WorldWideScience

Sample records for mat thermoplastic composite

  1. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    Science.gov (United States)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  2. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  3. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  4. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  5. Consolidation modelling for thermoplastic composites forming simulation

    Science.gov (United States)

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  6. Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

    OpenAIRE

    D. Korsacilar; C. Atas

    2014-01-01

    In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber c...

  7. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  8. Properties and performance of flax yarn/thermoplastic polyester composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Mehmood, Shahid

    2012-01-01

    Aiming at demonstrating the potential of unidirectional natural fiber-reinforced thermoplastic composites in structural applications, textile flax yarn/thermoplastic polyester composites with variable fiber volume fractions have been manufactured by a filament-winding process followed by a vacuum......-assisted compression molding process. The microstructure of the composites shows that the flax fiber yarns are well impregnated by the polyester matrix, and this supports the measured low porosity content of the composites. The experimental tensile modulus and ultimate tensile stress of the composites in the axial...

  9. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  10. Pyrolysis characteristics of typical biomass thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Hongzhen Cai

    Full Text Available The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite. Keywords: Biomass thermoplastic composite, Calcium carbonate, Pyrolysis characteristic

  11. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  12. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  13. High performance thermoplastics: A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.

  14. Thermoforming of Continuous Fibre Reinforced Thermoplastic Composites

    International Nuclear Information System (INIS)

    McCool, Rauri; Murphy, Adrian; Wilson, Ryan; Jiang Zhenyu; Price, Mark

    2011-01-01

    The introduction of new materials, particularly for aerospace products, is not a simple, quick or cheap task. New materials require extensive and expensive qualification and must meet challenging strength, stiffness, durability, manufacturing, inspection and maintenance requirements. Growth in industry acceptance for fibre reinforced thermoplastic composite systems requires the determination of whole life attributes including both part processing and processed part performance data. For thermoplastic composite materials the interactions between the processing parameters, in-service structural performance and end of life recyclability are potentially interrelated. Given the large number and range of parameters and the complexity of the potential relationships, understanding for whole life design must be developed in a systematic building block approach. To assess and demonstrate such an approach this article documents initial coupon level thermoforming trials for a commercially available fibre reinforced thermoplastic laminate, identifying the key interactions between processing and whole life performance characteristics. To examine the role of the thermoforming process parameters on the whole life performance characteristics of the formed part requires a series of manufacturing trials combined with a series of characterisation tests on the manufacturing trial output. Using a full factorial test programme and considering all possible process parameters over a range of potential magnitudes would result in a very large number of manufacturing trials and accompanying characterisation tests. Such an approach would clearly be expensive and require significant time to complete, therefore failing to address the key requirement for a future design methodology capable of rapidly generating design knowledge for new materials and processes. In this work the role of mould tool temperature and blank forming temperature on the thermoforming of a commercially available

  15. Tool-ply friction in thermoplastic composite forming (CD-rom)

    NARCIS (Netherlands)

    ten Thije, R.H.W.; Akkerman, Remko; van der Meer, L.; Ubbink, M.P.; Boisse, P.

    2008-01-01

    Friction is an important phenomenon that can dominate the resulting product geometry of thermoplastic composites upon forming. A model was developed that predicts the friction between a thermoplastic laminate and a rigid tool. The mesoscopic model, based on the Reynolds’ equation for thin film

  16. Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Bernardo Zandomenico Dias

    Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.

  17. Studies on the structure and properties of thermoplastic starch/luffa fiber composites

    International Nuclear Information System (INIS)

    Kaewtatip, Kaewta; Thongmee, Jariya

    2012-01-01

    Highlights: ► Thermoplastic starch/luffa fiber composites were prepared using compression molding. ► The tensile strengths of the composites were higher than for thermoplastic starch. ► Degradation temperatures of the composites were higher than for thermoplastic starch. ► Luffa fiber decreases the water absorption of TPS. -- Abstract: Thermoplastic starch (TPS)/luffa fiber composites were prepared using compression molding. The luffa fiber contents ranged from 0 wt.% to 20 wt.%. The tensile strength of the TPS/luffa fiber composite with 10 wt.% of luffa fiber had a twofold increase compared to TPS. The temperature values of maximum weight loss of the TPS/luffa fiber composites were higher than for TPS. The water absorption of the TPS/luffa fiber composites decreased significantly when the luffa fiber contents increased. The strength of adhesion between the luffa fiber and the TPS matrix was clearly demonstrated by their compatibility presumably due to their similar chemical structures as shown by scanning electron microscope (SEM) micrographs and Fourier transform infrared (FTIR) spectra.

  18. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  19. Friction and bending in thermoplastic composites forming processes

    NARCIS (Netherlands)

    Sachs, Ulrich

    2014-01-01

    With the demand for better fuel economy in the aerospace and automotive industries, lightweight polymer matrix composites became an attractive alternative for metal structures. Despite the inherently higher toughness and impact damage resistance of thermoplastics, thermoset matrix composites are

  20. Resistance Welding of Thermoplastic Composites : Process and Performance

    NARCIS (Netherlands)

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as

  1. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  2. Characterization of thermoplastic composites for hot stamp forming

    NARCIS (Netherlands)

    Rietman, Bert; Grouve, Wouter; Akkerman, Remko

    2014-01-01

    This paper describes state-of-the-art characterization methods for thermoplastic composites at high processing temperature and provides a few examples of application in simulations of the hot stamp forming process.

  3. High performance thermoplastics - A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness.

  4. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    Science.gov (United States)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  5. Characterisation of metal–thermoplastic composite hybrid joints by means of a mandrel peel test

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthias B.; Grouve, Wouter Johannes Bernardus; Warnet, Laurent

    2016-01-01

    Fastener free metal–carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the metal–thermoplastic composite interface is crucial for the performance of the entire hybrid joint. Optimisation of the interface requires an

  6. Processing technology for advanced fibre composites with thermoplastic matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aa. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark)

    1997-12-31

    Technologies and semi-raw materials for the manufacture of thermoplastic composites with continuous fibres are discussed. Autoclave consolidation, vacuum consolidation and press consolidation are all processes which are suitable for the manufacture of components with a three dimensional geometry. Autoclave consolidation is primarily for high quality components with high fibre content and complex geometry; using vacuum consolidation, very large components can be produced without the need of an autoclave, and the press consolidation technique is a very fast process suitable for mass production of smaller parts. Filament winding is used primarily for the manufacture of rotationally symmetrical components, and some of the technologies in use are winding with a continuously in-situ consolidation, winding inside an oven and room temperature winding followed by an autoclave consolidation. Semi-raw materials for thermoplastic composites exist as both prepregs and postpregs in many different forms, of which many are still under development. Some of the basic processing properties for the different types of semi-raw materials and most commonly used thermoplastic polymers are given. (au) 37 refs.

  7. Low Cost Processing of Commingled Thermoplastic Composites

    Science.gov (United States)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  8. Compression molding of chopped woven thermoplastic composite flakes

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal

    2016-01-01

    Continuous fiber reinforced composites with high-performance thermoplastic polymer matrices have an enormous potential in terms of performance, production rate, cost efficiency and recyclability. The use of this relatively new class of materials by the aerospace and automotive industry has been

  9. Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations

    Science.gov (United States)

    Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang

    2018-05-01

    The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.

  10. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  11. Fabrication and mechanical testing of fibre reinforced thermoplastic composite tubes

    International Nuclear Information System (INIS)

    Tufail, M.

    2005-01-01

    Polymer based composites are produced using less expensive moulds and quick fabrication techniques. The overall processing cost for such materials is much lesser than metallic materials. Usually monolithic parts are produced out of composite materials which further decreases the processing time needed for joining sub- , assemblies as in the case of metallic parts. Any defects encountered due to sub-assemblies are also eliminated. Thermoset based composites have been used for long time to produce parts for automotive, aerospace, marine, and sports industries. The properties thus obtained by using thermoset as matrix are very well in comparison with metals but certain draw backs a.e there with this kind of matrix. Thermoset based composites are processed in untidy environment and once the object is produced can not be reshaped. In contrary to that thermoplastic materials are processed in a clean environment and the material can be recycled. The component once produced can easily be reshaped if required as no chemical reaction does take place during the process. Although the high melt viscosity of thermoplastic has limited its application as due to its high viscosity, its processing would be very difficult. Various methods have been developed to resolve this issue. In this study, a commingled material has been used to produce thermoplastic based composite tubes. The method developed for making such tubes is defined along with the method adopted to measure some of the mechanical properties of these tubes. (author)

  12. Mechanical properties of green composites based on thermoplastic starch

    Science.gov (United States)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  13. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  14. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  15. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  16. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  17. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  18. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    Science.gov (United States)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  19. Pyrolysis characteristics of typical biomass thermoplastic composites

    Science.gov (United States)

    Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan

    The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.

  20. 3D modeling of squeeze flow of unidirectionally thermoplastic composite inserts

    Science.gov (United States)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Binetruy, Christophe; Chinesta, Francisco; Advani, Suresh

    2016-10-01

    Thermoplastic composites are attractive because they can be recycled and exhibit superior mechanical properties. The ability of thermoplastic resin to melt and solidify allows for fast and cost-effective manufacturing processes, which is a crucial property for high volume production. Thermoplastic composite parts are usually obtained by stacking several prepreg plies to create a laminate with a particular orientation sequence to meet design requirements. During the consolidation and forming process, the thermoplastic laminate is subjected to complex deformation which can include intraply and/or interply shear, ply reorientation and squeeze flow. In the case of unidirectional prepregs, the ply constitutive equation, when elastic effects are neglected, can be modeled as a transversally isotropic fluid, that must satisfy the fiber inextensibility as well as the fluid incompressibility. The high-fidelity solution of the squeeze flow in laminates composed of unidirectional prepregs was addressed in our former works by making use of an in-plane-out-of-plane separated representation allowing a very detailed resolution of the involved fields throughout the laminate thickness. In the present work prepregs plies are supposed of limited dimensions compared to the in-plane dimension of the part and will be named inserts. Again within the Proper Generalized Decomposition framework high-resolution simulation of the squeeze flow occurring during consolidation is addressed within a fully 3D in-plane-out-of-plane separated representation.

  1. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    Science.gov (United States)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  2. High-temperature hybrid welding of thermoplastic (CF/Peek) to thermoset (CF/Epoxy) composites

    NARCIS (Netherlands)

    Fernandez Villegas, I.; Vizcaino Rubio, P.

    2015-01-01

    Thermoset composites are widely used for the manufacturing of modern composite aircrafts. The use of thermoplastic composites (TPC) in aerospace applications is, however, gradually increasing owing to their cost-effectiveness in manufacturing and improved damage tolerance. An example of the use of

  3. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  4. Rapid Processing of Net-Shape Thermoplastic Planar-Random Composite Preforms

    Science.gov (United States)

    Jespersen, S. T.; Baudry, F.; Schmäh, D.; Wakeman, M. D.; Michaud, V.; Blanchard, P.; Norris, R. E.; Månson, J.-A. E.

    2009-02-01

    A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow-moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat-set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40 s (for a plate 0.5 × 0.5 m2, weighing 2 kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40 wt.% GMT and has properties equivalent to those of 40 wt.% GMTex at both 20°C and 80°C.

  5. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    Science.gov (United States)

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  6. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites

    Directory of Open Access Journals (Sweden)

    Sean Bowman

    2018-03-01

    Full Text Available Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa, flexural modulus (>63 GPa, and interlaminar shear strength (>27 MPa, indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  7. Development of thermoplastic composite aircraft structures

    Science.gov (United States)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  8. Biodegradation of thermoplastic starch/eggshell powder composites.

    Science.gov (United States)

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  10. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Pua, Fei-ling; El-Shekeil, Y.A.; AL-Oqla, Faris M.

    2013-01-01

    Highlights: • We developed composites from kenaf and thermoplastic polyurethane. • Soil burial of composites after 80 days shows increase in flexural strength. • Soil burial of composites after 80 days shows increase in flexural modulus. • Tensile properties of composites degrade after soil burial tests. • We investigate the morphological fracture through scanning electron microscopy. - Abstract: A study on mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane (TPU) composites is presented in this paper. Kenaf bast fibre reinforced TPU composites were prepared via melt-mixing method using Haake Polydrive R600 internal mixer. The composites with 30% fibre loading were prepared based on some important parameters; i.e. 190 °C for reaction temperature, 11 min for reaction time and 400 rpm for rotating speed. The composites were subjected to soil burial tests where the purpose of these tests was to study the effect of moisture absorption on the mechanical properties of the composites. Tensile and flexural properties of the composites were determined before and after the soil burial tests for 20, 40, 60 and 80 days. The percentages of both moisture uptake and weight gain after soil burial tests were recorded. Tensile strength of kenaf fibre reinforced TPU composite dropped to ∼16.14 MPa after 80 days of soil burial test. It was also observed that there was no significant change in flexural properties of soil buried kenaf fibre reinforced TPU composite specimens

  11. Numerical modeling and experimental validation of thermoplastic composites induction welding

    Science.gov (United States)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  12. Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications.

    Science.gov (United States)

    Cruz, Karina Ferreira Noronha; Formaggio, Daniela Maria Ducatti; Tada, Dayane Batista; Cristovan, Fernando Henrique; Guerrini, Lilia Müller

    2017-02-01

    Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process. To overcome this limitation, a conductive polymer can be incorporated to the process, allowing generates mats without defects. In this study, poly(o-ethoxyaniline) POEA doped with dodecylbenzene sulfonic acid (DBSA) was blended with thermoplastic polyurethane (TPU) by solution method. Films were produced by casting and nanofibers were prepared by electrospinning. The effect of the POEA on morphology, distribution of diameter and cell viability of the nanofibers was evaluated. The results demonstrated that the incorporation of POEA in TPU provided to the mats a suitable morphology for cellular growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 601-607, 2017. © 2016 Wiley Periodicals, Inc.

  13. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    Science.gov (United States)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  14. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    Science.gov (United States)

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  15. Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds

    NARCIS (Netherlands)

    Viegas Ochoa de Carvalho, Pedro; Fernandez Villegas, I.; Groves, R.M.; Benedictus, R.

    2016-01-01

    Ultrasonic welding is a very promising technique for joining thermoplastic composite (TpC) components in aircraft primary structures [1, 2]. The potential introduction of new lightweight structures in civil aviation has been driving the change towards condition-based maintenance (CBM) as an

  16. Modelling and simulation of the consolidation behavior during thermoplastic prepreg composites forming process

    Science.gov (United States)

    Xiong, H.; Hamila, N.; Boisse, P.

    2017-10-01

    Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.

  17. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  18. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  19. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    Science.gov (United States)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  20. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M M; Sapuan, S M; Ali, Aidy; Ahmad, D; Khalina, A

    2010-01-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  1. Are reactive thermoplastic polymers suitable for future wind turbine composite materials blades?

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    , it was found that only two potential reactive thermoplastic resin systems qualify for different processing requirements for blade manufacturing. Hence, the article focuses on the issues with the use of reactive polymers like APA-6 (Caprolactam) and CBT (Cyclic Butylene Terephtalate) resin systems for composite...

  2. Experimental characterisation of recycled (glass/tpu woven fabric) flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal; Rietman, Bert; Visser, Roy; Akkerman, Remko; Hoa, S.V.; Hubert, P.

    2013-01-01

    Recycling of continuously reinforced thermoplastic composites (TPC) has a substantial prospect at present and in future due to its increasing availability and rapidly growing application regime. This study focusses on the first steps in using TPC process scrap on a scale in which its maximum

  3. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  4. Thermoplastic starch composites with TiO2 particles: preparation, morphology, rheology and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Ostafinska, Aleksandra; Mikešová, Jana; Krejčíková, Sabina; Nevoralová, Martina; Šturcová, Adriana; Zhigunov, Alexander; Michálková, Danuše; Šlouf, Miroslav

    2017-01-01

    Roč. 101, August (2017), s. 273-282 ISSN 0141-8130 R&D Projects: GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : thermoplastic starch * titanium dioxide particles * morphology Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 3.671, year: 2016

  5. Recycling C/PPS laminates into long fibre thermoplastic composites by low shear mixing

    NARCIS (Netherlands)

    de Bruijn, Thomas A.; Vincent, Guillaume Almire; van Hattum, Ferrie

    2017-01-01

    The increasing interest in continuous fibre reinforced thermoplastic composites has resulted in a rise of industrial waste. The recycling of the waste is topic of this study, aiming at high mechanical properties by retaining both a long fibre length and the matrix material. Consolidated continuous

  6. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The

  7. Environment-friendly, flame retardant thermoplastic elastomer-magnesium hydroxide composites

    Science.gov (United States)

    Tang, Hao; Chen, Kunfeng; Li, Xiaonan; Ao, Man; Guo, Xinwen; Xue, Dongfeng

    Halogen-free and environment-friendly magnesium hydroxide (Mg(OH)2) was synthesized to enhance the flame retardant properties of thermoplastic elastomer (TPE). When the Mg(OH)2 content was optimized to 35wt.%, the TPE-Mg(OH)2 composites exhibited the best flame retardant properties. The results showed that there was a delay of ignition time of the samples containing Mg(OH)2; compared with the samples without Mg(OH)2, the heat release rate and total heat release decrease by 31.4% and 35.6%, while total smoke production and mass loss rate reduce by 56% and 34.2%, respectively. This work opens a door to manufacture fire-resistant polymer-based composites with environmental-friendly flame retardant additives by controllable crystallization and chemical strategies.

  8. Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes

    NARCIS (Netherlands)

    Gouin O'Shaughnessey, P.; Dube, M; Fernandez Villegas, I.

    2016-01-01

    A three-dimensional finite element model of the induction welding of carbon fiber/polyphenylene sulfide thermoplastic composites is developed. The model takes into account a stainless steel mesh heating element located at the interface of the two composite adherends to be welded. This heating

  9. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-05-01

    Full Text Available A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF and polypropylene (PP were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf, and void content (Vc, were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS, impact property, and scanning electron microscopy (SEM were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  10. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites.

    Science.gov (United States)

    Kim, Jong Won; Lee, Joon Seok

    2016-05-06

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction ( V f ), and void content ( V c ), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, V c decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  11. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Science.gov (United States)

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  12. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad; Ramette, Alban; Kü hl, Michael; Hamza, Waleed; Klatt, Judith M.; Polerecky, Lubos

    2014-01-01

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  13. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2014-08-06

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats\\' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  14. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Science.gov (United States)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  15. Mechanical properties, microstructure and magnetic properties of composite magnet base on SrO.6Fe_2O_3 (SRM)-thermoplastic and thermoset polymer

    International Nuclear Information System (INIS)

    Grace Tj Sulungbudi; Aloma Karo Karo; Mujamilah; Sudirman

    2010-01-01

    The use of magnets in industrial applications do not always require high magnetic properties. Therefore, the use of polymer as a matrix that serves as a binder can be applied to obtain lightweight, flexible and cheap composite magnet. This report discuss composite magnet base on SrO.6Fe_2O_3(SRM)-thermoplastic and thermoset polymer. Thermoplastic polymer consist of polypropylene (PP) type of PP2 and PP10 and polyethylene (PE) type of LDPE were used. For thermoset polymer, epoxy and polyester were used. Synthesis of composite magnet based on thermoplastic polymer (PP2, PP10, LDPE) were carried using the blending method, while the thermoset composites magnet using casting method. Thermoplastic composite magnets were prepared with compositions of 50, 41, 38, 33 and 29 % weight of SRM with the blending temperature of 160 °C for LDPE and 180 °C for PP2 and PP10. For thermoset composite magnets, the compositions were 30, 40, 50 and 60 % by weight of SRM. The mechanical test conducted include tensile strength and elongation at break. Microstructure on the surface of the composite materials were observed using SEM (Scanning Electron Microscope) and the magnetic properties were measured using VSM (Vibrating Sample Magnetometer). The SEM results showed the formation of flat shape powder particle with size of 1.6 µm. In general, the mechanical properties of polypropylene polymer composite magnet are better than that using polyethylene (LDPE) binder. For polypropylene binder PP10 is better than PP2. Magnetic properties are not significantly affected by the change of polymer or binder types. (author)

  16. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir

    2016-01-01

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  17. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  18. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  19. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    Science.gov (United States)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  20. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Klaudiusz Holeczek

    2016-02-01

    Full Text Available The paper presents preliminary numerical and experimental studies of active textile-reinforced thermoplastic composites with embedded sensor-actuator arrays. The goal of the investigations was the assessment of directional sound wave generation capability using embedded sensor-actuator arrays and developed a wave excitation procedure for ultrasound measurement tasks. The feasibility of the proposed approach was initially confirmed in numerical investigations assuming idealized mechanical and geometrical conditions. The findings were validated in real-life conditions on specimens of elementary geometry. Herein, the technological aspects of unique automated assembly of thermoplastic films containing adapted thermoplastic-compatible piezoceramic modules and conducting paths were described.

  1. Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available A new treating method using sodium hydroxide (NaOH and Maleic anhydride-grafted polypropylene (MPP emulsion was introduced to treat jute fiber mat in order to enhance the performance of jute/polypropylene (PP composite prepared by film stacking method. The surface modifications of jute fiber mat have been found to be very effective in improving the fiber-matrix adhesion. It was shown that treatments changed not only the surface topography but also the distribution of diameter and strength for the jute fibers, which was analyzed by using a two-parameter Weibull distribution model. Consequently, the interfacial shear strength, flexural and tensile strength of the composites all increased, but the impact strength decreased slightly. These results have demonstrated a new approach to use natural materials to enhance the mechanical performances of composites.

  2. Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes

    NARCIS (Netherlands)

    Kruijer, M.P.; Warnet, Laurent; Akkerman, Remko

    2006-01-01

    This paper describes the analysis of the time dependent behaviour of a steel reinforced thermoplastic pipe. This new class of composite pipes is constructed of a HDPE (high-density polyethylene) liner pipe, which is over wrapped with two layers of thermoplastic tape. The thermoplastic tapes are

  3. Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, Gustav Winther; Hiller, Jochen

    2013-01-01

    that friction materials which are untypical for brake applications, like thermoplastics and fibre composites, can offer superior performance in terms of braking torque, wear resistance and cost than typical brake linings. In this paper coefficient of friction measurements for various thermoplastic and fibre......Friction materials for typical brake applications are normally designed considering thermal stability as the major performance criterion. There are, however, brake applications with very limited sliding velocities, where the generated heat is insignificant. In such cases it is possible...... in order to interpret the changes of friction observed during the running-in phase....

  4. Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhananjay [Plant Molecular Biology and Plant Physiology Lab, Lab no. 114, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India); Yadav, Arpana [Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Gaur, J.P., E-mail: gaurjp@yahoo.co.in [Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi 221 005 (India)

    2012-07-15

    Prompted by the fact that interaction of metals with cyanobacterial mats has been little studied, the present study evaluates the response of a cyanobacterial mat, dominated by Phormidium bigranulatum, to elevated concentrations of Cd{sup 2+} in the medium. The mat failed to grow at 7 {mu}M of Cd{sup 2+} when the metal as also the mat inoculum were simultaneously added to the medium right in the beginning of the experiment due to marked sensitivity of P. bigranulatum, the main constituent of the mat, to high concentrations of Cd{sup 2+}. However, the mat previously grown in Cd{sup 2+}-free medium for a time period of 1-4 weeks grew successfully when exposed to media containing very high concentrations of Cd{sup 2+}. Four-week-old mat could grow at 250 {mu}M of Cd{sup 2+}, which has been found toxic to many cyanobacteria and algae by previous researchers. Greater tolerance of older mats to Cd{sup 2+} may be due to greater proportion of exopolysaccharides, which are well known to sequester metal ions extracellularly, in them. Whereas the relative proportion of P. bigranulatum declined at high concentrations of the test metal that of green algae increased due most likely to their tolerance to Cd{sup 2+}. Air bubbles were seen entrapped in the mat due obviously to photosynthetic activity. Elevated concentrations of Cd{sup 2+} reduced the number of air bubbles in the mat. Decline in number of air bubbles at high concentrations of metal ions was more prominent in the case of younger mat than in the older one. The present study also evaluated changes in species composition of mats of different age that were subsequently grown in Cd{sup 2+} enriched culture medium. Younger mats showed change in species composition at very low concentrations of Cd{sup 2+}, but older mats showed little changes even at very high concentrations of the test metal. Hence older mats more strongly resisted to changes in its species composition than the younger ones upon exposure to high

  5. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  6. Damage detection in laminar thermoplastic composite materials by means of embedded optical fibers

    Directory of Open Access Journals (Sweden)

    Kojović Aleksandar M.

    2006-01-01

    Full Text Available This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers. Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before

  7. Fatigue Characteristic of Chopped Strand Mat/Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2012-11-01

    Full Text Available The application of composite as an alternatif material to substitute of metal has better properties than metal such as light, high elasticity, corrosion and fatigue resistance. Some components in its application are subjected to millions of varying stress cycles that initiated to fatigue failure such as crack, delamination and fracture. The strength of composite is influenced by construction, fiber type, orientation and fiber fraction. The objective of this experiment is to investigate the fatigue characteristic on SCM composite. Material composite to be used is glass fiber with chopped strand mat (CSM as fiber and Yukalac 157 BQTN-EX with 1% hardener (Mexpox as matrix. The mold process was built with hand lay-up. Fiber volume fractions in composite are 40, 32 and 24 %. The tests to be done on composite are fatigue and tensile test. The research show that the increasing of fiber fraction in composite affects increasing of fatigue life, endurance limit and tensile strength. Fatigue failure modes of composite are debonding, matrix cracking, delamination and fiber fracture.

  8. Prediction of wrinklings and porosities of thermoplastic composits after thermostamping

    Science.gov (United States)

    Hamila, Nahiene; Guzman-Maldonado, Eduardo; Xiong, Hu; Wang, Peng; Boisse, Philippe; Bikard, Jerome

    2018-05-01

    During thermoforming process, the consolidation deformation mode of thermoplastic prepregs is one of the key deformation modes especially in the consolidation step, where the two resin flow phenomena: resin percolation and transverse squeeze flow, play an important role. This occurs a viscosity behavior for consolidation mode. Based on a visco-hyper-elastic model for the characterization of thermoplastic prepregs proposed by Guzman, which involves different independent modes of deformation: elongation mode, bending mode with thermo-dependent, and viscoelastic in-plan shearing mode with thermo-dependent, a viscoelastic model completed with consolidation behavior will be presented in this paper. A completed three-dimensional mechanical behavior with compaction effect for thermoplastic pre-impregnated composites is constituted, and the associated parameters are identified by compaction test. Moreover, a seven-node prismatic solid-shell finite element approach is used for the forming simulation. To subdue transverse shear locking, an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. Indeed, the enhanced assumed strain method and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element's rank deficiency for pinching. An additional node is added at the center providing a quadratic interpolation of the displacement in the thickness direction. The predominance of this element is the ability of three dimensional analysis, especially for the transverse stress existence through the thickness of material, which is essential for the consolidation modelling. Finally, an intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg

  9. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  10. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  11. Fibre-reinforced composite structures based on thermoplastic matrices with embedded piezoceramic modules

    International Nuclear Information System (INIS)

    Hufenbach, Werner A; Modler, Niels; Winkler, Anja; Ilg, Juergen; Rupitsch, Stefan J

    2014-01-01

    The paper presents recent developments for the integration of piezoceramic modules into fibre-reinforced composite structures based on thermoplastic matrices. An adapted hot pressing technology is conceptualized that allows for material homogeneous integration of the active modules. The main focus of this contribution is on the development of a robust and continuous manufacturing process of such novel active composites as well as on the operational testing of the produced samples. Therefore, selected specimens are manufactured as bending beams and investigated by means of electrical impedance measurements, modal analysis and structural excitation tests. In particular, the functionality of representative specimens is characterized based on frequency as well as spatially resolved deflection measurements. Moreover, the mentioned samples are compared to non-integrated piezoceramic modules and to equivalent passive reinforced composite structures. (paper)

  12. Carbon storage potential in natural fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Pervaiz, Muhammad; Sain, Mohini M. [Faculty of Forestry, Advanced Wood Composite Group, Earth Science Center, University of Toronto, 33 Willcocks Street, Toronto, Ont. (Canada) M5S 3B3

    2003-11-01

    The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO{sub 2} emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84-154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO{sub 2} emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO{sub 2} emissions (4.3% of total USA industrial emissions) and 1.19 million m{sup 3} crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing

  13. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  14. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  15. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-01-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  16. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id; Faza, Aulia [Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Indonesia Jl. Ganesha 10, Bandung (Indonesia)

    2016-03-29

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  17. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    Science.gov (United States)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  18. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    International Nuclear Information System (INIS)

    Thongpin, C; Srimuk, J; Hipkam, N; Wachirapong, P

    2015-01-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H 2 SO 4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat. (paper)

  19. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    Science.gov (United States)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  20. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Claudia Prosperi

    2010-01-01

    Full Text Available A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a stronginterpenetration of adjacent layers was observed.

  1. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    Science.gov (United States)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  2. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community ( transcript libraries) of three types of microbial mats situated

  3. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  4. Compilation of radiation damage test data. Pt. 2. Thermoset and thermoplastic resins, composite materials

    International Nuclear Information System (INIS)

    Tavlet, M.; Fontaine, A.; Schoenbacher, H.

    1998-01-01

    This catalogue summarizes radiation damage test data on thermoplastic and thermoset resins and composites. Most of them are epoxy resins used as insulator for magnet coils. Many results are also given for new engineering thermoplastics which can be used either for their electrical properties or for their mechanical properties. The materials have been irradiated either in a 60 Co source, up to integrated absorbed doses between 200 kGy and a few megagrays, at dose rates of the order of 1 Gy/s, or in a nuclear reactor at dose rates of the order of 50 Gy/s, up to doses of 100 MGy. The flexural strength, the deformation and the modulus of elasticity have been measured on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commissions. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  5. Compilation of radiation damage test data. Pt. 2. Thermoset and thermoplastic resins, composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Tavlet, M; Fontaine, A; Schoenbacher, H

    1998-05-18

    This catalogue summarizes radiation damage test data on thermoplastic and thermoset resins and composites. Most of them are epoxy resins used as insulator for magnet coils. Many results are also given for new engineering thermoplastics which can be used either for their electrical properties or for their mechanical properties. The materials have been irradiated either in a {sup 60}Co source, up to integrated absorbed doses between 200 kGy and a few megagrays, at dose rates of the order of 1 Gy/s, or in a nuclear reactor at dose rates of the order of 50 Gy/s, up to doses of 100 MGy. The flexural strength, the deformation and the modulus of elasticity have been measured on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commissions. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  6. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  7. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah; Lubineau, Gilles; Yudhanto, Arief; Yaldiz, Recep; Schijve, Warden

    2017-01-01

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  8. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah

    2017-03-31

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  9. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites – Part II

    NARCIS (Netherlands)

    Ropers, Steffen; Sachs, Ulrich; Kardos, Marton; Osswald, Tim A.

    2017-01-01

    A proper description of the bending behavior is crucial to obtain accurate forming simulations, especially for continuous fiber-reinforced thermoplastic composites. These materials exhibit a highly temperature and bending-curvature dependent bending stiffness. These dependencies make the property

  10. Portable Device Slices Thermoplastic Prepregs

    Science.gov (United States)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  11. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  12. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    International Nuclear Information System (INIS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Liu, Yanju; Leng, Jinsong; Xu, Ben; Fu, Yongqing

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ϵ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin–based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix. (paper)

  13. Mechanical and Thermal Properties and Morphology of Thermoplastic Polyurethane (TPU/Clay Composites

    Directory of Open Access Journals (Sweden)

    Leandro Pizzatto

    2015-11-01

    Full Text Available In this study, thermoplastic polyurethane (TPU composites were prepared with different nanoclay contents (1, 3 and 10 wt%. The nanoclay Cloisite ®30B (C30B was dispersed in the TPU matrix by melt processing using a twin-screw extruder. The synthesis method of TPU involved the two-step bulk polymerization of polyesterpolyol and 4,4’ diphenylmethanediisocyanate with butane-1,4-diol as the chain extender. The dispersion of the nanoclay particles and its effect on the mechanical and thermal properties of the composites was investigated. The characterization of TPU/nanoclay composites was carried out by means of scanning electron microscopy, energy dispersion microanalysis and X ray diffraction. The mechanical characterization was performed through determination of the tensile strength. The TPU 3 wt% composite showed the best improvement with increases in stress and tensile at break (28% and 35%, respectively, compared to the neat TPU (sample without nanoclay. The differential scanning calorimetry and thermogravimetry analyses for composites indicated that the nanoclay did not affect significantly the glass transition, melt, and degradation temperatures of the polymeric matrix, but reduces the molecular mobility.

  14. Radiation Curing of Rubber/Thermoplastic Composites Containing Different Inorganic Fillers

    International Nuclear Information System (INIS)

    EL-Zayat, M.M.M.

    2012-01-01

    Blending of polymeric materials has proved to be a successful method for preparing new polymeric materials having not only the main properties of the blends components but also new modification as well as specific ones. High density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) are both soild and constitute the blend components to be investigated in present study and hence the method of mechanical blending is the most suitable one for its preparation . HDPE thermoplastic is a semi – crystalline polymer ; on the other hand , NBR elastomer is totally amorphous polymer. Both polymers are categorized as crosslinking polymers with respect to ionizing gamma rays with different extents. In order to increase the efficiency of irradiation curing of such NBR/HDPE blend , it may be required to add suitable additives such as reinforcing fillers that may increase the extent of crosslinking at the same irradiation dose . Thus synthetic fillers are used commercially in industrial processing of rubber formulation due to its specific characteristics and hence its high reinforcing capacity and suitable price . To follow property changes occurred to the blend as well as its composites , measurements have been done to monitor the changes that happened to mechanical, physical and thermal properties as a function of irradiation dose and composition of blends and composites.

  15. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds

    International Nuclear Information System (INIS)

    Rath, Goutam; Hussain, Taqadus; Chauhan, Gaurav; Garg, Tarun; Goyal, Amit Kumar

    2016-01-01

    Systemic antibiotic therapy in post-operative wound care remain controversial leading to escalation in levels of multi-resistant bacteria with unwanted morbidity and mortality. Recently zinc (Zn) because of multiple biophysiological functions, gain considerable interest for wound care. Based on our current understanding, the present study was designed with an intent to produce improve therapeutic approaches for post-operative wound management using composite multi-functional antibiotic carrier. The study involved the fabrication, characterization and pre-clinical evaluation of cefazolin nanofiber mats loaded with zinc oxide (ZnO) and comparing co-formulated mats with individual component, enable a side by side comparison of the benefits of our intervention. Minimum inhibitory concentration (MIC) of the drug, ZnO nanoparticles (ZnONPs) and drug-ZnONP mixture against Staphylococcus aureus was determined using micro dilution assay. The fabricated nanofibers were then evaluated for in-vitro antimicrobial activity and the mechanism of inhibition was predicted by scanning electron microscopy (SEM). Further these nanofiber mats were evaluated in-vivo for wound healing efficacy in Wistar rats. Study revealed that the average diameter of the nanofibers is around 200–900 nm with high entrapment efficiency and display sustained drug release behavior. The combination of ZnO and cefazolin in 1:1 weight ratio showed higher anti-bacterial activity of 1.9 ± 0.2 μg/ml. Transmission electron microscopy of bacterial cells taken from the zone of inhibition revealed the phenomenon of cell lysis in tested combination related to cell wall disruption. Further composite medicated nanofiber mats showed an accelerated wound healing as compared to plain cefazolin and ZnONP loaded mats. Macroscopical and histological evaluations demonstrated that ZnONP hybrid cefazolin nanofiber showed enhanced cell adhesion, epithelial migration, leading to faster and more efficient collagen synthesis

  16. Improved fire retardancy of thermoset composites modified with carbon nanofibers

    International Nuclear Information System (INIS)

    Zhao Zhongfu; Gou Jan

    2009-01-01

    Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS). Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.

  17. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  18. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites

    Science.gov (United States)

    Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine

    2018-03-01

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  19. Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties.

    Science.gov (United States)

    Ostafińska, A; Mikešová, J; Krejčíková, S; Nevoralová, M; Šturcová, A; Zhigunov, A; Michálková, D; Šlouf, M

    2017-08-01

    Composites of thermoplastic starch (TPS) with titanium dioxide particles (mTiO 2 ; average size 0.1μm) with very homogeneous matrix and well-dispersed filler were prepared by a two-step method, including solution casting (SC) followed by melt mixing (MM). Light and scanning electron microscopy confirmed that only the two-step procedure (SC+MM) resulted in ideally homogeneous TPS/mTiO 2 systems. The composites prepared by single-step MM contained non-plasticized starch granules and the composites prepared by single-step SC suffered from mTiO 2 agglomeration. Dynamic mechanical measurements showed an increase modulus with increasing filler concentration. In TPS containing 3wt.% of mTiO 2 the stiffness was enhanced by >40%. Further experiments revealed that the recommended addition of chitosan or the exchange of mTiO 2 for anisometric titanate nanotubes with high aspect ratio did not improve the properties of the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of processing conditions on the interfacial zone of high performances thermoplastic composites

    International Nuclear Information System (INIS)

    Verdeau, Caroline

    1988-01-01

    This study concerns the microstructural and mechanical characterization performances thermoplastic unidirectional composites. Two semi-crystalline composites, APC2 (Peek/Carbon) and AC 40.60 (Pps/carbon) and one amorphous composite FC.PEI (PEI/Carbon) have been studied. Different processing conditions for the APC2 and AC 40.60 specimens have been employed. Amorphous matrix composites (fast cooling rates), crystalline matrix composites (slow cooling rates) and the effects of heat treatments on the matrix (lengthy hold time at the melting point followed by slow cooling) have been studied. Static test (3 points bending tests, transverse tensile tests - ±45 deg., tensile tests) allowed the different interfacial qualities to be revealed. If the fiber/matrix adhesion is excellent for APC2, it is poor for the FCPEI and AC 40.60 composites. The dynamic tests conducted on the torsion pendulum (forced oscillations; low frequencies) have shown for APC2 the existence of trans-crystallinity (mono-dimensional growth, perpendicular to the fiber surface) in the vicinity of the fiber. It has been shown that the fraction of trans-crystallinity is most important for treated specimens. In this study, an approach of the modelization of the viscoelastic behaviour of composites materials has been proposed. (author) [fr

  1. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  2. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading

    Science.gov (United States)

    Rui, Yuting; Sun, C. T.

    1990-01-01

    Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.

  3. Attribute based selection of thermoplastic resin for vacuum infusion process

    DEFF Research Database (Denmark)

    Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom

    2011-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  4. Research and achievements on carbon fiber reinforced thermoplastic composites for high pressure storage

    International Nuclear Information System (INIS)

    Nony, Fabien; Thomas, Cedric; Villalonga, Stephane; Magnier, Christophe

    2012-01-01

    Hydrogen storage is a key enabling technology for the extensive use of hydrogen as an energy carrier. However, none of the current technologies satisfies all of the hydrogen storage attributes sought by manufacturers, legislators and end-users. At present, compressed gaseous hydrogen storage (CGH2) is recognized as the most mature technology. This paper reviews recent developments and achievements regarding materials and technologies investigated by CEA to promote the development of a of type IV 70 MPa hydrogen vessel. Particularly, results concerning innovative thermoplastic matrix composite vessel will be presented and discussed. On going developments on dedicated manufacturing process and material characterization will be shared in a first part of the presentation and a second part will be devoted to durability assessment and damage tolerance of such composite structures with respect to their potential applications. (authors)

  5. Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP)

    Science.gov (United States)

    Schrödner, Mario; Pflug, Günther

    2018-05-01

    Magnetoactive elastomers (MAE) made from composites of five thermoplastic elastomers (TPE) of different stiffness with carbonyl iron powder (CIP) as magnetic component were investigated. The composites were produced by melt blending of the magnetic particles with the TPEs in a twin-screw extruder. The resulting materials were characterized by ac permeability testing, stress-strain measurements with and without external magnetic field and magnetically controlled bending of long cylindrical rods in a homogenous magnetic field. The magnetic field necessary for deflection of the rods decreases with decreasing modulus and increasing iron particle content. This effect can be used e.g. for magnetically controlled actuation. Some highly filled MAE show a magnetic field induced increase of Young's modulus. Filaments could be spun from some of the composites.

  6. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  7. Dissipation of mechanical work and temperature rise in AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Georgiou, I.; Sun, C. T.

    1990-01-01

    The dissipated mechanical work per cycle of sinusoidal stress in the thermoplastic composite material AS4/PEEK was measured as a function of stress amplitude for fixed frequency and fiber orientation. The experimental result shows that the dissipated work per cycle is proportional to the square of the stress amplitude. Using the concept of the equivalent isotropic material, it is shown that the relaxation modulus satisfies a proportionality condition. Also, the rate of temperature rise due to sinusoidal stresses has been measured as a function of stress amplitude. The result shows that the rate of temperature rise is not proportional to the square of the stress amplitude.

  8. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  9. Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution In Thermoplastic-Natural Rubber Blend Composites

    International Nuclear Information System (INIS)

    Ahmad, Sahrim; Rasid, Rozaidi; Mouad, A. T.; Aziz Mohamed, A.; Abdullah, Jaafar; Dahlan, M.; Mohamad, Mahathir; Jamro, Rafhayudi; Hamzah Harun, M.; Yazid, Hafizal; Abdullah, W. Saffiey W.

    2010-01-01

    X-ray microtomography and ImageJ 1.39 u is used as a tool to quantify volume percentage of B 4 C as fillers in thermoplastic-natural rubber blend composites. The use of percentage of area occupied by fillers as obtain from ImageJ from the microtomography sliced images enables the proposed technique to easily obtain the amount volume percentage of B 4 C in the composite non-destructively. Comparison with other technique such as density measurement and chemical analysis proves the proposed technique as one of the promising approach.

  10. Feasibility of tailoring of press formed thermoplastic composite parts

    Science.gov (United States)

    Sinke, J.

    2018-05-01

    The Tailor Made Blank concept is widely accepted in the production of sheet metal parts. By joining, adding and subtracting materials, and sometimes even applying different alloys, parts can be produced more efficiently by cost and/or weight, and new design options have been discovered. This paper is about the manufacture of press formed parts of Fibre Reinforced Thermoplastics and the evaluation whether the Tailoring concept, though adapted to the material behavior of FRTP, can be applied to these composites as well. From research, the first results and ideas are presented. One of the ideas is the multistep forming process, creating parts with thickness variations and combinations of fibre orientations that are usually not feasible using common press forming strategies. Another idea is the blending of different prepreg materials in one component. This might be useful in case of specific details, like for areas of mechanical fastening or to avoid carbon/metal contact, otherwise resulting in severe corrosion. In a brief overview, future perspectives of the potential of the Tailoring concept are presented.

  11. Mechanical behaviour of textile-reinforced thermoplastics with integrated sensor network components

    International Nuclear Information System (INIS)

    Hufenbach, W.; Adam, F.; Fischer, W.-J.; Kunadt, A.; Weck, D.

    2011-01-01

    Highlights: → Consideration of two types of integrated bus systems for textile-reinforced thermoplastics with embedded sensor networks. → Specimens with bus systems made of flexible printed circuit boards show good mechanical performance compared to the reference. → Inhomogeneous interface and reduced stiffnesses and strengths for specimens with bus systems basing on single copper wires. -- Abstract: The embedding of sensor networks into textile-reinforced thermoplastics enables the design of function-integrative lightweight components suitable for high volume production. In order to investigate the mechanical behaviour of such functionalised composites, two types of bus systems are selected as exemplary components of sensor networks. These elements are embedded into glass fibre-reinforced polypropylene (GF/PP) during the layup process of unconsolidated weft-knitted GF/PP-preforms. Two fibre orientations are considered and orthotropic composite plates are manufactured by hot pressing technology. Micrograph investigations and computer tomography analyses show different interface qualities between the thermoplastic composite and the two types of bus systems. Mechanical tests under tensile and flexural loading indicate a significant influence of the embedded bus system elements on the structural stiffness and strength.

  12. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  13. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  14. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Directory of Open Access Journals (Sweden)

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  15. Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-06-01

    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam

    Science.gov (United States)

    Hadi, Bambang K.; Nuril, Yogie S.

    2018-04-01

    The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.

  17. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  18. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    conducting material or forms a continuous fuel-blocking film. The LbL component consists of a proton-conducting, methanolimpermeable poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of PA 6(3)T fibers of average diameter between 400 and 800 nm, in a nonwoven matrix of 60-90% porosity depending on the temperature of thermal annealing utilized to improve the mechanical properties. This thesis demonstrates the versatility and flexibility of this fabrication technique, since any ion conducting LbL system may be sprayed onto any electrospun fiber mat, allowing for independent control of functionality and mechanical properties. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system, and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydration cycling. The electrochemical selectivity of the composite LbL-electrospun membrane is found to be superior to Nafion, which makes them a viable alternative proton exchange membrane for fuel cell applications. The composite proton exchange membranes fabricated in this work were tested in an operational direct methanol fuel cell, with results showing the capability for higher open circuit voltages (OCV) and comparable cell resistances when compared to Nafion. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  19. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Chaiwatyothin, Sudarat; Mueangta, Suwat; Hanchana, Areeya

    2013-01-01

    Highlights: ► TPCS matrix was reinforced by the low (jute) and high (kapok) absorbency cellulosic fibers. ► Water absorption of the TPCS/jute and TPCS/kapok fiber composites decreases. ► Stress and Young’s modulus of the TPCS/jute and TPCS/kapok fiber composites increase. ► Thermal degradation temperature of the TPCS/kapok fiber composite decreases. - Abstract: Since mechanical properties and water uptake of biodegradable thermoplastic cassava starch (TPCS) was still the main disadvantages for many applications. The TPCS matrix was, therefore, reinforced by two types of cellulosic fibers, i.e. jute or kapok fibers; classified as the low and high oil absorbency characteristics, respectively. The TPCS, plasticized by glycerol, was compounded by internal mixer and shaped by compression molding machine. It was found that water absorption of the TPCS/jute fiber and TPCS/kapok fiber composites was clearly reduced by the addition of the cellulosic fibers. Moreover, stress at maximum load and Young’s modulus of the composites increased significantly by the incorporation of both jute and kapok fibers. Thermal degradation temperature, determined from thermogravimetric analysis (TGA), of the TPCS matrix increased by the addition of jute fibers; however, thermal degradation temperature decreased by the addition of kapok fibers. Functional group analysis and morphology of the TPCS/jute fiber and TPCS/kapok fiber composites were also examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques

  20. Structural and Magnetic Properties of Type-M Barium Ferrite - Thermoplastic Natural Rubber Nano composites

    International Nuclear Information System (INIS)

    Nurhidayaty Mokhtar

    2012-01-01

    Structural and magnetic properties of type-M barium ferrite (BaFe 12 O 19 ) nanoparticles (∼ 20 nm) embedded in non-magnetic thermoplastic natural rubber (TPNR) matrices were investigated. The TPNR matrices were prepared from high density polyethylene (HDPE) and natural rubber (NR) in the weight ratios of 80:20 and 60:40, respectively, with 10 wt % of NR in the form of liquid natural rubber (LNR) which act as a comparabilities. BaFe 12 O 19 - filled nano composites with 2 - 12 wt % BaFe 12 O 19 ferrite were prepared using a melt- blending technique. Magnetic hysteresis was measured using a vibrating sample magnetometer (VSM) in a maximum field of 10 kOe at room temperature (25 degree Celsius). The saturation magnetisation (MS), remanence (MR) and coercivity (Hc) were derived from the hysteresis loops. The results show that the structural and magnetic properties of nano composites depend on both the ferrite content and the composition of the natural rubber or plastic in the nano composites. All the nano composites exhibit an exchange bias-like phenomenon resulting from the exchange coupling of spins at the interface between the core ferrimagnetic region and the disordered surface region of the nanoparticles. (author)

  1. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  2. Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)

    2007-10-15

    The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)

  3. Sequential ultrasonic spot welding of thermoplastic composites : An experimental study on the welding process and the mechanical behaviour of (multi-)spot welded joints

    NARCIS (Netherlands)

    Zhao, T.

    2018-01-01

    The popularity of thermoplastic composites (TPCs) has been growing steadily in the last decades in the aircraft industry. This is not only because of their excellent material properties, but also owing to their fast and cost-effective manufacturing process. Fusion bonding, or welding, is a typical

  4. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  5. The Place for Thermoplastic Composites in Structural Components

    Science.gov (United States)

    1987-12-01

    hydroforming of thermoplastics is so attractive is that it takes advantage of sheet-metal forming technology that has been in development for many years. High ...interfacial bond strength and fracture energies (Table D-1). Note the high bond strength of treated type I fibers and a correspondingly low fracture energy ...value, indicating little energy dissipated in the pull-out of fractured fibers. The untreated type I fibers have a low bond strength and a high pull-out

  6. 木质素/热塑性塑料复合材料界面增容的研究进展%Progress of interfacial compatibilization methods of lignin/thermoplast composites

    Institute of Scientific and Technical Information of China (English)

    陈福泉; 赵永青; 冯彦洪; 瞿金平

    2014-01-01

    Lignin is mixed into thermoplast as organic particulate filler, which resolves the tough problems of resource utilization of black liquor from paper industry, growing tension of petroleum feedstock and increasing environmental pollution. The compatibility between lignin and thermoplast is directly related to application and development of lignin in the plastics industry. This paper begins with an overview of the structure and properties of lignin and performance analysis of lignin/thermoplastic composites, and then elaborates the methods and principles of interfacial compatibilization between lignin and thermoplast. The methods of compatibilization are divided into adding compatibilizer, modifying lignin and modifying thermoplastics, and the three methods are compared and analyzed. The methods of adding compatibilizer and modifying thermoplastics are more commonly used than the modifying lignin for interfacial compatibilizing of the composites. Esterified lignin has better compatibilization than alkylated lignin. Then alternate and compounded use of the compatibilizing methods for lignin-based composites are reviewed. Finally, future research directions and ideas of compatibilization in lignin/thermoplastic composites are discussed.%将木质素作为一种有机颗粒填料添加到热塑性塑料中,可解决造纸黑液资源化利用、石油原料日渐紧张以及环境污染加剧等严峻问题。而木质素与热塑性塑料之间相容性直接影响木质素在塑料工业中的应用与发展。首先简要概述了木质素结构与性质和木质素/热塑性塑料复合材料的性能分析,然后系统地阐述国内外研究木质素/热塑性塑料复合材料界面增容方法及其原理;增容方法按添加相容剂、改性木质素和改性塑料进行归类,并对3

  7. Spatial patterns of cyanobacterial mat growth on sand ripples

    Science.gov (United States)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  8. Nanofibre Electrospinning Poly(vinyl alcohol and Cellulose Composite Mats Obtained by Use of a Cylindrical Electrode

    Directory of Open Access Journals (Sweden)

    Anna Sutka

    2013-01-01

    Full Text Available A study of nanofibre composites obtained by electrospinning from poly(vinyl alcohol (PVA solutions of steam exploded hemp fibres and shives is reported. A combined treatment of steam explosion (SE, ball milling, and high-intensity ultrasound (HIUS is applied to prepare cellulose nanofibres (CNF from hemp fibres (CNF-F and shives (CNF-S. The reflectance Fourier transform infrared (FTIR ATR spectroscopy is used to analyze the obtained PVA/CNF composite mats. Morphology of the PVA/CNF composites was studied by scanning electron microscopy (SEM.

  9. Microbial mat of the thermal springs Kuchiger Republic of Buryatia: species composition, biochemical properties and electrogenic activity in biofuel cell

    Science.gov (United States)

    Aleksandrovich Yuriev, Denis; Viktorovna Zaitseva, Svetlana; Olegovna Zhdanova, Galina; Yurievich Tolstoy, Mikhail; Dondokovna Barkhutova, Darima; Feodorovna Vyatchina, Olga; Yuryevna Konovalova, Elena; Iosifovich Stom, Devard

    2018-02-01

    Electrogenic, molecular and some other properties of a microbial mat isolated from the Kuchiger hot spring (Kurumkansky District, Republic of Buryatia) were studied. Molecular analysis showed that representatives of Proteobacteria (85.5 % of the number of classified bacterial sequences) prevailed in the microbial mat of the Kuchiger springs, among which sulfur bacteria of the genus Thiothrix were the most numerous. In the microbial mat there were bacteria from the families Rhodocyclaceae, Comamonadaceae and Flavobacteriaceae. Phylum Bacteroidetes, Cyanobacteria/Chloroplast, Fusobacteria, Fibrobacteres, Acidobacteria, Chlorobi, Spirochaetes, Verrucomicrobia, Firmicutes, Deinococcus-Thermus, Chloroflexi and Actinobacteria are also noted in the composition of the microbial mat. Under the experimental conditions using Kuchiger-mat 16 as bioagents, glucose and peptone as substrates, the power of BFC was 240 and 221 mW / m2, respectively. When replacing the substrate with sodium acetate, the efficiency of the BFC was reduced by a factor of 10 (20 mW / m2). The prospects of using a microbial mat “Kuchiger-16” as an electrogen in BFC when utilizing alkaline waste water components to generate electricity are discussed.

  10. Effects of composition and processing conditions on morphology and properties of thermoplastic elastomer blends of SEBS-PP-Oil and dynamically vulcanized EPDM-PP-Oil

    NARCIS (Netherlands)

    Sengupta, P.; Noordermeer, Jacobus W.M.

    2004-01-01

    This work presents a comparative study of the morphology and structure-related properties of thermoplastic elastomer blends based on SEBS-PP-oil and dynamically vulcanized EPDM-PP-oil prepared under identical conditions. Compositions of each blend type with three different SEBS-PP and EPDM-PP ratios

  11. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Aho, Johanna; Baldursdottir, Stefania G.

    2017-01-01

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dis...

  12. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief; Wafai, Husam; Lubineau, Gilles; Yaldiz, R.; Verghese, N.

    2017-01-01

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology

  13. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    Science.gov (United States)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  14. Materials and process limitations for thermoplastic composite materials for wind turbine blades - preform of prepregs and commingled yarns

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, R.T.D.

    2011-07-01

    Wind turbine blades are produced based on the current thermoset resin technology, but thermoplastics can offer better potential to become the future blade materials. One of the most important goals when designing larger blade systems is to keep the blade weight under control. Thermoplastic materials offer weight saving similar to thermosets, apart from many other benefits like design flexibility, durability, cost, weight saving, and performance advantageous to the wind industry. In the current research study a detailed discussion on material and process limitations such as thermoplastic prepreg tapes and commingled yams are presented in terms of their properties and available forms in the current markets. A critical review of thermoplastics discussed in the context of turbine blades applications. (Author)

  15. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    Science.gov (United States)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  16. Attribute Based Selection of Thermoplastic Resin for Vacuum Infusion Process: A Decision Making Methodology

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Lystrup, Aage; Løgstrup Andersen, Tom

    2012-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...... for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection....

  17. Microwave heating for thermoplastic composites - Could the technology be used for welding applications?

    Science.gov (United States)

    Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco

    2018-05-01

    Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.

  18. Joining of thermoplastic substrates by microwaves

    Science.gov (United States)

    Paulauskas, Felix L.; Meek, Thomas T.

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  19. [The effects of 16-weeks pilates mat program on anthropometric variables and body composition in active adult women after a short detraining period].

    Science.gov (United States)

    Vaquero-Cristóbal, Raquel; Alacid, Fernando; Esparza-Ros, Francisco; Muyor, José M; López-Miñarro, Pedro Ángel

    2015-04-01

    previous studies have analysed the effect of mat Pilates practice on anthropometric variables and body composition in sedentaries. To date no researchs have investigated the benefits of Pilates on these variables after a short detraining period. to determine the effect of a 16-week mat Pilates program on anthropometric variables, body composition and somatotype of women with previous practice experience after three weeks of detraining period. twenty-one women underwent a complete anthropometric assessment according with ISAK guidelines before and after a 16 week mat Pilates program (two days, one hour). All women had one to three years of mat Pilates experience and came to three weeks of detraining period (Christmas holiday). women showed significant decreases for body mass, BMI, upper limb (biceps and triceps) and trunk (subscapular, iliac crest, supraspinale and abdominal) individual skinfolds, 6 and 8 skinfold sums, endomorphy and fat mass; and a significant increases for muscle mass. The mean somatotype was classified as mesomorphic endomorph in the pre- (4.91, 4.01, 1.47) and post-test (4.68, 4.16, 1.69). Eight women changed their somatotype clasification after the intervention program. the practice of mat Pilates for 16 weeks caused changes associated with health state improvements on anthropometric variables, especially on skinfolds which significantly decreased, body composition (fat and muscle masses decreased and increased, respectively) and somatotype (there was a significantly decreased on the endomorph component in experienced women after three week of detraning. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    Science.gov (United States)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  1. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  2. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150-170 m Water Depth, Crimea Margin).

    Science.gov (United States)

    Jessen, Gerdhard L; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150-170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km(2) on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25-55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  3. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  4. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  5. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-04-01

    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150–170 m Water Depth, Crimea Margin)

    Science.gov (United States)

    Jessen, Gerdhard L.; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150–170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km2 on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25–55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  7. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  8. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    Science.gov (United States)

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  9. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    Science.gov (United States)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  10. Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Algrafi, M.W.

    2014-01-01

    Highlights: • Increase in fiber loading increased tensile strength and modulus of the composites. • Tensile strain was decreasing with increase in fiber loading. • Flexural strength and modulus increased with increase in fiber content. • Impact strength was deteriorated with increasing fiber loading. • Morphology observations shown a good adhesion between fibers and matrix. - Abstract: In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion

  11. Enhancement of mechanical and tribotechnical properties of polymer composites with thermoplastic UHMWPE and PEEK matrices by loading carbon nanofibers/nanotubes

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Anh, Nguyen Duc; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    For comparative evaluation of the influence of carbon nanofiber/nanotube loading in two different thermoplastic matrices (UHMWPE and PEEK), some mechanical and tribotechnical properties of the nanocomposites have been studied. It is shown that mechanical properties of nanocomposites change in various manners with increasing loading of carbon nanofibers and nanotubes. Herewith, the wear resistance of the "UHMWPE+1 wt% CNF and PEEK + 1 wt% CNF" composites under dry sliding friction is doubled. It is shown that, regardless of various effects on permolecular structure formation, the studied nanofillers enhance the wear resistance of the composites in a similar manner. A comparative analysis of the influence of nanofillers on the modification of mechanical and tribotechnical properties of UHMWPE- and PEEK-based matrices is made.

  12. Predictive Engineering Tools for Injection-Molded Long-Carbon-Thermoplastic Composites: Weight and Cost Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gandhi, Umesh N. [Toyota Research Inst. North America, Ann Arbor, MI (United States); Mori, Steven [MAGNA Exteriors and Interiors Corporation, Aurora, ON (Canada); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States)

    2016-08-01

    This project proposed to integrate, optimize and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk Simulation Moldflow Insight (ASMI) package for injection-molded long-carbon-fiber thermoplastic composites into a cohesive prediction capability. The current effort focused on rendering the developed models more robust and efficient for automotive industry part design to enable weight savings and cost reduction. The project goal has been achieved by optimizing the developed models, improving and integrating their implementations in ASMI, and validating them for a complex 3D LCF thermoplastic automotive part (Figure 1). Both PP and PA66 were used as resin matrices. After validating ASMI predictions for fiber orientation and fiber length for this complex part against the corresponding measured data, in collaborations with Toyota and Magna PNNL developed a method using the predictive engineering tool to assess LCF/PA66 complex part design in terms of stiffness performance. Structural three-point bending analyses of the complex part and similar parts in steel were then performed for this purpose, and the team has then demonstrated the use of stiffness-based complex part design assessment to evaluate weight savings relative to the body system target (≥ 35%) set in Table 2 of DE-FOA-0000648 (AOI #1). In addition, starting from the part-to-part analysis, the PE tools enabled an estimated weight reduction for the vehicle body system using 50 wt% LCF/PA66 parts relative to the current steel system. Also, from this analysis an estimate of the manufacturing cost including the material cost for making the equivalent part in steel has been determined and compared to the costs for making the LCF/PA66 part to determine the cost per “saved” pound.

  13. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  14. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Ahluwalia, Karamdeep S; Mizoguchi, Itaru

    2013-05-01

    To measure the forces delivered by thermoplastic appliances made from three materials and investigate effects of mechanical properties, material thickness, and amount of activation on orthodontic forces. Three thermoplastic materials, Duran (Scheu Dental), Erkodur (Erkodent Erich Kopp GmbH), and Hardcast (Scheu Dental), with two different thicknesses were selected. Values of elastic modulus and hardness were obtained from nanoindentation measurements at 28°C. A custom-fabricated system with a force sensor was employed to obtain measurements of in vitro force delivered by the thermoplastic appliances for 0.5-mm and 1.0-mm activation for bodily tooth movement. Experimental results were subjected to several statistical analyses. Hardcast had significantly lower elastic modulus and hardness than Duran and Erkodur, whose properties were not significantly different. Appliances fabricated from thicker material (0.75 mm or 0.8 mm) always produced significantly greater force than those fabricated from thinner material (0.4 mm or 0.5 mm). Appliances with 1.0-mm activation produced significantly lower force than those with 0.5-mm activation, except for 0.4-mm thick Hardcast appliances. A strong correlation was found between mechanical properties of the thermoplastic materials and force produced by the appliances. Orthodontic forces delivered by thermoplastic appliances depend on the material, thickness, and amount of activation. Mechanical properties of the polymers obtained by nanoindentation testing are predictive of force delivery by these appliances.

  15. Critical assessment of the mandrel peel test for fiber reinforced thermoplastic laminates

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Akkerman, Remko

    2013-01-01

    The applicability of the mandrel peel test for thermoplastic composites was investigated experimentally by comparing the fracture toughness to the values obtained by the double cantilever beam (DCB) and end loaded split (ELS) beam test. Two laminates were considered: a unidirectionally carbon-PPS

  16. Microbial Mats on the Orkney Islands Revisited: Microenvironment and Microbial Community Composition

    DEFF Research Database (Denmark)

    Wieland, A.; Kühl, M.; McGowan, L.

    2003-01-01

    of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced...... fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play...

  17. Thermo-mechanical characterization of a thermoplastic composite and prediction of the residual stresses and lamina curvature during cooling

    Science.gov (United States)

    Péron, Mael; Jacquemin, Frédéric; Casari, Pascal; Orange, Gilles; Bailleul, Jean-Luc; Boyard, Nicolas

    2017-10-01

    The prediction of process induced stresses during the cooling of thermoplastic composites still represents a challenge for the scientific community. However, a precise determination of these stresses is necessary in order to optimize the process conditions and thus lower the stresses effects on the final part health. A model is presented here, that permits the estimation of residual stresses during cooling. It relies on the nonlinear laminate theory, which has been adapted to arbitrary layup sequences. The developed model takes into account the heat transfers through the thickness of the laminate, together with the crystallization kinetics. The development of the composite mechanical properties during cooling is addressed by an incremental linear elastic constitutive law, which also considers thermal and crystallization strains. In order to feed the aforementioned model, a glass fiber and PA6.6 matrix unidirectional (UD) composite has been characterized. This work finally focuses on the identification of the material and process related parameters that lower the residual stresses level, including the ply sequence, the fiber volume fraction and the cooling rate.

  18. Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2017-01-01

    Roč. 130, č. 2 (2017), s. 1043-1052 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA16-03194S Institutional support: RVO:61389013 Keywords : poly(lactic acid) * cold crystallization * thermoplastic polyurethane Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.953, year: 2016

  19. Cryomilling of Thermoplastic Powder for Prepreg Applications

    Science.gov (United States)

    2013-09-01

    Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT

  20. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  1. Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite

    DEFF Research Database (Denmark)

    Plackett, David; Torgilsson, R.; Løgstrup Andersen, T.

    2002-01-01

    involved pre-compression, contact heating to the process temperature under vacuum and then rapid transfer to the press for consolidation and cooling. Composites were tested to determine response to water or water vapor, porosity, fiber volume fraction and tensile properties. The composites absorbed water......A rapid press consolidation technique was used to produce composites from two types of air-laid wood fiber mat, incorporating either mechanically refined or bleached chemi-thermomechanically refined Norway Spruce [Picea abies (L.) Karst] and a bicomponent polymer fiber. The manufacturing technique...... rapidly and showed changes in thickness with fluctuations in relative humidity. Porosity was higher in composites containing mechanically refined (MDF) fibers than in composites containing bleached chemi-thermomechanically refined (CTMP) fibers. Tensile test results suggessted that fiber wetting...

  2. Thermoplastic Composites Reinforced with Textile Grids: Development of a Manufacturing Chain and Experimental Characterisation

    Science.gov (United States)

    Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.

    2013-12-01

    A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.

  3. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  4. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation.

    Science.gov (United States)

    McGregor, Glenn B; Rasmussen, J Paul

    2008-01-01

    Cyanobacterial composition of microbial mats from an alkaline thermal spring issuing at 43-71 degrees C from tropical north-eastern Australia are described using a polyphasic approach. Eight genera and 10 species from three cyanobacterial orders were identified based on morphological characters. These represented taxa previously known as thermophilic from other continents. Ultrastructural analysis of the tower mats revealed two filamentous morphotypes contributed the majority of the biomass. Both types had ultrastructural characteristics of the family Pseudanabaenaceae. DNA extracts were made from sections of the tentaculiform towers and the microbial community analysed by 16S cyanobacteria-specific PCR and denaturing-gradient gel electrophoresis. Five significant bands were identified and sequenced. Two bands clustered closely with Oscillatoria amphigranulata isolated from New Zealand hot springs; one unique phylotype had only moderate similarity to a range of Leptolyngbya species; and one phylotype was closely related to a number of Geitlerinema species. Generally the approaches yielded complementary information, however the results suggest that species designation based on morphological and ultrastructural criteria alone often fails to recognize their true phylogenetic position. Conversely some molecular techniques may fail to detect rare taxa suggesting that the widest possible suite of techniques be applied when conducting analyses of cyanobacterial diversity of natural populations. This is the first polyphasic evaluation of thermophilic cyanobacterial communities from the Australian continent.

  5. Karakteristik Mekanik Panel Dinding dari Komposit Sabut Kelapa (Coco Fiber)-Sampah Plastik (Thermoplastics)

    OpenAIRE

    Fajriyanto, Fajriyanto

    2009-01-01

    The research about utilization of coco fiber and thermoplastic waste to produce partition wall based on fiber reinforced plastic (FRP) composites has been conducted. The research methodology used was experimental research method. There were three steps conducted in the research; the first, preparation of instruments and sampling of raw materials, the second, blending process for producing fiberboard composites, the third, mechanical-waterproof testing and analyzing of products. The obje...

  6. Effects of matrix properties on microscale damage in thermoplastic laminates under quasi-static and impact loading

    KAUST Repository

    Wafai, B. Husam

    2018-03-01

    Thermoplastics reinforced with continuous fibers are very promising building materials for the auto industry and consumer electronics to reduce the weight of vehicles and portable devices, and to deliver a high impact tolerance at the same time. Polypropylene is an abundant thermoplastic, and its glass fibers composites make a valuable solution that is suitable for mass production. But the adoption of such composites requires a deep understanding of their mechanical behavior under the relevant loading conditions. In this Ph.D. work, we aim to understand the damage process in continuous glass fiberreinforced polypropylene in detail. We will focus in particular on developing an approach for microscale observation of damage during the out-of-plane loading process and will use these observations for both qualitative and quantitative evaluation of the composite. We will apply our approach to two kinds of polypropylene composites, one of them is specially designed to withstand impact. The comparison between the two types of composites at slow and fast loading cases will shed some light on the effect of the polymer properties on the behavior of composites under out-of-plane loading.

  7. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  8. Synthesis of CuAlO2 nanofibrous mats by electrospinning

    International Nuclear Information System (INIS)

    Zhao Shizhen; Li Miaoyu; Liu Xiaomin; Han Gaoyi

    2009-01-01

    Electrospinning as a versatile method for preparation of nanofibers has been used to fabricate the polyvinylalcohol nanofibers containing equal molar of aluminum nitrate and copper acetate. After pretreated at 400 deg. C, the composite fibrous mats were annealed at 1100 deg. C in air for 5 h and then the delafossite-structured p-type CuAlO 2 ceramics fibrous mats were obtained. The obtained CuAlO 2 ceramics fibrous mats were characterized by scanning electrical microscope, X-ray diffraction and diffuse reflectance spectroscopy. The direct energy gap of the prepared CuAlO 2 ceramics fibrous mats was measured to be about 3.38 eV. The CuAlO 2 behaved like semiconductors and the thermally activated energy was about 0.25 eV.

  9. Photosynthetic Microbial Mats are Exemplary Sources of Diverse Biosignatures (Invited)

    Science.gov (United States)

    Des Marais, D. J.; Jahnke, L. L.

    2013-12-01

    Marine cyanobacterial microbial mats are widespread, compact, self-contained ecosystems that create diverse biosignatures and have an ancient fossil record. Within the mats, oxygenic photosynthesis provides organic substrates and O2 to the community. Both the absorption and scattering of light change the intensity and spectral composition of incident radiation as it penetrates a mat. Some phototrophs utilize infrared light near the base of the photic zone. A mat's upper layers can become highly reduced and sulfidic at night. Counteracting gradients of O2 and sulfide shape the chemical environment and provide daily-contrasting microenvironments separated on a scale of a few mm. Radiation hazards (UV, etc.), O2 and sulfide toxicity elicit motility and other physiological responses. This combination of benefits and hazards of light, O2 and sulfide promotes the allocation of various essential mat processes between light and dark periods and to various depths in the mat. Associated nonphotosynthetic communities, including anaerobes, strongly influence many of the ecosystem's overall characteristics, and their processes affect any biosignatures that enter the fossil record. A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The value of a biosignature depends not only on the probability of life creating it, but also on the improbability of nonbiological processes producing it. Microbial mats create biosignatures that identify particular groups of organisms and also reveal attributes of the mat ecosystem. For example, branched hydrocarbons and pigments can be diagnostic of cyanobacteria and other phototrophic bacteria, and isoprenoids can indicate particular groups of archea. Assemblages of lipid biosignatures change with depth due to changes in microbial populations and diagenetic transformations of organic matter. The 13C/12C values of organic matter and carbonates reflect isotopic discrimination by particular

  10. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  11. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  12. Structure and properties of pregelatinized cassava starch/kaolin composites

    International Nuclear Information System (INIS)

    Kaewtatip, Kaewta; Tanrattanakul, Varaporn

    2012-01-01

    Highlights: ► Pregelatinized starch/kaolin composites were prepared using compression molding. ► The tensile strengths of the composites were higher than for thermoplastic starch. ► Degradation temperatures of the composites were higher than for thermoplastic starch. ► The retrogradation behavior of the composites was hindered by kaolin. -- Abstract: Pregelatinized cassava starch/kaolin composites were prepared using compression molding. The morphology of the fractured surfaces, retrogradation behavior, thermal decomposition temperatures and mechanical properties of the composites were investigated using scanning election microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and tensile testing, respectively. The tensile strengths and thermal degradation temperatures of the composites were higher than for thermoplastic starch (TPS). The retrogradation behavior of the composites was hindered by kaolin. The water absorption was measured after aging for 12 and 45 days at a relative humidity (RH) of 15% and 55%. It indicated that all the composites displayed lower water absorption values than TPS.

  13. Investigation of production of continuous off axis fibre reinforced thermoplastic material

    Science.gov (United States)

    McDonald, Philip C.

    Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production

  14. INFLUENCE OF COCONUT SHELL ADDITION ON PHYSICO-MECHANICAL PROPERTIES OF WOOD PLASTIC COMPOSITES1

    Directory of Open Access Journals (Sweden)

    Éverton Hillig

    2018-04-01

    Full Text Available ABSTRACT In this study, composites with three types of thermoplastic matrix and cellulosic material in a proportion of 40% were produced. The three thermoplastic matrices were high density polyethylene (HDPE, polypropylene (PP and low density polyethylene (LDPE, and the cellulosic materials were pure wood flour (Pinus taeda L or a mixture of wood flour and coconut shell flour (Cocus nucifera L in equal ratios. The objective was to evaluate the influence of addition of coconut shell on the physico-mechanical properties (density, strength and rigidity and the distribution of the cellulosic material in the thermoplastic matrix of the manufactured composites. It was found that the composites had a satisfactory distribution of wood flour in thermoplastic matrices, but the addition of coconut shell promoted bubble formation in the resulting pieces and, thus, interfered with the material properties. The use of a coupling agent promoted interfacial adhesion (cellulose - thermoplastic matrix, which was better in high density polyethylene composites, followed by polypropylene and low density polyethylene. In general, the coconut shell addition caused a decrease of all properties compared to composites made with Loblolly Pine. In addition, the interactions between thermoplastic type and cellulosic matrix type have been statistically confirmed, which caused variations in the studied properties

  15. The development of thermoplastic fibre based reinforcements for the rotational moulding process

    Science.gov (United States)

    Alemán, D. N. Castellanos; McCourt, M.; Kearns, M. P.; Martin, P. J.; Butterfield, J.

    2018-05-01

    Rotational moulding is a method used to produce hollow plastic parts through the heating, melting and cooling of polymer powder within a metal mould. A wide range of products are made using this process, such as fluid containment tanks, boats, light weight vehicle bodies and marine buoys. Rotomoulded composites using thermoplastic fibres are of increasing interest to the industry, as they have the potential to significantly improve impact strength, whilst reducing part weight, resulting in a structure that is 100% recyclable compared to a traditional composite. A series of self-reinforced thermoplastic weaves can be used to produce a number of composite structures using the rotational moulding process. This work outlines the improvements obtained from the range of rotomoulded composites structures, as well as preforms that could be used in future rotational moulding work. Characteristics of self-reinforced materials were exploited with the aim of increasing the mechanical properties, preserving the weaves and increasing the nature of the material adhesion. Addition of the fabrics in the cooling stage was shown to be of great interest as this avoided exposure of the material to the peak temperature, which may affect the integrity of the fabric. Placing the weave during cooling was useful as the material could receive the maximum amount of tensile force during the impact test. A total of nine diverse types of compounds were manufactured and tested, with seven of the impact tests showing an increase in strength greater than 50%.

  16. Optimization of Blending Parameters and Fiber Size of Kenaf-Bast-Fiber-Reinforced the Thermoplastic Polyurethane Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2013-01-01

    Full Text Available “Kenaf-fibers- (KF-” reinforced “thermoplastic polyurethane (TPU” composites were prepared by the melt-blending method followed by compression molding. Composite specimens were cut from the sheets that were prepared by compression molding. The criteria of optimization were testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters (e.g., processing temperature, time, and speed and fiber size using the Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that has been selected. Furthermore, analysis of variance (ANOVA was used to determine the significance of different parameters. The results showed that the optimum values were 180°C, 50 rpm, 13 min, and 125–300 micron for processing temperature, processing speed, processing time, and fiber size, respectively. Using ANOVA, processing temperature showed the highest significance value followed by fiber size. Processing time and speed did not show any significance on the optimization of TPU/KF.

  17. Preface - BraMat 2017

    Science.gov (United States)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  18. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    Science.gov (United States)

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  19. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

    International Nuclear Information System (INIS)

    Leigh, S J; Purssell, C P; Billson, D R; Hutchins, D A

    2014-01-01

    Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor. (paper)

  20. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2004-01-01

    The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiber–thermoplastic composites by the construction industry. As a result, the durability of wood-fiber– thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood-...

  1. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Production and properties of micro-cellulose reinforced thermoplastic starch

    Science.gov (United States)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  3. Damage assessment and progression in a polyisocyanurate-based continuous swirl mat composite

    Science.gov (United States)

    Worley, Darwell Carlton, II

    This research conducted in conjunction with Oak Ridge National Laboratories and the Automotive Composite Consortium, ACC, was motivated by the desire to reduce vehicle weight for increased efficiency. At present, there are no databases of failure mechanisms, experimental procedures to study failure, mathematical expressions for empirical or theoretical prediction of properties of a continuous swirl mat composite, CSMC. Therefore, to contribute to the increased utilization of this class of materials the following research was performed. This research enabled the failure mechanism to be formulated, development of a method to quantify failure based on ultrasonic attenuation maps, and the prediction of the fracture toughness parameter KIC. The use of scanning electron microscopy, light microscopy, and real-time tensile loading showed that the CSMC failed in a brittle mode. These techniques also provided imaging information as to how a dominant crack propagates in the presence of a continuously swirled E-glass mat reinforcement and voids. This evaluation enabled a reconstruction of failure in order to demonstrate a possible failure mechanism. The aforementioned techniques revealed that the dominant crack follows the fiber/matrix interface, but may be influenced by the presence of voids. Voids have the tendency of luring the growing crack away from the interface. A growing crack would, however, return to a fiber/matrix interface until complete failure occurred. Another aspect of this work was the quantification of progressive damage using ultrasound. Comparisons were made between ultrasonic attenuation maps for unloaded and sequentially loaded specimens. The sequential loads were applied at different percentages of the ultimate tensile strength, UTS. This technique provided attenuation maps for a series of specimens with a controlled degree of damage, which showed an increase in attenuation with an increase in percent UTS. Fracture toughness experiments yielded an

  4. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix

    International Nuclear Information System (INIS)

    Qiao, Xiuying; Lu, Xiushou; Li, Wei; Sun, Kang; Li, Weihua; Chen, Jun; Gong, Xinglong; Yang, Tao; Chen, Xiaodong

    2012-01-01

    Novel isotropic and anisotropic thermoplastic magnetorheological elastomers (MRE) were prepared by melt blending titanated coupling agent modified carbonyl iron (CI) particles with poly(styrene-b-ethylene-ethylene–propylene-b-styrene) (SEEPS) matrix in the absence and presence of a magnetic field, and the microstructure and magnetorheological properties of these SEEPS-based MRE were investigated in detail. The particle surface modification improves the dispersion of the particles in the matrix and remarkably softens the CI/SEEPS composites, thus significantly enhancing the MR effect and improving the processability of these SEEPS-based MRE. A microstructural model was proposed to describe the interfacial compatibility mechanism that occurred in the CI/SEEPS composites after titanate coupling agent modification, and validity of this model was also demonstrated through adsorption tests of unmodified and surface-modified CI particles. (paper)

  5. Creep of thermoplastic polyurethane reinforced with ozone functionalized carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2012-09-01

    Full Text Available This work focused on the mechanical behavior, especially creep resistance, of thermoplastic polyurethane (TPU filled with ozone-treated multi-walled carbon nanotubes (MWCNTs. It was found that the ozone functionalization of MWCNTs could improve their dispersion and interfacial adhesion to the TPU matrix as proved by scanning electron microscope and Raman spectrometer. It finally contributed to the enhancement of Young’s modulus and yield strength of TPU/MWCNT composites. Moreover, the creep resistance and recovery of MWCNT/TPU composites revealed a significant improvement by incorporating ozone functionalized MWCNTs. The strong interaction between the modified MWCNTs and TPU matrix would enhance the interfacial bonding and facilitate the load transfer, resulting in low creep strain and unrecovered strain.

  6. Talking Mats

    DEFF Research Database (Denmark)

    2012-01-01

    Talking Mats are visualizations in the handy size of a set of cards used to support interviews with people with mental disabilities.......Talking Mats are visualizations in the handy size of a set of cards used to support interviews with people with mental disabilities....

  7. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles

    International Nuclear Information System (INIS)

    Pant, Hem Raj; Pandeya, Dipendra Raj; Nam, Ki Taek; Baek, Woo-il; Hong, Seong Tshool; Kim, Hak Yong

    2011-01-01

    Silver-impregnated TiO 2 /nylon-6 nanocomposite mats exhibit excellent characteristics as a filter media with good photocatalytic and antibacterial properties and durability for repeated use. Silver nanoparticles (NPs) were successfully embedded in electrospun TiO 2 /nylon-6 composite nanofibers through the photocatalytic reduction of silver nitrate solution under UV-light irradiation. TiO 2 NPs present in nylon-6 solution were able to cause the formation of a high aspect ratio spider-wave-like structure during electrospinning and facilitated the UV photoreduction of AgNO 3 to Ag. TEM images, UV-visible and XRD spectra confirmed that monodisperse Ag NPs (approximately 4 nm in size) were deposited selectively upon the TiO 2 NPs of the prepared nanocomposite mat. The antibacterial property of a TiO 2 /nylon-6 composite mat loaded with Ag NPs was tested against Escherichia coli, and the photoactive property was tested against methylene blue. All of the results showed that TiO 2 /nylon-6 nanocomposite mats loaded with Ag NPs are more effective than composite mats without Ag NPs. The prepared material has potential as an economically friendly photocatalyst and water filter media because it allows the NPs to be reused.

  8. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    Science.gov (United States)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  9. Computational modelling of a thermoforming process for thermoplastic starch

    Science.gov (United States)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its

  10. Generating Autoclave-Level Mechanical Properties with Out-of-Autoclave Thermoplastic Placement of Large Composite Aerospace Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Out-of-autoclave thermoplastic tape/tow placement (TP-ATP) is nearing commercialization but suffers a moderate gap in mechanical properties compared with laminates...

  11. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    Science.gov (United States)

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Thermoplastic-thermosetting merged polyimides via furan-maleimide Diels–Alder polymerization

    Directory of Open Access Journals (Sweden)

    Yogesh S. Patel

    2017-02-01

    Full Text Available Novel thermoplastic-thermosetting merged polyimide system has been developed via Diels–Alder intermolecular polymerization of bisfuran namely, 2,5-bis(furan-2-ylmethylcarbamoyl terephthalic acid A with a series of bismaleimides B1–4. Thus obtained intermediate Diels–Alder adducts C1–4 were aromatized and imidized (i.e. cyclized through carboxylic and amide groups to afford thermoplastic-thermosetting merged polyimides D1–4. Bisfuran A was prepared by the condensation of pyromellitic dianhydride with furan-2-ylmethanamine and characterized by elemental, spectral, thermal and LCMS analyses. Synthesized Diels–Alder adducts C1–4 and polyimides D1–4 were characterized by elemental analysis, spectral features, number average molecular weight (Mn‾, degree of polymerization (DP and thermal analysis. To facilitate the correct structural assessment and to be able to verify the occurrence of the DA adducts and PIs, a model compound 4 was prepared from phthalic anhydride and furan-2-ylmethanamine in a similar way. FTIR spectral features of polyimides D1–4 were compared with model compound 4 and they were found to be quite identical. The ‘in situ' void-free glass fiber reinforced composites GFRC1–4 were prepared from the produced system and characterized by chemical, mechanical and electrical analyses. All the composites showed good mechanical, electrical and thermal properties and good resistance to organic solvents and mineral acids.

  13. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  14. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-01-01

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  15. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  16. Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns.

    Science.gov (United States)

    Zhang, Xiazhi; Guo, Rui; Xu, Jiqing; Lan, Yong; Jiao, Yanpeng; Zhou, Changren; Zhao, Yaowu

    2015-11-01

    In this study, poly(L-lactide) (PLLA)/halloysite nanotube (HNT) electrospun mats were prepared as a dual-drug delivery system. HNTs were used to encapsulate polymyxin B sulphate (a hydrophilic drug). Dexamethasone (a hydrophobic drug) was directly dissolved in the PLLA solution. The drug-loaded HNTs with optimised encapsulation efficiency were then mixed with the PLLA solution for subsequent electrospinning to form composite dual-drug-loaded fibre mats. The structure, morphology, degradability and mechanical properties of the electrospun composite mats were characterised in detail. The results showed that the HNTs were uniformly distributed in the composite PLLA mats. The HNTs content in the mats could change the morphology and average diameter of the electrospun fibres. The HNTs improved both the tensile strength of the PLLA electrospun mats and their degradation ratio. The drug-release kinetics of the electrospun mats were investigated using ultraviolet-visible spectrophotometry. The HNTs/PLLA ratio could be varied to adjust the release of polymyxin B sulphate and dexamethasone. The antibacterial activity in vitro of the mats was evaluated using agar diffusion and turbidimetry tests, which indicated the antibacterial efficacy of the dual-drug delivery system against Gram-positive and -negative bacteria. Healing in vivo of infected full-thickness burns and infected wounds was investigated by macroscopic observation, histological observation and immunohistochemical staining. The results indicated that the electrospun mats were capable of co-loading and co-delivering hydrophilic and hydrophobic drugs, and could potentially be used as novel antibacterial wound dressings. © The Author(s) 2015.

  17. Chapter 13:Wood/Nonwood Thermoplastic Composites

    Science.gov (United States)

    Craig M. Clemons; Roger M. Rowell; David Plackett; B. Kristoffer Segerholm

    2013-01-01

    Composites made from wood, other biomass resources and polymers have existed for a long time but the nature of many of these composites has changed in recent decades. Wood-thermoset composites date to the early 1900s. "Thermosets" or thermosetting polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins such as epoxies...

  18. Photocatalytic and antibacterial properties of a TiO{sub 2}/nylon-6 electrospun nanocomposite mat containing silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Hem Raj [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Engineering Science and Humanities, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu (Nepal); Pandeya, Dipendra Raj [Department of Microbiology and Immunology, Institute for Medical Science, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Nam, Ki Taek; Baek, Woo-il [Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hong, Seong Tshool [Department of Microbiology and Immunology, Institute for Medical Science, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-05-15

    Silver-impregnated TiO{sub 2}/nylon-6 nanocomposite mats exhibit excellent characteristics as a filter media with good photocatalytic and antibacterial properties and durability for repeated use. Silver nanoparticles (NPs) were successfully embedded in electrospun TiO{sub 2}/nylon-6 composite nanofibers through the photocatalytic reduction of silver nitrate solution under UV-light irradiation. TiO{sub 2} NPs present in nylon-6 solution were able to cause the formation of a high aspect ratio spider-wave-like structure during electrospinning and facilitated the UV photoreduction of AgNO{sub 3} to Ag. TEM images, UV-visible and XRD spectra confirmed that monodisperse Ag NPs (approximately 4 nm in size) were deposited selectively upon the TiO{sub 2} NPs of the prepared nanocomposite mat. The antibacterial property of a TiO{sub 2}/nylon-6 composite mat loaded with Ag NPs was tested against Escherichia coli, and the photoactive property was tested against methylene blue. All of the results showed that TiO{sub 2}/nylon-6 nanocomposite mats loaded with Ag NPs are more effective than composite mats without Ag NPs. The prepared material has potential as an economically friendly photocatalyst and water filter media because it allows the NPs to be reused.

  19. Caractérisation de composites supraconducteurs aléatoires - phases au bismuth/argent : contribution à l'étude des jonctions faibles dans ces matériaux

    OpenAIRE

    Antunes , Laurent

    1998-01-01

    Les oxydes supraconducteurs à température critique élevée, à base de bismuth et comportant 2 ou 3 plans cuivre, sont synthétisés suivant diverses méthodes. Nous réalisons ensuite l'élaboration par frittage de matériaux composites aléatoires, constitués d'une dispersion de grains supraconducteurs de phase au bismuth 2212 dans une matrice d'argent. Nous étudions la résistivité électrique et l' aimantation en effet d'écran des matériaux en fonction de la température, du champ magnétique et de la...

  20. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics.

    Science.gov (United States)

    Watson-Wright, Christa; Singh, Dilpreet; Demokritou, Philip

    2017-01-01

    Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM

  1. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.

    Science.gov (United States)

    Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin

    2017-03-16

    Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    Science.gov (United States)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  3. Variation of mechanical and thermal properties of the thermoplastics reinforced with natural fibers by electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok Won [Department of Physics, University of Ulsan, Ulsan 680 749 (Korea, Republic of)], E-mail: sokkim@ulsan.ac.kr; Oh, Seungmin; Lee, Kyuse [Ilkwang Co. Ltd. 1178-6 Goyon-ri, Ungchon-mueon, Ulju-gun 689 871 (Korea, Republic of)

    2007-11-15

    With restrictions for environmental protection being strengthened, the thermoplastics reinforced with natural fibers (NFs) such as jute, kenaf, flax, etc., appeared as an automobile interior material instead of the chemical plastics. Regardless of many advantages, one shortcoming is the deformation after being formed in high temperature of about 200 deg. C, caused by the poor adhesion between the natural fibers and thermoplastics. Also, the energy saving in connection with car air-conditioning becomes very important. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composing of 50% polypropylene (PP) and 50% natural fiber irradiated by the electron beam (energy: 0.5 MeV, dose: 0-20 kGy) were measured. The length and thickness of PP and NF are 80{+-}10 mm and 40-120 {mu}m, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum when the dose of electron beam is 10 kGy, and the deformation after the thermal cycle were reduced by the electron beam.

  4. Evaluating carbon stores at the earth-atmosphere interface: moss and lichen mats of subarctic Alaska

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2015-01-01

    A fundamental goal of the forest inventory in interior Alaska is to accurately estimate carbon pools in a way that sheds light on the feedbacks between forests and climate. In boreal forests, moss and lichen mats often serve as the interface between soils and the atmosphere, therefore characterizing the biomass and composition of mats is essential for understanding how...

  5. Fibre reinforced composites '84; Proceedings of the International Conference, University of Liverpool, England, April 3-5, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Among the topics discussed are phenolic resin matrix composites for high temperature and fire-exposure applications, novel resins for fiber-reinforced composite productivity improvement, the use of engineering textiles for mechanical property improvement in composites, the significance of aramid fiber reinforcement in composites, the energy absorption properties of Sheet Metal Compounds (SMCs) under crash conditions, and SMC impact behavior variations with temperature. Also covered are CFRP applications in high performance structures, composite helicopter main rotor blade technology, composite vehicular leaf springs, carbon fiber-reinforced thermoplastics, filament winding development status, the injection processing of fiber-reinforced thermoplastics, civil aircraft composite structure certification, composite radomes, design procedures for short fiber-reinforced thermoplastics, the strength limitations of mechanically fastened lap joints, environmental fatigue and creep in glass-reinforced materials, the effects of moisture on high performance laminates, the environmental behavior of SMC, and corrugated composites.

  6. Multi-scale thermal stability of a hard thermoplastic protein-based material

    Science.gov (United States)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-09-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.

  7. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Zahra [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Bagheri, Reza, E-mail: rezabagh@sharif.edu [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Eslami, Masoud; Amiri, Mohammad [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali; Mehrjoo, Morteza [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. - Highlights: • A biodegradable nanocomposite is proposed for orthopedic applications. • Vitamin E is used as an antioxidant to prevent the thermomechanical degradations. • Nanoforsterite reduced the composite degradation rate in the simulated body fluid. • Nanoforsterite modified pH in MTT assay and stimulated cell proliferation.

  8. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    International Nuclear Information System (INIS)

    Mahdieh, Zahra; Bagheri, Reza; Eslami, Masoud; Amiri, Mohammad; Shokrgozar, Mohammad Ali; Mehrjoo, Morteza

    2016-01-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. - Highlights: • A biodegradable nanocomposite is proposed for orthopedic applications. • Vitamin E is used as an antioxidant to prevent the thermomechanical degradations. • Nanoforsterite reduced the composite degradation rate in the simulated body fluid. • Nanoforsterite modified pH in MTT assay and stimulated cell proliferation.

  9. The usage of optical fibers for damage detection in ballistic protection composite laminates

    Directory of Open Access Journals (Sweden)

    Živković Irena D.

    2006-01-01

    Full Text Available This paper describes the procedure of embedding fiber optic sensors in laminar thermoplastic composite material, as well as damage investigation after ballistic loading. Thermoplastic-reinforced composite materials were made for increased material damage resistance during ballistic loading. Damage inside the composite material was detected by observing the intensity drop of the light signal transmitted through the optical fibers. Experimental testing was carried out in order to observe and analyze the response of the material under various load conditions. Different types of Kevlar reinforced composite materials (thermoplastic, thermo reactive and thermoplastic with ceramic plate as the impact face were made. Material damage resistance during ballistic loading was investigated and compared. Specimens were tested under multiple load conditions. The opto-electronic part of the measurement system consists of two light-emitting diodes as light sources for the optical fibers, and two photo detectors for the light intensity measurement. The output signal was acquired from photo detectors by means of a data acquisition board and personal computer. The measurements showed an intensity drop of the transmitted light signal as a result of the applied loading on composite structure for all the optical fibers. All the diagrams show similar behavior of the light signal intensity. In fact, all of them may be divided into three zones: the zone of penetration of the first composite layer, the bullet traveling zone through the composite material till its final stop, and the material relaxation zone. The attenuation of the light signal intensity during impact is caused by the influence of the applied dynamic stress on the embedded optical fibers. The applied stress caused micro bending of the optical fiber, changes in the shape of the cross-section and the unequal changes of the indices of refraction of the core and cladding due to the stress-optic effect. The

  10. Characterization of wood polymer composite and design of root trainer

    Science.gov (United States)

    Chitra, K. N.; Abhilash, R. M.; Chauhan, Shakti Singh; Venkatesh, G. S.; Shivkumar, N. D.

    2018-04-01

    Biopolymers have received much attention of researchers due to concerns over disposal of plastics, greenhouse gas emission and environmental problems associated with it. Polylactic Acid (PLA) is one of the thermoplastic biopolymer made from lactic acid by using agricultural resources. PLA has received significant interest due to its competitive properties when compared to commodity plastics such as Polyethylene, Polypropylene and Polystyrene. PLA has interesting properties such as high stiffness, UV stability, clear and glossy finish. However, application of PLA is restricted due to its brittle nature. Engineering and thermal properties of PLA can be improved by reinforcing fibres and fillers. Lignocelluloses or natural fibres such as Jute, Hemp, Bamboo, Sisal and Wood fibres can be used as reinforcement. By using natural fibres, a very bio-compostable composite can be produced. In the present study, short fibres from Melia Dubia wood were extracted and used as reinforcement to PLA Bio-Polymer matrix. Characterization of developed composite was obtained using tensile and flexural tests. Tensile test simulation of composite was performed using Altair Hypermesh, a Finite Element (FE) preprocessor and LS-Dyna an explicit FE solver. MAT_01, an elastic material model in LS-Dyna was used to model the behaviour. Further, the design of Root Trainer using developed composite has been explored. A Root Trainer is an aid to the cultivation of seedlings in nurseries. Root Trainer made by using developed composite has advantage of biodegradability and eco-friendly nature.

  11. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  12. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  13. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    Xiao Shili; Shi Xiangyang; Wu Siqi; Shen Mingwu; Guo Rui; Wang Shanyuan

    2009-01-01

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  14. Dosimetric effects of thermoplastic immobilizing devices on skin dose

    International Nuclear Information System (INIS)

    Adu-Poku Olivia

    2017-07-01

    This work shows the increase in surface dose caused by thermoplastic immobilizing masks used for positioning and immobilization of patients. Thermoplastics are organic materials which soften when they are heated. They can be formed after softening and retain their final shape when cooled. The use of these thermoplastic masks are relevant during patient treatment. However, it can lead to an increased skin dose. Measurements were done at source-to-surface distance of 80 cm for external radiation beams produced by cobalt 60 using the Farmer type ionization chamber and the Unidos electrometer. Measurements were carried out using various mask thicknesses and no mask material on a solid water phantom. The thermoplastic percentage depth dose (PDD), equivalent thickness of water of the various thicknesses of the mask and surface doses were determined. The increase in the surface dose caused by the thermoplastic mask was compared by looking at the PDD at depth 0 with and without the mask present and was found to increase between 0.76 and 0.79% with no mask for a field size of 5 x 5 cm 2 . It was found that, the presence of the mask shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d e , were determined to be 1.2, 1.15, 1.10 and 1.09 and 1.00 mm for the unstretched, 5 cm stretched, 10 cm stretched, 15 cm stretched and 20 cm stretched masks, respectively. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material did not increase the skin dose significantly ( less than 1%). (au)

  15. 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility

    Directory of Open Access Journals (Sweden)

    G. Szebenyi

    2017-07-01

    Full Text Available We introduced a general concept to create smart, (multifunctional interphases in polymer composites with layered reinforcements, making use of 3D printing. The concept can be adapted for both thermoplastic and thermoset matrix-based composites with either thermoplastic- or thermoset-enriched interphases. We showed feasibility using an example of a composite containing a thermoset matrix/thermoplastic interphase. Carbon fiber unidirectional reinforcing layers were patterned with poly(ε-caprolactone (PCL through 3D printing, then infiltrated with an amine-cured epoxy (EP. The corresponding composites were subjected to static and dynamic flexure tests. The PCL-rich interphase markedly improved the ductility in static tests without deteriorating the flexural properties. Its effect was marginal in Charpy impact tests, which can be explained with effects of specimen and PCL pattern sizes. The PCL-rich interphase ensured self-healing when triggered by heat treatment above the melting temperature of PCL.

  16. Interlaminar fracture toughness for composite materials

    International Nuclear Information System (INIS)

    Lee, Kang Yong; Kwon, Soon Man

    1991-01-01

    The new equation of energy release rate for a double cantilever beam specimen is proposed within the framework of the higher order shear deformable plate theory. The interlaminar fracture toughnesses by present theory, ASTM round robin test method and acoustic emission method are compared for thermoset Graphite/Epoxy and thermoplastic AS4/PEEK composites. As a result, the interlaminar fracture toughness values by present theory show good agreement within 5% when compared with ones by ASTM method and it is shown that ones by acoustic emission method yield the lower values than ones by ASTM method. It is observed that the interlaminar fracture toughness of thermoplastic AS4/PEEK composite is about ten times larger than one of thermoset Graphite/Epoxy composite. (Author)

  17. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    Science.gov (United States)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  18. Photosynthetic microbial mats today, on early Earth, (and on early Mars?)

    Science.gov (United States)

    Des Marais, D. J.

    2008-05-01

    Marine hypersaline cyanobacterial mats offer insights about their ancient ancestors, whose fossil record is 3.43 billion years old. Studies of mat microbiota have greatly expanded the known diversity of ancient microbial lineages. Their evolution was shaped by mat microenvironments, which can differ substantially from their surroundings. Oxygenic photosynthesis perhaps developed in microbial mats and probably triggered a major evolutionary transformation and diversification of the early biosphere. Gross primary production rates in cyanobacterial mats can rival the most productive ecosystems known. Sunlight changes in intensity and spectral composition as it penetrates mats, and counteracting gradients of O2 and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, O2 and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Close inspection has revealed surprises, for example: anoxygenic phototrophs inside cyanobacterial sheaths, record- high sulfate reduction rates in O2-saturated conditions, and high H2 fluxes into overlying waters. Diverse organic biomarker compounds have been documented that are amenable to long-term preservation. Such coordinated observations of populations, processes and products are making fundamental questions in ecology accessible. Cyanobacterial mats have robust fossil records in part because they populated stable continental platforms and margins, contributing to sediments having high preservation potential. Proterozoic cyanobacterial fossils and organic biomarkers are well documented. The 3.43 Ga Strelley Pool cherts, W. Australia, reveal diverse stromatolites that populated a partially restricted, low-energy shallow hypersaline basin. Molecular studies of extant bacteria hint that early chlorophyll-utilizing photosynthesizers required geochemical sources of reductants. Did these anoxygenic phototrophs once sustain an

  19. Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites

    Science.gov (United States)

    Mohammed, A. A.; Bachtiar, D.; Rejab, M. R. M.; Jiang, X. X.; Abas, Falak O.; Abass, Raghad U.; Hasany, S. F.; Siregar, Januar P.

    2018-05-01

    Global warming has had a great impact on environmental changes since the last decade. Eco-friendly industrial products are of great importance to sustain life on earth, including using natural composites. Natural fibers used as fillers are also environmentally valuable because of their biodegradable nature. However, compatibility issues between the fiber and its respective matrix is a major concern. The present work focused on the study of the flexural, impact, and thermal behaviors of environmentally friendly sugar palm fibers (SPF) incorporated into a composite with thermoplastic polyurethane (TPU). Two techniques (extrusion and compression molding) were used to prepare these composites. The fiber size and dosage were kept constant at 250 µm and 30 wt.% SPF, respectively. The effects of potassium permanganate (KMnO4) treatment on the flexural, impact, and thermal behaviors of the treated SPF with 6% NaOH-reinforced TPU composites were investigated. Three different concentrations of KMnO4 (0.033%, 0.066%, and 0.125%) were studied for this purpose. The characterization of the flexural and impact properties of the new TPU/SPF composites was studied as per American Society for Testing Materials ASTM standards. Thermogravimetric analysis was employed for thermal behavior analysis of the TPU/SPF composites. The best flexural strength, impact strength, and modulus properties (8.118 MPa, 55.185 kJ/m2, and 262.102 MPa, respectively) were obtained with a 0.033% KMnO4-treated sample. However, all flexural strength, impact strength, and modulus properties for the KMnO4-treated samples were lower than the sample treated only with 6% NaOH. The highest thermal stability was also shown by the sample treated with 0.033% KMnO4. Therefore, this method enhanced the thermal properties of the TPU/SPF composites with clear deterioration of the flexural and impact properties.

  20. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  1. The influence of zinc hydroxystannate on reducing toxic gases (CO, NO{sub x} and HCN) generation and fire hazards of thermoplastic polyurethane composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bibo; Sheng, Haibo [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Jiangsu, Suzhou 215123 (China); Song, Lei [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Zhang, Yan [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Jiangsu, Suzhou 215123 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Jiangsu, Suzhou 215123 (China); Hu, Weizhao, E-mail: hwz1988@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China)

    2016-08-15

    Highlights: • The ZnHS could significantly enhance the mechanical properties of the TPU composites. • ZnHS has excellent smoke suppression and reduction the HRR for TPU composites. • ZnHS shows significant decrease in CO, HCN, NO{sub x} for TPU composites. • These improvements are due to charring and catalytic degradation the toxic gases. - Abstract: A uniform zinc hydroxystannate (ZnHS) microcube was synthesized to reduce toxicity and fire hazards of thermoplastic polyurethane (TPU) composites using ammonium polyphosphate as a flame retardant agent. The structure, morphology and thermal properties of ZnHS were characterized by X-ray diffraction, transmission electron microscopy and thermogravimetric analysis, respectively. Smoke suppression properties and synergistic flame retardant effect of ZnHS on flame retardant TPU composites were intensively investigated by smoke density test, cone calorimeter test, and thermalgravimetric analysis. Thermogravimetric analysis/infrared spectrometry and tube furnace were employed to evaluate the toxic gases (CO, NO{sub x} and HCN) of TPU composites. The incorporation of ZnHS into TPU matrix effectively improved the fire safety and restrained the smoke density, which is attributed to that the char residue catalyzed by ZnHS enhanced barrier effect that reduced peak heat release rate, total heat release, smoke particles and organic volatiles during combustion. Furthermore, the ZnHS synergist demonstrated high efficiency in catalytic degradation of the toxic gases, which obviously decreased total volatiled product and toxic volatiles evolved, such as the CO, HCN and NO{sub x}, indicating suppressed toxicity of the TPU composites.

  2. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  3. Biodiversity of the microbial mat of the Garga hot spring.

    Science.gov (United States)

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.

  4. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats.

    Science.gov (United States)

    Liu, X; Aho, J; Baldursdottir, S; Bohr, A; Qu, H; Christensen, L P; Rantanen, J; Yang, M

    2017-08-30

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dissolved in binary mixtures of N,N-dimethylformamide (DMF) and tetrahydrofuran (THF). The intrinsic viscosity and rheological properties of polymer solutions were investigated prior to electrospinning. The morphology and mechanical properties of the resulting EFMs were characterized by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). Sufficiently high inter-molecular interactions were found to be a prerequisite to ensure the formation of fibers in the electrospinning process, regardless the polymer composition. The higher the amount of GA in the polymer composition, the more ordered and entangled molecules were formed after electrospinning from the solution in THF-DMF, which resulted in higher Young's modulus and tensile strength of the EFMs. In conclusion, this study shows that the mechanical properties of EFMs, which depend on the polymer molecule-solvent affinity, can be predicted by the inter-molecular interactions in the starting polymer solutions and over the drying process of electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Influence of gamma irradiation in the thermoplastic elastomer (TPE)

    International Nuclear Information System (INIS)

    Oliveira, Camila B.; Parra, Duclerc F.; Marchini, Leonardo G.

    2017-01-01

    The TPE is the nomenclature used for the thermoplastic elastomer, which is also known as thermoplastic rubber. It belongs to an under-researched class of engineering plastics, however, in recent years there has been steady growth due to its important and unusual combination of properties. During its use, it behaves like an elastomer, but, unlike traditional elastomers (vulcanized rubbers), it can be processed using conventional technologies and equipment used for thermoplastics, such as extrusion and injection. The processing of polymers, such as TPE by means of radiation, constitutes a technological area dedicated to the study of the physical and chemical effects caused by high energy radiation, such as gamma radiation. Thus the objective of this work is to evaluate the mechanical and thermal properties of TPE irradiated by 60 Co source of gamma radiation in different doses. The thermoplastic elastomer being modified by means of ionizing radiation at doses of 5, 10, 20, 30, 50 and 100 kGy the effects of the radiation on the mechanical and thermal properties of this material are evaluated through the tests of tensile tests, TGA, FTIR and Fluency Index

  6. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments

    DEFF Research Database (Denmark)

    Klatt, Christian G.; Inskeep, William P.; Herrgard, Markus

    2013-01-01

    Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across...... the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average 53Mbp/site) were...

  7. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available Natural fibers are used as reinforcement material for number of thermoplastic/thermoset polymers. The interest in using polylactic acid (PLA) as thermoplastic matrix to produce composites completely from 100% renewable resources has increased...

  8. Polymer compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Willkomm, Wayne R.

    2018-02-06

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  9. Woven Hybrid Composites - Tensile and Flexural Properties of Jute Mat Fibres with Epoxy Composites

    Science.gov (United States)

    Gopal, P.; Bupesh Raja, V. K.; Chandrasekaran, M.; Dhanasekaran, C.

    2017-03-01

    The jute mat fibers are fabricated with several layers of fiber with opposite orientation in addition with coconut shell powder and resins. In current trends, metallic components are replaced by natural fibers because of the inherent properties such as light in weight, easy to fabricate, less cost and easy availability. This material has high strength and withstands the load. In this investigation the plates are made without stitching the fiber. The result of tensile strength and flexural strength are compared with nano material (coconut shell powder).

  10. Method for bonding a thermoplastic polymer to a thermosetting polymer component

    NARCIS (Netherlands)

    Van Tooren, M.J.L.

    2012-01-01

    The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting

  11. Improvement of the fracture toughness matrix cured by electron beam radiation, by incorporation of thermoplastic

    International Nuclear Information System (INIS)

    Chauray, E.

    2003-07-01

    The aim of the present study is to improve the fracture toughness of a vinyl-ester matrix cured by electron beam radiation, by incorporation of a thermoplastic polymer. The ultimate plan is to improve the fracture toughness of the composite material made of this reinforced matrix and carbon fibres. The first step deals with the study of an epoxy matrix reinforced by a polyether-sulfone. This well-known material, as it is used in industrial formulation, allowed us to characterize all the parameters needed to obtain a good reinforcement as for instance the morphology, and also to compare two kinds of processes: thermal and electron beam curing. In fact, we are really interested in increasing fracture toughness of a vinyl-ester matrix that is not miscible with polyether-sulfone. So a copolymer which has a similar structure as polyether-sulfone is synthesized in order to obtain a miscible blend. The corresponding material has good fracture toughness, with an increase of 80 % for 15 % addition of thermoplastic. (author)

  12. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Jawaid, M.; Al-Shuja’a, O.M.

    2014-01-01

    Highlights: • Increasing fiber content decreased tensile strength and strain. • Tensile modulus was increasing with increase in fiber content. • SEM showed fiber/matrix poor adhesion. • Impact strength was decreasing with increase in fiber content. • Lower thermal stability with increase in fiber content was observed. - Abstract: Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m 2 ). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m 2 ; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix

  13. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    Science.gov (United States)

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  14. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  15. Structural analysis of closure cap barriers: A pre-test study for the Bentonite Mat Demonstration Project

    International Nuclear Information System (INIS)

    Gong, Chung; Pelfrey, J.R.

    1993-01-01

    The Bentonite Mat Demonstration Project (BMDP) is a field demonstration study to determine the construction/installation requirements, permeability, and subsidence performance characteristics of a composite barrier. The composite barrier will consist of on-site sandy-clay blanketed by a bentonite mat and a flexible High Density Polyethylene (HDPE) liner (also called flexible membrane liner). Construction of one control test pad and three bentonite test pads are planned. The control test pad will be used to establish baseline data. Underneath the composite clay cap is a four feet thick loose sand layer in which cavities will be created by evacuation of sand. The present work provides a mathematical model for the BMDP. The mathematical model will be used to simulate the mechanical and structural responses of the composite clay cap during the testing processes. Based upon engineering experience and technical references, a set of nominal soil parameters have been selected

  16. MAT FOR LEPTOSPIROSIS DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Esti Rahardianingtyas.

    2014-06-01

    Full Text Available Leptospirosis is a disease caused by bacterial infection leptospira interrogans.Leptospira bacteria is a spiral bacterium with solid strands with two flagella periplasmik.Septicaemic phase patient samples taken from the blood and cerebrospinal fluid, whereassamples taken at phase immune extracted from urine. The diagnosis of leptospirosis occurdirectly or indirectly. Diagnosis is done by directly isolate and identify the causative agents ofthe agent. Diagnosis is done indirectly by detecting specific antibodies from the patient's body.Gold Standard of the diagnosis of leptospirosis is MAT. Mat made by reacting antibodies toleptospira antigen. Positive results seen with clump formed.Key words: Leptospirosis, Leptospirosis Diagnostic, MAT (Microscopic Agglutination Test Leptospirosis merupakan penyakit yang disebabkan karena infeksi bakteri leptospirainterrogans. Bakteri leptospira merupakan bakteri spiral dengan untaian yang padat dengan duaflagella periplasmik. Sampel pasien pada fase septicaemic diambil dari darah dan cairanserebrospinal, sedangkan sampel yang diambil pada fase immune diambil dari urine. Diagnosisleptospirosis dilakukan secara langsung maupun tidak langsung. Diagnosis secara langsungdilakukan dengan cara mengisolasi agen penyebab dan mengidentifikasi agen tersebut. Diagnosissecara tidak langsung dilakukan dengan cara mendeteksi antibodi spesiflk dari dalam tubuhpasien. Gold Standart dari diagnosis leptospirosis adalah MAT. Mat dilakukan dengan caramereaksikan antibodi dengan antigen leptospira. Hasil positif dilihat dengan terbentuk gumpalanagglutinasiKata kunci: Leptospirosis, Leptospira, Leptospirosis Diagnosis.

  17. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    International Nuclear Information System (INIS)

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G.; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G.; Lowry, Gregory V.; Wohlleben, Wendel; Demokritou, Philip

    2016-01-01

    Highlights: • Nano-enabled products might reach their end-of-life by thermal decomposition. • Thermal decomposition provides two by-products: released aerosol and residual ash. • Is there any nanofiller release in byproducts? • Risk assessment of potential environmental health implications. - Abstract: Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications.

  18. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    Energy Technology Data Exchange (ETDEWEB)

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States); Chalbot, Marie-Cecile G. [Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Spielman-Sun, Eleanor [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Hoering, Lutz [BASF SE, Material Physics, 67056 Ludwigshafen (Germany); Kavouras, Ilias G. [Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Lowry, Gregory V. [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Wohlleben, Wendel [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States); BASF SE, Material Physics, 67056 Ludwigshafen (Germany); Demokritou, Philip, E-mail: pdemokri@hsph.harvard.edu [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States)

    2016-03-15

    Highlights: • Nano-enabled products might reach their end-of-life by thermal decomposition. • Thermal decomposition provides two by-products: released aerosol and residual ash. • Is there any nanofiller release in byproducts? • Risk assessment of potential environmental health implications. - Abstract: Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications.

  19. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.

    Science.gov (United States)

    Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun

    2018-05-16

    There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.

  20. Characteristics and utilization of thermoplastic elastomers (TPE)-an overview

    Energy Technology Data Exchange (ETDEWEB)

    Roestamsjah, [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)

    1998-10-01

    The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)

  1. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  2. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites. Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Lambert, Gregory [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Baird, Donald G. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sharma, Bhisham A. [Purdue Univ., West Lafayette, IN (United States); Kijewski, Seth A. [Purdue Univ., West Lafayette, IN (United States); Sangid, Michael D. [Purdue Univ., West Lafayette, IN (United States); Gandhi, Umesh N. [Toyota Research Inst. North America, Ann Arbor, MI (United States); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States); Roland, Dale [PlastiComp, Inc., Winona, MN (United States); Mori, Steven [Magna Exteriors and Interiors Corporation, Aurora, ON (Canada); Tucker, III, Charles L. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-06-01

    This project aimed to integrate, optimize, and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk® Simulation Moldflow® Insight (ASMI) software package for injection-molded long-carbon-fiber (LCF) thermoplastic composite structures. The project was organized into two phases. Phase 1 demonstrated the ability of the advanced ASMI package to predict fiber orientation and length distributions in LCF/polypropylene (PP) and LCF/polyamide-6, 6 (PA66) plaques within 15% of experimental results. Phase 2 validated the advanced ASMI package by predicting fiber orientation and length distributions within 15% of experimental results for a complex three-dimensional (3D) Toyota automotive part injection-molded from LCF/PP and LCF/PA66 materials. Work under Phase 2 also included estimate of weight savings and cost impacts for a vehicle system using ASMI and structural analyses of the complex part. The present report summarizes the completion of Phases 1 and 2 work activities and accomplishments achieved by the team comprising Pacific Northwest National Laboratory (PNNL); Purdue University (Purdue); Virginia Polytechnic Institute and State University (Virginia Tech); Autodesk, Inc. (Autodesk); PlastiComp, Inc. (PlastiComp); Toyota Research Institute North America (Toyota); Magna Exteriors and Interiors Corp. (Magna); and University of Illinois. Figure 1 illustrates the technical approach adopted in this project that progressed from compounding LCF/PP and LCF/PA66 materials, to process model improvement and implementation, to molding and modeling LCF/PP and LCF/PA66 plaques. The lessons learned from the plaque study and the successful validation of improved process models for fiber orientation and length distributions for these plaques enabled the project to go to Phase 2 to mold, model, and optimize the 3D complex part.

  3. Composites from wood and plastics

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Composites made from thermoplastics and fillers or reinforcements derived from wood or other natural fibers are a dynamic research area encompassing a wide variety of composite materials. For example, as the use of biopolymers grows, wood and other natural fiber sources are being investigated as renewable sources of fillers and reinforcements to modify performance....

  4. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  5. Etude comparative de tubes en matériaux composites en vue de l'application à l'exploitation des hydrocarbures en mer profonde Comparative Study of Composite-Material Tubes with a View to Their Use for Deep Offshore Hydrocarbon Production

    Directory of Open Access Journals (Sweden)

    Bonavent G.

    2006-11-01

    Full Text Available Les prévisions de développement de la production pétrolière en mer profonde font apparaître de nouveaux besoins en tubes légers et à haute résistance pour les liaisons verticales entre les têtes de puits sous-marines et les plates-formes flottantes, et les conduites immergées par grand fond. Certains matériaux composites peuvent répondre à ces besoins et présentent en outre l'avantage d'une excellente résistance à la corrosion dans l'environnement marin. Toutefois, les choix sont imposés essentiellement par des contraintes d'ordre mécanique. On cherche ici à comparer, par rapport à l'acier, les avantages de deux types de matériaux composites - les composites acier-résine - les composites fibres-résine dont on résume les principales caractéristiques et les domaines d'applications possibles en fonction des spécifications pétrolières Development forecosts for deep offshore petroleum production bring out new needs for light tubes for vertlcaf linksbetween subsea wellheads and floating piatforms as well as for subsea pipelines ut great depths. Some composite materials moy meet such requirements while also hoving the advantoge of high résistance ta corrosion in a marine environment. However, the choices are mainly governed by stresses of a mechanical nature. Compared with steel, this article seeks ta describe the advantages of the following two types of composite materials : (il steel-resin composites, and (ii fiber-resin composites. The leading properties and the possible arecs of application are summed up as a function of petroleum specifications.

  6. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers

    NARCIS (Netherlands)

    Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.

    2010-01-01

    Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers

  7. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2017-12-01

    Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.

  8. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament

    Directory of Open Access Journals (Sweden)

    De-Shin Liu

    2015-04-01

    Full Text Available A numerical investigation into the initial stress distribution induced within the periodontal ligament by thermoplastic appliances with different thicknesses is performed. Based on the plaster model of a 25-year-old male patient, a finite element model of the maxillary lateral incisors and their supporting structures is constructed. In addition, four finite element models of thermoplastic appliances with different thicknesses in the range of 0.5–1.25 mm are also constructed based on the same plaster model. Finite element analysis simulations are performed to examine the effects of the force delivered by the thermoplastic appliances on the stress response of the periodontal ligament during the elastic recovery process. The results show that the stress induced in the periodontal ligament increases with an increasing appliance thickness. For example, the stress triples from 0.0012 to 0.0038 MPa as the appliance thickness is increased from 0.75 to 1.25 mm. The results presented in this study provide a useful insight into as a result of the compressive and tensile stresses induced by thermoplastic appliances of different thicknesses. Moreover, the results enable the periodontal ligament stress levels produced by thermoplastic appliances of different thicknesses to be reliably estimated.

  9. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    2016-01-01

    and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae for the intensity...

  10. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    of clustering and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae...

  11. Thermoplastic shape-memory polyurethanes based on natural oils

    International Nuclear Information System (INIS)

    Saralegi, Ainara; Eceiza, Arantxa; Corcuera, Maria Angeles; Johan Foster, E; Weder, Christoph

    2014-01-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure–property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80–100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties. (paper)

  12. Coastal microbial mat diversity along a natural salinity gradient.

    Directory of Open Access Journals (Sweden)

    Henk Bolhuis

    Full Text Available The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae.

  13. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  14. Ectomycorrhizal mats alter forest soil biogeochemistry

    Science.gov (United States)

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  15. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  16. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  17. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    Science.gov (United States)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  18. 3D modelling of squeeze flow of unidirectional and fabric composite inserts

    Science.gov (United States)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland

    2016-10-01

    The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.

  19. Training programme impact on thermoplastic immobilization for head and neck radiation therapy

    International Nuclear Information System (INIS)

    Outhwaite, Julie-Anne; McDowall, W. Robert; Marquart, Louise; Rattray, Gregory; Fielding, Andrew; Hargrave, Catriona

    2013-01-01

    Purpose: To determine whether uniform guidelines and training in the stabilization and formation of thermoplastic shells can improve the reproducibility of set-up for Head and Neck cancer patients. Methods and materials: Image based measurements of the planning and treatment positions for 35 head and neck cancer patients undergoing radical radiotherapy were analysed to provide a baseline of the reproducibility of thermoplastic immobilization. Radiation therapists (RT) were surveyed to establish a perception of their confidence in thermoplastic procedures. An evidence based staff training programme was created and implemented. Set-up reproduction and staff perception were reviewed to measure the impact of the training programme. Results: The mean (SD) 3D vectors of anatomical displacement, measured on the patient images, improved from 4.64 (2.03) for the baseline group compared to 3.02 (1.65) following training (p < 0.01). The proportion of 3D displacements of patient data exceeding 5 mm 3D vector was decreased from 37.1% to 5.7% (p < 0.001) and the 3 mm vector from 85.7% to 42.9% (p < 0.001). The post-training survey scores demonstrated improved confidence in reproducibility of set-up for head and neck patients. Conclusion: The Thermoplastic Shells Training Program has been found to improve the treatment reproducibility for head and neck radiation therapy patients. Uniform guidelines have increased RT confidence in thermoplastic procedures.

  20. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  1. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  2. Properties of PP/MWCNT-COOH /PP composites made by melt mixing versus solution cast /melt mixing methods

    International Nuclear Information System (INIS)

    Reinholds, I; Roja, Z; Zicans, J; Meri, R Merijs; Bitenieks, J

    2015-01-01

    An approach on improvement of the properties of polypropylene / carbon nanotube (PP/CNT) composites is reported. PP blend compositions with carboxylic acid functionalized multi-walled carbon nanotubes (MWCNT-COOH) at filler content 1.0 wt.% were researched. One part of the composites was manufactured by direct thermoplastic mixing PP with the filler, but the other one was made from solution casted masterbatch with the following thermoplastic mixing. An increase of mechanical properties (Young's modulus, storage modulus and tensile strength), compared to an increase of glass transition temperature indicated a reinforcement effect of CNTs on PP matrix, determined from the tensile tests and differential mechanical analysis (DMA), while the elongation was reduced, compared to PP matrix. By differential scanning calorimetry (DSC) analysis, the effect of nanofiller on the reorganization of PP crystallites was observed. A noticeable enhanced effect on increase of the crystallization temperature was indicated for masterbatch manufactured composite. An increase of thermal stability was also observed, compared to pristine PP and the composite made by direct thermoplastic mixing PP with the filler

  3. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate Polymer Complex

    Directory of Open Access Journals (Sweden)

    Ivona Jerkovic

    2017-10-01

    Full Text Available Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  4. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  5. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    Science.gov (United States)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  6. Thermoplastic Elastomers From Chemically or Irradiation Activated Polyolefin Wastes and Ground Tyre Rubber

    International Nuclear Information System (INIS)

    Tolstov, A.M.; Grigoryeva, A.L.; Bardash, O.P.

    2005-01-01

    Thermoplastic elastomers (TPE) are known as materials with unique combination of elastomeric properties and thermo plasticity. Among the TPE of different type the polymer blends of thermoplastics and rubbers are the most commonly used. Recently a very effective technology of dynamic vulcanization of rubber component inside thermoplastic matrix has been developed. As a result of rubber vulcanization and dispersion inside thermoplastic the new type of TPE so-called thermoplastic dynamic vulcanizations (TPV) are obtained. In our work we have applied the technology of dynamic vulcanization for recycled components (PP, HDPE, GTR). It has appeared that such components are not mixed well and the resulting TPV have poor mechanical properties. To solve a problem of poor compatibility of the components used we carried out a pre-modification (functionalization) of the component surfaces by gamma-irradiation or by chemically or gamma-irradiation induced grafting of reactive monomers. Both the polyolefin (HDPE) and GTR were functionalized before mixing. The monomers were selected by such a way that being grafted to be able to react to each other in interface during the components blending. For example, we used maleic anhydride and acrylamide. The effect of better compatibility has appeared in higher tensile characteristics of TPV synthesized

  7. Context, Biogeochemistry, and Morphology of Diverse and Spatially Extensive Microbial Mats, Little Ambergris Cay, Turks and Caicos Islands, B.W.I.

    Science.gov (United States)

    Present, T. M.; Trower, L.; Stein, N.; Alleon, J.; Bahniuk, A.; Gomes, M. L.; Lingappa, U.; Metcalfe, K.; Orzechowski, E. A.; Riedman, L. A.; Sanders, C. B.; Morris, D. K.; O'Reilly, S.; Sibert, E. C.; Thorpe, M.; Tarika, M.; Fischer, W. W.; Knoll, A. H.; Grotzinger, J. P.

    2017-12-01

    Little Ambergris Cay (21.3° N, 71.7° W) was the site of an integrated geobiological study conducted in July 2016 and August 2017. The cay ( 6 km x 1.6 km) is developed on a broad bank influenced by strong easterly trade winds (avg. 7.5 m/s), where convergent ooid shoals culminate in a linear shoal extending almost 25 km westward from the cay. Lithified upper shoreface to eolian ooid grainstones form a 2 m high bedrock rim that protects an extensive interior tidal marsh with well-developed microbial mats. Local breaches in the rim allow tidal flows to inundate interior bays floored by microbial mats. Three mat types were observed based on texture: dark toned "blister mat" that flanks the bays where they intersect with the bedrock rim; light-toned "polygonal mat" that covers broad tracts of the bay and is exposed at low tide; and lighter-toned "EPS mat" that is generally submerged even at low tide. The millimeter-to decimeter-thick layered mats overlie laterally extensive ooid sands, generally unlithified except for a few hardgrounds. The mats and underlying sediments were sampled by vibracoring, push coring, and piezometers. Biogeochemical analyses include groundwater salinity, pH, DIC, alkalinity, cation composition, DNA content, photosynthetic efficiency, C and S isotope composition, lipid biomarkers, and taphonomic state. Groundwater and interstitial water chemical analyses were integrated with hydrologic observations of tidal channels' level and flow. Visible light UAV images from 350 m standoff distance were processed to generate a 15 cm/pixel mosaic of the island that was used in combination with a DGPS survey, multispectral Landsat images (m-scale resolution) and Worldview satellite images (30 cm resolution) to map the island's topography, mats, and sedimentologic facies. A UAV-based VNIR hyperspectral camera was used to quantify pigment concentrations in the mats at cm-resolution over decameter scales. Sub-cm-scale bed textures, including those expressed

  8. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  9. Friction in textile thermoplastic composites forming

    NARCIS (Netherlands)

    Akkerman, Remko; ten Thije, R.H.W.; Sachs, Ulrich; de Rooij, Matthias B.; Binetruy, C.; Boussu, F.

    2010-01-01

    A previously developed mesoscopic friction model for glass/PP textile composite laminates during forming is evaluated for glass and carbon/PPS laminates, at higher temperatures and lower viscosities than before. Experiments were performed for tool/ply and ply/ply configurations in a new friction

  10. Métallisation de guide d'onde en matériau composite à matrice époxy par un procédé DLI-MOCVD

    OpenAIRE

    Addou, Fouzi

    2017-01-01

    La fabrication de guides d’ondes à partir d’un matériau composite CFRP isolant, nécessite de rendre la surface interne conductrice électriquement. Cela peut s’effectuer par métallisation, mais des verrous technologiques apparaissent en raison de la géométrie complexe associée à une surface inerte. Le CFRP est composé d’époxy dont la température de transition vitreuse est de 216 °C, ce qui limite le choix des techniques de métallisation. De plus, l’énergie de surface du polymère qui compose la...

  11. Impact of thermoplastic mask on X-ray surface dose calculated with Monte Carlo code

    International Nuclear Information System (INIS)

    Zhao Yanqun; Li Jie; Wu Liping; Wang Pei; Lang Jinyi; Wu Dake; Xiao Mingyong

    2010-01-01

    Objective: To calculate the effects of thermoplastic mask on X-ray surface dose. Methods: The BEAMnrc Monte Carlo Code system, designed especially for computer simulation of radioactive sources, was performed to evaluate the effects of thermoplastic mask on X-ray surface dose.Thermoplastic mask came from our center with a material density of 1.12 g/cm 2 . The masks without holes, with holes size of 0.1 cm x 0.1 cm, and with holes size of 0. 1 cm x 0.2 cm, and masks with different depth (0.12 cm and 0.24 cm) were evaluated separately. For those with holes, the material width between adjacent holes was 0.1 cm. Virtual masks with a material density of 1.38 g/cm 3 without holes with two different depths were also evaluated. Results: Thermoplastic mask affected X-rays surface dose. When using a thermoplastic mask with the depth of 0.24 cm without holes, the surface dose was 74. 9% and 57.0% for those with the density of 1.38 g/cm 3 and 1.12 g/cm 3 respectively. When focusing on the masks with the density of 1.12 g/cm 3 , the surface dose was 41.2% for those with 0.12 cm depth without holes; 57.0% for those with 0. 24 cm depth without holes; 44.5% for those with 0.24 cm depth with holes size of 0.1 cm x 0.2 cm;and 54.1% for those with 0.24 cm depths with holes size of 0.1 cm x 0.1 cm.Conclusions: Using thermoplastic mask during the radiation increases patient surface dose. The severity is relative to the hole size and the depth of thermoplastic mask. The surface dose change should be considered in radiation planning to avoid severe skin reaction. (authors)

  12. Mechanical and physical properties of wood fiber-reinforced, sulfur-based wood composites

    Science.gov (United States)

    Chung-Yun Hse; Ben S. Bryant

    1993-01-01

    Sulfur-based composite was made from sulfur impregnated, oven dried, wet-formed fiber mats. The fiber mats consisted of a 50/50 mixture of recycled newsprint pulp and mechanical hardwood pulp from several species made from chips in a laboratory refiner. The thickness of the composites was 0.125 inch and the specific gravity of the unimpregnated fiber mat was 0.2. The...

  13. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  14. Synthesis of thermoplastic elastomer using potassium persulfate and ammonium peroxydisulfate initiator

    International Nuclear Information System (INIS)

    Dewi Sondari; Agus Haryono; M Ghozali; Ahmad Randy; Kuntari Adi Suhardjo; Ariyadi B; Surasno

    2010-01-01

    Thermoplastic elastomer is polymeric material that has elastomer and thermoplastic properties. This material can be easily molded into finished and recyclable goods, thus environmentally safe for long term application. In this study we synthesize thermoplastic elastomer using two initiator that are potassium persulfate and ammonium peroxydisulfate with natural rubber to monomer (styrene/methyl methacrylate) ratio of 50 : 50 and 60 : 40 (v/v). The process of thermoplastic elastomer synthesis was conducted with emulsion grafting polymerization method for 6 hours at 65 °C. We used sodium dodecyl sulfate as emulsifier. FT-IR analysis result shows that grafting process had already occurred shown by new peaks that were observed in 1743 and 1519 cm"-"1. These peaks was assigned to carbonyl (C=O) group of methyl methacrylate and C=C benzene of styrene respectively. From "1H-NMR new peaks at δ = 7.1 ppm was aromatic proton from phenyl group of styrene, at δ = 3.5 ppm was methoxy proton of grafted methyl methacrylate acrylic group, and at δ = 5.1 ppm that is resonance of isoprene methine proton. This result showed that methyl methacrylate and styrene had already grafted onto natural rubber backbone. Initiator influenced grafting efficiency. Potassium persulfate gave 97.6 % grafting efficiency while ammonium peroxydisulfate gave 90.2 % grafting efficiency. (author)

  15. Solution-blown nanofiber mats from fish sarcoplasmic protein

    DEFF Research Database (Denmark)

    Sett, S.; Boutrup Stephansen, Karen; Yarin, A.L.

    2016-01-01

    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made...... that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties....

  16. Continuous composite riser

    Energy Technology Data Exchange (ETDEWEB)

    Slagsvold, L. [ABB Offshore Systems (Norway)

    2002-12-01

    The industry is now looking at developing reserves in waters depths of up to 3000 m (10000 ft). When moving into deeper waters the un-bonded flexible riser becomes very heavy and introduces large hang-off forces on the vessel. We are therefore investigating riser concepts incorporating new materials and with a simpler cross section that can be used for floating production. Advanced composite materials have properties such as, low weight, high strength, good durability and very good fatigue performance. Composite materials are slowly being exploited in the oil industry; they are being prototype tested for drilling risers and small diameter lines. Part of the process for the industry to accept larger diameter production risers made out of composite materials is to understand both the advantages and limitations. A new continuous composite riser system is being developed which capitalizes on the technical benefits of this material while addressing the known constraints. The fully bonded riser is being developed for ultra deep waters and its' characteristics include high temperature (160 deg C), high pressure (500 barg min), light weight, chemical resistant, good insulation, excellent fatigue characteristics and installation by reeling. The concept is based on the use of a thermoplastic liner together with a thermoplastic carbon fibre composite. This paper summarises the ongoing development, which has a goal to manufacture and qualify an 8'' riser, and includes all the steps in a production process from material qualification to the winding process and analytical modelling. (author)

  17. Polycyanurates and Polycarbonates Based on Eugenol: Alternatives to Thermosetting and Thermoplastic Polymers Based on Bisphenol A

    Science.gov (United States)

    2014-08-14

    to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2

  18. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  19. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    Science.gov (United States)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  20. Preparation and Characterisation of Linear Low-Density Polyethylene / Thermoplastic Starch Blends Filled with Banana Fibre

    Science.gov (United States)

    Kahar, A. W. M.; Ann, L. Ju

    2017-06-01

    In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.

  1. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  2. Siwonhan-mat: The third taste of Korean foods

    Directory of Open Access Journals (Sweden)

    Soon Ah Kang

    2016-03-01

    Conclusion: Siwonhan-mat is a unique sensation found in Korean food. Understanding siwonhan-mat is a key to learning about Korean food and its food culture. Therefore, this paper serves an important role in understanding Korean food. Siwonhan-mat is often mistranslated using words to describe temperature, such as cool. This misinterpretation has resulted in confusion over the original meaning of siwonhan-mat and contributed to the incorrect usage of the word.

  3. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  4. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    Science.gov (United States)

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of natural fibres on the mechanical properties of thermoplastic starch

    Science.gov (United States)

    Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Moácicki, Leszek; Mitrus, Marcin; Kupryaniuk, Karol; Kusz, Andrzej; Bartnik, Grzegorz

    2016-04-01

    This paper presents the results covering the mechanical properties of thermoplastic potato starch granules with flax, cellulose fibre, and pine bark addition. A modified single screw extrusion-cooker TS-45 with L/D = 18 and an additional cooling section of the barrel was used as the processing unit. The establishment influence of the fibre addition, as well as the extrusion-cooker screw speed, on the mechanical properties of the thermoplastic starch granules was the main objective of the investigation. The maximum force during compression to 50% of the sample diameter, elastic modulus, and compression strength were evaluated. Significant differences were noted depending on the amount of fibre used, while only an insignificant influence of screw speed on the mechanical properties of the granulate was reported. An increased amount of fibres lowered the maximum force as well as the elastic modulus and compression strength of the thermoplastic starch granulates.

  6. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Ritu Goyal

    2017-01-01

    Full Text Available The design of composite tissue scaffolds containing an extracellular matrix (ECM and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000, medium (E0500, and fast (E1000 degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  7. Processing of thermoplastic polymers using reactive solvents

    NARCIS (Netherlands)

    Meijer, H.E.H.; Venderbosch, R.W.; Goossens, J.G.P.; Lemstra, P.J.

    1996-01-01

    The use of reactive solvents offers an interesting and flexible route to extent the processing characteristics of thermoplastic polymers beyond their existing limits. This holds for both intractable and tractable polymers. The first mainly applies for amorphous high-Tg polymers where processing may

  8. Thermoplastic starch materials prepared from rice starch; Preparacao e caracterizacao de materiais termoplasticos preparados a partir de amido de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S., E-mail: barbarapont@gmail.co [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2009-07-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  9. Does siwonhan-mat represent delicious in Korean foods?

    Directory of Open Access Journals (Sweden)

    Dai Ja Jang

    2016-06-01

    Conclusion: Balancing kan is a determining factor of siwonhan-mat in Korean cuisine. Particularly, a strong association between siwonhan-mat and deliciousness was found in kuk and tang, suggesting the importance of siwonhan-mat in experiencing the best flavor in Korean food.

  10. Accuracy of Implants Placed with Surgical Guides: Thermoplastic Versus 3D Printed.

    Science.gov (United States)

    Bell, Caitlyn K; Sahl, Erik F; Kim, Yoon Jeong; Rice, Dwight D

    This study was conducted to evaluate the accuracy of implants placed using two different guided implant surgery materials: thermoplastic versus three-dimensionally (3D) printed. A cone beam computed tomography (CBCT) scan previously obtained and selected for single-tooth implant replacement was converted into a Digital Imaging and Communications in Medicine (DICOM) file. All models were planned and exported for printing using BlueSkyBio Plan Software with the DICOM files. A total of 20 3D-printed mandibular quadrant jaws replicating the CBCT were printed by Right Choice Milling, as was the control model to accept the control implant. Previously, 10 thermoplastic and 10 3D-printed surgical guides had been made by the same lab technician at Right Choice Milling. One Nobel Biocare implant with a trilobe connection was placed per guide and replica jaw model pair. Implants were placed using the thermoplastic and 3D-printed surgical guides, representing the two test groups, following the Nobel Biocare guided surgical protocol. A total of 21 CBCT scans were then taken, one for the control implant and one for each test implant. The CBCT volume was converted to a DICOM file and transferred to Invivo5 software version 5.4 (Anatomage). The DICOM file of each test implant was superimposed over the DICOM file of the control. The deviation of the head of the implant, the deviation of the apex of the implant, and the angle of deviation were evaluated from measurements on the superimposition of the control and test implants. Mann-Whitney U test was used to test the null hypotheses at α = .05 and a confidence interval of 95%. Descriptive statistics were used for the average ± standard deviation. The implants placed with the thermoplastic surgical guides showed an average of 3.40 degrees of angular deviation compared to 2.36 degrees for implants placed with the 3D-printed surgical guides (P = .143). The implants placed with the thermoplastic surgical guides showed an average of 1

  11. Síntese de um poli (ácido âmico para aplicação como interfase em compósitos termoplásticos de alto desempenho Synthesis of a poly (amic acid for appplication as interphase in high performance thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Liliana B. Nohara

    2004-06-01

    Full Text Available O objetivo do presente trabalho é apresentar a síntese de um poli (ácido âmico (PAA a ser utilizado como formador de interfase no processamento de compósitos termoplásticos de alto desempenho. Os materiais compósitos termoplásticos constituídos de um reforço rígido e de uma matriz dúctil têm as suas propriedades mecânicas fortemente dependentes do mecanismo de transferência de carga fibra/matriz. Por esse motivo, a região da interface/interfase nos materiais compósitos possui um papel fundamental nas propriedades finais do material. O PAA surge como uma alternativa para melhorar a adesão fibra/matriz na região interfacial em compósitos de alto desempenho, constituídos de matrizes termoplásticas, reforçadas com fibras de carbono ou vidro. O PAA é utilizado na forma de sal, na preparação de suspensões poliméricas de matrizes termoplásticas. O PAA estudado neste trabalho foi sintetizado utilizando-se os reagentes BTDA e DHPr. Em seguida, o PAA foi convertido em PI por imidização em solução. Análises por FTIR mostram o sucesso da síntese do PAA e da sua conversão em PI. As técnicas de DSC e TGA determinaram as temperaturas de transição vítrea (~213 °C e de decomposição (~310 °C, respectivamente. Estes resultados motivam a utilização do PAA/PI como formador de interfase na obtenção de compósitos termoplásticos com temperaturas de processamento abaixo de 310 °C.This work is aimed at presenting the synthesis of a poly (amic acid (PAA to be used as interphase precursor in the manufacturing of high performance thermoplastic composites. Thermoplastic composites comprising a rigid reinforcement and a ductile matrix have their mechanical properties strongly dependent on the load transfer mechanism between the reinforcement and matrix. For this reason, the interface/interphase region plays a fundamental hole in the final properties of the composite materials. PAA appeared as an alternative to improve the

  12. Multiple-objective optimization in precision laser cutting of different thermoplastics

    Science.gov (United States)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  13. Thermoplastic elastomers via controlled radical graft polymerization

    NARCIS (Netherlands)

    Tuzcu, G.

    2012-01-01

    Rubbery behavior with a consistent modulus over a wide temperature range is a challenge in the search for ultimate structure-property relations of thermoplastic elastomers (TPEs). This feature is closely related to the phase separation behavior of the constitutional segments and the Tg of the

  14. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  15. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Science.gov (United States)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  16. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Directory of Open Access Journals (Sweden)

    Haluk eBeyenal

    2015-09-01

    Full Text Available Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA. We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl (cathodic mat system and +300 mVAg/AgCl (anodic mat system and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both anodic and cathodic mat systems. Interestingly, the cathodic mats generated the highest reducing current at the same time points that the anodic mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the cathodic mats than in the anodic mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the cathodic mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that

  17. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    Science.gov (United States)

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  18. The effect of cocoa (Theobroma cacao L on the basic color stability of thermoplastic nylon resin dentures

    Directory of Open Access Journals (Sweden)

    Amiyatun Naini

    2011-11-01

    Full Text Available Nylon thermoplastic resin is material of choice for the making of flexible. This denture do not use wire retention, but has the physical properties of water absorption. In the oral cavity, it will always be in contact with food and beverages consumed. One of the foods that are consumed by the public is chocolate. This study aimed to determine the effect of cocoa (Theobroma cacao L on color stability of the thermoplastic nylon denture base. The study sample was thermoplastic nylon (valplast with a size of 10x10x2 mm soaked in the chocolate solution for 7 and 14 days. As the control, the sample soaked with distilled water. The color testing stability used was densitometer. There were significant differences between the control group (distilled water and the chocolate solution. This was due to dissolved components/tannin having a capillary flow diffusion into thermoplastic nylons that causing discoloration. The conclusion of this study, there was the effect of cocoa (Theobroma cacao L against the color stability of the nylon thermoplastic denture base. The longer time of immersion of nylon thermoplastic the greater the change in color.

  19. Disruption of photoautotrophic intertidal mats by filamentous fungi

    DEFF Research Database (Denmark)

    Carreira, Cátia; Staal, Marc Jaap; Falkoski, Daniel

    2015-01-01

    Summary: Ring-like structures, 2.0-4.8cm in diameter, observed in photosynthetic microbial mats on the Wadden Sea island Schiermonnikoog (the Netherlands) showed to be the result of the fungus Emericellopsis sp. degrading the photoautotrophic top layer of the mat. The mats were predominantly comp...

  20. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  1. Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    Energy Technology Data Exchange (ETDEWEB)

    Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz [University of Waikato, Hamilton 3240 (New Zealand)

    2016-03-09

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  2. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  3. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  4. Effects of simulated space environmental parameters on six commercially available composite materials

    International Nuclear Information System (INIS)

    Funk, J.G.; Sykes, G.F. Jr.

    1989-04-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested

  5. HiRadMat: materials under scrutiny

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    CERN's new facility, HiRadMat (High Radiation to Materials), which is designed to test materials for the world's future particle accelerators, should be operational and welcoming its first experiments by the end of the year.   The HiRadMat facility, located in the TNC tunnel. The materials used in the LHC and its experiments are exposed to very high-energy particles. The LHC machine experts obviously didn't wait for the first collisions in the world's most powerful accelerator to put the materials through their paces - the equipment was validated following a series of stringent tests. And these tests will get even tougher now, with the arrival of HiRadMat. The tunnel that formerly housed the West Area Neutrino Facility (WANF) has been completely revamped to make way for CERN's latest facility, HiRadMat. Supported by the Radioprotection service, a team from the Engineering (EN) Department handled the dismantling operations from October 2009 to December 2010. "We could only work on disman...

  6. Thermoplastic film camera for holographic recording

    International Nuclear Information System (INIS)

    Liegeois, C.; Meyrueis, P.

    1982-01-01

    The design thermoplastic-film recording camera and its performance for holography of extended objects are reported. Special corona geometry and accurate control of development heat by constant current heating and high resolution measurement of the develop temperature make easy recording of reproducible, large aperture holograms possible. The experimental results give the transfer characteristics, the diffraction efficiency characteristics and the spatial frequency response. (orig.)

  7. Composite poly(vinyl alcohol/poly(vinyl acetate electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs

    Directory of Open Access Journals (Sweden)

    Jannesari M

    2011-05-01

    Full Text Available Marziyeh Jannesari1, Jaleh Varshosaz2, Mohammad Morshed1, Maedeh Zamani11Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran; 2Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IranAbstract: The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol (PVA, poly(vinyl acetate (PVAc, and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl, were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release.Keywords: biodegradable polymers, drug delivery, controlled release, electrospun nanofibers, wound dressing

  8. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA).

    Science.gov (United States)

    Engel, Annette Summers; Meisinger, Daniela B; Porter, Megan L; Payn, Robert A; Schmid, Michael; Stern, Libby A; Schleifer, K H; Lee, Natuschka M

    2010-01-01

    Microbial mats in sulfidic cave streams offer unique opportunities to study redox-based biogeochemical nutrient cycles. Previous work from Lower Kane Cave, Wyoming, USA, focused on the aerobic portion of microbial mats, dominated by putative chemolithoautotrophic, sulfur-oxidizing groups within the Epsilonproteobacteria and Gammaproteobacteria. To evaluate nutrient cycling and turnover within the whole mat system, a multidisciplinary strategy was used to characterize the anaerobic portion of the mats, including application of the full-cycle rRNA approach, the most probable number method, and geochemical and isotopic analyses. Seventeen major taxonomic bacterial groups and one archaeal group were retrieved from the anaerobic portions of the mats, dominated by Deltaproteobacteria and uncultured members of the Chloroflexi phylum. A nutrient spiraling model was applied to evaluate upstream to downstream changes in microbial diversity based on carbon and sulfur nutrient concentrations. Variability in dissolved sulfide concentrations was attributed to changes in the abundance of sulfide-oxidizing microbial groups and shifts in the occurrence and abundance of sulfate-reducing microbes. Gradients in carbon and sulfur isotopic composition indicated that released and recycled byproduct compounds from upstream microbial activities were incorporated by downstream communities. On the basis of the type of available chemical energy, the variability of nutrient species in a spiraling model may explain observed differences in microbial taxonomic affiliations and metabolic functions, thereby spatially linking microbial diversity to nutrient spiraling in the cave stream ecosystem.

  9. Materiaux composites supraconducteurs

    Science.gov (United States)

    Kerjouan, Philippe; Boterel, Florence; Lostec, Jean; Bertot, Jean-Paul; Haussonne, Jean-Marie

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developped in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa2CU3O{7-δ} material. We first realized a composite material glass/YBa2CU3O{7-δ}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa2CU3O{7-δ} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. Les nouveaux matériaux supraconducteurs à haute température critique ont potentiellement un rôle important à jouer dans le domaine de l'électronique et de l'électrotechnique. En particulier, le dépôt d'oxydes supraconducteurs sur divers types de substrats est une technologie amenée à se développer. Nous avons donc entrepris une étude dont l'objet est la réalisation de conducteurs sérigraphiés sur alumine et composés essentiellement du matériau YBa2CU3O{7-δ}. Nous avons tout d'abord cherché à réaliser un composite verre/YBa2CU3O{7-δ}, par analogie au principe de réalisation de couches conductrices sérigraphiées, le verre permettant d'obtenir une liaison physico-chimique avec le substrat. Une étude préliminaire a permis de réaliser divers matériaux composites massifs, utilisant différentes familles de verres. Ces matériaux massifs, se présentant sous la forme de barreaux de

  10. Sensing and Energy Harvesting Novel Polymer Composites

    NARCIS (Netherlands)

    Zwaag, S. van der; Ende, D.A. van der; Groen, W.A.

    2014-01-01

    This chapter describes the development and properties of novel functional composite materials consisting of aligned piezo-ceramic particles or fibers in a polymeric matrix, which can be fully integrated in thermoset or thermoplastic products. The materials have a low potential for applications

  11. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of preprocessing method on TVOC emission of car mat

    Science.gov (United States)

    Wang, Min; Jia, Li

    2013-02-01

    The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for total volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a minimum of 4 days. The TVOC emitted from some samples may exceed 2500μg/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 2500μg/kg. The emission factors of total volatile organic compounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air temperature in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.

  13. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  14. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    Science.gov (United States)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  15. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Serena Coiai

    2015-06-01

    Full Text Available Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix, but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  16. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Science.gov (United States)

    Coiai, Serena; Passaglia, Elisa; Pucci, Andrea; Ruggeri, Giacomo

    2015-01-01

    Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  17. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    Energy Technology Data Exchange (ETDEWEB)

    Tazi, M.; Erchiqui, F. [Engineering department, Université de Quebec en Abitibi-Témiscamingue (Canada); Kaddami, H. [Université Caddi Ayad Marrakech, Laboratoire ’LCO2MC’, B.P. 549, Marrakech 40000, Maroc (Morocco); Bouazara, M. [Mechanical department, Université de Québec à Chicoutimi Canada (Canada); Poaty, B. [Technology Center of industrial residuals, QC Canada (Canada)

    2015-05-22

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials.

  18. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    International Nuclear Information System (INIS)

    Tazi, M.; Erchiqui, F.; Kaddami, H.; Bouazara, M.; Poaty, B.

    2015-01-01

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials

  19. Development of kenaf mat for slope stabilization

    Science.gov (United States)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  20. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  1. Enhanced printability of thermoplastic polyurethane substrates by silica particles surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, S., E-mail: s.cruz@dep.uminho.pt [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal); Rocha, L.A. [CMEMS, University of Minho, 4804-533 Guimarães (Portugal); Viana, J.C. [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • A new method development for surface treatment of thermoplastic polyurethane (TPU) substrates. • The proposed method increases TPU surface energy (by 45%) and consequently the TPU wettability. • Great increase of the TPU surface roughness (by 621%). • Inkjet printed conductive ink was applied to the surface treated TPU substrate and significant improvements on the printability were obtained. - Abstract: A new method developed for the surface treatment of thermoplastic polymer substrates that increases their surface energies is introduced in this paper. The method is environmental friendly and low cost. In the proposed surface treatment method, nanoparticles are spread over the thermoplastic polyurethane (TPU) flexible substrate surface and then thermally fixed. This latter step allows the nanoparticles sinking-in on the polymer surface, resulting in a higher polymer–particle interaction at their interfacial region. The addition of nanoparticles onto the polymer surface increases surface roughness. The extent of the nanoparticles dispersion and sink-in in the substrate was evaluated through microscopy analysis (SEM). The roughness of the surface treated polymeric substrate was evaluated by AFM analysis. Substrate critical surface tension (ST) was measured by contact angle. In general, a homogeneous roughness form is achieved to a certain level. Great increase of the TPU surface roughness (by 621%) was induced by the propose method. The proposed surface treatment method increased significantly the substrate ST (by 45%) and consequently the TPU wettability. This novel surface treatment of thermoplastic polymers was applied to the inkjet printing of TPU substrates with conductive inks, and significant improvements on the printability were obtained.

  2. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    International Nuclear Information System (INIS)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory's (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes

  3. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.

  4. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    International Nuclear Information System (INIS)

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-01-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  5. Poly-m-aramid nanofiber mats: Production for application as structural modifiers in CFRP laminates

    Science.gov (United States)

    Mazzocchetti, Laura; D'Angelo, Emanuele; Benelli, Tiziana; Belcari, Juri; Brugo, Tommaso Maria; Zucchelli, Andrea; Giorgini, Loris

    2016-05-01

    Poly(m-phenylene isophtalamide) electrospun nanofibrous membranes were produced to be used as structural reinforcements for carbon fiber reinforced composites production. In order for the polymer to be electrospun, it needs however to be fully solubilized, so the addition of some salts is required to help disrupt the tight macromolecular packing based on intra- and inter-molecular hydrogen bonding. Such salts may also contribute to the electrospinnability of the overall solution, since the provide it with a higher conductivity, whatever the solvent might be. The salt haobwever stays in the final nanofibrous mat. The membranes containing the salt are also observed to be highly hygroscopic, with a water content up to 26%, in the presence of 20%wt LiCl in the nanofibrous mat. When those membranes were interleaved among prepregs to produce a laminates, the obtained composite displayed thermal properties comparable to those of a reference nanofiber-free composite, though the former showed also easier delamination. Hence the removal of the hygroscopic salt was performed, that lead to thinner membranes, whose water content matched that of the pristine polymer. The washing step induced a thinning of the layers and of the fibers diameters, though no fiber shrinking nor membrane macroscopic damages were observed. These preliminary encouraging results thus pave the way to a deeper study of the optimized condition for producing convenient poly(m-phenylene isophtalamide) electrospun nanofibrous membranes to be used for carbon fiber reinforced composites structural modification.

  6. Projet ViscoMatData

    OpenAIRE

    ENGUENG,; ABIB,

    2009-01-01

    ViscoMatData est un logiciel extranet d'une gestion d'une base de données multilingue sur les propriétés des matériaux viscoélastiques des chaussées. Ce rapport constitue l'un des livrables de la deuxième partie de ce projet. Pour présenter le travail réalisé durant cette deuxième partie, nous commencerons par faire un rappel sur le contexte du projet et le projet et le projet lui-même. Puis, nous nous intéresserons à l'architecture mise en place pour le développement, la réalisation et nous ...

  7. Method and apparatus for extruding thermoplastic material

    International Nuclear Information System (INIS)

    McKelvey, J.M.

    1985-01-01

    A gear pump assisted screw conveyor extrusion system utilizing a cartridge heating device disposed axially within the screw and having the drives for the gear pump and the screw correlated in speed to create relatively little pressure in the thermoplastic material being extruded such that relatively little mechanical working thereof occurs. The thermoplastic material is melted in the screw conveyor primarily by heat transfer from the cartridge heater and the gear pump is utilized for conveying the melted material under pressure to a subsequent work station. A relatively deep material-conveying spiral channel is provided in the screw for maximized extrusion output per revolution of the screw and minimized mechanical energy generation by the screw. A motionless mixer may be employed intermediate the screw and the work station to homogenize the melted material for reducing temperature gradients therein. The system advantageously is capable of extruding material at a substantially greater rate and a lower material temperature and with substantially increased power economy than conventional systems utilizing a high pressure, externally heated screw conveyor portion

  8. A Mathematical Model for the Non-Stationary Process of Compression Molding of Plates from Granulate of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Vladimir N. Vodyakov

    2017-12-01

    Full Text Available Introduction: Mathematical modeling allows assigning optimal parameters for the process of compression molding of plates and calculating the dimensions of the mold without costly and long-term experiments. The options ensure the required precision of pressing. The disadvantages of the known models are the assumptions about the process isothermicity and independence of the thermal-physical coefficients from temperature. The models do not take into account the dependence of the pressure in the cavity of the mold on the excess of the melt; the problem of calculating the dimensions of the mold cavity for given plate dimensions is not posed. The known models do not give a complete description of all stages of the process. The aim of this paper is to develop a perfect mathematical model without limitations for the compression molding of plates from a granulate of highly filled thermoplastic composites. Materials and Methods: The paper proposes a non-stationary mathematical model. The model takes into account the presence of physical states transitions and dependence of the thermophysical characteristics of composites on temperature. The model is based on the known equations of thermal physics and continuum mechanics. Results: Initial and boundary conditions, rheological equations, systems of equations for the material, thermal, and power balance are determined for three stages of the process. The calculation problems are determined too. A program of iterative numerical calculation has been developed because of the resulting system of equations has no analytical solution. A convergence of experimental and theoretical results with the correlation coefficient confirms the adequacy of the developed mathematical model and the calculation program. Discussion and Conclusions: The results of the study allow calculating the dimensions of the mold cavity, the initial granulate required mass, technological losses, the time functions of pressure and temperature

  9. Laser Additive Manufacturing of Large Scale Polymer Matrix Composite Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A laser heating system (LHS) for the automated fiber placement (AFP) of thermoplastic composites (TPC) has recently been developed by Automated Dynamics to...

  10. Development and evaluation of thermoplastic street maintenance material

    Science.gov (United States)

    Siemens, W. D.

    1973-01-01

    An all-weather permanent street patching material was investigated for flexible and rigid pavements. The economic, operational, and material requirements are discussed along with the results of field tests with various mixtures of EVA resins and asphalt. Cost analyses for thermoplastic patching methods are included.

  11. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-04-01

    This position paper reviews physical and mechanical properties of thermoplastic resin used for non-metal clasp dentures, and describes feature of each thermoplastic resin in clinical application of non-metal clasp dentures and complications based on clinical experience of expert panels. Since products of thermoplastic resin have great variability in physical and mechanical properties, clinicians should utilize them with careful consideration of the specific properties of each product. In general, thermoplastic resin has lower color-stability and higher risk for fracture than polymethyl methacrylate. Additionally, the surface of thermoplastic resin becomes roughened more easily than polymethyl methacrylate. Studies related to material properties of thermoplastic resin, treatment efficacy and follow-up are insufficient to provide definitive conclusions at this time. Therefore, this position paper should be revised based on future studies and a clinical guideline should be provided. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  13. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  14. Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Duszová, A.; Poreba, Rafal; Kredatusová, Jana; Bureš, R.; Fáberová, M.; Šlouf, Miroslav

    2014-01-01

    Roč. 67, December (2014), s. 434-440 ISSN 1359-8368 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : carbon fibre * polymer–matrix composites (PMCs) * mechanical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.983, year: 2014

  15. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm......The mat1 locus is a key regulator of both conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. Two alternative DNA segments of this locus, mat1-P and mat1-M, specify the haploid cell types (Plus and Minus). Each segment includes two genes: mat1-P includes mat1-Pc and mat1-Pm....... This appears to be the major pheromone-dependent step in controlling meiosis since ectopic expression of these genes allows meiosis in the absence of mat1-Pc and mat1-Mc. The mat1-Pm and mat1-Mm products complete the initiation of meiosis by activating transcription of the mei3 gene....

  16. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention.

    Science.gov (United States)

    Samprasit, Wipada; Kaomongkolgit, Ruchadaporn; Sukma, Monrudee; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2015-03-06

    The mucoadhesive electrospun nanofibre mats were developed using chitosan (CS) and thiolated chitosan (CS-SH) as mucoadhesive polymers. Garcinia mangostana (GM) extract was incorporated into nanofibre mats. The antibacterial activity in the single and combined agents was evaluated against dental caries pathogens. The morphology of mats was observed using SEM. The mats were evaluated for GM extract amount, mucoadhesion, in vitro release, antibacterial activity and cytotoxicity. The mucoadhesion and antibacterial activity were determined in healthy human volunteers. The prepared mats were in nanoscale with good physical and mucoadhesive properties. The CS-SH caused the higher mucoadhesion. All mats rapidly released active substances, which had the synergistic antibacterial activity. In addition, the reduction of bacteria and good mucoadhesion in the oral cavity occurred without cytotoxicity. The results suggest that mats have the potential to be mucoadhesive dosage forms to maintain oral hygiene by reducing the bacterial growth that causes the dental caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2018-03-01

    Full Text Available In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resin

  18. Microbial communities and exopolysaccharides from Polynesian mats.

    Science.gov (United States)

    Rougeaux, H; Guezennec, M; Che, L M; Payri, C; Deslandes, E; Guezennec, J

    2001-03-01

    Microbial mats present in two shallow atolls of French Polynesia were characterized by high amounts of exopolysaccharides associated with cyanobacteria as the predominating species. Cyanobacteria were found in the first centimeters of the gelatinous mats, whereas deeper layers showing the occurrence of the sulfate reducers Desulfovibrio and Desulfobacter species as determined by the presence of specific biomarkers. Exopolysaccharides were extracted from these mats and partially characterized. All fractions contained both neutral sugars and uronic acids with a predominance of the former. The large diversity in monosaccharides can be interpreted as the result of exopolymer biosynthesis by either different or unidentified cyanobacterial species.

  19. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Science.gov (United States)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  20. Method of forming composite fiber blends

    Science.gov (United States)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  1. Developing DNA barcoding (matK) primers for marama bean ...

    African Journals Online (AJOL)

    The homology found with Tylosema fassoglensis (trnK gene) and Pisum sativum (matK gene) suggests that an identical region was amplified for Tylosema esculentum. A phylogenetic tree was constructed based on the matK sequences and the results suggest that the matK region can also be used in determining levels of ...

  2. Effect of Polymer Form and its Consolidation on Mechanical Properties and Quality of Glass/PBT Composites

    Science.gov (United States)

    Durai Prabhakaran, R. T.; Pillai, Saju; Charca, Samuel; Oshkovr, Simin Ataollahi; Knudsen, Hans; Andersen, Tom Løgstrup; Bech, Jakob Ilsted; Thomsen, Ole Thybo; Lilholt, Hans

    2014-04-01

    The aim of this study was to understand the role of the processing in determining the mechanical properties of glass fibre reinforced polybutylene terephthalate composites (Glass/PBT). Unidirectional (UD) composite laminates were manufactured by the vacuum consolidation technique using three different material systems included in this study; Glass/CBT (CBT160 powder based resin), Glass/PBT (prepreg tapes), and Glass/PBT (commingled yarns). The different types of thermoplastic polymer resin systems used for the manufacturing of the composite UD laminate dictate the differences in final mechanical properties which were evaluated by through compression, flexural and short beam transverse bending tests. Microscopy was used to evaluate the quality of the processed laminates, and fractography was used to characterize the observed failure modes. The study provides an improved understanding of the relationships between processing methods, resin characteristics, and mechanical performance of thermoplastic resin composite materials.

  3. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    Science.gov (United States)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations

  4. Diversity and stratification of archaea in a hypersaline microbial mat.

    Science.gov (United States)

    Robertson, Charles E; Spear, John R; Harris, J Kirk; Pace, Norman R

    2009-04-01

    The Guerrero Negro (GN) hypersaline microbial mats have become one focus for biogeochemical studies of stratified ecosystems. The GN mats are found beneath several of a series of ponds of increasing salinity that make up a solar saltern fed from Pacific Ocean water pumped from the Laguna Ojo de Liebre near GN, Baja California Sur, Mexico. Molecular surveys of the laminated photosynthetic microbial mat below the fourth pond in the series identified an enormous diversity of bacteria in the mat, but archaea have received little attention. To determine the bulk contribution of archaeal phylotypes to the pond 4 study site, we determined the phylogenetic distribution of archaeal rRNA gene sequences in PCR libraries based on nominally universal primers. The ratios of bacterial/archaeal/eukaryotic rRNA genes, 90%/9%/1%, suggest that the archaeal contribution to the metabolic activities of the mat may be significant. To explore the distribution of archaea in the mat, sequences derived using archaeon-specific PCR primers were surveyed in 10 strata of the 6-cm-thick mat. The diversity of archaea overall was substantial albeit less than the diversity observed previously for bacteria. Archaeal diversity, mainly euryarchaeotes, was highest in the uppermost 2 to 3 mm of the mat and decreased rapidly with depth, where crenarchaeotes dominated. Only 3% of the sequences were specifically related to known organisms including methanogens. While some mat archaeal clades corresponded with known chemical gradients, others did not, which is likely explained by heretofore-unrecognized gradients. Some clades did not segregate by depth in the mat, indicating broad metabolic repertoires, undersampling, or both.

  5. Evaluation of a Thermoplastic Immobilization System for Breast and Chest Wall Radiation Therapy

    International Nuclear Information System (INIS)

    Strydhorst, Jared H.; Caudrelier, Jean-Michel; Clark, Brenda G.; Montgomery, Lynn A.; Fox, Greg; MacPherson, Miller S.

    2011-01-01

    We report on the impact of a thermoplastic immobilization system on intra- and interfraction motion for patients undergoing breast or chest wall radiation therapy. Patients for this study were treated using helical tomotherapy. All patients were immobilized using a thermoplastic shell extending from the shoulders to the ribcage. Intrafraction motion was assessed by measuring maximum displacement of the skin, heart, and chest wall on a pretreatment 4D computed tomography, while inter-fraction motion was inferred from patient shift data arising from daily image guidance procedures on tomotherapy. Using thermoplastic immobilization, the average maximum motion of the external contour was 1.3 ± 1.6 mm, whereas the chest wall was found to be 1.6 ± 1.9 mm. The day-to-day setup variation was found to be large, with random errors of 4.0, 12.0, and 4.5 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively, and the standard deviations of the systematic errors were found to be 2.7, 9.8, and 4.1 mm. These errors would be expected to dominate any respiratory motion but can be mitigated by daily online image guidance. Using thermoplastic immobilization can effectively reduce respiratory motion of the chest wall and external contour, but these gains can only be realized if daily image guidance is used.

  6. Development of hemp fibre - PP nonwoven composites - Conference Paper

    CSIR Research Space (South Africa)

    Hargitai, H

    2005-09-01

    Full Text Available Non-woven mats from hemp and polypropylene fibres in various proportions were produced and hot pressed to make composite material. The effect of hemp fibre content and anisotropy in non-woven mats resulting from the carding technology were examined...

  7. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    International Nuclear Information System (INIS)

    Abdul Rahman, Norizah; Feisst, Vaughan; Dickinson, Michelle E.; Malmström, Jenny; Dunbar, P. Rod; Travas-Sejdic, Jadranka

    2013-01-01

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h max max >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells

  8. Electrospun silk-elastin-like fibre mats for tissue engineering applications

    International Nuclear Information System (INIS)

    Machado, Raul; Da Costa, André; Padrão, Jorge; Gomes, Andreia; Casal, Margarida; Sencadas, Vitor; Costa, Carlos M; Lanceros-Méndez, Senentxu; Garcia-Arévalo, Carmen; Rodríguez-Cabello, José Carlos

    2013-01-01

    Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing its dependence on the concentration and solvent used. Treatment with methanol-saturated air was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570–720%), water vapour transmission rate (1083 g/m 2 /day) and mechanical properties (modulus of elasticity ∼126 MPa). Furthermore, the methanol-treated SELP fibre mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fibre mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications. (paper)

  9. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben; Nowlin, Dawn; Grantner, Rita; Karlicek-Bryant, Shannon; Feng, Jun Li; Jenkinson, Stephen; Freeman-Cook, Kevin; Dann, Stephen G.; Wang, Xiaoli; Wells, Peter A.; Fantin, Valeria R.; Stewart, Al E.; Grant, Stephan K. (Pfizer)

    2017-05-29

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzyme turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.

  10. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate

    International Nuclear Information System (INIS)

    Chen, Xilei; Jiang, Yufeng; Jiao, Chuanmei

    2014-01-01

    Highlights: • Smoke suppression of FeOOH on flame retardant TPU composites has been investigated. • FeOOH has excellent smoke suppression abilities for flame retardant TPU composites. • FeOOH has good ability of char formation, hence improved smoke suppression property. -- Abstract: This article mainly studies smoke suppression properties and synergistic flame retardant effect of ferrite yellow (FeOOH) on flame retardant thermoplastic polyurethane (TPU) composites using ammonium polyphosphate (APP) as a flame retardant agent. Smoke suppression properties and synergistic flame retardant effect of FeOOH on flame retardant TPU composites were intensively investigated by smoke density test (SDT), cone calorimeter test (CCT), scanning electron microscopy (SEM), and thermal-gravimetric analysis (TGA). Remarkably, the SDT results show that FeOOH can effectively decrease the amount of smoke production with or without flame. On the other hand, the CCT data reveal that the addition of FeOOH can apparently reduce heat release rate (HRR), total heat release (THR), and total smoke release (TSR), etc. Here, FeOOH is considered to be an effective smoke suppression agent and a good synergism with APP in flame retardant TPU composites, which can greatly improve the structure of char residue realized by TGA and SEM results

  11. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  12. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain).

    Science.gov (United States)

    Jonkers, Henk M; Ludwig, Rebecca; Wit, Rutger; Pringault, Olivier; Muyzer, Gerard; Niemann, Helge; Finke, Niko; Beer, Dirk

    2003-05-01

    The benthic microbial mat community of the only permanent hypersaline natural inland lake of Western Europe, 'La Salada de Chiprana', northeastern Spain, was structurally and functionally analyzed. The ionic composition of the lake water is characterized by high concentrations of magnesium and sulfate, which were respectively 0.35 and 0.5 M at the time of sampling while the total salinity was 78 g l(-1). Community composition was analyzed by microscopy, high-performance liquid chromatography (HPLC) pigment analyses and by studying culturable bacteria from different functional groups. Therefore, denaturing gradient gel electrophoresis (DGGE) was applied on most probable number (MPN) dilution cultures. Microscopy revealed that a thin layer of Chloroflexus-like bacteria overlaid various cyanobacteria-dominated layers each characterized by different morphotypes. DGGE analysis of MPN dilution cultures from distinct mat layers showed that various phylotypes of anoxygenic phototrophic, aerobic heterotrophic, colorless sulfur-, and sulfate-reducing bacteria were present. The mats were furthermore functionally studied and attention was focussed on the relationship between oxygenic primary production and the flow of carbon through the microbial community. Microsensor techniques, porewater and sediment photopigment analysis were applied in order to estimate oxygenic photosynthetic rates, daily dynamics of (in)organic carbon porewater concentration and migration behavior of phototrophs. Chiprana microbial mats produced dissolved organic carbon (DOC) both during the day and night. It was estimated that 14% of the mats gross photosynthetic production and 49% of the mats net photosynthetic production diffused out of the mat in the form of low molecular mass fatty acids, although these compounds made up only 2% of the total DOC pool. The high flux of dissolved fatty acids from the microbial mat to the water column may explain why in this system Chloroflexus-like bacteria

  13. Diazotrophic microbial mats

    NARCIS (Netherlands)

    Severin, I.; Stal, L.J.; Seckbach, J.; Oren, A.

    2010-01-01

    Microbial mats have been the focus of scientific research for a few decades. These small-scale ecosystems are examples of versatile benthic communities of microorganisms, usually dominated by phototrophic bacteria (e.g., Krumbein et al., 1977; Jørgensen et al., 1983). They develop as vertically

  14. Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Hulleman, S.H.D.; Wit, D. de

    1996-01-01

    The influence of crystallization on the stress-strain behaviour of thermoplastic potato starch has been monitored. Potato starch has been processed by extrusion with glycerol and water added as plasticizers. The thermoplastic starch consists of a molecular network of semicrystalline amylose and

  15. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    Science.gov (United States)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  16. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  17. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  18. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application

    Directory of Open Access Journals (Sweden)

    Cristina M. Prieto-Barajas

    2018-01-01

    Full Text Available Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.

  19. Phase transitions in blends functionalized thermoplastics

    International Nuclear Information System (INIS)

    Grigoryeva, O.; Sergeeva, L.; Starostenko, O.; Pissis, P.

    2001-01-01

    Phase transitions, morphology and structure-property relationships in polymer blends based on functionalized thermoplastics, i.e. widely used polyurethanes and styrene-acrylic acid copolymers, were investigated by means of inter-expletive non-destructive methods. Wide and small angle X-ray scattering (WAXS and SAXS), dynamic mechanical thermal analysis, thermally stimulated depolarization currents techniques, dielectric relaxation spectroscopy and several physico-mechanical characterization techniques were used. The results obtained by the various techniques were critically compared to each other. (author)

  20. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf.

    Science.gov (United States)

    Abed, Raeid M M; Kohls, Katharina; de Beer, Dirk

    2007-06-01

    The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.

  1. Geochemical characterization of the hydrous pyrolysis products from a recent cyanobacteria-dominated microbial mat

    Energy Technology Data Exchange (ETDEWEB)

    Franco, N.; Mendoça-Filho, J.G.; Silva, T.F.; Stojanovic, K.; Fontana, L.F.; Carvalhal-Gomes, S.B.V.; Silva, F.S.; Furukawa, G.G.

    2016-07-01

    Hydrous pyrolysis experiments were performed on a recent microbial mat sample from Lagoa Vermelha, Brazil, to determine whether crude oil can be generated and expelled during artificial maturation of the Organic Matter (OM). The experiments were conducted at 280ºC, 330ºC and 350ºC during 20h. Two types of liquid pyrolysis products, assigned as free oil and bitumen, were isolated and analyzed. Free oil represents free organic phase released by hydrous pyrolysis, whereas bitumen was obtained by extraction from the solid pyrolysis residue with dichloromethane. Changes in the OM maturity were determined using Rock-Eval parameters and biomarker maturity ratios of original sample and pyrolysis products. Biomarker compositions of original sample extract and liquid pyrolysates were used for determination of dominant bacterial source. The yields of free oil and bitumen showed that a microbial mat OM has a high liquid hydrocarbons generation potential. Rock-Eval maturity parameters, biopolymer and biomarker compositions indicate a significant increase of the OM maturity during hydrous pyrolysis. At 280ºC the release of free, adsorbed and occluded compounds was observed; however, without a cracking of the OM. At 330ºC the generation of bitumen and free oil is mostly related to the OM cracking. The highest yield of free oil was recorded at this temperature. Distribution of biomarkers in the extract of original sample and liquid pyrolysates confirms cyanobacteria-dominated microbial mats, whereas the identification of long chain n-alkane series, with maximum at C26, and prominent C30 hop-17(21)-ene additionally suggest the presence of sulfate reducing bacteria. (Author)

  2. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  3. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru [Federal State Budget Educational Institution of Higher Education “Moscow Technological University” (Russian Federation); Klechkovskaya, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Orekhov, A. S.; Zubavichus, Ya. V. [National Research Centre “Kurchatov Institute” (Russian Federation); Domoroshchina, E. N.; Shegay, A. V. [Federal State Budget Educational Institution of Higher Education “Moscow Technological University” (Russian Federation)

    2016-03-15

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  4. Deployable structures using bistable reeled composites

    Science.gov (United States)

    Daton-Lovett, Andrew J.; Compton-Bishop, Quentin M.; Curry, Richard G.

    2000-06-01

    This paper describes an innovative, patented use of composite materials developed by RolaTube Technology Ltd. to make smart deployable structures. Bi-stable reeled composites (BRCs) can alternate between two stable forms; that of a strong, rigid structure and that of a compact coil of flat-wound material. Bi-stability arises as a result of the manipulation of Poisson's ratio and isotropy in the various layers of the material. BRCs are made of fiber- reinforced composite materials, most often with a thermoplastic matrix. A range of fibers and polymer matrices can be used according to the requirements of the operating environment. Samples of a BRC structure were constructed using layers of unidirectional, fiber-reinforced thermoplastic sheet with the layers at different angles. The whole assembly was then consolidated under conditions of elevated temperature and pressure. The properties of the BRC are described and the result of a series of experiments performed on the sample to determine the tensile strength of the BRC structure are reported. A full analysis using finite element methods is being undertaken in collaboration with the University of Cambridge, England. The first commercial use has been to fabricate boom and drive mechanisms for the remote inspection of industrial plant.

  5. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  6. Effect of plasticiser on properties of styrene-butadiene-styrene thermoplastic elastomers

    International Nuclear Information System (INIS)

    Norzalia, S.; Farid, A.S.; O'Brien, M.G.

    1999-01-01

    This study investigates the properties of plasticised styrene-butadiene-styrene thermoplastic elastomers for possible applications in pharmaceutical, medical and food industries. Unplasticised styrene-butadiene-styrene (USBS) materials: vector 8550-D and vector 4461-D, which are developmental materials introduced by Exxon, and blends of vector 8550-D with vector 4461-D were plasticised paraffinic type plasticisers plastol 172 and plastol 352. Shore A hardness, tensile stress at break, modulus at 100% strain, elongation at break and density values showed a decrease whereas flow properties such as melt flow index (MFI) increased considerably with increasing plasticiser concentration. The properties of the plasticised styrene-butadiene-styrene thermoplastic elastomers were compared to the USBS materials. (author)

  7. The role of water on the structure and mechanical properties of a thermoplastic natural block co-polymer from squid sucker ring teeth.

    Science.gov (United States)

    Rieu, Clément; Bertinetti, Luca; Schuetz, Roman; Salinas-Zavala, Cesar Ca; Weaver, James C; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2016-09-02

    Hard biological polymers exhibiting a truly thermoplastic behavior that can maintain their structural properties after processing are extremely rare and highly desirable for use in advanced technological applications such as 3D-printing, biodegradable plastics and robust composites. One exception are the thermoplastic proteins that comprise the sucker ring teeth (SRT) of the Humboldt jumbo squid (Dosidicus gigas). In this work, we explore the mechanical properties of reconstituted SRT proteins and demonstrate that the material can be re-shaped by simple processing in water and at relatively low temperature (below 100 °C). The post-processed material maintains a high modulus in the GPa range, both in the dry and the wet states. When transitioning from low to high humidity, the material properties change from brittle to ductile with an increase in plastic deformation, where water acts as a plasticizer. Using synchrotron x-ray scattering tools, we found that water mostly influences nano scale structure, whereas at the molecular level, the protein structure remains largely unaffected. Furthermore, through simultaneous in situ x-ray scattering and mechanical tests, we show that the supramolecular network of the reconstituted SRT material exhibits a progressive alignment along the strain direction, which is attributed to chain alignment of the amorphous domains of SRT proteins. The high modulus in both dry and wet states, combined with their efficient thermal processing characteristics, make the SRT proteins promising substitutes for applications traditionally reserved for petroleum-based thermoplastics.

  8. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  9. Microbial mat structures in profile: The Neoproterozoic Sonia Sandstone, Rajasthan, India

    Science.gov (United States)

    Samanta, Pradip; Mukhopadhyay, Soumik; Mondal, Anudeb; Sarkar, Subir

    2011-01-01

    Ubiquitous microorganisms, especially cyanobacteria preferably grow on the sediment surface thereby producing microbial mats. In the absence of grazers and bioturbators, microbial mat is a unique feature of the Proterozoic. Most of the papers so far published described a wide variety of bed surface microbial mat structures with rare illustrations from sections perpendicular to bedding. Nonetheless, bed surface exposures are relatively rare in rock records. This limitation of bed surface exposures in rock records suggest that a study of microbial mats in bed-across sections is needed. The 60 m thick coastal marine interval of the Sonia Sandstone Formation is bounded between two terrestrial intervals, a transgressive lag at the base and an unconformity at the top, and has been chosen for exploration of microbial mat structures in bed-across sections. A wide variety of microbial mat-induced structures in bed-across sections are preserved within the coastal interval of the Sonia Sandstone. Though many of these structures are similar in some aspects with bed surface structures, some of those presented here are new. The palaeogeographic range of these microbial structures extends from supralittoral to neritic. Diagenetic alterations of microbial mats produce pyrite and those zones are suitable for the preservation of microbial remains. SEM and EDAX analyses show fossil preservation of filamentous microbial remains that confirm the presence of microbial mats within the coastal interval of the Sonia Sandstone. Effects of proliferation of microbial mats in the siliciclastic depositional setting are numerous. The mat-cover on sediment surfaces hinders reworking and/or erosion of the sediments thereby increases the net sedimentation rate. Successive deposition and preservation of thick microbial mat layer under reducing environments should have a great potential for hydrocarbon production and preservation and therefore these Proterozoic formations could be a target for

  10. Thermoplastic vulcanizate nanocomposites based on polypropylene/ethylene propylene diene terpolymer (PP/EPDM) prepared by reactive extrusion

    Science.gov (United States)

    Mirzadeh, Amin

    For this work, different grades of polypropylene-g-maleic anhydride polymers were chosen to elucidate the effect of compatibilizer on the nanoclay dispersion level in thermoplastic phase. X-ray diffraction (XRD) patterns along with transmission electron microscopy (TEM) and scanning electron microscope (SEM) micrographs confirmed that prepared PP nanocomposites ranged from intercalated structure to a coexistence of intercalated tactoids and exfoliated layers namely “partially exfoliated” nanocomposite. Among various factors affecting the compatibilizer performance, it is shown that only the relaxation behaviour of compatibilizer correlates directly with the nanocomposites characterization results; higher relaxation times of the compatibilizer are associated with better dispersion of nanoclay. To study the co-continuity development of the nonreactive blends, EPDM and the mentioned PP nanocomposites at various compositions were melt blended using an internal mixer. Based on continuity measurements of TPEs and TPE nanocomposites for both thermoplastic and rubber phase, it is shown that the presence of nanoclay decreases the co-continuity composition range and alters its symmetrical feature. However, this effect is more pronounced in the intercalated nanocomposites than in partially exfoliated nanocomposites. It seems that better nanoclay dispersion limits the reduction of the thermoplastic phase continuity in a manner that the continuity index of the thermoplastic phase for partially exfoliated TPE nanocomposite prepared at high EPDM content (i.e. at 70 wt%) is greater than that of corresponding TPE without nanoclay. According to these results, it is possible to shift to higher EPDM content using partially exfoliated system before formation of matrix-dispersed particle structure which limits thermoplastic vulcanizate production. This should be mentioned that gamma irradiation was carried out in order to fix the EPDM morphology to estimate the continuity of PP

  11. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    Science.gov (United States)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  12. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    of meiosis is based largely on indirect observations, and a more precise investigation of these events was required to define the interaction between the mat1 genes. Here we resolve this issue using synthetic pheromones and P/M strains with mutations in either mat1-Pc or mat1-Mc. Our results suggest a model...... in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm...

  13. Water desorption kinetics of polymer composites with cellulose fibers as filler

    Czech Academy of Sciences Publication Activity Database

    Vacková, Taťana; Kroisová, D.; Špatenka, P.

    2009-01-01

    Roč. 48, č. 1 (2009), s. 68-76 ISSN 0022-2348 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer composites * water desorption kinetics * thermoplastic matrix Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.716, year: 2009

  14. Storage of yerba maté in controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Sarah Lemos Cogo Prestes

    2014-04-01

    Full Text Available The aim of this study was to evaluate the effect of controlled atmosphere in the change of color, chlorophyll degradation and phenolic compounds concentration in yerba maté thickly ground (“cancheada” and thinly milled (“socada”. Yerba maté samples from the towns of Arvorezinha (RS - Brazil and São Mateus do Sul (PR - Brazil were stored in four levels of oxygen (1, 3, 6 and 20.9kPa of O2 and four levels of carbon dioxide (0, 3, 6 and 18kPa of CO2 and then were analyzed, after nine months of storage. According to the results, the O2 partial pressure reduction decreased the loss of green coloration, kept a higher content of chlorophylls and of total phenolic compounds. In relation to the different levels of CO2, a response as remarkable as O2 was not observed. The yerba maté that was thickly ground (“cancheada” presented a better storage potential than the one thinly milled (“socada” in the storage with O2 and with CO2. The 1kPa of O2 condition kept the yerba maté greener and with a higher content of chlorophylls and of total phenolic compounds after nine months of storage. The CO2 partial pressure kept the yerba maté coloration greener and with a higher content of chlorophylls and of total phenolic compounds, regardless of the level used, in the maté from both cultivation areas.

  15. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  16. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  17. Critique de la dématérialisation

    OpenAIRE

    Robert , Pascal

    2004-01-01

    International audience; La notion de " dématérialisation " constitue actuellement l'une des pièces maîtresses de l'idéologie de la communication. Or, après enquête, nous constatons que la dématérialisation ne se rencontre ni dans les TIC ni dans les réseaux où se dévoilent en revanche un nouveau mode de matérialisation ainsi qu'un processus de virtualisation par changement d'échelle. Nous nous interrogeons donc sur la fonction sociale et politique que cette notion joue dans les discours qui l...

  18. Community Structure and Activity of a Highly Dynamic and Nutrient-Limited Hypersaline Microbial Mat in Um Alhool Sabkha, Qatar

    KAUST Repository

    Al-Thani, Roda

    2014-03-21

    The Um Alhool area in Qatar is a dynamic evaporative ecosystem that receives seawater from below as it is surrounded by sand dunes. We investigated the chemical composition, the microbial activity and biodiversity of the four main layers (L1–L4) in the photosynthetic mats. Chlorophyll a (Chl a) concentration and distribution (measured by HPLC and hyperspectral imaging, respectively), the phycocyanin distribution (scanned with hyperspectral imaging), oxygenic photosynthesis (determined by microsensor), and the abundance of photosynthetic microorganisms (from 16S and 18S rRNA sequencing) decreased with depth in the euphotic layer (L1). Incident irradiance exponentially attenuated in the same zone reaching 1% at 1.7-mm depth. Proteobacteria dominated all layers of the mat (24%–42% of the identified bacteria). Anoxygenic photosynthetic bacteria (dominated by Chloroflexus) were most abundant in the third red layer of the mat (L3), evidenced by the spectral signature of Bacteriochlorophyll as well as by sequencing. The deep, black layer (L4) was dominated by sulfate reducing bacteria belonging to the Deltaproteobacteria, which were responsible for high sulfate reduction rates (measured using 35S tracer). Members of Halobacteria were the dominant Archaea in all layers of the mat (92%–97%), whereas Nematodes were the main Eukaryotes (up to 87%). Primary productivity rates of Um Alhool mat were similar to those of other hypersaline microbial mats. However, sulfate reduction rates were relatively low, indicating that oxygenic respiration contributes more to organic material degradation than sulfate reduction, because of bioturbation. Although Um Alhool hypersaline mat is a nutrient-limited ecosystem, it is interestingly dynamic and phylogenetically highly diverse. All its components work in a highly efficient and synchronized way to compensate for the lack of nutrient supply provided during regular inundation periods.

  19. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    Science.gov (United States)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-08-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats.

  20. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    International Nuclear Information System (INIS)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-01-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats

  1. Matting Of Hair Due To ′Sunsilk′ Shampoo

    Directory of Open Access Journals (Sweden)

    Nadeem Mohd

    1995-01-01

    Full Text Available Matting of hair been reported from time to time due to treatment of hair with detergent, shampoos, waving lotions, setting lotions and bleaches. A case of matting of hairs in a young girl due to a change in the brand of shampoo is reported.

  2. Regulation of electron transfer processes affects phototrophic mat structure and activity

    OpenAIRE

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located ne...

  3. Modifying an Active Compound’s Release Kinetic Using a Supercritical Impregnation Process to Incorporate an Active Agent into PLA Electrospun Mats

    Directory of Open Access Journals (Sweden)

    Carol López de Dicastillo

    2018-04-01

    Full Text Available The main objective of this work was to study the release of cinnamaldehyde (CIN from electrospun poly lactic acid (e-PLA mats obtained through two techniques: (i direct incorporation of active compound during the electrospinning process (e-PLA-CIN; and (ii supercritical carbon dioxide (scCO2 impregnation of CIN within electrospun PLA mats (e-PLA/CINimp. The development and characterization of both of these active electrospun mats were investigated with the main purpose of modifying the release kinetic of this active compound. Morphological, structural, and thermal properties of these materials were also studied, and control mats e-PLA and e- PLA CO 2 were developed in order to understand the effect of electrospinning and scCO2 impregnation, respectively, on PLA properties. Both strategies of incorporation of this active compound into PLA matrix resulted in different morphologies that influenced chemical and physical properties of these composites and in different release kinetics of CIN. The electrospinning and scCO2 impregnation processes and the presence of CIN altered PLA thermal and structural properties when compared to an extruded PLA material. The incorporation of CIN through scCO2 impregnation resulted in higher release rate and lower diffusion coefficients when compared to active electrospun mats with CIN incorporated during the electrospinning process.

  4. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific.

    Science.gov (United States)

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth.

  5. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific.

    Directory of Open Access Journals (Sweden)

    Dominik Schneider

    Full Text Available On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰. Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster, which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria, Chloroflexi (Anaerolineae and Caldilineae, purple non-sulfur bacteria (Alphaproteobacteria, purple sulfur bacteria (Chromatiales, anaerobic Bacteroidetes (Marinilabiacae, Nitrospirae (OPB95, Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B with increasing depth.

  6. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    Science.gov (United States)

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2017-09-13

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  7. Advances and challenges of wood polymer composites

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    Wood flour and fiber have been blended with thermoplastic such as polyethylene, polypropylene, polylactic acid and polyvinyl chloride to form wood plastic composites (WPC). WPCs have seen a large growth in the United States in recent years mainly in the residential decking market with the removal of CCA treated wood decking from residential markets. While there are...

  8. Chemicals having estrogenic activity can be released from some bisphenol A-free, hard and clear, thermoplastic resins.

    Science.gov (United States)

    Bittner, George D; Denison, Michael S; Yang, Chun Z; Stoner, Matthew A; He, Guochun

    2014-12-04

    Chemicals that have estrogenic activity (EA) can potentially cause adverse health effects in mammals including humans, sometimes at low doses in fetal through juvenile stages with effects detected in adults. Polycarbonate (PC) thermoplastic resins made from bisphenol A (BPA), a chemical that has EA, are now often avoided in products used by babies. Other BPA-free thermoplastic resins, some hypothesized or advertised to be EA-free, are replacing PC resins used to make reusable hard and clear thermoplastic products such as baby bottles. We used two very sensitive and accurate in vitro assays (MCF-7 and BG1Luc human cell lines) to quantify the EA of chemicals leached into ethanol or water/saline extracts of fourteen unstressed or stressed (autoclaving, microwaving, UV radiation) thermoplastic resins. Estrogen receptor (ER)-dependent agonist responses were confirmed by their inhibition with the ER antagonist ICI 182,780. Our data showed that some (4/14) unstressed and stressed BPA-free thermoplastic resins leached chemicals having significant levels of EA, including one polystyrene (PS), and three Tritan™ resins, the latter reportedly EA-free. Exposure to UV radiation in natural sunlight resulted in an increased release of EA from Tritan™ resins. Triphenyl-phosphate (TPP), an additive used to manufacture some thermoplastic resins such as Tritan™, exhibited EA in both MCF-7 and BG1Luc assays. Ten unstressed or stressed glycol-modified polyethylene terephthalate (PETG), cyclic olefin polymer (COP) or copolymer (COC) thermoplastic resins did not release chemicals with detectable EA under any test condition. This hazard survey study assessed the release of chemicals exhibiting EA as detected by two sensitive, widely used and accepted, human cell line in vitro assays. Four PC replacement resins (Tritan™ and PS) released chemicals having EA. However, ten other PC-replacement resins did not leach chemicals having EA (EA-free-resins). These results indicate that PC

  9. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  10. Flexible and freestanding supercapacitor based on nanostructured poly(m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities

    Science.gov (United States)

    Choudhury, Arup; Dey, Baban; Sinha Mahapatra, Susanta; Kim, Doo-Won; Yang, Kap-Seung; Yang, Duck-Joo

    2018-04-01

    Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.

  11. Morphological Parameters in Relation to the Electromagnetic Properties of Microcellular Thermoplastic Polyurethane Foam in X-Band Frequency Ranges

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Moeini

    2017-04-01

    Full Text Available Microcellular thermoplastic polyurethane foams are examined as absorbing materials in the X-band (8.2-12.4 GHz frequency range by means of experiment. In this work, we aim to establish relationships between foam morphology including cell size and air volume fraction and electromagnetic properties including absorption, transmission and reflection quality. Nanocomposites based on thermoplastic polyurethane containing carbon black were prepared by coagulation method. In this procedure 15 wt% carbon black-containing nanocomposite was converted to microcellular foams using batch foaming process and supercritical carbon dioxide as physical foaming agent. The morphology of the foams was evaluated by scanning electron microscopy. S-parameters of the samples were measured by a vector network analyzer (VNA and the effect of morphological parameters such as cell size and air volume fraction on the absorbing properties was investigated. We also established structure/properties relationships which were essential for further optimizations of the materials used in the construction of radar absorbing composites. Foaming reduced the percolation threshold of the nanocomposites due to the reduction in the average distance between nanoparticles. Foaming and dielectric constant reduction dropped the reflection percentage significantly. The increase in air volume fraction in the foam increased absorption per its weight, because of multiple scattering in composite media. The sensitivity of electromagnetic wave toward the variation of cell size is strongly weaker than that toward the variation of air volume fraction. Electromagnetic properties of the microcellular foams deviated a little from effective medium theories (EMTs. Air volume fraction of the cells was a function of cell size and smaller cells showed higher absorption.

  12. MAT@USC Candidates and Latino English Language Learners

    Science.gov (United States)

    Lomeli, Cynthia Leticia

    2012-01-01

    The purpose of this study was to further understand the perceptions of MAT@USC teacher candidates and how their perceptions and previous experiences affect the educational experiences of Latino English language learners. Three questions were developed to guide this study: (1) What are the perceptions of MAT@USC candidates in selected courses…

  13. Application of extrusion-cooking for processing of thermoplastic starch (TPS)

    NARCIS (Netherlands)

    Moscicki, Leszek; Mitrus, Marcin; Wojtowicz, Agnieszka; Oniszczuk, Tomasz; Rejak, Andrzej; Janssen, Leon; Mościcki, Leszek

    Thermoplastic starch (TPS) as fully biodegradable biopolymer appeared to be one of the most useful and promising materials for packaging purpose. To obtain TPS thermal and mechanical processing should disrupt semi-crystalline starch granules. As the melting temperature of pure starch is

  14. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  15. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    Science.gov (United States)

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  16. Development of thermo-plastic heating and compaction facility

    International Nuclear Information System (INIS)

    Ko, Dae Hak; Lim, Suk Nam

    1998-01-01

    Low- and intermediate-level radioactive wastes consist of spent resin, spent filter, concentrated waste and dry active waste(DAW) and they are solidified or packaged into drums or high integrated containers(HICs). DAWs occupy 50 percent of all low- and intermediate-level radioactive wastes generated from nuclear power plants in Korea. Incinerable wastes in the DAWs are about 60 percent. Therefore, it is very important for us to reduce the volume of incinerable wastes in DAWs. Experience of supercompaction turned out that thermo-plastic wastes have a swelling effect after supercompaction process due to their repulsive power. And the thermo-plastic heating and compaction facility has been developed by KEPCO. In conclusion, heating and compaction facility can reduce the volume of DAWs as well as upgrade the quality of treated wastes, because the swelling effect by repulsive power after compaction is removed, final wastes form the shape of block and they have no free-standing water in the wastes. Plan for practical use is that this facility will be installed in other nuclear power plants in Korea in 1999. (Cho, G. S.). 1 tab., 2 figs

  17. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    Science.gov (United States)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  18. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  19. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  20. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Known Organic HAP Emitted From the... HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory Organic HAP/chemical name(CAS No.) Acet-aldehyde (75-07-0) Acrylo-nitrile (107-13-1) 1,3 Buta-diene (106-99-0...

  1. Standard practice for infrared flash thermography of composite panels and repair patches used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes a procedure for detecting subsurface flaws in composite panels and repair patches using Flash Thermography (FT), in which an infrared (IR) camera is used to detect anomalous cooling behavior of a sample surface after it has been heated with a spatially uniform light pulse from a flash lamp array. 1.2 This practice describes established FT test methods that are currently used by industry, and have demonstrated utility in quality assurance of composite structures during post-manufacturing and in-service examinations. 1.3 This practice has utility for testing of polymer composite panels and repair patches containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricate...

  2. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.

    Science.gov (United States)

    Kim, Si-Eun; Zhang, Cong; Advincula, Abigail A; Baer, Eric; Pokorski, Jonathan K

    2016-04-13

    Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.

  3. Thermal Characterization of Modified Tacca Leontopetaloides Starch and Natural Rubber Based Thermoplastic Elastomer

    International Nuclear Information System (INIS)

    Ainatul Mardhiah Mohd Amin; Nur Shahidah Ab Aziz; Nurul Shuhada Mohd Makhtar; Miradatul Najwa Mohd Rodhi; Suhaila Mohd Sauid

    2014-01-01

    The purpose of this study is to identify the potential of Tacca leontopetaloides starch as bio-based thermoplastic elastomers, TPEs. Starch based polymer had been recognized to have highly potential in replace existing source of conventional elastomeric polymer. The modification process of blending starch with natural rubber, plasticizers, additives, and filler contribute to the enhancement and improvement for the properties of starch in order to produce biopolymers by approaching the properties of TPEs. Thermal properties of starch based thermoplastic was studied to evaluate the decomposition and degradation of the samples by using Thermogravimetric Analysis, TGA while the properties of endothermic reactions of the samples were thermally analyzed via Differential Scanning Calorimetry, DSC. From the analysis, it was found that the thermal properties of samples were revealed by recognizing GM-2 (green materials, GM) has high thermal resistance towards high temperature up to 480.06 degree Celsius with higher amount of residue which is 4.97 mg compared to other samples. This indicates GM-2 comprises of superior combination of ratio between natural rubbers and glycerol (plasticizer) in purpose of approaching the properties of Thermoplastic Elastomers, TPEs. (author)

  4. Production of radiation crosslinked polymeric compositions using diacetylenes

    International Nuclear Information System (INIS)

    Patel, G.N.

    1979-01-01

    Crosslinked polymeric compositions, useful as electrical insulators, heat shrinkable packaging, and lightweight foam plastics, are described. The crosslinked polymeric compositions are produced by admixing a diacetylene monomer, oligomer, polymer or mixture thereof, wherein the monomer has the formula, RNHCO-O-CH 2 -C==C-C==C-CH- 2 -O-OCNHR' in which R and R' are the same or different and are alkyl containing 1 to 20 carbon atoms, with a thermoplastic crosslinkable polymer and then subjecting the resulting mixture to actinic radiation

  5. Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska

    Science.gov (United States)

    V. Yadama; Eini Lowell; N. Petersen; D. Nicholls

    2009-01-01

    The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle-killed spruce for wood-plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant...

  6. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  7. The development of stromatolitic features from laminated microbial mats in the coastal sabkha of Abu Dhabi (UAE)

    Science.gov (United States)

    Paul, Andreas; Lessa Andrade, Luiza; Dutton, Kirsten E.; Sherry, Angela; Court, Wesley M.; Van der Land, Cees; Lokier, Stephen W.; Head, Ian M.

    2017-04-01

    Stromatolitic features are documented from both marine and terrestrial environments worldwide. These features form through a combination of trapping and binding of allochthonous grains, and through microbially mediated and/or controlled precipitation of carbonate minerals. The combined effects of these processes result in the continuous vertical and lateral growth of stromatolites. While the Abu Dhabi coastal sabkha is well known for a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats, no stromatolitic features have been reported from this area so far. In this study, we report evidence for stromatolitic features from the coastal sabkha of Abu Dhabi, based on observations in an intertidal but permanently submerged pool. This pool lies embedded within the laminated microbial mat zone, and is marked by the development of true laminated stromatolite at its margins and microbial build-ups at its centre. In order to characterise processes that lead to the formation of these stromatolitic features, and to develop a conceptual model that describes their development in the context of variations in sea level, tidal energy and other environmental factors, we employ a multitude of environmental, sedimentological, mineralogical and geochemical methods. These methods include the analysis of water data in terms of temporal variations in temperature, salinity, dissolved oxygen and water level, the analysis of petrographic thin sections of both lithified and unlithified features as well as an analysis of the stromatolites' mineralogical composition, and the amounts of incorporated organic carbon and calcium carbonate. Initial results suggest that the development of the observed stromatolitic features in the coastal sabkha of Abu Dhabi is the result of a complex interplay between simultaneous erosion of laminated microbial mat, and biotic/abiotic lithification processes. Initially, the location of this pool was characterised by

  8. Method of forming composite fiber blends and molding same

    Science.gov (United States)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  9. Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Takahashi, Yutaka; Hamanaka, Ippei; Shimizu, Hiroshi

    2012-07-01

    This study investigated the effect of thermal shock on the mechanical properties of injection-molded thermoplastic denture base resins. Four thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were tested. Specimens of each denture base material were fabricated according to ISO 1567 and were either thermocycled or not thermocycled (n = 10). The flexural strength at the proportional limit (FS-PL), the elastic modulus and the Charpy impact strength of the denture base materials were estimated. Thermocycling significantly decreased the FS-PL of one of the polyamides and the PMMA and it significantly increased the FS-PL of one of the polyamides. In addition, thermocycling significantly decreased the elastic modulus of one of the polyamides and significantly increased the elastic moduli of one of the polyamides, the polyethylene terephthalate, polycarbonate and PMMA. Thermocycling significantly decreased the impact strength of one of the polyamides and the polycarbonate. The mechanical properties of injection-molded thermoplastic denture base resins changed after themocycling.

  10. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  11. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  12. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  13. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    Science.gov (United States)

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  14. Mass spectrometric and chemometric studies of thermoplastic properties of coals. 1. Chemometry of conventional, solvent swelling and extraction data of coals

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, A.; Czajkowska, S.; Moszynski, J.; Schulten, H.-R. (Polish Academy of Sciences, Gliwice (Poland). Inst. of Coal Chemistry)

    Twenty-seven coals from Carboniferous seams in Poland were studied with the aim to find links between thermoplastic properties and chemical characteristics of the coals. Three sets of data were obtained for all the coals: (1) thermoplastic properties measured using the Gieseler plastometer; (2) yields of pyridine extractables and swelling measurements for pyridine residues; (3) ultimate, proximate, and petrographic analyses. The three data sets were evaluated using chemometric techniques with the purpose of looking for significant correlations between all the data. Temperature of softening is a linear regression of pyridine extractables and hydrogen content in coals as well as of swelling data. Temperatures of maximum fluidity and resolidification are correlated with each other and with oxygen, exinite, and moisture contents of the coals as well as with the swelling data. It has been concluded that temperature of softening is a colligative property and indicates a phase transition resulting in an increase of thermal induced mobility of coal material; the energy demand of the transition is dependent on contents of bulk components of coal system that were specified in this study. Temperatures of maximum fluidity and resolidification appear to have the same chemical background; i.e. the temperatures depend on the content of the same structural units or components. However, the means of chemical characterization of coal material used in this study were not capable of identifying them. Volatile matter and petrographic composition showed rather limited value as predictive means for some (T{sub F(max)} and T{sub R}) and no predictive value for the other thermoplastic properties. 20 refs., 1 fig., 5 tabs.

  15. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  16. Electrospun Fibers for Composites Applications

    Science.gov (United States)

    2014-02-01

    in traditional woven mat composites. Nanofibrous interlayers were used to increase the impact and shear performance of a prepregged carbon fiber...Nylon 66 Nanofibrilmat Interleaved Carbon/Epoxy Laminates . Polymer Composites 2011, 32, 1781–1789. 21 13. Chen, Q.; Zhang, L.; Rahman, A.; Zhou...Resistance in Laminated Composites With Electrospun Nano-Interlayers. Comp. Sci. Tech. 2008, 68, 673– 683. 15. Zhang, J.; Lin, T.; Wang, X. Electrospun

  17. Calcium dynamics in microbialite-forming exopolymer-rich mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific.

    Science.gov (United States)

    Ionescu, D; Spitzer, S; Reimer, A; Schneider, D; Daniel, R; Reitner, J; de Beer, D; Arp, G

    2015-03-01

    Microbialite-forming microbial mats in a hypersaline lake on the atoll of Kiritimati were investigated with respect to microgradients, bulk water chemistry, and microbial community composition. O2, H2S, and pH microgradients show patterns as commonly observed for phototrophic mats with cyanobacteria-dominated primary production in upper layers, an intermediate purple layer with sulfide oxidation, and anaerobic bottom layers with sulfate reduction. Ca(2+) profiles, however, measured in daylight showed an increase of Ca(2+) with depth in the oxic zone, followed by a sharp decline and low concentrations in anaerobic mat layers. In contrast, dark measurements show a constant Ca(2+) concentration throughout the entire measured depth. This is explained by an oxygen-dependent heterotrophic decomposition of Ca(2+)-binding exopolymers. Strikingly, the daylight maximum in Ca(2+) and subsequent drop coincides with a major zone of aragonite and gypsum precipitation at the transition from the cyanobacterial layer to the purple sulfur bacterial layer. Therefore, we suggest that Ca(2+) binding exopolymers function as Ca(2+) shuttle by their passive downward transport through compression, triggering aragonite precipitation in the mats upon their aerobic microbial decomposition and secondary Ca(2+) release. This precipitation is mediated by phototrophic sulfide oxidizers whose action additionally leads to the precipitation of part of the available Ca(2+) as gypsum. © 2014 John Wiley & Sons Ltd.

  18. Hemp yarn reinforced composites – III. Moisture content and dimensional changes

    DEFF Research Database (Denmark)

    Madsen, Bo; Hoffmeyer, Preben; Lilholt, Hans

    2012-01-01

    Based on a comprehensive set of experimental data it is demonstrated that the moisture properties of aligned hemp fibre yarn/thermoplastic matrix composites are showing low moisture sorption capacity and low dimensional changes. Using a reference humidity of 65% RH, and a common span of ambient...

  19. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wufeng; Zhang, Xiazhi; Wu, Keke; Liu, Xiaoyan; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Zhou, Changren

    2016-12-01

    A simple but straightforward approach was reported to prepare fiber mats modified with fibronectin (Fn) protein for endothelial cells activity study. Based on the self-polymerization and strong adhesion feature of dopamine, poly L-Lactic acid (PLLA) fibers mat was modified via simply immersing them into dopamine solution for 16 h. Subsequently, Fn was immobilized onto the fiber mats surface by the coupling reactive polydopamine (PDA) layer and Fn. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to determine the chemical compositions of fiber mats surface, which confirmed the successful immobilization of PDA and Fn molecules on the fiber surface. Scanning electronic microscopy (SEM) was used to observe the surface morphology changes after modification with PDA and Fn. The data of water contact angle showed that the hydrophilicity of the fiber mats was improved after surface modification. The data of in vitro cell culture proved that the PDA and Fn modified surface significantly enhanced the adhesion, proliferation and cell activity of endothelial cells on the fiber mats. And the release of tumor necrosis factor-α (TNF-α) by endothelial cells on the modified surface was suppressed compared to that on culture plate and PLLA film at 2 and 4 days, while the secretion of interleukin-1β (IL-1β) was increased compared to that on culture plate and PLLA film at 2 days. - Highlights: • Fibronectin (Fn) was grafted on PLLA fiber surface mediated by polydopamine coating. • Fn modified PLLA fiber enhanced the adhesion, proliferation of endothelial cells. • Fn and polydopamine modified PLLA fiber could adjust the release of inflammatory factor.

  20. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications

    Science.gov (United States)

    Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.

    2012-07-01

    Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.

  1. Flakeboard thickness swelling. Part I, Stress relaxation in a flakeboard mat

    Science.gov (United States)

    R. L. Geimer; J. H. Kwon; J. Bolton

    1998-01-01

    The steam injection schedule best suited for dimensionally stabilizing a flake mat is one in which steam treatment is initiated before the press is closed and is continued at least until the mat attains target thickness. Experiments showed that resinless mats treated with 20 sec of steam at 600 kPa had maximum thickness swelling of 205% compared to 350% for resinless...

  2. THERMOPLASTIC MATRIX SELECTION FOR FIBRE METAL LAMINATE USING FUZZY VIKOR AND ENTROPY MEASURE FOR OBJECTIVE WEIGHTING

    Directory of Open Access Journals (Sweden)

    N. M. ISHAK

    2017-10-01

    Full Text Available The purpose of this study is to define the suitable thermoplastic matrix for fibre metal laminate for automotive front hood utilisation. To achieve the accurate and reliable results, the decision making process involved subjective and objective weighting where the combination of Fuzzy VIKOR and entropy method have been applied. Fuzzy VIKOR is used for ranking purpose and entropy method is used to determine the objective weighting. The result shows that polypropylene is the best thermoplastic matrix for fibre metal laminate by satisfying two compromise solutions with validation using least VIKOR index value scored 0.00, compared to low density polyethylene, high density polyethylene and polystyrene. Through a combination of Fuzzy VIKOR and entropy, it is proved that this method gives a higher degree of confidence to the decision maker especially for fibre metal laminate thermoplastic matrix selection due to its systematic and scientific selection method involving MCDM.

  3. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  4. Carbon fiber content measurement in composite

    Science.gov (United States)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  5. MICROBIAL MATS - A JOINT VENTURE

    NARCIS (Netherlands)

    VANGEMERDEN, H

    Microbial mats characteristically are dominated by a few functional groups of microbes: cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria, and sulfate-reducing bacteria. Their combined metabolic activities result in steep environmental microgradients, particularly of oxygen and

  6. Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin.

    Science.gov (United States)

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-10-01

    This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.

  7. Evolution of umbilicals in Brazil: optimizing deepwater umbilical applications with thermoplastic hoses and steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Neto, Mauro Del [DuPont do Brasil S.A., Barueri, SP (Brazil)

    2008-07-01

    Subsea umbilicals in the past 25 years have evolved in parallel with other subsea oil and gas technologies, as the search for hydrocarbons needed to drive the global economy has led offshore exploration and development companies to seek reserves ever-farther from shore in water thousands of meters deep. Relegated to little more than afterthought status before the push into deep water, modern umbilicals have now become crucial components linking deep water producers to their subsea wells, controlling subsea production systems through hydraulic and electrical power and injecting production chemicals for corrosion-, scale-, and hydrate-inhibition at subsea well heads. Particularly in subsea developments involving several deep water wells, umbilicals today are integral to both the production-system design and the chosen operating strategy. Failure of an umbilical linking a subsea well head in deep water to a host production facility can inflict severe economic consequences upon an operator by impairing production operations or halting production altogether. The additional cost of repairing or replacing a failed umbilical can run into the millions of dollars. As offshore oil and gas production has moved into ever-deeper water, umbilical manufacturers have begun introducing new stronger materials to handle the inherently higher pressures and temperatures. Today, two types of construction are used for fluid conduits in umbilical systems deployed in deep water: thermoplastic hoses and steel tubes. Steel tubes are generally more expensive than thermoplastic hoses, relatively stiff and considered to have high tensile strength, while thermoplastic hoses are extremely flexible and exhibit lower tensile strength. This lower tensile strength of the hoses may be compensated by including steel wire armoring in the umbilical. This also provides the added benefits of additional mechanical protection compared with the equivalent unarmored steel-tubes umbilicals. When either

  8. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

    Science.gov (United States)

    Kohsari, Iraj; Shariatinia, Zahra; Pourmortazavi, Seied Mahdi

    2016-10-01

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofiber mats loaded with 3, 5 and 10% (w/w) of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs, ∼60nm diameter) were developed by electrospinning technique. The CS-PEO-GA-3% ZIF-8 NPs crosslinked with glutaraldehyde (GA) vapor was also prepared. The electrospun mats were characterized by various analysis including FE-SEM, EDAX, elemental mapping, FT-IR, contact angle, TGA/DSC as well as tensile strength analysis. The nanofibers had average diameters within the range ∼70-120nm. Antimicrobial activities of the CS-PEO and CS-PEO-3% ZIF-8 mats were evaluated by the viable cell-counting method for determining their effectiveness in reducing or halting the growth of Staphylococcus aureus and Escherichia coli bacteria so that the CS-PEO mat containing 3% ZIF-8 revealed 100% bactericidal activity against both kinds of bacteria. The crosslinked CS-PEO-GA-3% ZIF-8 NPs sample was less thermally stable but more hydrophilic than its related non-crosslinked mat reflecting there was no need to crosslink the fibers using a chemical crosslinker having adverse effects. The highest hydrophobicity and appropriate thermal and tensile properties of CS-PEO-3% ZIF-8 NPs among those of the mats including 5 and 10% ZIF-8 NPs suggested that the mentioned mat is the most suitable sample for food coating applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials

    Science.gov (United States)

    Nettles, A. T

    2000-01-01

    As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.

  10. Carbon cycling and calcification in hypersaline microbial mats

    OpenAIRE

    Ludwig, Rebecca

    2004-01-01

    Phototrophic microbial mats are laminated aggregations of microorganisms that thrive in extreme and oligotrophic environments. Primary production rates by oxygenic phototrophs are extremely high. Primary producers supply heterotrophic mat members with organic carbon, which in turn regenerate CO2 needed for autotrophic carbon fixation. Another potential source of CO2 is calcification, which is known to shift the carbonate equilibrium towards CO2. This thesis investigated the carbon cycle of mi...

  11. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Lai, Chuilin; Zhou, Zhengping; Zhang, Lifeng; Wang, Xiaoxu; Zhou, Qixin; Zhao, Yong; Wang, Yechun; Wu, Xiang-Fa; Zhu, Zhengtao; Fong, Hao

    2014-02-01

    Mechanically flexible mats consisting of electrospun carbon nanofibers (ECNFs) were prepared by first electrospinning aqueous mixtures containing a natural product of alkali lignin together with polyvinyl alcohol (PVA) into composite nanofiber mats followed by stabilization in air and carbonization in an inert environment. Morphological and structural properties, as well as specific surface area, total pore volume, average pore size, and pore size distribution, of the lignin-based ECNF mats were characterized; and their electrochemical performances (i.e., capacitive behaviors) were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The lignin-based ECNF mats exhibited outstanding performance as free-standing and/or binder-free electrodes of supercapacitors. For example, the ECNFs made from the composite nanofibers with mass ratio of lignin/PVA being 70/30 (i.e., ECNFs (70/30)) had the average diameter of ∼100 nm and the Brunauer-Emmett-Teller (BET) specific surface area of ∼583 m2 g-1. The gravimetric capacitance of ECNFs (70/30) electrode in 6 M KOH aqueous electrolyte exhibited 64 F g-1 at current density of 400 mA g-1 and 50 F g-1 at 2000 mA g-1. The ECNFs (70/30) electrode also exhibited excellent cycling durability/stability, and the gravimetric capacitance merely reduced by ∼10% after 6000 cycles of charge/discharge.

  12. Thermodynamics and phase transformations the selected works of Mats Hillert

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    This book is a compendium of Mat Hillert's publications. Mat Hillert is a world specialist in metal alloy at the origin of a universal computing code used to calculate the diagrams of phase. This work is in English.

  13. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  14. USE OF PHOSPHOLIPID FATTY ACID PROFILES TO STUDY THE MICROBIAL COMPOSITION OF CYANOBACTERIAL MATS IN CABO ROJO SOLAR SALTERNS

    Science.gov (United States)

    The Cabo Rojo Saltern located in the West side of Puerto Rico is a hypersaline ecosystem that consists of crystallizer ponds surrounded by series of cyanobacterial mats. Although this ecosystem harbors a variety of microorganisms not much is known about their identity and relati...

  15. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    Science.gov (United States)

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  16. Forming of shape memory composite structures

    DEFF Research Database (Denmark)

    Santo, Loredana; Quadrini, Fabrizio; De Chiffre, Leonardo

    2013-01-01

    A new forming procedure was developed to produce shape memory composite structures having structural composite skins over a shape memory polymer core. Core material was obtained by solid state foaming of an epoxy polyester resin with remarkably shape memory properties. The composite skin consisted...... of a two-layer unidirectional thermoplastic composite (glass filled polypropylene). Skins were joined to the foamed core by hot compression without any adhesive: a very good adhesion was obtained as experimental tests confirmed. The structure of the foam core was investigated by means of computer axial...... tomography. Final shape memory composite panels were mechanically tested by three point bending before and after a shape memory step. This step consisted of a compression to reduce the panel thickness up to 60%. At the end of the bending test the panel shape was recovered by heating and a new memory step...

  17. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain)

    DEFF Research Database (Denmark)

    Jonkers, Henk M.; Ludwig, Rebecca; De Wit, Rutger

    2003-01-01

    The benthic microbial mat community of the only permanent hypersaline natural inland lake of Western Europe, ‘La Salada de Chiprana’, northeastern Spain, was structurally and functionally analyzed. The ionic composition of the lake water is characterized by high concentrations of magnesium...

  18. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    Energy Technology Data Exchange (ETDEWEB)

    Varela, Juan Carlos; Velo, Marcos [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad Santiago de Compostela, Santiago de Compostela (Spain); Espinar, Eduardo; Llamas, Jose Maria [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad de Sevilla (Spain); Rúperez, Elisa; Manero, Jose Maria [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Javier Gil, F., E-mail: francesc.xavier.gil@upc.edu [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2014-09-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires.

  19. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    International Nuclear Information System (INIS)

    Varela, Juan Carlos; Velo, Marcos; Espinar, Eduardo; Llamas, Jose Maria; Rúperez, Elisa; Manero, Jose Maria; Javier Gil, F.

    2014-01-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires

  20. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat.

    Science.gov (United States)

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m -2 s -1 , and UV light (97% sequence identity) of clones affiliated with Prosthecochloris , a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 μmol L -1 ) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm -3 d -1 ). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 μmol L -1 ). High concentrations of pyrite (FeS 2 ; 1-47 μmol cm -3 ) together with low microbial process rates (sulfate reduction, CO 2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 μmol cm -3 ) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  1. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating

    Science.gov (United States)

    Sweeney, Charles B.; Lackey, Blake A.; Pospisil, Martin J.; Achee, Thomas C.; Hicks, Victoria K.; Moran, Aaron G.; Teipel, Blake R.; Saed, Mohammad A.; Green, Micah J.

    2017-01-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks. PMID:28630927

  2. Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating.

    Science.gov (United States)

    Sweeney, Charles B; Lackey, Blake A; Pospisil, Martin J; Achee, Thomas C; Hicks, Victoria K; Moran, Aaron G; Teipel, Blake R; Saed, Mohammad A; Green, Micah J

    2017-06-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks.

  3. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  4. Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets

    Directory of Open Access Journals (Sweden)

    Paszkiewicz Sandra

    2015-12-01

    Full Text Available This paper presents a comparative study on which type of platelets nanofiller, organic or inorganic, will affect the properties of thermoplastic elastomer matrix in the stronger manner. Therefore, poly(trimethylene terephthalate-block-poly(tetramethylene oxide copolymer (PTT-PTMO based nanocomposites with 0.5 wt.% of clay (MMT, graphene nanoplatelets (GNP and graphene oxide (GO have been prepared by in situ polymerization. The structure of the nanocomposites was characterized by transmission electron microscopy (TEM in order to present good dispersion without large aggregates. It was indicated that PTT-PTMO/GNP composite shows the highest crystallization temperature. Unlike the addition of GNP and GO, the introduction of MMT does not have great effect on the glass transition temperature of PTMO-rich soft phase. An addition of all three types of nanoplatelets in the nanocomposites caused the enhancement in tensile modulus and yield stress. Additionally, the cyclic tensile tests showed that prepared nanocomposites have values of permanent set slightly higher than neat PTT-PTMO.

  5. UV B-induced vertical migrations of cyanobacteria in a microbial mat

    International Nuclear Information System (INIS)

    Rebout, B.M.; Garcia-Pichel, F.

    1995-01-01

    Exposure to moderate doses of UV B (0.35 to 0.79 W m -2 s -1 or 0.98 to 2.2 μmol of photons m -2 s -1 at 310 nm) caused the surface layers of microbial mats from Solar Lake, Sinai, Egypt, to become visibly lighter green. Concurrent with the color change were rapid and dramatic reductions in gross photosynthesis and in the resultant high porewater oxygen concentrations in the surface layers of the mats. The depths at which both maximum gross photosynthesis and maximum oxygen concentrations occurred were displaced downward. In contrast, gross photosynthesis in the deeper layers of the mats increased in response to UV B incident upon the surface. The cessation of exposure to UV B partially reversed all of these changes. Taken together, these responses suggest that photoautotrophic members of the mat community, most likely the dominant cyanobacterium Microcoleus chthonoplastes, were migrating in response to the added UV B. The migration phenomenon was also observed in response to increases in visible radiation and UV A, but UV B was ca. 100-fold more effective than visible radiation and ca. 20-fold more effective than UV A in provoking the response. Migrating microorganisms within this mat are apparently able to sense UV B directly and respond behaviorally to limit their exposure to UV. Because of strong vertical gradients of light and dissolved substances in microbial mats, the migration and the resultant vertical redistribution of photosynthetic activity have important consequences for both the photobiology of the cyanobacteria and the net primary productivity of the mat ecosystem

  6. Community Structure Comparisons of Hydrothermal Vent Microbial Mats Along the Mariana Arc and Back-arc

    Science.gov (United States)

    Hager, K. W.; Fullerton, H.; Moyer, C. L.

    2015-12-01

    Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.

  7. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    Science.gov (United States)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  8. Impact of thermoplastic mask on dosimetry of different radiotherapeutic beams

    International Nuclear Information System (INIS)

    Chen Lixin; Zhang Li; Qian Jianyang; Huang Xiaoyan; Lu Jie; Huang Shaomin

    2003-01-01

    Objective: To determine the influence of auxiliary thermoplastic mask on dose distribution of photon or electron beams. Methods: Using the PTW Marcus 23343 type fixed-separation parallel-plate ionization chamber in a special phantom(PMMA), the change of photon dose buildup region was measured with rectification of Bruce empirical formula. Using 3-D water phantom, the central axis percentage depth doses (PDD) of electron beams were measured with verification of the parallel-plate ionization chamber at several given depths. Results: When 8 MV X-ray was delivered through the added facial mask, the buildup region doses were increased obviously with a 25% relative increment beneath near the surface. When 8, 12, 15 MeV electron beams and mask were used, all PDD curves moved to the surface. Conclusions: The impact of thermoplastic mask on the dose increase in the X-ray buildup region, and on the PDD decrease in the electron beam target region should be paid much more attention. And the dose distribution, with an added mask, will have to be re-evaluated in 3-D conformal radiotherapy

  9. Flammability and Thermophysical Characterization of Thermoplastic Elastomer Nanocomposites

    Science.gov (United States)

    2004-08-01

    State University – M. Namani • Southern Clay Products – D. Hunter • Applied Sciences Inc. – J. Glasglow • Omega Point Laboratories – S . Romo Financial...Characterization of Thermoplastic Elastomer Nanocomposites 5a. CONTRACT NUMBER F04611-99-C-0025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ... S ) AND ADDRESS(ES) ERC, Inc,AFRL/PRS,10 E. Saturn Blvd.,Edwards AFB,CA,93524 8. PERFORMING ORGANIZATION REPORT NUMBER E04-082 9. SPONSORING

  10. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Science.gov (United States)

    Hidalgo-Salazar, Miguel A.; Correa, Juan P.

    2018-03-01

    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.

  11. Coastal microbial mats: the physiology of a small-scale ecosystem

    NARCIS (Netherlands)

    Stal, L.J.

    2001-01-01

    Coastal inter-tidal sandy sediments, salt marshes and mangrove forests often support the development of microbial mats. Microbial mats are complex associations of one or several functional groups of microorganisms and their formation usually starts with the growth of a cyanobacterial population on a

  12. Materials Characterisation of Glass/epoxy Composites - Focusing on Process Conditions

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Lyckegaard, Anders; Jensen, Erik Appel

    2013-01-01

    Predicting the behaviour of fibre reinforced polymer composites taking the process conditions into account involves advanced modelling techniques and an extensive materials characterisation. The materials characterisation of a chopped strand mat glass/epoxy composite has been the focus...

  13. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  14. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner

    National Research Council Canada - National Science Library

    Benedic, Fabien; Leard, Jean-Philippe; Lefloch, Christian

    2005-01-01

    .... In order to achieve the new target prices, a new disruptive technology has been performing for several years in using a thermoplastic liner instead the usual expensive concept of metallic forged liner...

  15. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat

    Directory of Open Access Journals (Sweden)

    Sebastian Haas

    2018-04-01

    Full Text Available We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm was the most abundant part of the spectrum followed by green wavelengths (475–530 nm. We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74% by a cluster (>97% sequence identity of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB, which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1 was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1. The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1. High concentrations of pyrite (FeS2; 1–47 μmol cm-3 together with low microbial process rates (sulfate reduction, CO2 fixation indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III (4.3–22.2 μmol cm-3 is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  16. Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry.

    Science.gov (United States)

    Yu, Juan; Lu, Chuanwei; Wang, Chunpeng; Wang, Jifu; Fan, Yimin; Chu, Fuxiang

    2017-11-15

    Cellulose-based thermoplastic elastomers (TPEs) have attracted considerable attention because of their rigid backbone, good mechanical properties, renewable nature and abundance. In the present study, sustainable TPEs based on ethyl cellulose (EC), fatty acid and furfural were generated by the combination of ATRP and "click chemistry". To fabricate sustainable TPEs with higher toughness, a range of polymers, including mono random-copolymer poly(tetrahydrofurfuryl methacrylate-co-lauryl methacrylate) (P(THFMA-co-LMA), dual polymer side chains PTHFMA and PLMA, and mono-block copolymer PTHFMA-b-PLMA, were designed as side chains to fabricate EC brush copolymers with random, dual or block side chain architectures using the "grafting from" and "grafting onto" methods. The multi-armed structures, chemical compositions and phase separation of these EC brush copolymers were confirmed by FT-IR, 1 H NMR, GPC, DSC, TEM and SEM. Overall, three types of EC brush copolymers all exhibited the desired mechanical properties of TPEs. In addition, the EC brush copolymers with dual/block side chain architectures showed higher tensile strength than that of the random polymers with similar compositions. Copyright © 2017. Published by Elsevier Ltd.

  17. Improvement of Physico-Chemical Properties of Recycled (Elastomers /Thermoplastics) Composites using Ionizing Radiation

    International Nuclear Information System (INIS)

    Ibrahim, M.Y.E.A.

    2013-01-01

    Recycling of ground tire rubber (GRT) not only solves the waste disposal problem and maintains environmental quality, but also saves the valuable and limited resource of fossil feedstock. The major problem in the recycling of rubber-like materials such as tires is the cross linked molecular structure of already vulcanized rubber, which not only prevents the softening and processing of waste rubber particles but also inhibits binding of the powder surface to the virgin material. Several reclamation methods have proposed to overcome these barriers, which have basically followed two main approaches: (1) the de vulcanization of cured rubber and (2) the surface modifications of waste particles. The de vulcanization of rubber causes the cleavage of crosslinks via chemical treatments, which make used rubber suitable to be reformulated and recurred into new articles. In consequence, this work is mainly aimed to prepare of de vulcanized rubber (DR) and evaluating mechanical, thermal, and morphological properties of the thermoplastic vulcanizations (TPVs) based on de vulcanized rubber blended with polypropylene, EPDM using peroxide under the effect of radiation dose and DR feed ratio. The efficiency of the compounding process has been examined by infrared spectroscopy (FTIR), X-ray diffraction and scanning electron microscopy (SEM). The mechanical and thermal behaviors of the blends composed of de vulcanized rubber (DR) , high crystalline polypropylene (PP) and EPDM in different proportions were studied. Evaluation of the mechanical and thermal properties of the developed blends, unirradiated and gamma irradiated, was carried out using tensile strength (Ts), elongation at break (Eb), hardness, TGA and DSC measurements.

  18. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata.

    Science.gov (United States)

    Brandes, Josephin; Kuhajek, Jeanne M; Goodwin, Eric; Wood, Susanna A

    2016-10-01

    Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p geminata reduced survival (p geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p geminata, and may partly explain observed distribution patterns.

  19. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  20. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  1. Alpha Matting with KL-Divergence Based Sparse Sampling.

    Science.gov (United States)

    Karacan, Levent; Erdem, Aykut; Erdem, Erkut

    2017-06-22

    In this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels. Moreover, we describe a new dissimilarity measure for comparing two samples which is based on KLdivergence between the distributions of features extracted in the vicinity of the samples. The proposed framework is general and could be easily extended to video matting by additionally taking temporal information into account in the sampling process. Evaluation on standard benchmark datasets for image and video matting demonstrates that our approach provides more accurate results compared to the state-of-the-art methods.

  2. MAT-DB - A database for nuclear energy related materials data

    International Nuclear Information System (INIS)

    Over, H.H.

    2009-01-01

    The web-enabled materials database (Mat-DB) of JRC-IE has a long-term history in storing materials test data resulting from European and international research projects. The database structure and the user-guidance has bee permanently updated improved and optimized. The database is implemented in the secure ODIN portal: https://odin.jrc.ec.europa.eu of JRC-IE. This architecture guarantees fast access to confidential and public data and documentation which are stored in an inter-related document management database (DoMa). It is a part of JRC's nuclear knowledge management. Mat-DB hosts the whole pool of IAEA surveillance data of reactor pressure vessel materials from different nuclear power plants of the member states. Mat-DB contains also thousands of European GEN IV reactor systems related R and D materials data which are an important basis for the evaluating and extrapolating design data for candidate materials and setting up design rules covering high temperature exposure, irradiation and corrosion. Those data and rules would match also fusion related components. Mat-DB covers thermo-mechanical and thermo-physical properties data of engineering alloys at low, elevated and high temperatures for base materials and joints, including irradiated materials for nuclear fission and fusion applications, thermal barrier coated materials for gas turbines and properties of corroded materials. The corrosion part refers to weight gain/loss data of high temperature exposed engineering alloys and ceramic materials. For each test type the database structure reflects international test standards and recommendations. Mat-DB features an extensive library of evaluation programs for web-enabled assessment of uniaxial creep, fatigue, crack growth and high temperature corrosion properties. Evaluations can be performed after data retrieval or independently of Mat-DB by transferring other materials data in a given format to the programs. The fast evaluation processes help the user to

  3. Comparison between properties of polyurethane nano composites prepared by two different methods

    International Nuclear Information System (INIS)

    Barmar, M.; Barikani, M.; Fereidoonnia, M.

    2009-01-01

    In this work, a thermoplastic polyurethane elastomer model based on polytetramethylene glycol. toluene diisocyanate and 1,4-butanediol was selected and synthesized. According to this model two types of polyurethane nano composites were prepared by in situ polymerization and melt intercalation procedures. The organo-modified nano clay was used in nano composites samples in 0.4 weight percent level. The prepared nano composites were studied by WAXD, tensile and thermal analysis. Thermal properties of the nano composites were higher than those of pure polyurethane elastomers. Nano composites prepared via melt intercalation method showed a lower tensile strength and hardness than those prepared through in situ polymerization method

  4. Biomedical Applications of Antibacterial Nanofiber Mats Made of Electrospinning with Wire Electrodes

    Directory of Open Access Journals (Sweden)

    Yi-Jun Pan

    2016-02-01

    Full Text Available Twisted stainless steel wires are used as wire electrodes for electrospinning the polyvinyl alcohol (PVA/zinc citrate nanofiber mats. The morphology and diameter of the nanofibers in PVA/zinc citrate nanofiber mats are evaluated. We measured the antibacterial efficacy against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli of the nanofiber mats. We also examined the cell adhesion affinity of mammalian tissue culture cells on these nanofiber mats. Our results indicate that an increase in zinc citrate increases the viscosity and electrical conductivity of PVA solution. In addition, increasing zinc citrate results in a smaller diameter of nanofibers that reaches below 100 nm. According to the antibacterial test results, increasing zinc citrate enlarges the inhibition zone of S. aureus but only has a bacteriostatic effect against E. coli. Finally, cell adhesion test results indicate that all nanofiber mats have satisfactory cell attachment regardless of the content of zinc citrate.

  5. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.; Moran, James J.; Renslow, Ryan S.; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.

  6. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  7. Coaxial Thermoplastic Elastomer-Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors

    KAUST Repository

    Zhou, Jian; Xu, Xuezhu; Xin, Yangyang; Lubineau, Gilles

    2018-01-01

    performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer-wrapped carbon nanotube fibers, is proposed. The sensors attain

  8. Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats

    Science.gov (United States)

    Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.

    2017-12-01

    While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.

  9. A Global Sampling Based Image Matting Using Non-Negative Matrix Factorization

    Directory of Open Access Journals (Sweden)

    NAVEED ALAM

    2017-10-01

    Full Text Available Image matting is a technique in which a foreground is separated from the background of a given image along with the pixel wise opacity. This foreground can then be seamlessly composited in a different background to obtain a novel scene. This paper presents a global non-parametric sampling algorithm over image patches and utilizes a dimension reduction technique known as NMF (Non-Negative Matrix Factorization. Although some existing non-parametric approaches use large nearby foreground and background regions to sample patches but these approaches fail to take the whole image to sample patches. It is because of the high memory and computational requirements. The use of NMF in the proposed algorithm allows the dimension reduction which reduces the computational cost and memory requirement. The use of NMF also allow the proposed approach to use the whole foreground and background region in the image and reduces the patch complexity and help in efficient patch sampling. The use of patches not only allows the incorporation of the pixel colour but also the local image structure. The use of local structures in the image is important to estimate a high-quality alpha matte especially in the images which have regions containing high texture. The proposed algorithm is evaluated on the standard data set and obtained results are comparable to the state-of-the-art matting techniques

  10. A global sampling based image matting using non-negative matrix factorization

    International Nuclear Information System (INIS)

    Alam, N.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image matting is a technique in which a foreground is separated from the background of a given image along with the pixel wise opacity. This foreground can then be seamlessly composited in a different background to obtain a novel scene. This paper presents a global non-parametric sampling algorithm over image patches and utilizes a dimension reduction technique known as NMF (Non-Negative Matrix Factorization). Although some existing non-parametric approaches use large nearby foreground and background regions to sample patches but these approaches fail to take the whole image to sample patches. It is because of the high memory and computational requirements. The use of NMF in the proposed algorithm allows the dimension reduction which reduces the computational cost and memory requirement. The use of NMF also allow the proposed approach to use the whole foreground and background region in the image and reduces the patch complexity and help in efficient patch sampling. The use of patches not only allows the incorporation of the pixel colour but also the local image structure. The use of local structures in the image is important to estimate a high-quality alpha matte especially in the images which have regions containing high texture. The proposed algorithm is evaluated on the standard data set and obtained results are comparable to the state-of-the-art matting techniques. (author)

  11. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Science.gov (United States)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  12. Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics.

    Science.gov (United States)

    Ramos, Jose Angel; Blanco, Miren; Zalakain, Iñaki; Mondragon, Iñaki

    2009-08-15

    The characterization of a mixture of epoxy/amine with different stoichiometric ratios was carried out by means of nanoindentation. The epoxy system was composed by diglycidyl ether of bisphenol-A and 4,4'-methylene bis-(3-chloro 2,6-diethylaniline). Diffusion through interface formed by epoxy/amine system in stoichiometric ratio and several thermoplastic polymers was also analyzed by means of stiffness analysis, as studied by atomic force microscopy (AFM) and coupled nanoindentation tests. Used thermoplastics were an amorphous, atactic polystyrene, and two semicrystalline, syndiotactic polystyrene and poly(phenylene sulfide). Larger range diffusion was obtained in epoxy/amine systems modified with atactic polystyrene while the study of the influence of stoichiometric ratio suggests that the excess of epoxy generated stiffer material. In addition, larger indentation loads resulted in higher apparent stiffness because of the more number of polymer chains that had to re-accommodate owing to the increase in contact area.

  13. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-01-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. - Highlights: ► The microbial mats from this ancient gold mine are highly diverse community. ► As(III) oxidizing and As(V) reducing bacteria are present in the mats. ► As redox transformations are linked to the metabolism of microbial mats bacteria. ► Microbial mats play a crucial role in the As biogeochemical cycle within the mine. - The microbial mats from this ancient gold mine can mediate oxidation/reduction reaction of arsenic and in this way may significantly contribute to arsenic contamination in groundwater.

  14. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  15. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-01-01

    -covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters

  16. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  17. Investigation of needleless electrospun PAN nanofiber mats

    Science.gov (United States)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  18. Antifouling Thermoplastic Composites with Maleimide Encapsulated in Clay Nanotubes.

    Science.gov (United States)

    Fu, Ye; Gong, Congcong; Wang, Wencai; Zhang, Liqun; Ivanov, Evgenii; Lvov, Yuri

    2017-09-06

    An antifouling ethylene-vinyl acetate copolymer (EVA) coating with halloysite clay nanotubes loaded with maleimide (TCPM) is prepared. Such antifoulant encapsulation allowed for extended release of TCPM and a long-lasting, efficient protection of the coated surface against marine microorganisms proliferation. Halloysite also induces the composite's anisotropy due to parallel alignment of the nanotubes. The maleimide loaded halloysite incorporated into the polymer matrix allowed for 12-month release of the bacterial inhibitor preventing fouling; it is much longer than the 2-3 month protection when TCPM is directly admixed into EVA. The antifouling properties of the EVA-halloysite nanocomposites were tested by monitoring surface adhesion and proliferation of marine V. natriegens bacteria with SEM. As compared to the composite directly doped with TCPM-antifoulant, there were much less bacteria accumulated on the EVA-halloysite-TCPM coating after a 2-month exposure to seawater. Field tests at South China Sea marine station further confirmed the formulation efficiency. The doping of 28 wt % TCPM loaded halloysite drastically enhanced material antifouling property, which promises wide applications for protective marine coating.

  19. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    Science.gov (United States)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  20. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution.

    Science.gov (United States)

    Bolton, Melvin D; de Jonge, Ronnie; Inderbitzin, Patrik; Liu, Zhaohui; Birla, Keshav; Van de Peer, Yves; Subbarao, Krishna V; Thomma, Bart P H J; Secor, Gary A

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species. Published by Elsevier Inc.