface reconstruction

    Science.gov (United States)

    Dall'Asta, E.; Roncella, R.

    2014-06-01

    Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.

  17. Mathematic filters and digital processing in nuclear medicine

    International Nuclear Information System (INIS)

    Dimentein, R.

    1992-01-01

    The mathematic filters used in nuclear medicine were evaluated. Tomographic processing of a Jaszczak phantom, using separately Hanning, Butterworth and Wiener filters were presented. For each type of filter were made simulation, where the cut frequency and extenuation grade values were changed. (C.G.C.)

  18. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    Science.gov (United States)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  19. Color-weak compensation using local affine isometry based on discrimination threshold matching

    OpenAIRE

    Mochizuki, Rika; Kojima, Takanori; Lenz, Reiner; Chao, Jinhui

    2015-01-01

    We develop algorithms for color-weak compensation and color-weak simulation based on Riemannian geometry models of color spaces. The objective function introduced measures the match of color discrimination thresholds of average normal observers and a color-weak observer. The developed matching process makes use of local affine maps between color spaces of color-normal and color-weak observers. The method can be used to generate displays of images that provide color-normal and color-weak obser...

  20. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  1. Mathematical simulation of the kinetics of radiation induced hydroxyalkylation of aliphatic saturated alcohols

    International Nuclear Information System (INIS)

    Silaev, M.M.; Bugaenko, L.T.

    1992-01-01

    The paper reports on the development of the kinetics of radiation hydroxymethylation and hydroxypropylation chain processes relating to aliphatic saturated alcohols in the γ-radiolysis of the alcohol-unsaturated compound systems to give 1,2- and 1,4-diols respectively. These processes were simulated mathematically. The kinetic curves computed are in good agreement with the experimental dependences. The kinetic parameters of the processes, including the rate constants for the addition of α-hydroxyalkyl radicals from the saturated alcohols to the double bond of the unsaturated component, viz formaldehyde or 2-propene-1-ol in the systems, were estimated. The constants (in dm 3 /mol.s) for the saturated alcohol-formaldehyde systems incorporating ethanol as the saturated alcohol were found to be (1.5±0.3).10 4 at 413 K and (2.1±0.5).10 4 at 443K; incorporating 1-propanol- (6.0±1.3).10 3 at 413 K; for the saturated alcohol-2-propene-1-ol systems incorporating methanol, ethanol, 1- and 2-propanol-(2.5±0.3).10 4 , (6.5±0.9).10 4 , (2.7±0.4).10 4 and (1.0±0.1).10 5 , respectively, at 433 K. (author)

  2. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  3. Mathematical Modeling and Simulation Introduction for Scientists and Engineers

    CERN Document Server

    Velten, Kai

    2008-01-01

    This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra—all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently di

  4. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  5. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  6. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  7. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

  8. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  9. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  10. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    Science.gov (United States)

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  11. Simulating groundwater flow in karst aquifers with distributed parameter models—Comparison of porous-equivalent media and hybrid flow approaches

    Science.gov (United States)

    Kuniansky, Eve L.

    2016-09-22

    Understanding karst aquifers, for purposes of their management and protection, poses unique challenges. Karst aquifers are characterized by groundwater flow through conduits (tertiary porosity), and (or) layers with interconnected pores (secondary porosity) and through intergranular porosity (primary or matrix porosity). Since the late 1960s, advances have been made in the development of numerical computer codes and the use of mathematical model applications towards the understanding of dual (primary [matrix] and secondary [fractures and conduits]) porosity groundwater flow processes, as well as characterization and management of karst aquifers. The Floridan aquifer system (FAS) in Florida and parts of Alabama, Georgia, and South Carolina is composed of a thick sequence of predominantly carbonate rocks. Karst features are present over much of its area, especially in Florida where more than 30 first-magnitude springs occur, numerous sinkholes and submerged conduits have been mapped, and numerous circular lakes within sinkhole depressions are present. Different types of mathematical models have been applied for simulation of the FAS. Most of these models are distributed parameter models based on the assumption that, like a sponge, water flows through connected pores within the aquifer system and can be simulated with the same mathematical methods applied to flow through sand and gravel aquifers; these models are usually referred to as porous-equivalent media models. The partial differential equation solved for groundwater flow is the potential flow equation of fluid mechanics, which is used when flow is dominated by potential energy and has been applied for many fluid problems in which kinetic energy terms are dropped from the differential equation solved. In many groundwater model codes (basic MODFLOW), it is assumed that the water has a constant temperature and density and that flow is laminar, such that kinetic energy has minimal impact on flow. Some models have

  12. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  13. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  14. Mathematical model for dissolved oxygen prediction in Cirata ...

    African Journals Online (AJOL)

    This paper presents the implementation and performance of mathematical model to predict theconcentration of dissolved oxygen in Cirata Reservoir, West Java by using Artificial Neural Network (ANN). The simulation program was created using Visual Studio 2012 C# software with ANN model implemented in it. Prediction ...

  15. Mathematical Model of Age Aggression

    OpenAIRE

    Golovinski, P. A.

    2013-01-01

    We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...

  16. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

  17. Study on virtual simulation technology for operation and control of PWR

    International Nuclear Information System (INIS)

    Fang Baoguo; Zhang Dafa; Lin Yajun

    2006-01-01

    The way to build graphical models of PWR with MultiGen Creator is discussed, and the three-dimensional model used in the virtual simulation is built. The mathematical simulation model for PWR based on the platform of MFC and Vega is built through the analysis of the mathematical simulation of PWR. The way to perform the virtual effect is introduced associating with the Pressurizer. And, all above parts are connected in one with VC++ to perform the whole virtual simulation of PWR. (authors)

  18. Student-Perceived Mothers' and Fathers' Beliefs, Mathematics and English Motivations, and Career Choices.

    Science.gov (United States)

    Lazarides, Rebecca; Watt, Helen M G

    2017-12-01

    According to Eccles and Jacobs' (1986) parent socialization model, parents' gendered ability and value beliefs influence girls' and boys' interpretations of those beliefs, and hence students' domain-specific valuing of tasks and competence beliefs and subsequent career plans. Studies have rarely analyzed how both student-perceived mothers' and fathers' beliefs affect girls' and boys' task values, success expectancies, and career plans across domains. This study analyzed survey data of 459 students (262 boys) assessed through Grades 9, 10, and 11 from three coeducational secondary schools in Sydney, Australia. Longitudinal structural equation models revealed gendered value transmission pathways for girls in mathematics. Although mathematics test scores did not vary statistically significantly, girls reported statistically significantly lower mothers' ability beliefs for them in mathematics than boys at Time 1, which led to their statistically significantly lower mathematics intrinsic value at Time 2 and mathematics-related career plans at Time 3. Such gendered pathways did not occur in English. Matched same-gender effects and gendered pathways in parent socialization processes were evident; perceived mothers' value beliefs were more strongly related to girls' than boys' importance values in English. Student-perceived fathers' ability beliefs positively predicted boys', not girls', importance value in mathematics. Implications for educational practice emphasize the need to target girls' and boys' interest when aiming to enhance their mathematical career motivations. © 2017 The Authors. Journal of Research on Adolescence © 2017 Society for Research on Adolescence.

  19. Tsunami early warning in the Mediterranean: role, structure and tricks of pre-computed tsunami simulation databases and matching/forecasting algorithms

    Science.gov (United States)

    Armigliato, Alberto; Pagnoni, Gianluca; Tinti, Stefano

    2014-05-01

    The general idea that pre-computed simulated scenario databases can play a key role in conceiving tsunami early warning systems is commonly accepted by now. But it was only in the last decade that it started to be applied to the Mediterranean region, taking special impulse from initiatives like the GDACS and from recently concluded EU-funded projects such as TRIDEC and NearToWarn. With reference to these two projects and with the possibility of further developing this research line in the frame of the FP7 ASTARTE project, we discuss some results we obtained regarding two major topics, namely the strategies applicable to the tsunami scenario database building and the design and performance assessment of a timely and "reliable" elementary-scenario combination algorithm to be run in real-time. As for the first theme, we take advantage of the experience gained in the test areas of Western Iberia, Rhodes (Greece) and Cyprus to illustrate the criteria with which a "Matching Scenario Database" (MSDB) can be built. These involve 1) the choice of the main tectonic tsunamigenic sources (or areas), 2) their tessellation with matrices of elementary faults whose dimension heavily depend on the particular studied area and must be a compromise between the needs to represent the tsunamigenic area in sufficient detail and of limiting the number of scenarios to be simulated, 3) the computation of the scenarios themselves, 4) the choice of the relevant simulation outputs and the standardisation of their formats. Regarding the matching/forecast algorithm, we want it to select and combine the MSDB elements based on the initial earthquake magnitude and location estimate, and to produce a forecast of (at least) the tsunami arrival time, amplitude and period at the closest tide-level sensors and in all needed forecast points. We discuss the performance of the algorithm in terms of the time needed to produce the forecast after the earthquake is detected. In particular, we analyse the

  20. Mathematics, the Computer, and the Impact on Mathematics Education.

    Science.gov (United States)

    Tooke, D. James

    2001-01-01

    Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

  1. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  2. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  3. Teachers' perceptions of students' mathematics proficiency may exacerbate early gender gaps in achievement.

    Science.gov (United States)

    Robinson-Cimpian, Joseph P; Lubienski, Sarah Theule; Ganley, Colleen M; Copur-Gencturk, Yasemin

    2014-04-01

    A recent wave of research suggests that teachers overrate the performance of girls relative to boys and hold more positive attitudes toward girls' mathematics abilities. However, these prior estimates of teachers' supposed female bias are potentially misleading because these estimates (and teachers themselves) confound achievement with teachers' perceptions of behavior and effort. Using data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K), Study 1 demonstrates that teachers actually rate boys' mathematics proficiency higher than that of girls when conditioning on both teachers' ratings of behavior and approaches to learning as well as past and current test scores. In other words, on average girls are only perceived to be as mathematically competent as similarly achieving boys when the girls are also seen as working harder, behaving better, and being more eager to learn. Study 2 uses mediation analysis with an instrumental-variables approach, as well as a matching strategy, to explore the extent to which this conditional underrating of girls may explain the widening gender gap in mathematics in early elementary school. We find robust evidence suggesting that underrating girls' mathematics proficiency accounts for a substantial portion of the development of the mathematics achievement gap between similarly performing and behaving boys and girls in the early grades. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  5. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Michalsik, L B; Madsen, Klavs

    2008-01-01

    The purpose of the present study was to determine the acute fatigue development in muscle mechanical properties and neuromuscular activity in response to handball match play. Male elite handball players (n = 10) were tested before and after a simulated handball match for maximal isometric strength...... work (6.8%, P handball match play, which...

  6. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction

  7. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan

    2013-05-04

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation. However, often in applications the overall flow in the low-resolution simulation that an animator observes and intends to preserve is composed of even lower frequencies than the low resolution itself. In such cases, attempting to match the low-resolution simulation precisely is unnecessarily restrictive. We propose a new sampling technique to efficiently capture the overall flow of a fluid simulation, at the scale of user\\'s choice, in such a way that the sampled information is sufficient to represent what is virtually perceived and no more. Thus, by applying control based on the sampled data, we ensure that in the resulting high-resolution simulation, the overall flow is matched to the low-resolution simulation and the fine details on the high resolution are preserved. The samples we obtain have both spatial and temporal continuity that allows smooth keyframe matching and direct manipulation of visible elements such as smoke density through temporal blending of samples. We demonstrate that a user can easily configure a simulation with our system to achieve desired results. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Mathematical analysis II

    CERN Document Server

    Zorich, Vladimir A

    2016-01-01

    This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different go...

  9. Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor

    Science.gov (United States)

    Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl

    1996-01-01

    A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.

  10. Simulated galaxy interactions as probes of merger spectral energy distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Brassington, Nicola, E-mail: llanz@ipac.caltech.edu [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  11. Performance evaluation by simulation and analysis with applications to computer networks

    CERN Document Server

    Chen, Ken

    2015-01-01

    This book is devoted to the most used methodologies for performance evaluation: simulation using specialized software and mathematical modeling. An important part is dedicated to the simulation, particularly in its theoretical framework and the precautions to be taken in the implementation of the experimental procedure.  These principles are illustrated by concrete examples achieved through operational simulation languages ​​(OMNeT ++, OPNET). Presented under the complementary approach, the mathematical method is essential for the simulation. Both methodologies based largely on the theory of

  12. Learning Mathematics for Teaching Mathematics: Non-Specialist Teachers' Mathematics Teacher Identity

    Science.gov (United States)

    Crisan, Cosette; Rodd, Melissa

    2017-01-01

    A non-specialist teacher of mathematics is a school teacher who qualified to teach in a subject other than mathematics yet teaches mathematics to students in secondary school. There is an emerging interest internationally in this population, a brief report of which is given in the paper. Because of concerns about the quality of non-specialists'…

  13. Hybrid modelling framework by using mathematics-based and information-based methods

    International Nuclear Information System (INIS)

    Ghaboussi, J; Kim, J; Elnashai, A

    2010-01-01

    Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.

  14. A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes

    Science.gov (United States)

    Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.

    2018-04-01

    Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.

  15. Design and realization of simulators

    International Nuclear Information System (INIS)

    Mathey, C.

    1984-01-01

    The two main categories of simulators are training simulators of which aim is the education of the nuclear power plant operators, and the study simulators. The French park of simulators is reviewed, as also their field of utilization. One deals with the simulator design: general description, calculation tools, middleware, and programming, mathematical models and numerical methods. Then, the instructor post of the EDF's simulators are more particularly described. The realization of a simulator includes two main stages: the development of the material and, the development of the software [fr

  16. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    Science.gov (United States)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  17. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    International Nuclear Information System (INIS)

    Keyrouz, Shady; Visser, Huib

    2013-01-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of −10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%

  18. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast: Monograph Series in Mathematics Education

    Science.gov (United States)

    Sriraman, Bharath, Ed.

    2012-01-01

    The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at…

  19. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  20. Mathematical Literacy: A new literacy or a new mathematics?

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2006-10-01

    Full Text Available Mathematical Literacy is a ‘hot’ topic at present in most countries, whether it is referred to by that name, or in some cases as Numeracy, or Quantitative Literacy, or Matheracy, or as some part of Ethnomathematics, or related to Mathematics in Society. Questions continue to be asked about what is meant by mathematics in any concept of Mathematical Literacy and the use of the very word ‘Literacy’ in its association with Mathematics has been challenged. Its importance, however, lies in changing our perspective on mathematics teaching, away from the elitism so often associated with much mathematics education, and towards a more equitable, accessible and genuinely educational ideal.

  1. Research on vehicles and cargos matching model based on virtual logistics platform

    Science.gov (United States)

    Zhuang, Yufeng; Lu, Jiang; Su, Zhiyuan

    2018-04-01

    Highway less than truckload (LTL) transportation vehicles and cargos matching problem is a joint optimization problem of typical vehicle routing and loading, which is also a hot issue of operational research. This article based on the demand of virtual logistics platform, for the problem of the highway LTL transportation, the matching model of the idle vehicle and the transportation order is set up and the corresponding genetic algorithm is designed. Then the algorithm is implemented by Java. The simulation results show that the solution is satisfactory.

  2. The Relationship of Mathematics Anxiety and Mathematical Knowledge to the Learning of Mathematical Pedagogy by Preservice Elementary Teachers.

    Science.gov (United States)

    Battista, Michael T.

    1986-01-01

    Examined how preservice elementary teachers' (N=38) mathematical knowledge and mathematics anxiety affect their success in a mathematics methods course. Also examined the hypothesis that a mathematics methods course can reduce the mathematics anxiety of these teachers. One finding is that mathematics anxiety does not inhibit their learning of…

  3. Magnetic safety matches

    Science.gov (United States)

    Lindén, J.; Lindberg, M.; Greggas, A.; Jylhävuori, N.; Norrgrann, H.; Lill, J. O.

    2017-07-01

    In addition to the main ingredients; sulfur, potassium chlorate and carbon, ordinary safety matches contain various dyes, glues etc, giving the head of the match an even texture and appealing color. Among the common reddish-brown matches there are several types, which after ignition can be attracted by a strong magnet. Before ignition the match head is generally not attracted by the magnet. An elemental analysis based on proton-induced x-ray emission was performed to single out iron as the element responsible for the observed magnetism. 57Fe Mössbauer spectroscopy was used for identifying the various types of iron-compounds, present before and after ignition, responsible for the macroscopic magnetism: Fe2O3 before and Fe3O4 after. The reaction was verified by mixing the main chemicals in the match-head with Fe2O3 in glue and mounting the mixture on a match stick. The ash residue after igniting the mixture was magnetic.

  4. The Relationships among Mathematics Teaching Efficacy, Mathematics Self-Efficacy, and Mathematical Beliefs for Elementary Pre-Service Teachers

    Science.gov (United States)

    Briley, Jason S.

    2012-01-01

    Ninety-five elementary pre-service teachers enrolled in a mathematics content course for elementary school teachers completed 3 surveys to measure mathematics teaching efficacy, mathematics self-efficacy, and mathematical beliefs. The pre-service teachers who reported stronger beliefs in their capabilities to teach mathematics effectively were…

  5. MATHEMATICAL MODEL OF TRIAXIAL MULTIMODE ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-07-01

    Full Text Available Purpose: The paper deals with the mathematical description of the gimballed attitude and heading reference systems, which can be applied in design of strategic precision navigation systems. The main goal is to created mathematical description taking into consideration the necessity to use different navigations operating modes of this class of navigation systems. To provide the high accuracy the indirect control is used when the position of the gimballed platform is controlled by signals of gyroscopic devices, which are corrected using accelerometer’s signals. Methods: To solve the given problem the methods of the classical theoretical mechanics, gyro theory, and inertial navigation are used. Results: The full mathematical model of the gimballed attitude and heading reference system is derived including descriptions of different operating modes. The mathematical models of the system Expressions for control and correction moments in the different modes are represented. The simulation results are given. Conclusions: The represented results prove efficiency of the proposed models. Developed mathematical models can be useful for design of navigation systems of the wide class of moving vehicles.

  6. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects.

    Science.gov (United States)

    Allen, R J; Musante, Cynthia J

    2018-04-17

    Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. Firstly, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal re-absorption of fructose is mostly ablated and that alternate pathways for hepatic metabolism of fructose are up-regulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high fructose conditions.

  7. ''NEPTUNIX'': a continuous system simulation language

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1982-07-01

    From the mathematical description of a physical system, NEPTUNIX builds the corresponding simulator. Algebraic and ordinary differential equations describing a physical system may be ''stiff'', nonlinear, implicit and even dynamically variable. The non procedural language describing the mathematical model is independent from the integration algorithm. The NEPTUNIX built simulator, transportable on many computers, may be controlled by a userfriendly operating language, independent from host computer and integration method. Last years results about numerical and non-numerical algorithms were used for the package implementation. NEPTUNIX appears as a powerful modeling tool, specially in the field of nuclear reactors design [fr

  8. High-efficiency resonant coupled wireless power transfer via tunable impedance matching

    Science.gov (United States)

    Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra

    2017-10-01

    For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.

  9. Experimentation and mathematical simulation of the operation of a 300-kW boiler, equipped with a progressive regulation or on/off burner

    Energy Technology Data Exchange (ETDEWEB)

    Anglesio, P [Politecnico di Torino, Italy; Perthuis, E

    1980-04-01

    The results of an experimental study undertaken during tests run with domestic fuel oil and natural gas, are described. Losses via wall surfaces and exhaust gases are determined, and according to variations in output with the effective power of the boiler and the advantage of progressive regulation mode operation, from the energy point of view, are demonstrated. The mathematical model developed is presented. Simulation is obtained by considering thermal transfers in the hearth, and then the exchanger of the boiler. For continuous operation, two programs are presented. The first is used for adjustment to experimental results. A third program simulates discontinuous operation. Theoretical results slightly overestimate actual output, but confirm the advantage of progressive regulation. The economic study shows that the excess cost of a progressive modulation type burner tends to direct choice towards a compromise, in the form of a dual-rate (high/low) type burner.

  10. Mathematical Modeling of Biofilm Structures Using COMSTAT Data

    Directory of Open Access Journals (Sweden)

    Davide Verotta

    2017-01-01

    Full Text Available Mathematical modeling holds great potential for quantitatively describing biofilm growth in presence or absence of chemical agents used to limit or promote biofilm growth. In this paper, we describe a general mathematical/statistical framework that allows for the characterization of complex data in terms of few parameters and the capability to (i compare different experiments and exposures to different agents, (ii test different hypotheses regarding biofilm growth and interaction with different agents, and (iii simulate arbitrary administrations of agents. The mathematical framework is divided to submodels characterizing biofilm, including new models characterizing live biofilm growth and dead cell accumulation; the interaction with agents inhibiting or stimulating growth; the kinetics of the agents. The statistical framework can take into account measurement and interexperiment variation. We demonstrate the application of (some of the models using confocal microscopy data obtained using the computer program COMSTAT.

  11. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He - Ar plasma containing nanoclusters of uranium compounds

    Science.gov (United States)

    Kosarev, V. A.; Kuznetsova, E. E.

    2014-02-01

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.

  12. Search for promising compositions for developing new multiphase casting alloys based on Al-Cu-Mg matrix using thermodynamic calculations and mathematic simulation

    Science.gov (United States)

    Zolotorevskii, V. S.; Pozdnyakov, A. V.; Churyumov, A. Yu.

    2012-11-01

    A calculation-experimental study is carried out to improve the concept of searching for new alloying systems in order to develop new casting alloys using mathematical simulation methods in combination with thermodynamic calculations. The results show the high effectiveness of the applied methods. The real possibility of selecting the promising compositions with the required set of casting and mechanical properties is exemplified by alloys with thermally hardened Al-Cu and Al-Cu-Mg matrices, as well as poorly soluble additives that form eutectic components using mainly the calculation study methods and the minimum number of experiments.

  13. Influence of errors in the dimensions of a switched parasitic array on gain and impedance match

    CSIR Research Space (South Africa)

    Mofolo, MRO

    2012-09-01

    Full Text Available of these variations on the antenna performance attributes (e.g. gain and impedance match) is estimated using a Monte Carlo simulation. The simulation results demonstrate that the combined effect of all variations in the structural parameters quantify the impact...

  14. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  15. Increasing the effectiveness of messages promoting responsible undergraduate drinking: tailoring to personality and matching to context.

    Science.gov (United States)

    York, Valerie K; Brannon, Laura A; Miller, Megan M

    2012-01-01

    This study addressed the serious problem of college student binge drinking by identifying factors that improve the effectiveness of messages encouraging responsible drinking presented through a website simulation. We tested schema matching (i.e., whether the message matches the person's self-schema type or not) and two types of context matching (i.e., whether the message matches the topic or values of the message context) to determine their relative influence on the effectiveness of the message. We expected that messages matched to any of these factors would be more effective than messages not matched. Schema matching reduced intentions to drink while staying in/home, but topic matching reduced intentions to drink when going out, suggesting that different factors are important for messages targeting drinking behavior in different locations. Significant interactions between topic matching and value matching on message evaluation variables indicated that the message should not match the message context too closely. That is, there appears to be a matching threshold: Increasing the number of factors the message matches does not increase message effectiveness, possibly because it makes the message too redundant with the surrounding content.

  16. Real-time UAV trajectory generation using feature points matching between video image sequences

    Science.gov (United States)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  17. The mathematical model of thread unrolling from a bobbin

    Directory of Open Access Journals (Sweden)

    S. M. Tenenbaum

    2014-01-01

    Full Text Available I. Introduction The subject of research in this work is a process of thread unrolling from a bobbin. The mathematical model of this process considering motion of thread peace on a bobbin and unrolled peace is proposed. The dimension of system of differential equations for this model is constant during deploying.The relevance to simulate this process for design of Heliogyro-like solar sails (Heliogyro [1], BMSTU-Sail [2] is proved. The paper briefly characterizes a blade for such solar sail as a simulation object. It proves the possibility for using a flexible thread model for a long blade because of very small blade thickness (less than 10 μm [3] relative to blade width and the phenomena of Koriolis forces [4] that lead to buckling failure of blade flatness.The major features of the proposed model are:-- simulated as a motion of the thread piece both being on a bobbin and its unrolled peace;-- splitting a thread length into nodes does not depend on the demand to ensure a sufficient number of nodes on a single thread turn on the coil;-- because of avoiding a problem of contact between the thread and bobbin a stable integration of motion equations is provided by the conventional Runge-Kutta method of fourth order with a constant step [5];-- in the course of solution the number of freedom degrees (number of motion equation is constant, thereby simplifying a calculation algorithm.The closest mathematical model is proposed in [6].The scientific novelty of this research is the approach to solving the problem of unrolling thread from a bobbin using a constant number of motion equations while preserving real kinematics coiling process.II. Problem formulationIn this section the problem of unrolling thread with length L from a bobbin of radius r is posed while any kind of forces are acting on the unrolled peace of thread. Moreover, the law of bobbin rotation φ(t assumed to be known with the proviso that the model can be modified if φ(t is the result of

  18. Discrete Mathematics and the Secondary Mathematics Curriculum.

    Science.gov (United States)

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  19. Development of computer program for simulation of an ice bank system operation, Part I: Mathematical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)

    2009-09-15

    Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)

  20. Visual color matching system based on RGB LED light source

    Science.gov (United States)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng

    2018-01-01

    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  1. Target Matching Recognition for Satellite Images Based on the Improved FREAK Algorithm

    Directory of Open Access Journals (Sweden)

    Yantong Chen

    2016-01-01

    Full Text Available Satellite remote sensing image target matching recognition exhibits poor robustness and accuracy because of the unfit feature extractor and large data quantity. To address this problem, we propose a new feature extraction algorithm for fast target matching recognition that comprises an improved feature from accelerated segment test (FAST feature detector and a binary fast retina key point (FREAK feature descriptor. To improve robustness, we extend the FAST feature detector by applying scale space theory and then transform the feature vector acquired by the FREAK descriptor from decimal into binary. We reduce the quantity of data in the computer and improve matching accuracy by using the binary space. Simulation test results show that our algorithm outperforms other relevant methods in terms of robustness and accuracy.

  2. Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors

    KAUST Repository

    Omran, Hesham

    2016-04-21

    Small metal-oxide-metal (MOM) capacitors are essential to energy-efficient mixed-signal integrated circuit design. However, only few reports discuss their matching properties based on large sets of measured data. In this paper, we report matching properties of femtofarad and sub-femtofarad MOM vertical-field parallel-plate capacitors and lateral-field fringing capacitors. We study the effect of both the finger-length and finger-spacing on the mismatch of lateral-field capacitors. In addition, we compare the matching properties and the area efficiency of vertical-field and lateral-field capacitors. We use direct mismatch measurement technique, and we illustrate its feasibility using experimental measurements and Monte Carlo simulations. The test-chips are fabricated in a 0.18 \\\\mutext{m} CMOS process. A large number of test structures is characterized (4800 test structures), which improves the statistical reliability of the extracted mismatch information. Despite conventional wisdom, extensive measurements show that vertical-field and lateral-field MOM capacitors have the same matching properties when the actual capacitor area is considered. Measurements show that the mismatch depends on the capacitor area but not on the spacing; thus, for a given mismatch specification, the lateral-field MOM capacitor can have arbitrarily small capacitance by increasing the spacing between the capacitor fingers, at the expense of increased chip area.

  3. Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors

    KAUST Repository

    Omran, Hesham; Alahmadi, Hamzah; Salama, Khaled N.

    2016-01-01

    Small metal-oxide-metal (MOM) capacitors are essential to energy-efficient mixed-signal integrated circuit design. However, only few reports discuss their matching properties based on large sets of measured data. In this paper, we report matching properties of femtofarad and sub-femtofarad MOM vertical-field parallel-plate capacitors and lateral-field fringing capacitors. We study the effect of both the finger-length and finger-spacing on the mismatch of lateral-field capacitors. In addition, we compare the matching properties and the area efficiency of vertical-field and lateral-field capacitors. We use direct mismatch measurement technique, and we illustrate its feasibility using experimental measurements and Monte Carlo simulations. The test-chips are fabricated in a 0.18 \\mutext{m} CMOS process. A large number of test structures is characterized (4800 test structures), which improves the statistical reliability of the extracted mismatch information. Despite conventional wisdom, extensive measurements show that vertical-field and lateral-field MOM capacitors have the same matching properties when the actual capacitor area is considered. Measurements show that the mismatch depends on the capacitor area but not on the spacing; thus, for a given mismatch specification, the lateral-field MOM capacitor can have arbitrarily small capacitance by increasing the spacing between the capacitor fingers, at the expense of increased chip area.

  4. Development of NDT simulator for corrosion detection using EMAT sensors

    International Nuclear Information System (INIS)

    Kojima, Fumio; Torigoe, Yoshifumi

    2007-01-01

    This paper is concerned with a simulator related to nondestructive test using Electromagnetic Acoustic Transducer (EMAT). The simulator developed here can be applied to corrosion detection of SUS samples used in nuclear power plants. First, mathematical models for the inspection are given by a transient eddy current equation and by a time dependent elastic wave equation in two dimensions. Secondly, finite element method is adopted to the mathematical model considered here. Finally, the validity of the proposed simulator is shown in the numerical experiments. (author)

  5. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    Science.gov (United States)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  6. Sensor-based vibration signal feature extraction using an improved composite dictionary matching pursuit algorithm.

    Science.gov (United States)

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-09-09

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm

  7. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2014-09-01

    Full Text Available This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and

  8. The simulation research for the dynamic performance of integrated PWR

    International Nuclear Information System (INIS)

    Yuan Jiandong; Xia Guoqing; Fu Mingyu

    2005-01-01

    The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)

  9. Meeting in mathematics

    DEFF Research Database (Denmark)

    Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

    To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

  10. Mathematical simulation of hazardous ion retention from radioactive waste in fixed bed reactor

    International Nuclear Information System (INIS)

    Sohsah, M.A.; Gohneim, M.M.; Othman, S.H.; El-Anadouli, B.E.

    2007-01-01

    Reactor design for fluid-solid, noncatalytic reaction depends on the prediction of the performance of the reactor kinetically. The most mathematical models used to handle fixed bed reactor in which the solid bed constitute one of the reactants, while a second reactant is in the fluid phase are complex and difficult to handle. A new mathematical model which easier to handle has been developed to describe the system under investigation. The model was examined theoretically and experimentally. A column backed with chelating cloth filter to separate radionuclide form radioactive waste solution is used as a practical application for the model. Comparison of the model predictions with the experimental results gives satisfactory agreement at most of the process stages

  11. The Applied Mathematics for Power Systems (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  12. Engineering Mathematics I : Electromagnetics, Fluid Mechanics, Material Physics and Financial Engineering

    CERN Document Server

    Rančić, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. In particular, it features mathematical methods and models of applied analysis, probability theory, differential equations, tensor analysis and computational modelling used in applications to important problems concerning electromagnetics, antenna technologies, fluid dynamics, material and continuum physics and financial engineering. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The ...

  13. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  14. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  15. International note: Are Emirati parents' attitudes toward mathematics linked to their adolescent children's attitudes toward mathematics and mathematics achievement?

    Science.gov (United States)

    Areepattamannil, Shaljan; Khine, Myint Swe; Melkonian, Michael; Welch, Anita G; Al Nuaimi, Samira Ahmed; Rashad, Fatimah F

    2015-10-01

    Drawing on data from the 2012 Program for International Student Assessment (PISA) and employing multilevel modeling as an analytic strategy, this study examined the relations of adolescent children's perceptions of their parents' attitudes towards mathematics to their own attitudes towards mathematics and mathematics achievement among a sample of 5116 adolescents from 384 schools in the United Arab Emirates. The results of this cross-sectional study revealed that adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children not only to study but also for their career tended to report higher levels of intrinsic and instrumental motivation to learn mathematics, mathematics self-concept and self-efficacy, and mathematics work ethic. Moreover, adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children's career tended to report positive intentions and behaviors toward mathematics. However, adolescents who perceived that their parents considered mathematics was important for their children's career tended to report higher levels of mathematics anxiety. Finally, adolescents who perceived that their parents considered mathematics was important for their children to study performed significantly better on the mathematics assessment than did their peers whose parents disregarded the importance of learning mathematics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  17. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  18. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  19. Mathematics without boundaries surveys in pure mathematics

    CERN Document Server

    Pardalos, Panos

    2014-01-01

    The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the  latest information.

  20. Pre-Service Teachers' Mathematics Self-Efficacy and Mathematics Teaching Self-Efficacy

    Science.gov (United States)

    Zuya, Habila Elisha; Kwalat, Simon Kevin; Attah, Bala Galle

    2016-01-01

    Pre-service mathematics teachers' mathematics self-efficacy and mathematics teaching self-efficacy were investigated in this study. The purpose was to determine the confidence levels of their self-efficacy in mathematics and mathematics teaching. Also, the study was aimed at finding whether their mathematics self-efficacy and teaching…

  1. Mathematics Teachers' Perceptions of Their Students' Mathematical Competence: Relations to Mathematics Achievement, Affect, and Engagement in Singapore and Australia

    Science.gov (United States)

    Areepattamannil, Shaljan; Kaur, Berinderjeet

    2013-01-01

    This study, drawing on data from the Trends in International Mathematics and Science Study (TIMSS) 2011, examined whether mathematics teachers' perceptions of their students' mathematical competence were related to mathematics achievement, affect toward mathematics, and engagement in mathematics lessons among Grade 8 students in Singapore and…

  2. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  3. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  4. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  5. Best matching theory & applications

    CERN Document Server

    Moghaddam, Mohsen

    2017-01-01

    Mismatch or best match? This book demonstrates that best matching of individual entities to each other is essential to ensure smooth conduct and successful competitiveness in any distributed system, natural and artificial. Interactions must be optimized through best matching in planning and scheduling, enterprise network design, transportation and construction planning, recruitment, problem solving, selective assembly, team formation, sensor network design, and more. Fundamentals of best matching in distributed and collaborative systems are explained by providing: § Methodical analysis of various multidimensional best matching processes § Comprehensive taxonomy, comparing different best matching problems and processes § Systematic identification of systems’ hierarchy, nature of interactions, and distribution of decision-making and control functions § Practical formulation of solutions based on a library of best matching algorithms and protocols, ready for direct applications and apps development. Design...

  6. Software and mathematical support of Kazakhstani star tracker

    Science.gov (United States)

    Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.

    2016-10-01

    Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range

  7. Using Mathematics in Science: Working with Your Mathematics Department

    Science.gov (United States)

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  8. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  9. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  10. History matching of transient pressure build-up in a simulation model using adjoint method

    Energy Technology Data Exchange (ETDEWEB)

    Ajala, I.; Haekal, Rachmat; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Almuallim, H. [Firmsoft Technologies, Inc., Calgary, AB (Canada); Schulze-Riegert, R. [SPT Group GmbH, Hamburg (Germany)

    2013-08-01

    The aim of this work is the efficient and computer-assisted history-matching of pressure build-up and pressure derivatives by small modification to reservoir rock properties on a grid by grid level. (orig.)

  11. Thermoregulation in premature infants: A mathematical model.

    Science.gov (United States)

    Pereira, Carina Barbosa; Heimann, Konrad; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2016-12-01

    In 2010, approximately 14.9 million babies (11.1%) were born preterm. Because preterm infants suffer from an immature thermoregulatory system they have difficulty maintaining their core body temperature at a constant level. Therefore, it is essential to maintain their temperature at, ideally, around 37°C. For this, mathematical models can provide detailed insight into heat transfer processes and body-environment interactions for clinical applications. A new multi-node mathematical model of the thermoregulatory system of newborn infants is presented. It comprises seven compartments, one spherical and six cylindrical, which represent the head, thorax, abdomen, arms and legs, respectively. The model is customizable, i.e. it meets individual characteristics of the neonate (e.g. gestational age, postnatal age, weight and length) which play an important role in heat transfer mechanisms. The model was validated during thermal neutrality and in a transient thermal environment. During thermal neutrality the model accurately predicted skin and core temperatures. The difference in mean core temperature between measurements and simulations averaged 0.25±0.21°C and that of skin temperature averaged 0.36±0.36°C. During transient thermal conditions, our approach simulated the thermoregulatory dynamics/responses. Here, for all infants, the mean absolute error between core temperatures averaged 0.12±0.11°C and that of skin temperatures hovered around 0.30°C. The mathematical model appears able to predict core and skin temperatures during thermal neutrality and in case of a transient thermal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. MATHEMATICAL MODEL OF CATALYTIC PROCESSES AT MODIFIED ELECTRODES

    Directory of Open Access Journals (Sweden)

    Femila Mercy Rani Joseph

    Full Text Available A mathematical modeling of electrocatalytic processes taking place at modified electrodes is discussed. In this paper we obtained the approximate analytical solutions for the nonlinear equations under non steady state conditions using homotopy perturbation method. Simple and approximate polynomial expressions for the concentration of reactant, product and charge carrier were obtained in terms of diffusion coefficient and rate constant. In this work the numerical simulation of the problem is reported using Scilab program. In this manuscript analytical results are compared with simulation results and satisfactory agreement is noted.

  13. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nonlinear optical and atomic systems at the interface of physics and mathematics

    CERN Document Server

    Garreau, Jean-Claude

    2015-01-01

    Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is  an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics.   Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

  15. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Science.gov (United States)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  16. The pragmatics of mathematics education vagueness and mathematical discourse

    CERN Document Server

    Rowland, Tim

    2003-01-01

    Drawing on philosophy of language and recent linguistic theory, Rowland surveys several approaches to classroom communication in mathematics. Are students intimidated by the nature of mathematics teaching? Many students appear fearful of voicing their understanding - is fear of error part of the linguistics of mathematics? The approaches explored here provide a rationale and a method for exploring and understanding speakers'' motives in classroom mathematics talk. Teacher-student interactions in mathematics are analysed, and this provides a toolkit that teachers can use to respond to the intellectual vulnerability of their students.

  17. Multi-data reservoir history matching of crosswell seismic, electromagnetics and gravimetry data

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Reservoir engineering has become of prime importance for oil and gas field development projects. With rising complexity, reservoir simulations and history matching have become critical for fine-tuning reservoir production strategies, improved subsurface formation knowledge and forecasting remaining reserves. The sparse spatial sampling of production data has posed a significant challenge for reducing uncertainty of subsurface parameters. Seismic, electromagnetic and gravimetry techniques have found widespread application in enhancing exploration for oil and gas and monitor reservoirs, however these data have been interpreted and analyzed mostly separately rarely utilizing the synergy effects that may be attainable. With the incorporation of multiple data into the reservoir history matching process there has been the request knowing the impact each incorporated observation has on the estimation. We present multi-data ensemble-based history matching framework for the incorporation of multiple data such as seismic, electromagnetics, and gravimetry for improved reservoir history matching and provide an adjointfree ensemble sensitivity method to compute the impact of each observation on the estimated reservoir parameters. The incorporation of all data sets displays the advantages multiple data may provide for enhancing reservoir understanding and matching, with the impact of each data set on the matching improvement being determined by the ensemble sensitivity method.

  18. Comparison of two mathematical models of the kite for Laddermill sail simulation

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Laddermill sail is an innovative approach to propel the ship with the power generated by kites. The first Laddermill system is currently being designed however existing mathematical models of the system produce different optimal recommendations. Thus a decision has been made to step back and to take

  19. A mathematical model of a three-gap thyratron simulating turn-on

    International Nuclear Information System (INIS)

    Barnes, M. J.; Wait, G.D.

    1993-06-01

    Kicker magnets are required for all ring-to-ring transfers in the 5 rings of the proposed KAON factory synchrotron. The kick must rise/fall from 1% to 99% of full strength during the time interval of gaps created in the beam (80 ns to 160 ns) so that the beam can be extracted with minimum losses. Approximately one-third of the injection and extraction kicker magnets will operate continuously at a rate of 50 pulses per second: the others operate at 10 pulses per second. The kicker magnet PFN voltages will be in the range 50kV to 80kV, hence multi-gap thyratrons will be used for the injection and extraction kicker systems. Displacement current arising from turn-on of a multi-gap thyratron flows in the external circuit and can thus increase the effective rise-time of the kick. A mathematical model of a three-gap thyratron, which includes the drift spaces, has been developed for simulating turn-on, and is described in this paper. The thyratron model has been used to investigate ways to suppress the effects of displacement current on the kick, and to reduce thyratron switching loss. A ferrite saturating inductor may be connected adjacent to each thyratron to reduce switching loss, so that thyratron life can be extended and the kick rise-time improved. This inductor can also be used to reduce the effect of anode displacement current during turn-on of a multi-gap thyratron. The research has culminated in a predicted kick rise time (1% to 99%) of less than 50 ns for a TRIUMF 10 cell prototype kicker magnet. The proposed improvements are currently being implemented on our prototype kicker system. (author). 15 refs., 11 figs

  20. Developing Teaching Material Based on Realistic Mathematics Andoriented to the Mathematical Reasoning and Mathematical Communication

    OpenAIRE

    Habsah, Fitria

    2017-01-01

    This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...

  1. INTERSUBJECT CONNECTIONS OF COURSE OF MATHEMATICAL LOGIC AND OTHER MATHEMATICAL COURSES AT PREPARATION OF FUTURE TEACHER OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Yu.I. Sinko

    2012-03-01

    Full Text Available In this article the interconnections of course of mathematical logic with other mathematical courses – geometry, algebra and theory of numbers, mathematical analysis, and also with the courses of mathematics teaching methodology, history of mathematics in the system of preparation of teachers of mathematics in pedagogical Institute of higher education are analyzed. The presence of connections between the elements of the system and their quality is the important description of the pedagogical system.

  2. Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Arts, R.

    2012-01-01

    The Ensemble Kalman Filter (EnKF), in combination with travel-time parameterization, provides a robust and flexible method for quantitative multi-model history matching to time-lapse seismic data. A disadvantage of the parameterization in terms of travel-times is that it requires simulation of

  3. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  4. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. [Propensity score matching in SPSS].

    Science.gov (United States)

    Huang, Fuqiang; DU, Chunlin; Sun, Menghui; Ning, Bing; Luo, Ying; An, Shengli

    2015-11-01

    To realize propensity score matching in PS Matching module of SPSS and interpret the analysis results. The R software and plug-in that could link with the corresponding versions of SPSS and propensity score matching package were installed. A PS matching module was added in the SPSS interface, and its use was demonstrated with test data. Score estimation and nearest neighbor matching was achieved with the PS matching module, and the results of qualitative and quantitative statistical description and evaluation were presented in the form of a graph matching. Propensity score matching can be accomplished conveniently using SPSS software.

  6. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  7. VEDIC MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2015-09-01

    Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.

  8. Matching Students to Schools

    Directory of Open Access Journals (Sweden)

    Dejan Trifunovic

    2017-08-01

    Full Text Available In this paper, we present the problem of matching students to schools by using different matching mechanisms. This market is specific since public schools are free and the price mechanism cannot be used to determine the optimal allocation of children in schools. Therefore, it is necessary to use different matching algorithms that mimic the market mechanism and enable us to determine the core of the cooperative game. In this paper, we will determine that it is possible to apply cooperative game theory in matching problems. This review paper is based on illustrative examples aiming to compare matching algorithms in terms of the incentive compatibility, stability and efficiency of the matching. In this paper we will present some specific problems that may occur in matching, such as improving the quality of schools, favoring minority students, the limited length of the list of preferences and generating strict priorities from weak priorities.

  9. The Magic of Mathematics Discovering the Spell of Mathematics

    CERN Document Server

    Pappas, Theoni

    2011-01-01

    Delves into the world of ideas, explores the spell mathematics casts on our lives, and helps you discover mathematics where you least expect it. Be spellbound by the mathematical designs found in nature. Learn how knots may untie the mysteries of life. Be mesmerized by the computer revolution. Discover how the hidden forces of mathematics hold architectural structures together connect your telephone calls help airplanes get off the ground solve the mysteries of the living cell. See how some artists use a mathematical palette in their works and how many writers draw upon the wealth of its ideas

  10. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  11. Interest in mathematics and science among students having high mathematics aptitude

    Science.gov (United States)

    Ely, Jane Alice

    The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.

  12. Simulators in nuclear power sector

    International Nuclear Information System (INIS)

    Mathey, C.; Roux, J.

    1984-01-01

    The simulator has established itself as an indispensable tool for training nuclear power station operators. After summarizing the main advantages of this training method, the author examines different types of simulators (for training or planning) and their architecture. He then describes the mathematical models used to simulate operation of the various elements of the ''power station'' and guarantee accurate representativity of phenomena associated with the power station operating under normal and accident conditions [fr

  13. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  14. Mathematical model for the simulation of PWR power plant

    International Nuclear Information System (INIS)

    Delfosse, C.

    1979-01-01

    A reactor simulator representing the principal characteristics of a nuclear power plant and their regulation has been developed. Special attention has been devoted to the simulation of the pressurizer, the steam turbine and the valves. Numerical tests have been realised in order to verify the speed of the calculations. (MDC)

  15. Mathematical thinking styles of undergraduate students and their achievement in mathematics

    Science.gov (United States)

    Risnanosanti

    2017-08-01

    The main purpose of this study is to analyze the role of mathematical thinking styles in students' achievement in mathematics. On the basis of this study, it is also to generate recommendation for classroom instruction. The two specific aims are; first to observe students' mathematical thinking styles during problem solving, the second to asses students' achievement in mathematics. The data were collected by using Mathematical Thinking Styles questionnaires and test of students' achievement in mathematics. The subject in this study was 35 students from third year at mathematics study program of Muhammadiyah University of Bengkulu in academic year 2016/2017. The result of this study was that the students have three mathematical thinking styles (analytic, visual, and integrated), and the students who have analytic styles have better achievement than those who have visual styles in mathematics.

  16. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    Science.gov (United States)

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  18. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  19. Mathematical Progress in Expressive Image Synthesis I

    CERN Document Server

    2014-01-01

    This book presents revised versions of the best papers selected from the symposium “Mathematical Progress in Expressive Image Synthesis” (MEIS2013) held in Fukuoka, Japan, in 2013. The topics cover various areas of computer graphics (CG), such as surface deformation/editing, character animation, visual simulation of fluids, texture and sound synthesis, and photorealistic rendering. From a mathematical point of view, the book also presents papers addressing discrete differential geometry, Lie theory, computational fluid dynamics, function interpolation, and learning theory. This book showcases the latest joint efforts between mathematicians, CG researchers, and practitioners exploring important issues in graphics and visual perception. The book provides a valuable resource for all computer graphics researchers seeking open problem areas, especially those now entering the field who have not yet selected a research direction.

  20. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

    Science.gov (United States)

    Kaya, Defne; Aydin, Hasan

    2016-01-01

    Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…