Massively Parallel Computing: A Sandia Perspective
Energy Technology Data Exchange (ETDEWEB)
Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.
1999-05-06
The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.
Massively parallel quantum computer simulator
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray
Frontiers of massively parallel scientific computation
International Nuclear Information System (INIS)
Fischer, J.R.
1987-07-01
Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented
Impact analysis on a massively parallel computer
International Nuclear Information System (INIS)
Zacharia, T.; Aramayo, G.A.
1994-01-01
Advanced mathematical techniques and computer simulation play a major role in evaluating and enhancing the design of beverage cans, industrial, and transportation containers for improved performance. Numerical models are used to evaluate the impact requirements of containers used by the Department of Energy (DOE) for transporting radioactive materials. Many of these models are highly compute-intensive. An analysis may require several hours of computational time on current supercomputers despite the simplicity of the models being studied. As computer simulations and materials databases grow in complexity, massively parallel computers have become important tools. Massively parallel computational research at the Oak Ridge National Laboratory (ORNL) and its application to the impact analysis of shipping containers is briefly described in this paper
Massively parallel evolutionary computation on GPGPUs
Tsutsui, Shigeyoshi
2013-01-01
Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened u
The 2nd Symposium on the Frontiers of Massively Parallel Computations
Mills, Ronnie (Editor)
1988-01-01
Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.
RAMA: A file system for massively parallel computers
Miller, Ethan L.; Katz, Randy H.
1993-01-01
This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.
Computational fluid dynamics on a massively parallel computer
Jespersen, Dennis C.; Levit, Creon
1989-01-01
A finite difference code was implemented for the compressible Navier-Stokes equations on the Connection Machine, a massively parallel computer. The code is based on the ARC2D/ARC3D program and uses the implicit factored algorithm of Beam and Warming. The codes uses odd-even elimination to solve linear systems. Timings and computation rates are given for the code, and a comparison is made with a Cray XMP.
Template based parallel checkpointing in a massively parallel computer system
Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN
2009-01-13
A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.
Solving the Stokes problem on a massively parallel computer
DEFF Research Database (Denmark)
Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya
2001-01-01
boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work...... is proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....
Performance of Air Pollution Models on Massively Parallel Computers
DEFF Research Database (Denmark)
Brown, John; Hansen, Per Christian; Wasniewski, Jerzy
1996-01-01
To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...
A discrete ordinate response matrix method for massively parallel computers
International Nuclear Information System (INIS)
Hanebutte, U.R.; Lewis, E.E.
1991-01-01
A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry
Massively parallel computation of conservation laws
Energy Technology Data Exchange (ETDEWEB)
Garbey, M [Univ. Claude Bernard, Villeurbanne (France); Levine, D [Argonne National Lab., IL (United States)
1990-01-01
The authors present a new method for computing solutions of conservation laws based on the use of cellular automata with the method of characteristics. The method exploits the high degree of parallelism available with cellular automata and retains important features of the method of characteristics. It yields high numerical accuracy and extends naturally to adaptive meshes and domain decomposition methods for perturbed conservation laws. They describe the method and its implementation for a Dirichlet problem with a single conservation law for the one-dimensional case. Numerical results for the one-dimensional law with the classical Burgers nonlinearity or the Buckley-Leverett equation show good numerical accuracy outside the neighborhood of the shocks. The error in the area of the shocks is of the order of the mesh size. The algorithm is well suited for execution on both massively parallel computers and vector machines. They present timing results for an Alliant FX/8, Connection Machine Model 2, and CRAY X-MP.
Implementation of PHENIX trigger algorithms on massively parallel computers
International Nuclear Information System (INIS)
Petridis, A.N.; Wohn, F.K.
1995-01-01
The event selection requirements of contemporary high energy and nuclear physics experiments are met by the introduction of on-line trigger algorithms which identify potentially interesting events and reduce the data acquisition rate to levels that are manageable by the electronics. Such algorithms being parallel in nature can be simulated off-line using massively parallel computers. The PHENIX experiment intends to investigate the possible existence of a new phase of matter called the quark gluon plasma which has been theorized to have existed in very early stages of the evolution of the universe by studying collisions of heavy nuclei at ultra-relativistic energies. Such interactions can also reveal important information regarding the structure of the nucleus and mandate a thorough investigation of the simpler proton-nucleus collisions at the same energies. The complexity of PHENIX events and the need to analyze and also simulate them at rates similar to the data collection ones imposes enormous computation demands. This work is a first effort to implement PHENIX trigger algorithms on parallel computers and to study the feasibility of using such machines to run the complex programs necessary for the simulation of the PHENIX detector response. Fine and coarse grain approaches have been studied and evaluated. Depending on the application the performance of a massively parallel computer can be much better or much worse than that of a serial workstation. A comparison between single instruction and multiple instruction computers is also made and possible applications of the single instruction machines to high energy and nuclear physics experiments are outlined. copyright 1995 American Institute of Physics
A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer
Jespersen, Dennis C.; Levit, Creon
1989-01-01
The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.
Climate models on massively parallel computers
International Nuclear Information System (INIS)
Vitart, F.; Rouvillois, P.
1993-01-01
First results got on massively parallel computers (Multiple Instruction Multiple Data and Simple Instruction Multiple Data) allow to consider building of coupled models with high resolutions. This would make possible simulation of thermoaline circulation and other interaction phenomena between atmosphere and ocean. The increasing of computers powers, and then the improvement of resolution will go us to revise our approximations. Then hydrostatic approximation (in ocean circulation) will not be valid when the grid mesh will be of a dimension lower than a few kilometers: We shall have to find other models. The expert appraisement got in numerical analysis at the Center of Limeil-Valenton (CEL-V) will be used again to imagine global models taking in account atmosphere, ocean, ice floe and biosphere, allowing climate simulation until a regional scale
Massively Parallel Computing at Sandia and Its Application to National Defense
National Research Council Canada - National Science Library
Dosanjh, Sudip
1991-01-01
Two years ago, researchers at Sandia National Laboratories showed that a massively parallel computer with 1024 processors could solve scientific problems more than 1000 times faster than a single processor...
Analysis of multigrid methods on massively parallel computers: Architectural implications
Matheson, Lesley R.; Tarjan, Robert E.
1993-01-01
We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.
Image processing with massively parallel computer Quadrics Q1
International Nuclear Information System (INIS)
Della Rocca, A.B.; La Porta, L.; Ferriani, S.
1995-05-01
Aimed to evaluate the image processing capabilities of the massively parallel computer Quadrics Q1, a convolution algorithm that has been implemented is described in this report. At first the discrete convolution mathematical definition is recalled together with the main Q1 h/w and s/w features. Then the different codification forms of the algorythm are described and the Q1 performances are compared with those obtained by different computers. Finally, the conclusions report on main results and suggestions
Proxy-equation paradigm: A strategy for massively parallel asynchronous computations
Mittal, Ankita; Girimaji, Sharath
2017-09-01
Massively parallel simulations of transport equation systems call for a paradigm change in algorithm development to achieve efficient scalability. Traditional approaches require time synchronization of processing elements (PEs), which severely restricts scalability. Relaxing synchronization requirement introduces error and slows down convergence. In this paper, we propose and develop a novel "proxy equation" concept for a general transport equation that (i) tolerates asynchrony with minimal added error, (ii) preserves convergence order and thus, (iii) expected to scale efficiently on massively parallel machines. The central idea is to modify a priori the transport equation at the PE boundaries to offset asynchrony errors. Proof-of-concept computations are performed using a one-dimensional advection (convection) diffusion equation. The results demonstrate the promise and advantages of the present strategy.
Computational chaos in massively parallel neural networks
Barhen, Jacob; Gulati, Sandeep
1989-01-01
A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.
Massively parallel mathematical sieves
Energy Technology Data Exchange (ETDEWEB)
Montry, G.R.
1989-01-01
The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.
Adapting algorithms to massively parallel hardware
Sioulas, Panagiotis
2016-01-01
In the recent years, the trend in computing has shifted from delivering processors with faster clock speeds to increasing the number of cores per processor. This marks a paradigm shift towards parallel programming in which applications are programmed to exploit the power provided by multi-cores. Usually there is gain in terms of the time-to-solution and the memory footprint. Specifically, this trend has sparked an interest towards massively parallel systems that can provide a large number of processors, and possibly computing nodes, as in the GPUs and MPPAs (Massively Parallel Processor Arrays). In this project, the focus was on two distinct computing problems: k-d tree searches and track seeding cellular automata. The goal was to adapt the algorithms to parallel systems and evaluate their performance in different cases.
Implementation of QR up- and downdating on a massively parallel |computer
DEFF Research Database (Denmark)
Bendtsen, Claus; Hansen, Per Christian; Madsen, Kaj
1995-01-01
We describe an implementation of QR up- and downdating on a massively parallel computer (the Connection Machine CM-200) and show that the algorithm maps well onto the computer. In particular, we show how the use of corrected semi-normal equations for downdating can be efficiently implemented. We...... also illustrate the use of our algorithms in a new LP algorithm....
Massively Parallel Algorithms for Solution of Schrodinger Equation
Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad
1994-01-01
In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.
Energy Technology Data Exchange (ETDEWEB)
1991-10-23
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Programming massively parallel processors a hands-on approach
Kirk, David B
2010-01-01
Programming Massively Parallel Processors discusses basic concepts about parallel programming and GPU architecture. ""Massively parallel"" refers to the use of a large number of processors to perform a set of computations in a coordinated parallel way. The book details various techniques for constructing parallel programs. It also discusses the development process, performance level, floating-point format, parallel patterns, and dynamic parallelism. The book serves as a teaching guide where parallel programming is the main topic of the course. It builds on the basics of C programming for CUDA, a parallel programming environment that is supported on NVI- DIA GPUs. Composed of 12 chapters, the book begins with basic information about the GPU as a parallel computer source. It also explains the main concepts of CUDA, data parallelism, and the importance of memory access efficiency using CUDA. The target audience of the book is graduate and undergraduate students from all science and engineering disciplines who ...
Fox, Geoffrey C; Messina, Guiseppe C
2014-01-01
A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop
Routing performance analysis and optimization within a massively parallel computer
Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen
2013-04-16
An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.
Massively parallel multicanonical simulations
Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard
2018-03-01
Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.
A scalable approach to modeling groundwater flow on massively parallel computers
International Nuclear Information System (INIS)
Ashby, S.F.; Falgout, R.D.; Tompson, A.F.B.
1995-12-01
We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of computing platforms, ranging from workstations to massively parallel computers. Specifically, we advocate the use of scalable conceptual models in which the subsurface model is defined independently of the computational grid on which the simulation takes place. We also describe a scalable multigrid algorithm for computing the groundwater flow velocities. We axe thus able to leverage both the engineer's time spent developing the conceptual model and the computing resources used in the numerical simulation. We have successfully employed this approach at the LLNL site, where we have run simulations ranging in size from just a few thousand spatial zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)-all using the same conceptual model
International Nuclear Information System (INIS)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-01-01
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results
Representing and computing regular languages on massively parallel networks
Energy Technology Data Exchange (ETDEWEB)
Miller, M.I.; O' Sullivan, J.A. (Electronic Systems and Research Lab., of Electrical Engineering, Washington Univ., St. Louis, MO (US)); Boysam, B. (Dept. of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Inst., Troy, NY (US)); Smith, K.R. (Dept. of Electrical Engineering, Southern Illinois Univ., Edwardsville, IL (US))
1991-01-01
This paper proposes a general method for incorporating rule-based constraints corresponding to regular languages into stochastic inference problems, thereby allowing for a unified representation of stochastic and syntactic pattern constraints. The authors' approach first established the formal connection of rules to Chomsky grammars, and generalizes the original work of Shannon on the encoding of rule-based channel sequences to Markov chains of maximum entropy. This maximum entropy probabilistic view leads to Gibb's representations with potentials which have their number of minima growing at precisely the exponential rate that the language of deterministically constrained sequences grow. These representations are coupled to stochastic diffusion algorithms, which sample the language-constrained sequences by visiting the energy minima according to the underlying Gibbs' probability law. The coupling to stochastic search methods yields the all-important practical result that fully parallel stochastic cellular automata may be derived to generate samples from the rule-based constraint sets. The production rules and neighborhood state structure of the language of sequences directly determines the necessary connection structures of the required parallel computing surface. Representations of this type have been mapped to the DAP-510 massively-parallel processor consisting of 1024 mesh-connected bit-serial processing elements for performing automated segmentation of electron-micrograph images.
Morse, H Stephen
1994-01-01
Practical Parallel Computing provides information pertinent to the fundamental aspects of high-performance parallel processing. This book discusses the development of parallel applications on a variety of equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the technology trends that converge to favor massively parallel hardware over traditional mainframes and vector machines. This text then gives a tutorial introduction to parallel hardware architectures. Other chapters provide worked-out examples of programs using several parallel languages. Thi
Neural Parallel Engine: A toolbox for massively parallel neural signal processing.
Tam, Wing-Kin; Yang, Zhi
2018-05-01
Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.
A Programming Model for Massive Data Parallelism with Data Dependencies
International Nuclear Information System (INIS)
Cui, Xiaohui; Mueller, Frank; Potok, Thomas E.; Zhang, Yongpeng
2009-01-01
Accelerating processors can often be more cost and energy effective for a wide range of data-parallel computing problems than general-purpose processors. For graphics processor units (GPUs), this is particularly the case when program development is aided by environments such as NVIDIA s Compute Unified Device Architecture (CUDA), which dramatically reduces the gap between domain-specific architectures and general purpose programming. Nonetheless, general-purpose GPU (GPGPU) programming remains subject to several restrictions. Most significantly, the separation of host (CPU) and accelerator (GPU) address spaces requires explicit management of GPU memory resources, especially for massive data parallelism that well exceeds the memory capacity of GPUs. One solution to this problem is to transfer data between the GPU and host memories frequently. In this work, we investigate another approach. We run massively data-parallel applications on GPU clusters. We further propose a programming model for massive data parallelism with data dependencies for this scenario. Experience from micro benchmarks and real-world applications shows that our model provides not only ease of programming but also significant performance gains
Introduction to massively-parallel computing in high-energy physics
AUTHOR|(CDS)2083520
1993-01-01
Ever since computers were first used for scientific and numerical work, there has existed an "arms race" between the technical development of faster computing hardware, and the desires of scientists to solve larger problems in shorter time-scales. However, the vast leaps in processor performance achieved through advances in semi-conductor science have reached a hiatus as the technology comes up against the physical limits of the speed of light and quantum effects. This has lead all high performance computer manufacturers to turn towards a parallel architecture for their new machines. In these lectures we will introduce the history and concepts behind parallel computing, and review the various parallel architectures and software environments currently available. We will then introduce programming methodologies that allow efficient exploitation of parallel machines, and present case studies of the parallelization of typical High Energy Physics codes for the two main classes of parallel computing architecture (S...
Massively parallel sparse matrix function calculations with NTPoly
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
Parallel computing by Monte Carlo codes MVP/GMVP
International Nuclear Information System (INIS)
Nagaya, Yasunobu; Nakagawa, Masayuki; Mori, Takamasa
2001-01-01
General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of parallel computing platforms or by using a standard parallelization library MPI. The platforms used for benchmark calculations are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel paragon and a distributed-memory scalar-parallel computer Hitachi SR2201, IBM SP2. As mentioned generally, linear speedup could be obtained for large-scale problems but parallelization efficiency decreased as the batch size per a processing element(PE) was smaller. It was also found that the statistical uncertainty for assembly powers was less than 0.1% by the PWR full-core calculation with more than 10 million histories and it took about 1.5 hours by massively parallel computing. (author)
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
First massively parallel algorithm to be implemented in Apollo-II code
International Nuclear Information System (INIS)
Stankovski, Z.
1994-01-01
The collision probability (CP) method in neutron transport, as applied to arbitrary 2D XY geometries, like the TDT module in APOLLO-II, is very time consuming. Consequently RZ or 3D extensions became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the CP method. Parallelization is applied to the energy groups, using the CMMD message passing library. In our case we use 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future fine multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 3 tabs., 4 figs., 4 refs
First massively parallel algorithm to be implemented in APOLLO-II code
International Nuclear Information System (INIS)
Stankovski, Z.
1994-01-01
The collision probability method in neutron transport, as applied to arbitrary 2-dimensional geometries, like the two dimensional transport module in APOLLO-II is very time consuming. Consequently 3-dimensional extension became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the collision probability method. Parallelization is applied to the energy groups, using the CMMD massage passing library. In our case we used 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 4 refs., 4 figs., 3 tabs
A massively-parallel electronic-structure calculations based on real-space density functional theory
International Nuclear Information System (INIS)
Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro
2010-01-01
Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.
Cloud identification using genetic algorithms and massively parallel computation
Buckles, Bill P.; Petry, Frederick E.
1996-01-01
As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user
Massively parallel red-black algorithms for x-y-z response matrix equations
International Nuclear Information System (INIS)
Hanebutte, U.R.; Laurin-Kovitz, K.; Lewis, E.E.
1992-01-01
Recently, both discrete ordinates and spherical harmonic (S n and P n ) methods have been cast in the form of response matrices. In x-y geometry, massively parallel algorithms have been developed to solve the resulting response matrix equations on the Connection Machine family of parallel computers, the CM-2, CM-200, and CM-5. These algorithms utilize two-cycle iteration on a red-black checkerboard. In this work we examine the use of massively parallel red-black algorithms to solve response matric equations in three dimensions. This longer term objective is to utilize massively parallel algorithms to solve S n and/or P n response matrix problems. In this exploratory examination, however, we consider the simple 6 x 6 response matrices that are derivable from fine-mesh diffusion approximations in three dimensions
Massive Asynchronous Parallelization of Sparse Matrix Factorizations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)
2018-01-08
Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.
A massively parallel discrete ordinates response matrix method for neutron transport
International Nuclear Information System (INIS)
Hanebutte, U.R.; Lewis, E.E.
1992-01-01
In this paper a discrete ordinates response matrix method is formulated with anisotropic scattering for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices that result from the diamond-differenced equations are utilized in a factored form that minimizes memory requirements and significantly reduces the number of arithmetic operations required per node. The red-black solution algorithm utilizes massive parallelism by assigning each spatial node to one or more processors. The algorithm is accelerated by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red-black iterations. The method is implemented on a 16K Connection Machine-2, and S 8 and S 16 solutions are obtained for fixed-source benchmark problems in x-y geometry
High fidelity thermal-hydraulic analysis using CFD and massively parallel computers
International Nuclear Information System (INIS)
Weber, D.P.; Wei, T.Y.C.; Brewster, R.A.; Rock, Daniel T.; Rizwan-uddin
2000-01-01
Thermal-hydraulic analyses play an important role in design and reload analysis of nuclear power plants. These analyses have historically relied on early generation computational fluid dynamics capabilities, originally developed in the 1960s and 1970s. Over the last twenty years, however, dramatic improvements in both computational fluid dynamics codes in the commercial sector and in computing power have taken place. These developments offer the possibility of performing large scale, high fidelity, core thermal hydraulics analysis. Such analyses will allow a determination of the conservatism employed in traditional design approaches and possibly justify the operation of nuclear power systems at higher powers without compromising safety margins. The objective of this work is to demonstrate such a large scale analysis approach using a state of the art CFD code, STAR-CD, and the computing power of massively parallel computers, provided by IBM. A high fidelity representation of a current generation PWR was analyzed with the STAR-CD CFD code and the results were compared to traditional analyses based on the VIPRE code. Current design methodology typically involves a simplified representation of the assemblies, where a single average pin is used in each assembly to determine the hot assembly from a whole core analysis. After determining this assembly, increased refinement is used in the hot assembly, and possibly some of its neighbors, to refine the analysis for purposes of calculating DNBR. This latter calculation is performed with sub-channel codes such as VIPRE. The modeling simplifications that are used involve the approximate treatment of surrounding assemblies and coarse representation of the hot assembly, where the subchannel is the lowest level of discretization. In the high fidelity analysis performed in this study, both restrictions have been removed. Within the hot assembly, several hundred thousand to several million computational zones have been used, to
Development of massively parallel quantum chemistry program SMASH
International Nuclear Information System (INIS)
Ishimura, Kazuya
2015-01-01
A massively parallel program for quantum chemistry calculations SMASH was released under the Apache License 2.0 in September 2014. The SMASH program is written in the Fortran90/95 language with MPI and OpenMP standards for parallelization. Frequently used routines, such as one- and two-electron integral calculations, are modularized to make program developments simple. The speed-up of the B3LYP energy calculation for (C 150 H 30 ) 2 with the cc-pVDZ basis set (4500 basis functions) was 50,499 on 98,304 cores of the K computer
PARALLEL SPATIOTEMPORAL SPECTRAL CLUSTERING WITH MASSIVE TRAJECTORY DATA
Directory of Open Access Journals (Sweden)
Y. Z. Gu
2017-09-01
Full Text Available Massive trajectory data contains wealth useful information and knowledge. Spectral clustering, which has been shown to be effective in finding clusters, becomes an important clustering approaches in the trajectory data mining. However, the traditional spectral clustering lacks the temporal expansion on the algorithm and limited in its applicability to large-scale problems due to its high computational complexity. This paper presents a parallel spatiotemporal spectral clustering based on multiple acceleration solutions to make the algorithm more effective and efficient, the performance is proved due to the experiment carried out on the massive taxi trajectory dataset in Wuhan city, China.
Engineering-Based Thermal CFD Simulations on Massive Parallel Systems
Frisch, Jérôme
2015-05-22
The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.
Parallel computers and three-dimensional computational electromagnetics
International Nuclear Information System (INIS)
Madsen, N.K.
1994-01-01
The authors have continued to enhance their ability to use new massively parallel processing computers to solve time-domain electromagnetic problems. New vectorization techniques have improved the performance of their code DSI3D by factors of 5 to 15, depending on the computer used. New radiation boundary conditions and far-field transformations now allow the computation of radar cross-section values for complex objects. A new parallel-data extraction code has been developed that allows the extraction of data subsets from large problems, which have been run on parallel computers, for subsequent post-processing on workstations with enhanced graphics capabilities. A new charged-particle-pushing version of DSI3D is under development. Finally, DSI3D has become a focal point for several new Cooperative Research and Development Agreement activities with industrial companies such as Lockheed Advanced Development Company, Varian, Hughes Electron Dynamics Division, General Atomic, and Cray
Development of massively parallel quantum chemistry program SMASH
Energy Technology Data Exchange (ETDEWEB)
Ishimura, Kazuya [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan)
2015-12-31
A massively parallel program for quantum chemistry calculations SMASH was released under the Apache License 2.0 in September 2014. The SMASH program is written in the Fortran90/95 language with MPI and OpenMP standards for parallelization. Frequently used routines, such as one- and two-electron integral calculations, are modularized to make program developments simple. The speed-up of the B3LYP energy calculation for (C{sub 150}H{sub 30}){sub 2} with the cc-pVDZ basis set (4500 basis functions) was 50,499 on 98,304 cores of the K computer.
Massively parallel computing and the search for jets and black holes at the LHC
Energy Technology Data Exchange (ETDEWEB)
Halyo, V., E-mail: vhalyo@gmail.com; LeGresley, P.; Lujan, P.
2014-04-21
Massively parallel computing at the LHC could be the next leap necessary to reach an era of new discoveries at the LHC after the Higgs discovery. Scientific computing is a critical component of the LHC experiment, including operation, trigger, LHC computing GRID, simulation, and analysis. One way to improve the physics reach of the LHC is to take advantage of the flexibility of the trigger system by integrating coprocessors based on Graphics Processing Units (GPUs) or the Many Integrated Core (MIC) architecture into its server farm. This cutting edge technology provides not only the means to accelerate existing algorithms, but also the opportunity to develop new algorithms that select events in the trigger that previously would have evaded detection. In this paper we describe new algorithms that would allow us to select in the trigger new topological signatures that include non-prompt jet and black hole-like objects in the silicon tracker.
Scientific programming on massively parallel processor CP-PACS
International Nuclear Information System (INIS)
Boku, Taisuke
1998-01-01
The massively parallel processor CP-PACS takes various problems of calculation physics as the object, and it has been designed so that its architecture has been devised to do various numerical processings. In this report, the outline of the CP-PACS and the example of programming in the Kernel CG benchmark in NAS Parallel Benchmarks, version 1, are shown, and the pseudo vector processing mechanism and the parallel processing tuning of scientific and technical computation utilizing the three-dimensional hyper crossbar net, which are two great features of the architecture of the CP-PACS are described. As for the CP-PACS, the PUs based on RISC processor and added with pseudo vector processor are used. Pseudo vector processing is realized as the loop processing by scalar command. The features of the connection net of PUs are explained. The algorithm of the NPB version 1 Kernel CG is shown. The part that takes the time for processing most in the main loop is the product of matrix and vector (matvec), and the parallel processing of the matvec is explained. The time for the computation by the CPU is determined. As the evaluation of the performance, the evaluation of the time for execution, the short vector processing of pseudo vector processor based on slide window, and the comparison with other parallel computers are reported. (K.I.)
From parallel to distributed computing for reactive scattering calculations
International Nuclear Information System (INIS)
Lagana, A.; Gervasi, O.; Baraglia, R.
1994-01-01
Some reactive scattering codes have been ported on different innovative computer architectures ranging from massively parallel machines to clustered workstations. The porting has required a drastic restructuring of the codes to single out computationally decoupled cpu intensive subsections. The suitability of different theoretical approaches for parallel and distributed computing restructuring is discussed and the efficiency of related algorithms evaluated
A Massively Parallel Face Recognition System
Directory of Open Access Journals (Sweden)
Lahdenoja Olli
2007-01-01
Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.
A Massively Parallel Face Recognition System
Directory of Open Access Journals (Sweden)
Ari Paasio
2006-12-01
Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.
DIMACS Workshop on Interconnection Networks and Mapping, and Scheduling Parallel Computations
Rosenberg, Arnold L; Sotteau, Dominique; NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science; Interconnection networks and mapping and scheduling parallel computations
1995-01-01
The interconnection network is one of the most basic components of a massively parallel computer system. Such systems consist of hundreds or thousands of processors interconnected to work cooperatively on computations. One of the central problems in parallel computing is the task of mapping a collection of processes onto the processors and routing network of a parallel machine. Once this mapping is done, it is critical to schedule computations within and communication among processor from universities and laboratories, as well as practitioners involved in the design, implementation, and application of massively parallel systems. Focusing on interconnection networks of parallel architectures of today and of the near future , the book includes topics such as network topologies,network properties, message routing, network embeddings, network emulation, mappings, and efficient scheduling. inputs for a process are available where and when the process is scheduled to be computed. This book contains the refereed pro...
Massive hybrid parallelism for fully implicit multiphysics
International Nuclear Information System (INIS)
Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W.
2013-01-01
As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)
Massive hybrid parallelism for fully implicit multiphysics
Energy Technology Data Exchange (ETDEWEB)
Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)
2013-07-01
As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)
MASSIVE HYBRID PARALLELISM FOR FULLY IMPLICIT MULTIPHYSICS
Energy Technology Data Exchange (ETDEWEB)
Cody J. Permann; David Andrs; John W. Peterson; Derek R. Gaston
2013-05-01
As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided.
Energy Technology Data Exchange (ETDEWEB)
Bauerle, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-08-01
This project utilizes Graphics Processing Units (GPUs) to compute radiograph simulations for arbitrary objects. The generation of radiographs, also known as the forward projection imaging model, is computationally intensive and not widely utilized. The goal of this research is to develop a massively parallel algorithm that can compute forward projections for objects with a trillion voxels (3D pixels). To achieve this end, the data are divided into blocks that can each t into GPU memory. The forward projected image is also divided into segments to allow for future parallelization and to avoid needless computations.
Parallel computing of a climate model on the dawn 1000 by domain decomposition method
Bi, Xunqiang
1997-12-01
In this paper the parallel computing of a grid-point nine-level atmospheric general circulation model on the Dawn 1000 is introduced. The model was developed by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). The Dawn 1000 is a MIMD massive parallel computer made by National Research Center for Intelligent Computer (NCIC), CAS. A two-dimensional domain decomposition method is adopted to perform the parallel computing. The potential ways to increase the speed-up ratio and exploit more resources of future massively parallel supercomputation are also discussed.
A Massively Parallel Code for Polarization Calculations
Akiyama, Shizuka; Höflich, Peter
2001-03-01
We present an implementation of our Monte-Carlo radiation transport method for rapidly expanding, NLTE atmospheres for massively parallel computers which utilizes both the distributed and shared memory models. This allows us to take full advantage of the fast communication and low latency inherent to nodes with multiple CPUs, and to stretch the limits of scalability with the number of nodes compared to a version which is based on the shared memory model. Test calculations on a local 20-node Beowulf cluster with dual CPUs showed an improved scalability by about 40%.
Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers
Directory of Open Access Journals (Sweden)
David W. Washington
2004-06-01
Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.
Massively parallel Monte Carlo for many-particle simulations on GPUs
Energy Technology Data Exchange (ETDEWEB)
Anderson, Joshua A.; Jankowski, Eric [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Grubb, Thomas L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Engel, Michael [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)
2013-12-01
Current trends in parallel processors call for the design of efficient massively parallel algorithms for scientific computing. Parallel algorithms for Monte Carlo simulations of thermodynamic ensembles of particles have received little attention because of the inherent serial nature of the statistical sampling. In this paper, we present a massively parallel method that obeys detailed balance and implement it for a system of hard disks on the GPU. We reproduce results of serial high-precision Monte Carlo runs to verify the method. This is a good test case because the hard disk equation of state over the range where the liquid transforms into the solid is particularly sensitive to small deviations away from the balance conditions. On a Tesla K20, our GPU implementation executes over one billion trial moves per second, which is 148 times faster than on a single Intel Xeon E5540 CPU core, enables 27 times better performance per dollar, and cuts energy usage by a factor of 13. With this improved performance we are able to calculate the equation of state for systems of up to one million hard disks. These large system sizes are required in order to probe the nature of the melting transition, which has been debated for the last forty years. In this paper we present the details of our computational method, and discuss the thermodynamics of hard disks separately in a companion paper.
Research in Parallel Algorithms and Software for Computational Aerosciences
Domel, Neal D.
1996-01-01
Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.
Parallel algorithms and cluster computing
Hoffmann, Karl Heinz
2007-01-01
This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.
Hoekstra, A.G.; Sloot, P.M.A.; Haan, M.J.; Hertzberger, L.O.; van Leeuwen, J.
1991-01-01
New developments in Computer Science, both hardware and software, offer researchers, such as physicists, unprecedented possibilities to solve their computational intensive problems.However, full exploitation of e.g. new massively parallel computers, parallel languages or runtime environments
Scalable Strategies for Computing with Massive Data
Directory of Open Access Journals (Sweden)
Michael Kane
2013-11-01
Full Text Available This paper presents two complementary statistical computing frameworks that address challenges in parallel processing and the analysis of massive data. First, the foreach package allows users of the R programming environment to define parallel loops that may be run sequentially on a single machine, in parallel on a symmetric multiprocessing (SMP machine, or in cluster environments without platform-specific code. Second, the bigmemory package implements memory- and file-mapped data structures that provide (a access to arbitrarily large data while retaining a look and feel that is familiar to R users and (b data structures that are shared across processor cores in order to support efficient parallel computing techniques. Although these packages may be used independently, this paper shows how they can be used in combination to address challenges that have effectively been beyond the reach of researchers who lack specialized software development skills or expensive hardware.
Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units
International Nuclear Information System (INIS)
Mburu, Joe Mwangi; Hah, Chang Joo Hah
2014-01-01
Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization
Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units
Energy Technology Data Exchange (ETDEWEB)
Mburu, Joe Mwangi; Hah, Chang Joo Hah [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2014-05-15
Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization.
Massively parallel Fokker-Planck code ALLAp
International Nuclear Information System (INIS)
Batishcheva, A.A.; Krasheninnikov, S.I.; Craddock, G.G.; Djordjevic, V.
1996-01-01
The recently developed for workstations Fokker-Planck code ALLA simulates the temporal evolution of 1V, 2V and 1D2V collisional edge plasmas. In this work we present the results of code parallelization on the CRI T3D massively parallel platform (ALLAp version). Simultaneously we benchmark the 1D2V parallel vesion against an analytic self-similar solution of the collisional kinetic equation. This test is not trivial as it demands a very strong spatial temperature and density variation within the simulation domain. (orig.)
Massively Parallel and Scalable Implicit Time Integration Algorithms for Structural Dynamics
Farhat, Charbel
1997-01-01
Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because of the following additional facts: (a) explicit schemes are easier to parallelize than implicit ones, and (b) explicit schemes induce short range interprocessor communications that are relatively inexpensive, while the factorization methods used in most implicit schemes induce long range interprocessor communications that often ruin the sought-after speed-up. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet be offset by the speed of the currently available parallel hardware. Therefore, it is essential to develop efficient alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating the low-frequency dynamics of aerospace structures.
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L
2012-06-13
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.
2012-06-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
International Nuclear Information System (INIS)
Andrade, Xavier; Aspuru-Guzik, Alán; Alberdi-Rodriguez, Joseba; Rubio, Angel; Strubbe, David A; Louie, Steven G; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Marques, Miguel A L
2012-01-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)
Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.
2011-01-01
We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of
International Nuclear Information System (INIS)
Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.
1994-01-01
One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 x speedup over our starting-point Cray2 simulation code's performance
Massively parallel sequencing of forensic STRs
DEFF Research Database (Denmark)
Parson, Walther; Ballard, David; Budowle, Bruce
2016-01-01
The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that...
MADmap: A Massively Parallel Maximum-Likelihood Cosmic Microwave Background Map-Maker
Energy Technology Data Exchange (ETDEWEB)
Cantalupo, Christopher; Borrill, Julian; Jaffe, Andrew; Kisner, Theodore; Stompor, Radoslaw
2009-06-09
MADmap is a software application used to produce maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap is already being run on up to O(1011) time samples, O(108) pixels and O(104) cores, with ongoing work to scale to the next generation of data sets and supercomputers. We describe MADmap's algorithm based around a preconditioned conjugate gradient solver, fast Fourier transforms and sparse matrix operations. We highlight MADmap's ability to address problems typically encountered in the analysis of realistic CMB data sets and describe its application to simulations of the Planck and EBEX experiments. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analysing the largest data sets now being collected on computing resources currently available, and we argue that, given Moore's Law, MADmap will be capable of reducing the most massive projected data sets.
Massively parallel computation of PARASOL code on the Origin 3800 system
International Nuclear Information System (INIS)
Hosokawa, Masanari; Takizuka, Tomonori
2001-10-01
The divertor particle simulation code named PARASOL simulates open-field plasmas between divertor walls self-consistently by using an electrostatic PIC method and a binary collision Monte Carlo model. The PARASOL parallelized with MPI-1.1 for scalar parallel computer worked on Intel Paragon XP/S system. A system SGI Origin 3800 was newly installed (May, 2001). The parallel programming was improved at this switchover. As a result of the high-performance new hardware and this improvement, the PARASOL is speeded up by about 60 times with the same number of processors. (author)
Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi
2016-08-05
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Visualizing Network Traffic to Understand the Performance of Massively Parallel Simulations
Landge, A. G.
2012-12-01
The performance of massively parallel applications is often heavily impacted by the cost of communication among compute nodes. However, determining how to best use the network is a formidable task, made challenging by the ever increasing size and complexity of modern supercomputers. This paper applies visualization techniques to aid parallel application developers in understanding the network activity by enabling a detailed exploration of the flow of packets through the hardware interconnect. In order to visualize this large and complex data, we employ two linked views of the hardware network. The first is a 2D view, that represents the network structure as one of several simplified planar projections. This view is designed to allow a user to easily identify trends and patterns in the network traffic. The second is a 3D view that augments the 2D view by preserving the physical network topology and providing a context that is familiar to the application developers. Using the massively parallel multi-physics code pF3D as a case study, we demonstrate that our tool provides valuable insight that we use to explain and optimize pF3D-s performance on an IBM Blue Gene/P system. © 1995-2012 IEEE.
The language parallel Pascal and other aspects of the massively parallel processor
Reeves, A. P.; Bruner, J. D.
1982-01-01
A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.
Directory of Open Access Journals (Sweden)
Paolo Cazzaniga
2014-01-01
high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC, defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations.
1982-01-01
Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed.Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techn
DGDFT: A massively parallel method for large scale density functional theory calculations.
Hu, Wei; Lin, Lin; Yang, Chao
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10(-4) Hartree/atom in terms of the error of energy and 6.2 × 10(-4) Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
DGDFT: A massively parallel method for large scale density functional theory calculations
International Nuclear Information System (INIS)
Hu, Wei; Yang, Chao; Lin, Lin
2015-01-01
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10 −4 Hartree/atom in terms of the error of energy and 6.2 × 10 −4 Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail
DGDFT: A massively parallel method for large scale density functional theory calculations
Energy Technology Data Exchange (ETDEWEB)
Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
Application of parallel computing techniques to a large-scale reservoir simulation
International Nuclear Information System (INIS)
Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten
2001-01-01
Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance
Increasing the reach of forensic genetics with massively parallel sequencing.
Budowle, Bruce; Schmedes, Sarah E; Wendt, Frank R
2017-09-01
The field of forensic genetics has made great strides in the analysis of biological evidence related to criminal and civil matters. More so, the discipline has set a standard of performance and quality in the forensic sciences. The advent of massively parallel sequencing will allow the field to expand its capabilities substantially. This review describes the salient features of massively parallel sequencing and how it can impact forensic genetics. The features of this technology offer increased number and types of genetic markers that can be analyzed, higher throughput of samples, and the capability of targeting different organisms, all by one unifying methodology. While there are many applications, three are described where massively parallel sequencing will have immediate impact: molecular autopsy, microbial forensics and differentiation of monozygotic twins. The intent of this review is to expose the forensic science community to the potential enhancements that have or are soon to arrive and demonstrate the continued expansion the field of forensic genetics and its service in the investigation of legal matters.
Neural nets for massively parallel optimization
Dixon, Laurence C. W.; Mills, David
1992-07-01
To apply massively parallel processing systems to the solution of large scale optimization problems it is desirable to be able to evaluate any function f(z), z (epsilon) Rn in a parallel manner. The theorem of Cybenko, Hecht Nielsen, Hornik, Stinchcombe and White, and Funahasi shows that this can be achieved by a neural network with one hidden layer. In this paper we address the problem of the number of nodes required in the layer to achieve a given accuracy in the function and gradient values at all points within a given n dimensional interval. The type of activation function needed to obtain nonsingular Hessian matrices is described and a strategy for obtaining accurate minimal networks presented.
High performance parallel computing of flows in complex geometries: I. Methods
International Nuclear Information System (INIS)
Gourdain, N; Gicquel, L; Montagnac, M; Vermorel, O; Staffelbach, G; Garcia, M; Boussuge, J-F; Gazaix, M; Poinsot, T
2009-01-01
Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the models that are needed. In fact, most computational fluid dynamics (CFD) predictions as found today in industry focus on a reduced or simplified version of the real system (such as a periodic sector) and are usually solved with a steady-state assumption. This paper shows how to overcome such barriers and how such a new challenge can be addressed by developing flow solvers running on high-end computing platforms, using thousands of computing cores. Parallel strategies used by modern flow solvers are discussed with particular emphases on mesh-partitioning, load balancing and communication. Two examples are used to illustrate these concepts: a multi-block structured code and an unstructured code. Parallel computing strategies used with both flow solvers are detailed and compared. This comparison indicates that mesh-partitioning and load balancing are more straightforward with unstructured grids than with multi-block structured meshes. However, the mesh-partitioning stage can be challenging for unstructured grids, mainly due to memory limitations of the newly developed massively parallel architectures. Finally, detailed investigations show that the impact of mesh-partitioning on the numerical CFD solutions, due to rounding errors and block splitting, may be of importance and should be accurately addressed before qualifying massively parallel CFD tools for a routine industrial use.
Energy Technology Data Exchange (ETDEWEB)
Madduri, Kamesh; Ediger, David; Jiang, Karl; Bader, David A.; Chavarria-Miranda, Daniel
2009-02-15
We present a new lock-free parallel algorithm for computing betweenness centralityof massive small-world networks. With minor changes to the data structures, ouralgorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun multicore server with the UltraSPARC T2 processor. For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.
Massively parallel de novo protein design for targeted therapeutics
Chevalier, Aaron
2017-09-26
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Massively parallel de novo protein design for targeted therapeutics
Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Ferná ndez-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David
2017-01-01
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Massively parallel performance of neutron transport response matrix algorithms
International Nuclear Information System (INIS)
Hanebutte, U.R.; Lewis, E.E.
1993-01-01
Massively parallel red/black response matrix algorithms for the solution of within-group neutron transport problems are implemented on the Connection Machines-2, 200 and 5. The response matrices are dericed from the diamond-differences and linear-linear nodal discrete ordinate and variational nodal P 3 approximations. The unaccelerated performance of the iterative procedure is examined relative to the maximum rated performances of the machines. The effects of processor partitions size, of virtual processor ratio and of problems size are examined in detail. For the red/black algorithm, the ratio of inter-node communication to computing times is found to be quite small, normally of the order of ten percent or less. Performance increases with problems size and with virtual processor ratio, within the memeory per physical processor limitation. Algorithm adaptation to courser grain machines is straight-forward, with total computing time being virtually inversely proportional to the number of physical processors. (orig.)
Massively parallel de novo protein design for targeted therapeutics
Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David
2018-01-01
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867
Parallel peak pruning for scalable SMP contour tree computation
Energy Technology Data Exchange (ETDEWEB)
Carr, Hamish A. [Univ. of Leeds (United Kingdom); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Sewell, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahrens, James P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-09
As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.
Application of Raptor-M3G to reactor dosimetry problems on massively parallel architectures - 026
International Nuclear Information System (INIS)
Longoni, G.
2010-01-01
The solution of complex 3-D radiation transport problems requires significant resources both in terms of computation time and memory availability. Therefore, parallel algorithms and multi-processor architectures are required to solve efficiently large 3-D radiation transport problems. This paper presents the application of RAPTOR-M3G (Rapid Parallel Transport Of Radiation - Multiple 3D Geometries) to reactor dosimetry problems. RAPTOR-M3G is a newly developed parallel computer code designed to solve the discrete ordinates (SN) equations on multi-processor computer architectures. This paper presents the results for a reactor dosimetry problem using a 3-D model of a commercial 2-loop pressurized water reactor (PWR). The accuracy and performance of RAPTOR-M3G will be analyzed and the numerical results obtained from the calculation will be compared directly to measurements of the neutron field in the reactor cavity air gap. The parallel performance of RAPTOR-M3G on massively parallel architectures, where the number of computing nodes is in the order of hundreds, will be analyzed up to four hundred processors. The performance results will be presented based on two supercomputing architectures: the POPLE supercomputer operated by the Pittsburgh Supercomputing Center and the Westinghouse computer cluster. The Westinghouse computer cluster is equipped with a standard Ethernet network connection and an InfiniBand R interconnects capable of a bandwidth in excess of 20 GBit/sec. Therefore, the impact of the network architecture on RAPTOR-M3G performance will be analyzed as well. (authors)
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Newman, Gregory A.; Commer, Michael
2009-07-01
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.
International Nuclear Information System (INIS)
Newman, Gregory A; Commer, Michael
2009-01-01
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.
Computations on the massively parallel processor at the Goddard Space Flight Center
Strong, James P.
1991-01-01
Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.
Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems
Albutiu, Martina-Cezara; Kemper, Alfons; Neumann, Thomas
2012-01-01
Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel mult...
User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code
International Nuclear Information System (INIS)
Earth Sciences Division; Zhang, Keni; Zhang, Keni; Wu, Yu-Shu; Pruess, Karsten
2008-01-01
TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator is to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code. The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used
Parallel computing techniques for rotorcraft aerodynamics
Ekici, Kivanc
The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).
Directory of Open Access Journals (Sweden)
Fang Huang
2016-06-01
Full Text Available In some digital Earth engineering applications, spatial interpolation algorithms are required to process and analyze large amounts of data. Due to its powerful computing capacity, heterogeneous computing has been used in many applications for data processing in various fields. In this study, we explore the design and implementation of a parallel universal kriging spatial interpolation algorithm using the OpenCL programming model on heterogeneous computing platforms for massive Geo-spatial data processing. This study focuses primarily on transforming the hotspots in serial algorithms, i.e., the universal kriging interpolation function, into the corresponding kernel function in OpenCL. We also employ parallelization and optimization techniques in our implementation to improve the code performance. Finally, based on the results of experiments performed on two different high performance heterogeneous platforms, i.e., an NVIDIA graphics processing unit system and an Intel Xeon Phi system (MIC, we show that the parallel universal kriging algorithm can achieve the highest speedup of up to 40× with a single computing device and the highest speedup of up to 80× with multiple devices.
Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data
Directory of Open Access Journals (Sweden)
Wanrong Huang
2017-01-01
Full Text Available The Internet applications, such as network searching, electronic commerce, and modern medical applications, produce and process massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm, breadth-first search (BFS, is fundamental in many graph processing applications and metrics when a graph grows in scale. A variety of scientific programming methods have been proposed for accelerating and parallelizing BFS because of the poor temporal and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing. And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to unify all processor addresses. Within the limits permitted by the Graph500 test bench after 1D parallel hybrid BFS algorithm testing, our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with graph searching applications.
A highly scalable massively parallel fast marching method for the Eikonal equation
Yang, Jianming; Stern, Frederick
2017-03-01
The fast marching method is a widely used numerical method for solving the Eikonal equation arising from a variety of scientific and engineering fields. It is long deemed inherently sequential and an efficient parallel algorithm applicable to large-scale practical applications is not available in the literature. In this study, we present a highly scalable massively parallel implementation of the fast marching method using a domain decomposition approach. Central to this algorithm is a novel restarted narrow band approach that coordinates the frequency of communications and the amount of computations extra to a sequential run for achieving an unprecedented parallel performance. Within each restart, the narrow band fast marching method is executed; simple synchronous local exchanges and global reductions are adopted for communicating updated data in the overlapping regions between neighboring subdomains and getting the latest front status, respectively. The independence of front characteristics is exploited through special data structures and augmented status tags to extract the masked parallelism within the fast marching method. The efficiency, flexibility, and applicability of the parallel algorithm are demonstrated through several examples. These problems are extensively tested on six grids with up to 1 billion points using different numbers of processes ranging from 1 to 65536. Remarkable parallel speedups are achieved using tens of thousands of processes. Detailed pseudo-codes for both the sequential and parallel algorithms are provided to illustrate the simplicity of the parallel implementation and its similarity to the sequential narrow band fast marching algorithm.
International Nuclear Information System (INIS)
Stankovski, Z.
1995-01-01
The collision probability method in neutron transport, as applied to 2D geometries, consume a great amount of computer time, for a typical 2D assembly calculation about 90% of the computing time is consumed in the collision probability evaluations. Consequently RZ or 3D calculations became prohibitive. In this paper the author presents a simple but efficient parallel algorithm based on the message passing host/node programmation model. Parallelization was applied to the energy group treatment. Such approach permits parallelization of the existing code, requiring only limited modifications. Sequential/parallel computer portability is preserved, which is a necessary condition for a industrial code. Sequential performances are also preserved. The algorithm is implemented on a CRAY 90 coupled to a 128 processor T3D computer, a 16 processor IBM SPI and a network of workstations, using the Public Domain PVM library. The tests were executed for a 2D geometry with the standard 99-group library. All results were very satisfactory, the best ones with IBM SPI. Because of heterogeneity of the workstation network, the author did not ask high performances for this architecture. The same source code was used for all computers. A more impressive advantage of this algorithm will appear in the calculations of the SAPHYR project (with the future fine multigroup library of about 8000 groups) with a massively parallel computer, using several hundreds of processors
Computation and parallel implementation for early vision
Gualtieri, J. Anthony
1990-01-01
The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.
Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S
2017-10-01
An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT
Massively parallel Fokker-Planck calculations
International Nuclear Information System (INIS)
Mirin, A.A.
1990-01-01
This paper reports that the Fokker-Planck package FPPAC, which solves the complete nonlinear multispecies Fokker-Planck collision operator for a plasma in two-dimensional velocity space, has been rewritten for the Connection Machine 2. This has involved allocation of variables either to the front end or the CM2, minimization of data flow, and replacement of Cray-optimized algorithms with ones suitable for a massively parallel architecture. Calculations have been carried out on various Connection Machines throughout the country. Results and timings on these machines have been compared to each other and to those on the static memory Cray-2. For large problem size, the Connection Machine 2 is found to be cost-efficient
CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
International Nuclear Information System (INIS)
Schneider, Evan E.; Robertson, Brant E.
2015-01-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256 3 ) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density
CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
Energy Technology Data Exchange (ETDEWEB)
Schneider, Evan E.; Robertson, Brant E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2015-04-15
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256{sup 3}) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo
2017-08-01
We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU
International Nuclear Information System (INIS)
Stankovski, Z.
1995-01-01
The collision probability method in neutron transport, as applied to 2D geometries, consume a great amount of computer time, for a typical 2D assembly calculation evaluations. Consequently RZ or 3D calculations became prohibitive. In this paper we present a simple but efficient parallel algorithm based on the message passing host/node programing model. Parallelization was applied to the energy group treatment. Such approach permits parallelization of the existing code, requiring only limited modifications. Sequential/parallel computer portability is preserved, witch is a necessary condition for a industrial code. Sequential performances are also preserved. The algorithm is implemented on a CRAY 90 coupled to a 128 processor T3D computer, a 16 processor IBM SP1 and a network of workstations, using the Public Domain PVM library. The tests were executed for a 2D geometry with the standard 99-group library. All results were very satisfactory, the best ones with IBM SP1. Because of heterogeneity of the workstation network, we did ask high performances for this architecture. The same source code was used for all computers. A more impressive advantage of this algorithm will appear in the calculations of the SAPHYR project (with the future fine multigroup library of about 8000 groups) with a massively parallel computer, using several hundreds of processors. (author). 5 refs., 6 figs., 2 tabs
Massively Parallel Finite Element Programming
Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang
2010-01-01
Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Parallelism in matrix computations
Gallopoulos, Efstratios; Sameh, Ahmed H
2016-01-01
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...
Massively-parallel best subset selection for ordinary least-squares regression
DEFF Research Database (Denmark)
Gieseke, Fabian; Polsterer, Kai Lars; Mahabal, Ashish
2017-01-01
Selecting an optimal subset of k out of d features for linear regression models given n training instances is often considered intractable for feature spaces with hundreds or thousands of dimensions. We propose an efficient massively-parallel implementation for selecting such optimal feature...
Calafiura, Paolo; The ATLAS collaboration; Seuster, Rolf; Tsulaia, Vakhtang; van Gemmeren, Peter
2015-01-01
AthenaMP is a multi-process version of the ATLAS reconstruction and data analysis framework Athena. By leveraging Linux fork and copy-on-write, it allows the sharing of memory pages between event processors running on the same compute node with little to no change in the application code. Originally targeted to optimize the memory footprint of reconstruction jobs, AthenaMP has demonstrated that it can reduce the memory usage of certain confugurations of ATLAS production jobs by a factor of 2. AthenaMP has also evolved to become the parallel event-processing core of the recently developed ATLAS infrastructure for fine-grained event processing (Event Service) which allows to run AthenaMP inside massively parallel distributed applications on hundreds of compute nodes simultaneously. We present the architecture of AthenaMP, various strategies implemented by AthenaMP for scheduling workload to worker processes (for example: Shared Event Queue and Shared Distributor of Event Tokens) and the usage of AthenaMP in the...
Calafiura, Paolo; Seuster, Rolf; Tsulaia, Vakhtang; van Gemmeren, Peter
2015-01-01
AthenaMP is a multi-process version of the ATLAS reconstruction, simulation and data analysis framework Athena. By leveraging Linux fork and copy-on-write, it allows for sharing of memory pages between event processors running on the same compute node with little to no change in the application code. Originally targeted to optimize the memory footprint of reconstruction jobs, AthenaMP has demonstrated that it can reduce the memory usage of certain configurations of ATLAS production jobs by a factor of 2. AthenaMP has also evolved to become the parallel event-processing core of the recently developed ATLAS infrastructure for fine-grained event processing (Event Service) which allows to run AthenaMP inside massively parallel distributed applications on hundreds of compute nodes simultaneously. We present the architecture of AthenaMP, various strategies implemented by AthenaMP for scheduling workload to worker processes (for example: Shared Event Queue and Shared Distributor of Event Tokens) and the usage of Ath...
International Nuclear Information System (INIS)
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.
2015-01-01
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results
Massive parallel 3D PIC simulation of negative ion extraction
Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu
2017-09-01
The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.
Use of massively parallel computing to improve modelling accuracy within the nuclear sector
Directory of Open Access Journals (Sweden)
L M Evans
2016-06-01
This work presents recent advancements in three techniques: Uncertainty quantification (UQ; Cellular automata finite element (CAFE; Image based finite element methods (IBFEM. Case studies are presented demonstrating their suitability for use in nuclear engineering made possible by advancements in parallel computing hardware that is projected to be available for industry within the next decade costing of the order of $100k.
A massively parallel corpus: the Bible in 100 languages.
Christodouloupoulos, Christos; Steedman, Mark
We describe the creation of a massively parallel corpus based on 100 translations of the Bible. We discuss some of the difficulties in acquiring and processing the raw material as well as the potential of the Bible as a corpus for natural language processing. Finally we present a statistical analysis of the corpora collected and a detailed comparison between the English translation and other English corpora.
Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing
Directory of Open Access Journals (Sweden)
Qiang Liu
2018-05-01
Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.
International Nuclear Information System (INIS)
Heggarty, J.W.
1999-06-01
For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in
Siretskiy, Alexey; Sundqvist, Tore; Voznesenskiy, Mikhail; Spjuth, Ola
2015-01-01
New high-throughput technologies, such as massively parallel sequencing, have transformed the life sciences into a data-intensive field. The most common e-infrastructure for analyzing this data consists of batch systems that are based on high-performance computing resources; however, the bioinformatics software that is built on this platform does not scale well in the general case. Recently, the Hadoop platform has emerged as an interesting option to address the challenges of increasingly large datasets with distributed storage, distributed processing, built-in data locality, fault tolerance, and an appealing programming methodology. In this work we introduce metrics and report on a quantitative comparison between Hadoop and a single node of conventional high-performance computing resources for the tasks of short read mapping and variant calling. We calculate efficiency as a function of data size and observe that the Hadoop platform is more efficient for biologically relevant data sizes in terms of computing hours for both split and un-split data files. We also quantify the advantages of the data locality provided by Hadoop for NGS problems, and show that a classical architecture with network-attached storage will not scale when computing resources increase in numbers. Measurements were performed using ten datasets of different sizes, up to 100 gigabases, using the pipeline implemented in Crossbow. To make a fair comparison, we implemented an improved preprocessor for Hadoop with better performance for splittable data files. For improved usability, we implemented a graphical user interface for Crossbow in a private cloud environment using the CloudGene platform. All of the code and data in this study are freely available as open source in public repositories. From our experiments we can conclude that the improved Hadoop pipeline scales better than the same pipeline on high-performance computing resources, we also conclude that Hadoop is an economically viable
Applied Parallel Computing Industrial Computation and Optimization
DEFF Research Database (Denmark)
Madsen, Kaj; NA NA NA Olesen, Dorte
Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)......Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)...
International Nuclear Information System (INIS)
Woodruff, S.B.
1992-01-01
The Transient Reactor Analysis Code (TRAC), which features a two- fluid treatment of thermal-hydraulics, is designed to model transients in water reactors and related facilities. One of the major computational costs associated with TRAC and similar codes is calculating constitutive coefficients. Although the formulations for these coefficients are local the costs are flow-regime- or data-dependent; i.e., the computations needed for a given spatial node often vary widely as a function of time. Consequently, poor load balancing will degrade efficiency on either vector or data parallel architectures when the data are organized according to spatial location. Unfortunately, a general automatic solution to the load-balancing problem associated with data-dependent computations is not yet available for massively parallel architectures. This document discusses why developers algorithms, such as a neural net representation, that do not exhibit algorithms, such as a neural net representation, that do not exhibit load-balancing problems
CERN. Geneva
2016-01-01
Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...
Energy Technology Data Exchange (ETDEWEB)
Gentzsch, W.; Ferstl, F.; Paap, H.G.; Riedel, E.
1998-03-20
In the ARTS project, system software has been developed to support smog and fluid dynamic applications on massively parallel systems. The aim is to implement and test specific software structures within an adaptive run-time system to separate the parallel core algorithms of the applications from the platform independent runtime aspects. Only slight modifications is existing Fortran and C code are necessary to integrate the application code into the new object oriented parallel integrated ARTS framework. The OO-design offers easy control, re-use and adaptation of the system services, resulting in a dramatic decrease in development time of the application and in ease of maintainability of the application software in the future. (orig.) [Deutsch] Im Projekt ARTS wird Basissoftware zur Unterstuetzung von Anwendungen aus den Bereichen Smoganalyse und Stroemungsmechanik auf massiv parallelen Systemen entwickelt und optimiert. Im Vordergrund steht die Erprobung geeigneter Strukturen, um systemnahe Funktionalitaeten in einer Laufzeitumgebung anzusiedeln und dadurch die parallelen Kernalgorithmen der Anwendungsprogramme von den plattformunabhaengigen Laufzeitaspekten zu trennen. Es handelt sich dabei um herkoemmlich strukturierten Fortran-Code, der unter minimalen Aenderungen auch weiterhin nutzbar sein muss, sowie um objektbasiert entworfenen C-Code, der die volle Funktionalitaet der ARTS-Plattform ausnutzen kann. Ein objektorientiertes Design erlaubt eine einfache Kontrolle, Wiederverwendung und Adaption der vom System vorgegebenen Basisdienste. Daraus resultiert ein deutlich reduzierter Entwicklungs- und Laufzeitaufwand fuer die Anwendung. ARTS schafft eine integrierende Plattform, die moderne Technologien aus dem Bereich objektorientierter Laufzeitsysteme mit praxisrelevanten Anforderungen aus dem Bereich des wissenschaftlichen Hoechstleistungsrechnens kombiniert. (orig.)
Parallel computing: numerics, applications, and trends
National Research Council Canada - National Science Library
Trobec, Roman; Vajteršic, Marián; Zinterhof, Peter
2009-01-01
... and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, programming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerica...
I - Template Metaprogramming for Massively Parallel Scientific Computing - Expression Templates
CERN. Geneva
2016-01-01
Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...
Ford, Eric B.; Dindar, Saleh; Peters, Jorg
2015-08-01
The realism of astrophysical simulations and statistical analyses of astronomical data are set by the available computational resources. Thus, astronomers and astrophysicists are constantly pushing the limits of computational capabilities. For decades, astronomers benefited from massive improvements in computational power that were driven primarily by increasing clock speeds and required relatively little attention to details of the computational hardware. For nearly a decade, increases in computational capabilities have come primarily from increasing the degree of parallelism, rather than increasing clock speeds. Further increases in computational capabilities will likely be led by many-core architectures such as Graphical Processing Units (GPUs) and Intel Xeon Phi. Successfully harnessing these new architectures, requires significantly more understanding of the hardware architecture, cache hierarchy, compiler capabilities and network network characteristics.I will provide an astronomer's overview of the opportunities and challenges provided by modern many-core architectures and elastic cloud computing. The primary goal is to help an astronomical audience understand what types of problems are likely to yield more than order of magnitude speed-ups and which problems are unlikely to parallelize sufficiently efficiently to be worth the development time and/or costs.I will draw on my experience leading a team in developing the Swarm-NG library for parallel integration of large ensembles of small n-body systems on GPUs, as well as several smaller software projects. I will share lessons learned from collaborating with computer scientists, including both technical and soft skills. Finally, I will discuss the challenges of training the next generation of astronomers to be proficient in this new era of high-performance computing, drawing on experience teaching a graduate class on High-Performance Scientific Computing for Astrophysics and organizing a 2014 advanced summer
Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.
Bhandarkar, S M; Chirravuri, S; Arnold, J
1996-01-01
Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.
Energy Technology Data Exchange (ETDEWEB)
Koniges, A.
1996-02-09
This project is a package of 11 individual CRADA`s plus hardware. This innovative project established a three-year multi-party collaboration that is significantly accelerating the availability of commercial massively parallel processing computing software technology to U.S. government, academic, and industrial end-users. This report contains individual presentations from nine principal investigators along with overall program information.
International Nuclear Information System (INIS)
1994-08-01
This is the first annual report of the MPP pilot project 93MPR05. In this pilot project four research groups with different, complementary backgrounds collaborate with the aim to develop new algorithms and codes to simulate the magnetohydrodynamics of thermonuclear and astrophysical plasmas on massively parallel machines. The expected speed-up is required to simulate the dynamics of the hot plasmas of interest which are characterized by very large magnetic Reynolds numbers and, hence, require high spatial and temporal resolutions (for details see section 1). The four research groups that collaborated to produce the results reported here are: The MHD group of Prof. Dr. J.P. Goedbloed at the FOM-Institute for Plasma Physics 'Rijnhuizen' in Nieuwegein, the group of Prof. Dr. H. van der Vorst at the Mathematics Institute of Utrecht University, the group of Prof. Dr. A.G. Hearn at the Astronomical Institute of Utrecht University, and the group of Dr. Ir. H.J.J. te Riele at the CWI in Amsterdam. The full project team met frequently during this first project year to discuss progress reports, current problems, etc. (see section 2). The main results of the first project year are: - Proof of the scalability of typical linear and nonlinear MHD codes - development and testing of a parallel version of the Arnoldi algorithm - development and testing of alternative methods for solving large non-Hermitian eigenvalue problems - porting of the 3D nonlinear semi-implicit time evolution code HERA to an MPP system. The steps that were scheduled to reach these intended results are given in section 3. (orig./WL)
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-08-01
This is the first annual report of the MPP pilot project 93MPR05. In this pilot project four research groups with different, complementary backgrounds collaborate with the aim to develop new algorithms and codes to simulate the magnetohydrodynamics of thermonuclear and astrophysical plasmas on massively parallel machines. The expected speed-up is required to simulate the dynamics of the hot plasmas of interest which are characterized by very large magnetic Reynolds numbers and, hence, require high spatial and temporal resolutions (for details see section 1). The four research groups that collaborated to produce the results reported here are: The MHD group of Prof. Dr. J.P. Goedbloed at the FOM-Institute for Plasma Physics `Rijnhuizen` in Nieuwegein, the group of Prof. Dr. H. van der Vorst at the Mathematics Institute of Utrecht University, the group of Prof. Dr. A.G. Hearn at the Astronomical Institute of Utrecht University, and the group of Dr. Ir. H.J.J. te Riele at the CWI in Amsterdam. The full project team met frequently during this first project year to discuss progress reports, current problems, etc. (see section 2). The main results of the first project year are: - Proof of the scalability of typical linear and nonlinear MHD codes - development and testing of a parallel version of the Arnoldi algorithm - development and testing of alternative methods for solving large non-Hermitian eigenvalue problems - porting of the 3D nonlinear semi-implicit time evolution code HERA to an MPP system. The steps that were scheduled to reach these intended results are given in section 3. (orig./WL).
The numerical parallel computing of photon transport
International Nuclear Information System (INIS)
Huang Qingnan; Liang Xiaoguang; Zhang Lifa
1998-12-01
The parallel computing of photon transport is investigated, the parallel algorithm and the parallelization of programs on parallel computers both with shared memory and with distributed memory are discussed. By analyzing the inherent law of the mathematics and physics model of photon transport according to the structure feature of parallel computers, using the strategy of 'to divide and conquer', adjusting the algorithm structure of the program, dissolving the data relationship, finding parallel liable ingredients and creating large grain parallel subtasks, the sequential computing of photon transport into is efficiently transformed into parallel and vector computing. The program was run on various HP parallel computers such as the HY-1 (PVP), the Challenge (SMP) and the YH-3 (MPP) and very good parallel speedup has been gotten
Directory of Open Access Journals (Sweden)
Cronn Richard
2009-12-01
Full Text Available Abstract Background Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels? Results We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (ycf1, ycf2, highlighting their unusual evolutionary properties. Conclusion Plastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling
Application of parallel computing to seismic damage process simulation of an arch dam
International Nuclear Information System (INIS)
Zhong Hong; Lin Gao; Li Jianbo
2010-01-01
The simulation of damage process of high arch dam subjected to strong earthquake shocks is significant to the evaluation of its performance and seismic safety, considering the catastrophic effect of dam failure. However, such numerical simulation requires rigorous computational capacity. Conventional serial computing falls short of that and parallel computing is a fairly promising solution to this problem. The parallel finite element code PDPAD was developed for the damage prediction of arch dams utilizing the damage model with inheterogeneity of concrete considered. Developed with programming language Fortran, the code uses a master/slave mode for programming, domain decomposition method for allocation of tasks, MPI (Message Passing Interface) for communication and solvers from AZTEC library for solution of large-scale equations. Speedup test showed that the performance of PDPAD was quite satisfactory. The code was employed to study the damage process of a being-built arch dam on a 4-node PC Cluster, with more than one million degrees of freedom considered. The obtained damage mode was quite similar to that of shaking table test, indicating that the proposed procedure and parallel code PDPAD has a good potential in simulating seismic damage mode of arch dams. With the rapidly growing need for massive computation emerged from engineering problems, parallel computing will find more and more applications in pertinent areas.
Differences Between Distributed and Parallel Systems
Energy Technology Data Exchange (ETDEWEB)
Brightwell, R.; Maccabe, A.B.; Rissen, R.
1998-10-01
Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.
Reduced complexity and latency for a massive MIMO system using a parallel detection algorithm
Directory of Open Access Journals (Sweden)
Shoichi Higuchi
2017-09-01
Full Text Available In recent years, massive MIMO systems have been widely researched to realize high-speed data transmission. Since massive MIMO systems use a large number of antennas, these systems require huge complexity to detect the signal. In this paper, we propose a novel detection method for massive MIMO using parallel detection with maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD to reduce the complexity and latency. The proposed scheme obtains an R matrix after permutation of an H matrix and QR decomposition. The R matrix is also eliminated using a Gauss–Jordan elimination method. By using a modified R matrix, the proposed method can detect the transmitted signal using parallel detection. From the simulation results, the proposed scheme can achieve a reduced complexity and latency with a little degradation of the bit error rate (BER performance compared with the conventional method.
Parallel algorithms for mapping pipelined and parallel computations
Nicol, David M.
1988-01-01
Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.
Compiler Technology for Parallel Scientific Computation
Directory of Open Access Journals (Sweden)
Can Özturan
1994-01-01
Full Text Available There is a need for compiler technology that, given the source program, will generate efficient parallel codes for different architectures with minimal user involvement. Parallel computation is becoming indispensable in solving large-scale problems in science and engineering. Yet, the use of parallel computation is limited by the high costs of developing the needed software. To overcome this difficulty we advocate a comprehensive approach to the development of scalable architecture-independent software for scientific computation based on our experience with equational programming language (EPL. Our approach is based on a program decomposition, parallel code synthesis, and run-time support for parallel scientific computation. The program decomposition is guided by the source program annotations provided by the user. The synthesis of parallel code is based on configurations that describe the overall computation as a set of interacting components. Run-time support is provided by the compiler-generated code that redistributes computation and data during object program execution. The generated parallel code is optimized using techniques of data alignment, operator placement, wavefront determination, and memory optimization. In this article we discuss annotations, configurations, parallel code generation, and run-time support suitable for parallel programs written in the functional parallel programming language EPL and in Fortran.
Collectively loading an application in a parallel computer
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.; Miller, Samuel J.; Mundy, Michael B.
2016-01-05
Collectively loading an application in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: identifying, by a parallel computer control system, a subset of compute nodes in the parallel computer to execute a job; selecting, by the parallel computer control system, one of the subset of compute nodes in the parallel computer as a job leader compute node; retrieving, by the job leader compute node from computer memory, an application for executing the job; and broadcasting, by the job leader to the subset of compute nodes in the parallel computer, the application for executing the job.
DEFF Research Database (Denmark)
Romero, N. A.; Glinsvad, Christian; Larsen, Ask Hjorth
2013-01-01
Density function theory (DFT) is the most widely employed electronic structure method because of its favorable scaling with system size and accuracy for a broad range of molecular and condensed-phase systems. The advent of massively parallel supercomputers has enhanced the scientific community...
Energy Technology Data Exchange (ETDEWEB)
Lichtner, Peter C. [OFM Research, Redmond, WA (United States); Hammond, Glenn E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Chuan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bisht, Gautam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, Benjamin [National Center for Atmospheric Research, Boulder, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Richard [Intel Corporation, Portland, OR (United States); Univ. of Tennessee, Knoxville, TN (United States); Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-01-20
PFLOTRAN solves a system of generally nonlinear partial differential equations describing multi-phase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Parallelization is achieved through domain decomposition using the PETSc (Portable Extensible Toolkit for Scientific Computation) libraries for the parallelization framework (Balay et al., 1997). PFLOTRAN has been developed from the ground up for parallel scalability and has been run on up to 218 processor cores with problem sizes up to 2 billion degrees of freedom. Written in object oriented Fortran 90, the code requires the latest compilers compatible with Fortran 2003. At the time of this writing this requires gcc 4.7.x, Intel 12.1.x and PGC compilers. As a requirement of running problems with a large number of degrees of freedom, PFLOTRAN allows reading input data that is too large to fit into memory allotted to a single processor core. The current limitation to the problem size PFLOTRAN can handle is the limitation of the HDF5 file format used for parallel IO to 32 bit integers. Noting that 2^{32} = 4; 294; 967; 296, this gives an estimate of the maximum problem size that can be currently run with PFLOTRAN. Hopefully this limitation will be remedied in the near future.
International Nuclear Information System (INIS)
Samatova, Nagiza F; Branstetter, Marcia; Ganguly, Auroop R; Hettich, Robert; Khan, Shiraj; Kora, Guruprasad; Li, Jiangtian; Ma, Xiaosong; Pan, Chongle; Shoshani, Arie; Yoginath, Srikanth
2006-01-01
Ultrascale computing and high-throughput experimental technologies have enabled the production of scientific data about complex natural phenomena. With this opportunity, comes a new problem - the massive quantities of data so produced. Answers to fundamental questions about the nature of those phenomena remain largely hidden in the produced data. The goal of this work is to provide a scalable high performance statistical data analysis framework to help scientists perform interactive analyses of these raw data to extract knowledge. Towards this goal we have been developing an open source parallel statistical analysis package, called Parallel R, that lets scientists employ a wide range of statistical analysis routines on high performance shared and distributed memory architectures without having to deal with the intricacies of parallelizing these routines
Arkin, Ethem; Tekinerdogan, Bedir; Imre, Kayhan M.
2017-01-01
The need for high-performance computing together with the increasing trend from single processor to parallel computer architectures has leveraged the adoption of parallel computing. To benefit from parallel computing power, usually parallel algorithms are defined that can be mapped and executed
An Introduction to Parallel Computation R
Indian Academy of Sciences (India)
How are they programmed? This article provides an introduction. A parallel computer is a network of processors built for ... and have been used to solve problems much faster than a single ... in parallel computer design is to select an organization which ..... The most ambitious approach to parallel computing is to develop.
Parallel Computing Strategies for Irregular Algorithms
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
International Nuclear Information System (INIS)
Dubois, J.
2011-01-01
In science, simulation is a key process for research or validation. Modern computer technology allows faster numerical experiments, which are cheaper than real models. In the field of neutron simulation, the calculation of eigenvalues is one of the key challenges. The complexity of these problems is such that a lot of computing power may be necessary. The work of this thesis is first the evaluation of new computing hardware such as graphics card or massively multi-core chips, and their application to eigenvalue problems for neutron simulation. Then, in order to address the massive parallelism of supercomputers national, we also study the use of asynchronous hybrid methods for solving eigenvalue problems with this very high level of parallelism. Then we experiment the work of this research on several national supercomputers such as the Titane hybrid machine of the Computing Center, Research and Technology (CCRT), the Curie machine of the Very Large Computing Centre (TGCC), currently being installed, and the Hopper machine at the Lawrence Berkeley National Laboratory (LBNL). We also do our experiments on local workstations to illustrate the interest of this research in an everyday use with local computing resources. (author) [fr
Engineering-Based Thermal CFD Simulations on Massive Parallel Systems
Frisch, Jé rô me; Mundani, Ralf-Peter; Rank, Ernst; van Treeck, Christoph
2015-01-01
The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers
International Nuclear Information System (INIS)
Scheer, Patrick
1998-01-01
Progress in microelectronics lead to electronic circuits which are increasingly integrated, with an operating frequency and an inputs/outputs count larger than the ones supported by printed circuit board and back-plane technologies. As a result, distributed systems with several boards cannot fully exploit the performance of integrated circuits. In synchronous parallel computers, the situation is worsen since the overall system performances rely on the efficiency of electrical interconnects between the integrated circuits which include the processing elements (PE). The study of a real parallel computer named SYMPHONIE shows for instance that the system operating frequency is far smaller than the capabilities of the microelectronics technology used for the PE implementation. Optical interconnections may cancel these limitations by providing more efficient connections between the PE. Especially, free-space optical interconnections based on vertical-cavity surface-emitting lasers (VCSEL), micro-lens and PIN photodiodes are compatible with the required features of the PE communications. Zero bias modulation of VCSEL with CMOS-compatible digital signals is studied and experimentally demonstrated. A model of the propagation of truncated gaussian beams through micro-lenses is developed. It is then used to optimise the geometry of the detection areas. A dedicated mechanical system is also proposed and implemented for integrating free-space optical interconnects in a standard electronic environment, representative of the one of parallel computer systems. A specially designed demonstrator provides the experimental validation of the above physical concepts. (author) [fr
Parallel quantum computing in a single ensemble quantum computer
International Nuclear Information System (INIS)
Long Guilu; Xiao, L.
2004-01-01
We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to perform 'single-instruction-multidata' type of parallel computation. Parallel quantum computing can provide additional speedup in Grover's algorithm and Shor's algorithm. In addition, it also makes a fuller use of qubit resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized
Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine
International Nuclear Information System (INIS)
Baker, R.S.
1992-01-01
We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well
Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine
International Nuclear Information System (INIS)
Baker, R.S.
1993-01-01
We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well. (orig.)
Broadcasting a message in a parallel computer
Berg, Jeremy E [Rochester, MN; Faraj, Ahmad A [Rochester, MN
2011-08-02
Methods, systems, and products are disclosed for broadcasting a message in a parallel computer. The parallel computer includes a plurality of compute nodes connected together using a data communications network. The data communications network optimized for point to point data communications and is characterized by at least two dimensions. The compute nodes are organized into at least one operational group of compute nodes for collective parallel operations of the parallel computer. One compute node of the operational group assigned to be a logical root. Broadcasting a message in a parallel computer includes: establishing a Hamiltonian path along all of the compute nodes in at least one plane of the data communications network and in the operational group; and broadcasting, by the logical root to the remaining compute nodes, the logical root's message along the established Hamiltonian path.
International Nuclear Information System (INIS)
Liu, H.
1996-01-01
Computer simulations using the multi-particle code PARMELA with a three-dimensional point-by-point space charge algorithm have turned out to be very helpful in supporting injector commissioning and operations at Thomas Jefferson National Accelerator Facility (Jefferson Lab, formerly called CEBAF). However, this algorithm, which defines a typical N 2 problem in CPU time scaling, is very time-consuming when N, the number of macro-particles, is large. Therefore, it is attractive to use massively parallel processors (MPPs) to speed up the simulations. Motivated by this, the authors modified the space charge subroutine for using the MPPs of the Cray T3D. The techniques used to parallelize and optimize the code on the T3D are discussed in this paper. The performance of the code on the T3D is examined in comparison with a Parallel Vector Processing supercomputer of the Cray C90 and an HP 735/15 high-end workstation
Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations
Energy Technology Data Exchange (ETDEWEB)
Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Department of Computer Science (United States); Department of Mathematics (United States)
2016-10-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations
International Nuclear Information System (INIS)
Detrixhe, Miles; Gibou, Frédéric
2016-01-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
Massively Parallel Single-Molecule Manipulation Using Centrifugal Force
Wong, Wesley; Halvorsen, Ken
2011-03-01
Precise manipulation of single molecules has led to remarkable insights in physics, chemistry, biology, and medicine. However, two issues that have impeded the widespread adoption of these techniques are equipment cost and the laborious nature of making measurements one molecule at a time. To meet these challenges, we have developed an approach that enables massively parallel single- molecule force measurements using centrifugal force. This approach is realized in the centrifuge force microscope, an instrument in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force- field while their micro-to-nanoscopic motions are observed. We demonstrate high- throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Currently, we are taking steps to integrate high-resolution detection, fluorescence, temperature control and a greater dynamic range in force. With significant benefits in efficiency, cost, simplicity, and versatility, single-molecule centrifugation has the potential to expand single-molecule experimentation to a wider range of researchers and experimental systems.
On synchronous parallel computations with independent probabilistic choice
International Nuclear Information System (INIS)
Reif, J.H.
1984-01-01
This paper introduces probabilistic choice to synchronous parallel machine models; in particular parallel RAMs. The power of probabilistic choice in parallel computations is illustrate by parallelizing some known probabilistic sequential algorithms. The authors characterize the computational complexity of time, space, and processor bounded probabilistic parallel RAMs in terms of the computational complexity of probabilistic sequential RAMs. They show that parallelism uniformly speeds up time bounded probabilistic sequential RAM computations by nearly a quadratic factor. They also show that probabilistic choice can be eliminated from parallel computations by introducing nonuniformity
Meloni, Roberto; Camilloni, Carlo; Tiana, Guido
2014-02-11
The denatured state of polypeptides and proteins, stabilized by chemical denaturants like urea and guanidine chloride, displays residual secondary structure when studied by nuclear-magnetic-resonance spectroscopy. However, these experimental techniques are weakly sensitive, and thus molecular-dynamics simulations can be useful to complement the experimental findings. To sample the denatured state, we made use of massively-parallel computers and of a variant of the replica exchange algorithm, in which the different branches, connected with unbiased replicas, favor the formation and disruption of local secondary structure. The algorithm is applied to the second hairpin of GB1 in water, in urea, and in guanidine chloride. We show with the help of different criteria that the simulations converge to equilibrium. It results that urea and guanidine chloride, besides inducing some polyproline-II structure, have different effect on the hairpin. Urea disrupts completely the native region and stabilizes a state which resembles a random coil, while guanidine chloride has a milder effect.
Heydt, Carina; Fassunke, Jana; Künstlinger, Helen; Ihle, Michaela Angelika; König, Katharina; Heukamp, Lukas Carl; Schildhaus, Hans-Ulrich; Odenthal, Margarete; Büttner, Reinhard; Merkelbach-Bruse, Sabine
2014-01-01
Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3–24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for
Directory of Open Access Journals (Sweden)
Carina Heydt
Full Text Available Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3-24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA. No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can
Aspects of computation on asynchronous parallel processors
International Nuclear Information System (INIS)
Wright, M.
1989-01-01
The increasing availability of asynchronous parallel processors has provided opportunities for original and useful work in scientific computing. However, the field of parallel computing is still in a highly volatile state, and researchers display a wide range of opinion about many fundamental questions such as models of parallelism, approaches for detecting and analyzing parallelism of algorithms, and tools that allow software developers and users to make effective use of diverse forms of complex hardware. This volume collects the work of researchers specializing in different aspects of parallel computing, who met to discuss the framework and the mechanics of numerical computing. The far-reaching impact of high-performance asynchronous systems is reflected in the wide variety of topics, which include scientific applications (e.g. linear algebra, lattice gauge simulation, ordinary and partial differential equations), models of parallelism, parallel language features, task scheduling, automatic parallelization techniques, tools for algorithm development in parallel environments, and system design issues
Parallelization of quantum molecular dynamics simulation code
International Nuclear Information System (INIS)
Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu
1998-02-01
A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)
Directory of Open Access Journals (Sweden)
Jiayi Wu
Full Text Available Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM. We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
Cellular automata a parallel model
Mazoyer, J
1999-01-01
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-11-12
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer composed of compute nodes that execute a parallel application, each compute node including application processors that execute the parallel application and at least one management processor dedicated to gathering information regarding data communications. The PAMI is composed of data communications endpoints, each endpoint composed of a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources. Embodiments function by gathering call site statistics describing data communications resulting from execution of data communications instructions and identifying in dependence upon the call cite statistics a data communications algorithm for use in executing a data communications instruction at a call site in the parallel application.
Distributed-memory matrix computations
DEFF Research Database (Denmark)
Balle, Susanne Mølleskov
1995-01-01
The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism in these......The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism...... in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers...
Parallel Tensor Compression for Large-Scale Scientific Data.
Energy Technology Data Exchange (ETDEWEB)
Kolda, Tamara G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ballard, Grey [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Austin, Woody Nathan [Univ. of Texas, Austin, TX (United States)
2015-10-01
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memory parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.
Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.
2017-12-01
As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.
Broadcasting collective operation contributions throughout a parallel computer
Faraj, Ahmad [Rochester, MN
2012-02-21
Methods, systems, and products are disclosed for broadcasting collective operation contributions throughout a parallel computer. The parallel computer includes a plurality of compute nodes connected together through a data communications network. Each compute node has a plurality of processors for use in collective parallel operations on the parallel computer. Broadcasting collective operation contributions throughout a parallel computer according to embodiments of the present invention includes: transmitting, by each processor on each compute node, that processor's collective operation contribution to the other processors on that compute node using intra-node communications; and transmitting on a designated network link, by each processor on each compute node according to a serial processor transmission sequence, that processor's collective operation contribution to the other processors on the other compute nodes using inter-node communications.
Intelligent trigger by massively parallel processors for high energy physics experiments
International Nuclear Information System (INIS)
Rohrbach, F.; Vesztergombi, G.
1992-01-01
The CERN-MPPC collaboration concentrates its effort on the development of machines based on massive parallelism with thousands of integrated processing elements, arranged in a string. Seven applications are under detailed studies within the collaboration: three for LHC, one for SSC, two for fixed target high energy physics at CERN and one for HDTV. Preliminary results are presented. They show that the objectives should be reached with the use of the ASP architecture. (author)
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-10-29
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.
Parallel thermal radiation transport in two dimensions
International Nuclear Information System (INIS)
Smedley-Stevenson, R.P.; Ball, S.R.
2003-01-01
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Parallel thermal radiation transport in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)
2003-07-01
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Massively parallel fabrication of repetitive nanostructures: nanolithography for nanoarrays
International Nuclear Information System (INIS)
Luttge, Regina
2009-01-01
This topical review provides an overview of nanolithographic techniques for nanoarrays. Using patterning techniques such as lithography, normally we aim for a higher order architecture similarly to functional systems in nature. Inspired by the wealth of complexity in nature, these architectures are translated into technical devices, for example, found in integrated circuitry or other systems in which structural elements work as discrete building blocks in microdevices. Ordered artificial nanostructures (arrays of pillars, holes and wires) have shown particular properties and bring about the opportunity to modify and tune the device operation. Moreover, these nanostructures deliver new applications, for example, the nanoscale control of spin direction within a nanomagnet. Subsequently, we can look for applications where this unique property of the smallest manufactured element is repetitively used such as, for example with respect to spin, in nanopatterned magnetic media for data storage. These nanostructures are generally called nanoarrays. Most of these applications require massively parallel produced nanopatterns which can be directly realized by laser interference (areas up to 4 cm 2 are easily achieved with a Lloyd's mirror set-up). In this topical review we will further highlight the application of laser interference as a tool for nanofabrication, its limitations and ultimate advantages towards a variety of devices including nanostructuring for photonic crystal devices, high resolution patterned media and surface modifications of medical implants. The unique properties of nanostructured surfaces have also found applications in biomedical nanoarrays used either for diagnostic or functional assays including catalytic reactions on chip. Bio-inspired templated nanoarrays will be presented in perspective to other massively parallel nanolithography techniques currently discussed in the scientific literature. (topical review)
Finite element electromagnetic field computation on the Sequent Symmetry 81 parallel computer
International Nuclear Information System (INIS)
Ratnajeevan, S.; Hoole, H.
1990-01-01
Finite element field analysis algorithms lend themselves to parallelization and this fact is exploited in this paper to implement a finite element analysis program for electromagnetic field computation on the Sequent Symmetry 81 parallel computer with three processors. In terms of waiting time, the maximum gains are to be made in matrix solution and therefore this paper concentrates on the gains in parallelizing the solution part of finite element analysis. An outline of how parallelization could be exploited in most finite element operations is given in this paper although the actual implemention of parallelism on the Sequent Symmetry 81 parallel computer was in sparsity computation, matrix assembly and the matrix solution areas. In all cases, the algorithms were modified suit the parallel programming application rather than allowing the compiler to parallelize on existing algorithms
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
Domain decomposition methods and parallel computing
International Nuclear Information System (INIS)
Meurant, G.
1991-01-01
In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset
The Research of the Parallel Computing Development from the Angle of Cloud Computing
Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun
2017-10-01
Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.
Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.
Directory of Open Access Journals (Sweden)
Hidekane Yoshimura
Full Text Available Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1% who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%, which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.
Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.
Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi
2014-01-01
Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.
Parallel reservoir simulator computations
International Nuclear Information System (INIS)
Hemanth-Kumar, K.; Young, L.C.
1995-01-01
The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90
Parallel Computing Using Web Servers and "Servlets".
Lo, Alfred; Bloor, Chris; Choi, Y. K.
2000-01-01
Describes parallel computing and presents inexpensive ways to implement a virtual parallel computer with multiple Web servers. Highlights include performance measurement of parallel systems; models for using Java and intranet technology including single server, multiple clients and multiple servers, single client; and a comparison of CGI (common…
Analysis of parallel computing performance of the code MCNP
International Nuclear Information System (INIS)
Wang Lei; Wang Kan; Yu Ganglin
2006-01-01
Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)
CERN. Geneva
2016-01-01
Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...
Enhanced memory architecture for massively parallel vision chip
Chen, Zhe; Yang, Jie; Liu, Liyuan; Wu, Nanjian
2015-04-01
Local memory architecture plays an important role in high performance massively parallel vision chip. In this paper, we propose an enhanced memory architecture with compact circuit area designed in a full-custom flow. The memory consists of separate master-stage static latches and shared slave-stage dynamic latches. We use split transmission transistors on the input data path to enhance tolerance for charge sharing and to achieve random read/write capabilities. The memory is designed in a 0.18 μm CMOS process. The area overhead of the memory achieves 16.6 μm2/bit. Simulation results show that the maximum operating frequency reaches 410 MHz and the corresponding peak dynamic power consumption for a 64-bit memory unit is 190 μW under 1.8 V supply voltage.
PUMA: An Operating System for Massively Parallel Systems
Directory of Open Access Journals (Sweden)
Stephen R. Wheat
1994-01-01
Full Text Available This article presents an overview of PUMA (Performance-oriented, User-managed Messaging Architecture, a message-passing kernel for massively parallel systems. Message passing in PUMA is based on portals – an opening in the address space of an application process. Once an application process has established a portal, other processes can write values into the portal using a simple send operation. Because messages are written directly into the address space of the receiving process, there is no need to buffer messages in the PUMA kernel and later copy them into the applications address space. PUMA consists of two components: the quintessential kernel (Q-Kernel and the process control thread (PCT. Although the PCT provides management decisions, the Q-Kernel controls access and implements the policies specified by the PCT.
3D streamers simulation in a pin to plane configuration using massively parallel computing
Plewa, J.-M.; Eichwald, O.; Ducasse, O.; Dessante, P.; Jacobs, C.; Renon, N.; Yousfi, M.
2018-03-01
This paper concerns the 3D simulation of corona discharge using high performance computing (HPC) managed with the message passing interface (MPI) library. In the field of finite volume methods applied on non-adaptive mesh grids and in the case of a specific 3D dynamic benchmark test devoted to streamer studies, the great efficiency of the iterative R&B SOR and BiCGSTAB methods versus the direct MUMPS method was clearly demonstrated in solving the Poisson equation using HPC resources. The optimization of the parallelization and the resulting scalability was undertaken as a function of the HPC architecture for a number of mesh cells ranging from 8 to 512 million and a number of cores ranging from 20 to 1600. The R&B SOR method remains at least about four times faster than the BiCGSTAB method and requires significantly less memory for all tested situations. The R&B SOR method was then implemented in a 3D MPI parallelized code that solves the classical first order model of an atmospheric pressure corona discharge in air. The 3D code capabilities were tested by following the development of one, two and four coplanar streamers generated by initial plasma spots for 6 ns. The preliminary results obtained allowed us to follow in detail the formation of the tree structure of a corona discharge and the effects of the mutual interactions between the streamers in terms of streamer velocity, trajectory and diameter. The computing time for 64 million of mesh cells distributed over 1000 cores using the MPI procedures is about 30 min ns-1, regardless of the number of streamers.
Parallel computing and networking; Heiretsu keisanki to network
Energy Technology Data Exchange (ETDEWEB)
Asakawa, E; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)
1996-05-01
This paper describes the trend of parallel computers used in geophysical exploration. Around 1993 was the early days when the parallel computers began to be used for geophysical exploration. Classification of these computers those days was mainly MIMD (multiple instruction stream, multiple data stream), SIMD (single instruction stream, multiple data stream) and the like. Parallel computers were publicized in the 1994 meeting of the Geophysical Exploration Society as a `high precision imaging technology`. Concerning the library of parallel computers, there was a shift to PVM (parallel virtual machine) in 1993 and to MPI (message passing interface) in 1995. In addition, the compiler of FORTRAN90 was released with support implemented for data parallel and vector computers. In 1993, networks used were Ethernet, FDDI, CDDI and HIPPI. In 1995, the OC-3 products under ATM began to propagate. However, ATM remains to be an interoffice high speed network because the ATM service has not spread yet for the public network. 1 ref.
Matthew Parks; Richard Cronn; Aaron Liston
2009-01-01
We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome) generated using multiplexed massively parallel sequencing. We found that 30/33 ingroup nodes resolved wlth > 95-percent bootstrap support; this is a substantial improvement relative...
International Nuclear Information System (INIS)
Rosa, Massimiliano; Warsa, James S.; Perks, Michael
2011-01-01
We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution of the S_n transport equations on the Roadrunner hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell Broadband Engine™ (Cell/B.E.)"1. LAPACK routines have been ported to the Cell/B.E. in order to make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for all S_n angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, where the rest of the computations for the S_n transport problem take place. Compared to standard parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional, unstructured meshes when it is applied to optically thick, multi-material problems. As expected, however, it is not as efficient as FPS in optically thin problems. (author)
International Nuclear Information System (INIS)
DeHart, Mark D.; Williams, Mark L.; Bowman, Stephen M.
2010-01-01
The SCALE computational architecture has remained basically the same since its inception 30 years ago, although constituent modules and capabilities have changed significantly. This SCALE concept was intended to provide a framework whereby independent codes can be linked to provide a more comprehensive capability than possible with the individual programs - allowing flexibility to address a wide variety of applications. However, the current system was designed originally for mainframe computers with a single CPU and with significantly less memory than today's personal computers. It has been recognized that the present SCALE computation system could be restructured to take advantage of modern hardware and software capabilities, while retaining many of the modular features of the present system. Preliminary work is being done to define specifications and capabilities for a more advanced computational architecture. This paper describes the state of current SCALE development activities and plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary development will be available to SCALE users within the TRITON and NEWT modules. The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system developed by Oak Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several important new codes have been introduced within SCALE, and significant advances applied to existing codes. Many of these new features became available with the release of SCALE 6.0 in early 2009. However, beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term improvements, a plan for longer term SCALE enhancement
MCBooster: a tool for MC generation for massively parallel platforms
Alves Junior, Antonio Augusto
2016-01-01
MCBooster is a header-only, C++11-compliant library for the generation of large samples of phase-space Monte Carlo events on massively parallel platforms. It was released on GitHub in the spring of 2016. The library core algorithms implement the Raubold-Lynch method; they are able to generate the full kinematics of decays with up to nine particles in the final state. The library supports the generation of sequential decays as well as the parallel evaluation of arbitrary functions over the generated events. The output of MCBooster completely accords with popular and well-tested software packages such as GENBOD (W515 from CERNLIB) and TGenPhaseSpace from the ROOT framework. MCBooster is developed on top of the Thrust library and runs on Linux systems. It deploys transparently on NVidia CUDA-enabled GPUs as well as multicore CPUs. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of perfor...
Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko
2017-07-12
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
Directory of Open Access Journals (Sweden)
Pietro Quaglio
2017-05-01
Full Text Available Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs. STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons. In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST. We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE analysis.
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2014-08-12
Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.
Block iterative restoration of astronomical images with the massively parallel processor
International Nuclear Information System (INIS)
Heap, S.R.; Lindler, D.J.
1987-01-01
A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images
Parallel visualization on leadership computing resources
Energy Technology Data Exchange (ETDEWEB)
Peterka, T; Ross, R B [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Shen, H-W [Department of Computer Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Ma, K-L [Department of Computer Science, University of California at Davis, Davis, CA 95616 (United States); Kendall, W [Department of Electrical Engineering and Computer Science, University of Tennessee at Knoxville, Knoxville, TN 37996 (United States); Yu, H, E-mail: tpeterka@mcs.anl.go [Sandia National Laboratories, California, Livermore, CA 94551 (United States)
2009-07-01
Changes are needed in the way that visualization is performed, if we expect the analysis of scientific data to be effective at the petascale and beyond. By using similar techniques as those used to parallelize simulations, such as parallel I/O, load balancing, and effective use of interprocess communication, the supercomputers that compute these datasets can also serve as analysis and visualization engines for them. Our team is assessing the feasibility of performing parallel scientific visualization on some of the most powerful computational resources of the U.S. Department of Energy's National Laboratories in order to pave the way for analyzing the next generation of computational results. This paper highlights some of the conclusions of that research.
Parallel visualization on leadership computing resources
International Nuclear Information System (INIS)
Peterka, T; Ross, R B; Shen, H-W; Ma, K-L; Kendall, W; Yu, H
2009-01-01
Changes are needed in the way that visualization is performed, if we expect the analysis of scientific data to be effective at the petascale and beyond. By using similar techniques as those used to parallelize simulations, such as parallel I/O, load balancing, and effective use of interprocess communication, the supercomputers that compute these datasets can also serve as analysis and visualization engines for them. Our team is assessing the feasibility of performing parallel scientific visualization on some of the most powerful computational resources of the U.S. Department of Energy's National Laboratories in order to pave the way for analyzing the next generation of computational results. This paper highlights some of the conclusions of that research.
Parallel computing solution of Boltzmann neutron transport equation
International Nuclear Information System (INIS)
Ansah-Narh, T.
2010-01-01
The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps
Optimisation of a parallel ocean general circulation model
M. I. Beare; D. P. Stevens
1997-01-01
International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...
High performance parallel computers for science
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.
1989-01-01
This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction
Roever, Stefan
2012-01-01
A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.
Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software
Tilton, James C.
2003-01-01
A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic
Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems
Martina-Cezara Albutiu, Alfons Kemper, Thomas Neumann
2012-01-01
Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research ...
Directory of Open Access Journals (Sweden)
Matthew O'keefe
1995-01-01
Full Text Available Massively parallel processors (MPPs hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. We have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.
Event monitoring of parallel computations
Directory of Open Access Journals (Sweden)
Gruzlikov Alexander M.
2015-06-01
Full Text Available The paper considers the monitoring of parallel computations for detection of abnormal events. It is assumed that computations are organized according to an event model, and monitoring is based on specific test sequences
Massively Parallel Dimension Independent Adaptive Metropolis
Chen, Yuxin
2015-05-14
This work considers black-box Bayesian inference over high-dimensional parameter spaces. The well-known and widely respected adaptive Metropolis (AM) algorithm is extended herein to asymptotically scale uniformly with respect to the underlying parameter dimension, by respecting the variance, for Gaussian targets. The result- ing algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justified a posteriori). Asymptoti- cally in dimension, this massively parallel dimension-independent adaptive Metropolis (MPDIAM) GPU implementation exhibits a factor of four improvement versus the CPU-based Intel MKL version alone, which is itself already a factor of three improve- ment versus the serial version. The scaling to multiple CPUs and GPUs exhibits a form of strong scaling in terms of the time necessary to reach a certain convergence criterion, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. This is illustrated by e ciently sampling from several Gaussian and non-Gaussian targets for dimension d 1000.
Parallel computational in nuclear group constant calculation
International Nuclear Information System (INIS)
Su'ud, Zaki; Rustandi, Yaddi K.; Kurniadi, Rizal
2002-01-01
In this paper parallel computational method in nuclear group constant calculation using collision probability method will be discuss. The main focus is on the calculation of collision matrix which need large amount of computational time. The geometry treated here is concentric cylinder. The calculation of collision probability matrix is carried out using semi analytic method using Beckley Naylor Function. To accelerate computation speed some computer parallel used to solve the problem. We used LINUX based parallelization using PVM software with C or fortran language. While in windows based we used socket programming using DELPHI or C builder. The calculation results shows the important of optimal weight for each processor in case there area many type of processor speed
Numerical discrepancy between serial and MPI parallel computations
Directory of Open Access Journals (Sweden)
Sang Bong Lee
2016-09-01
Full Text Available Numerical simulations of 1D Burgers equation and 2D sloshing problem were carried out to study numerical discrepancy between serial and parallel computations. The numerical domain was decomposed into 2 and 4 subdomains for parallel computations with message passing interface. The numerical solution of Burgers equation disclosed that fully explicit boundary conditions used on subdomains of parallel computation was responsible for the numerical discrepancy of transient solution between serial and parallel computations. Two dimensional sloshing problems in a rectangular domain were solved using OpenFOAM. After a lapse of initial transient time sloshing patterns of water were significantly different in serial and parallel computations although the same numerical conditions were given. Based on the histograms of pressure measured at two points near the wall the statistical characteristics of numerical solution was not affected by the number of subdomains as much as the transient solution was dependent on the number of subdomains.
Models of parallel computation :a survey and classification
Institute of Scientific and Technical Information of China (English)
ZHANG Yunquan; CHEN Guoliang; SUN Guangzhong; MIAO Qiankun
2007-01-01
In this paper,the state-of-the-art parallel computational model research is reviewed.We will introduce various models that were developed during the past decades.According to their targeting architecture features,especially memory organization,we classify these parallel computational models into three generations.These models and their characteristics are discussed based on three generations classification.We believe that with the ever increasing speed gap between the CPU and memory systems,incorporating non-uniform memory hierarchy into computational models will become unavoidable.With the emergence of multi-core CPUs,the parallelism hierarchy of current computing platforms becomes more and more complicated.Describing this complicated parallelism hierarchy in future computational models becomes more and more important.A semi-automatic toolkit that can extract model parameters and their values on real computers can reduce the model analysis complexity,thus allowing more complicated models with more parameters to be adopted.Hierarchical memory and hierarchical parallelism will be two very important features that should be considered in future model design and research.
Ocean Modeling and Visualization on Massively Parallel Computer
Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.
1997-01-01
Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.
High-performance computing — an overview
Marksteiner, Peter
1996-08-01
An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.
Parallel computing in genomic research: advances and applications
Directory of Open Access Journals (Sweden)
Ocaña K
2015-11-01
Full Text Available Kary Ocaña,1 Daniel de Oliveira2 1National Laboratory of Scientific Computing, Petrópolis, Rio de Janeiro, 2Institute of Computing, Fluminense Federal University, Niterói, Brazil Abstract: Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. Keywords: high-performance computing, genomic research, cloud computing, grid computing, cluster computing, parallel computing
Development of real-time visualization system for Computational Fluid Dynamics on parallel computers
International Nuclear Information System (INIS)
Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun
1998-03-01
A real-time visualization system for computational fluid dynamics in a network connecting between a parallel computing server and the client terminal was developed. Using the system, a user can visualize the results of a CFD (Computational Fluid Dynamics) simulation on the parallel computer as a client terminal during the actual computation on a server. Using GUI (Graphical User Interface) on the client terminal, to user is also able to change parameters of the analysis and visualization during the real-time of the calculation. The system carries out both of CFD simulation and generation of a pixel image data on the parallel computer, and compresses the data. Therefore, the amount of data from the parallel computer to the client is so small in comparison with no compression that the user can enjoy the swift image appearance comfortably. Parallelization of image data generation is based on Owner Computation Rule. GUI on the client is built on Java applet. A real-time visualization is thus possible on the client PC only if Web browser is implemented on it. (author)
Parallel computing for event reconstruction in high-energy physics
International Nuclear Information System (INIS)
Wolbers, S.
1993-01-01
Parallel computing has been recognized as a solution to large computing problems. In High Energy Physics offline event reconstruction of detector data is a very large computing problem that has been solved with parallel computing techniques. A review of the parallel programming package CPS (Cooperative Processes Software) developed and used at Fermilab for offline reconstruction of Terabytes of data requiring the delivery of hundreds of Vax-Years per experiment is given. The Fermilab UNIX farms, consisting of 180 Silicon Graphics workstations and 144 IBM RS6000 workstations, are used to provide the computing power for the experiments. Fermilab has had a long history of providing production parallel computing starting with the ACP (Advanced Computer Project) Farms in 1986. The Fermilab UNIX Farms have been in production for over 2 years with 24 hour/day service to experimental user groups. Additional tools for management, control and monitoring these large systems will be described. Possible future directions for parallel computing in High Energy Physics will be given
Parallel finite elements with domain decomposition and its pre-processing
International Nuclear Information System (INIS)
Yoshida, A.; Yagawa, G.; Hamada, S.
1993-01-01
This paper describes a parallel finite element analysis using a domain decomposition method, and the pre-processing for the parallel calculation. Computer simulations are about to replace experiments in various fields, and the scale of model to be simulated tends to be extremely large. On the other hand, computational environment has drastically changed in these years. Especially, parallel processing on massively parallel computers or computer networks is considered to be promising techniques. In order to achieve high efficiency on such parallel computation environment, large granularity of tasks, a well-balanced workload distribution are key issues. It is also important to reduce the cost of pre-processing in such parallel FEM. From the point of view, the authors developed the domain decomposition FEM with the automatic and dynamic task-allocation mechanism and the automatic mesh generation/domain subdivision system for it. (author)
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is
Tolerating correlated failures in Massively Parallel Stream Processing Engines
DEFF Research Database (Denmark)
Su, L.; Zhou, Y.
2016-01-01
Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint. On the o......Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint....... On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...
cellGPU: Massively parallel simulations of dynamic vertex models
Sussman, Daniel M.
2017-10-01
Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation
Applications of the parallel computing system using network
International Nuclear Information System (INIS)
Ido, Shunji; Hasebe, Hiroki
1994-01-01
Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)
ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains
Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz
2016-01-01
With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734
Distributed Parallel Endmember Extraction of Hyperspectral Data Based on Spark
Directory of Open Access Journals (Sweden)
Zebin Wu
2016-01-01
Full Text Available Due to the increasing dimensionality and volume of remotely sensed hyperspectral data, the development of acceleration techniques for massive hyperspectral image analysis approaches is a very important challenge. Cloud computing offers many possibilities of distributed processing of hyperspectral datasets. This paper proposes a novel distributed parallel endmember extraction method based on iterative error analysis that utilizes cloud computing principles to efficiently process massive hyperspectral data. The proposed method takes advantage of technologies including MapReduce programming model, Hadoop Distributed File System (HDFS, and Apache Spark to realize distributed parallel implementation for hyperspectral endmember extraction, which significantly accelerates the computation of hyperspectral processing and provides high throughput access to large hyperspectral data. The experimental results, which are obtained by extracting endmembers of hyperspectral datasets on a cloud computing platform built on a cluster, demonstrate the effectiveness and computational efficiency of the proposed method.
A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities
International Nuclear Information System (INIS)
2015-01-01
ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)
Directory of Open Access Journals (Sweden)
Ivone U. S. Leong
2014-06-01
Full Text Available Sudden cardiac death in people between the ages of 1–40 years is a devastating event and is frequently caused by several heritable cardiac disorders. These disorders include cardiac ion channelopathies, such as long QT syndrome, catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome and cardiomyopathies, such as hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Through careful molecular genetic evaluation of DNA from sudden death victims, the causative gene mutation can be uncovered, and the rest of the family can be screened and preventative measures implemented in at-risk individuals. The current screening approach in most diagnostic laboratories uses Sanger-based sequencing; however, this method is time consuming and labour intensive. The development of massively parallel sequencing has made it possible to produce millions of sequence reads simultaneously and is potentially an ideal approach to screen for mutations in genes that are associated with sudden cardiac death. This approach offers mutation screening at reduced cost and turnaround time. Here, we will review the current commercially available enrichment kits, massively parallel sequencing (MPS platforms, downstream data analysis and its application to sudden cardiac death in a diagnostic environment.
Algorithms for parallel computers
International Nuclear Information System (INIS)
Churchhouse, R.F.
1985-01-01
Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)
CUBESIM, Hypercube and Denelcor Hep Parallel Computer Simulation
International Nuclear Information System (INIS)
Dunigan, T.H.
1988-01-01
1 - Description of program or function: CUBESIM is a set of subroutine libraries and programs for the simulation of message-passing parallel computers and shared-memory parallel computers. Subroutines are supplied to simulate the Intel hypercube and the Denelcor HEP parallel computers. The system permits a user to develop and test parallel programs written in C or FORTRAN on a single processor. The user may alter such hypercube parameters as message startup times, packet size, and the computation-to-communication ratio. The simulation generates a trace file that can be used for debugging, performance analysis, or graphical display. 2 - Method of solution: The CUBESIM simulator is linked with the user's parallel application routines to run as a single UNIX process. The simulator library provides a small operating system to perform process and message management. 3 - Restrictions on the complexity of the problem: Up to 128 processors can be simulated with a virtual memory limit of 6 million bytes. Up to 1000 processes can be simulated
Highly parallel machines and future of scientific computing
International Nuclear Information System (INIS)
Singh, G.S.
1992-01-01
Computing requirement of large scale scientific computing has always been ahead of what state of the art hardware could supply in the form of supercomputers of the day. And for any single processor system the limit to increase in the computing power was realized a few years back itself. Now with the advent of parallel computing systems the availability of machines with the required computing power seems a reality. In this paper the author tries to visualize the future large scale scientific computing in the penultimate decade of the present century. The author summarized trends in parallel computers and emphasize the need for a better programming environment and software tools for optimal performance. The author concludes this paper with critique on parallel architectures, software tools and algorithms. (author). 10 refs., 2 tabs
Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing
Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.
2013-12-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the 'A-Train' platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (MERRA), stratify the comparisons using a classification of the 'cloud scenes' from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically 'sharded' by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will
Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.
2017-07-01
Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).
Two-phase flow steam generator simulations on parallel computers using domain decomposition method
International Nuclear Information System (INIS)
Belliard, M.
2003-01-01
Within the framework of the Domain Decomposition Method (DDM), we present industrial steady state two-phase flow simulations of PWR Steam Generators (SG) using iteration-by-sub-domain methods: standard and Adaptive Dirichlet/Neumann methods (ADN). The averaged mixture balance equations are solved by a Fractional-Step algorithm, jointly with the Crank-Nicholson scheme and the Finite Element Method. The algorithm works with overlapping or non-overlapping sub-domains and with conforming or nonconforming meshing. Computations are run on PC networks or on massively parallel mainframe computers. A CEA code-linker and the PVM package are used (master-slave context). SG mock-up simulations, involving up to 32 sub-domains, highlight the efficiency (speed-up, scalability) and the robustness of the chosen approach. With the DDM, the computational problem size is easily increased to about 1,000,000 cells and the CPU time is significantly reduced. The difficulties related to industrial use are also discussed. (author)
International Nuclear Information System (INIS)
Woodruff, S.B.
1994-01-01
The Transient Reactor Analysis Code (TRAC), which features a two-fluid treatment of thermal-hydraulics, is designed to model transients in water reactors and related facilities. One of the major computational costs associated with TRAC and similar codes is calculating constitutive coefficients. Although the formulations for these coefficients are local, the costs are flow-regime- or data-dependent; i.e., the computations needed for a given spatial node often vary widely as a function of time. Consequently, a fixed, uniform assignment of nodes to prallel processors will result in degraded computational efficiency due to the poor load balancing. A standard method for treating data-dependent models on vector architectures has been to use gather operations (or indirect adressing) to sort the nodes into subsets that (temporarily) share a common computational model. However, this method is not effective on distributed memory data parallel architectures, where indirect adressing involves expensive communication overhead. Another serious problem with this method involves software engineering challenges in the areas of maintainability and extensibility. For example, an implementation that was hand-tuned to achieve good computational efficiency would have to be rewritten whenever the decision tree governing the sorting was modified. Using an example based on the calculation of the wall-to-liquid and wall-to-vapor heat-transfer coefficients for three nonboiling flow regimes, we describe how the use of the Fortran 90 WHERE construct and automatic inlining of functions can be used to ameliorate this problem while improving both efficiency and software engineering. Unfortunately, a general automatic solution to the load-balancing problem associated with data-dependent computations is not yet available for massively parallel architectures. We discuss why developers should either wait for such solutions or consider alternative numerical algorithms, such as a neural network
From Massively Parallel Algorithms and Fluctuating Time Horizons to Nonequilibrium Surface Growth
International Nuclear Information System (INIS)
Korniss, G.; Toroczkai, Z.; Novotny, M. A.; Rikvold, P. A.
2000-01-01
We study the asymptotic scaling properties of a massively parallel algorithm for discrete-event simulations where the discrete events are Poisson arrivals. The evolution of the simulated time horizon is analogous to a nonequilibrium surface. Monte Carlo simulations and a coarse-grained approximation indicate that the macroscopic landscape in the steady state is governed by the Edwards-Wilkinson Hamiltonian. Since the efficiency of the algorithm corresponds to the density of local minima in the associated surface, our results imply that the algorithm is asymptotically scalable. (c) 2000 The American Physical Society
Passive and partially active fault tolerance for massively parallel stream processing engines
DEFF Research Database (Denmark)
Su, Li; Zhou, Yongluan
2018-01-01
. On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...... also propose effective and efficient algorithms to optimize a partially active replication plan to maximize the quality of tentative outputs. We implemented PPA on top of Storm, an open-source MPSPE and conducted extensive experiments using both real and synthetic datasets to verify the effectiveness...
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-01-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520
Massively Parallel Interrogation of Aptamer Sequence, Structure and Function
Energy Technology Data Exchange (ETDEWEB)
Fischer, N O; Tok, J B; Tarasow, T M
2008-02-08
Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.
Massively parallel interrogation of aptamer sequence, structure and function.
Directory of Open Access Journals (Sweden)
Nicholas O Fischer
Full Text Available BACKGROUND: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. METHODOLOGY/PRINCIPAL FINDINGS: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. CONCLUSION AND SIGNIFICANCE: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.
Schultz, A.
2010-12-01
3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We
Computer network prepared to handle massive data flow
2006-01-01
"Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an internationl network of computer centers, including one operated jointly by the University of Chicago and Indiana University." (2 pages)
Arkin, Ethem; Tekinerdogan, Bedir
2016-01-01
Mapping parallel algorithms to parallel computing platforms requires several activities such as the analysis of the parallel algorithm, the definition of the logical configuration of the platform, the mapping of the algorithm to the logical configuration platform and the implementation of the
Computer-Aided Parallelizer and Optimizer
Jin, Haoqiang
2011-01-01
The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.
Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing
Amooie, M. A.; Moortgat, J.
2017-12-01
We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.
International Nuclear Information System (INIS)
Thomas, B.; Domain, Ch.; Souffez, Y.; Eon-Duval, P.
1998-01-01
Harnessing the power of many computers, to solve concurrently difficult scientific problems, is one of the most innovative trend in High Performance Computing. At EDF, we have invested in parallel computing and have achieved significant results. First we improved the processing speed of strategic codes, in order to extend their scope. Then we turned to numerical simulations at the atomic scale. These computations, we never dreamt of before, provided us with a better understanding of metallurgic phenomena. More precisely we were able to trace defects in alloys that are used in nuclear power plants. (author)
Efficient numerical methods for fluid- and electrodynamics on massively parallel systems
Energy Technology Data Exchange (ETDEWEB)
Zudrop, Jens
2016-07-01
In the last decade, computer technology has evolved rapidly. Modern high performance computing systems offer a tremendous amount of computing power in the range of a few peta floating point operations per second. In contrast, numerical software development is much slower and most existing simulation codes cannot exploit the full computing power of these systems. Partially, this is due to the numerical methods themselves and partially it is related to bottlenecks within the parallelization concept and its data structures. The goal of the thesis is the development of numerical algorithms and corresponding data structures to remedy both kinds of parallelization bottlenecks. The approach is based on a co-design of the numerical schemes (including numerical analysis) and their realizations in algorithms and software. Various kinds of applications, from multicomponent flows (Lattice Boltzmann Method) to electrodynamics (Discontinuous Galerkin Method) to embedded geometries (Octree), are considered and efficiency of the developed approaches is demonstrated for large scale simulations.
Resolution of the neutron transport equation by massively parallel computer in the Cronos code
International Nuclear Information System (INIS)
Zardini, D.M.
1996-01-01
The feasibility of neutron transport problems parallel resolution by CRONOS code's SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author)
Improved visibility computation on massive grid terrains
Fishman, J.; Haverkort, H.J.; Toma, L.; Wolfson, O.; Agrawal, D.; Lu, C.-T.
2009-01-01
This paper describes the design and engineering of algorithms for computing visibility maps on massive grid terrains. Given a terrain T, specified by the elevations of points in a regular grid, and given a viewpoint v, the visibility map or viewshed of v is the set of grid points of T that are
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip
2018-01-28
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over
Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations.
Dematté, Lorenzo
2012-01-01
Space is a very important aspect in the simulation of biochemical systems; recently, the need for simulation algorithms able to cope with space is becoming more and more compelling. Complex and detailed models of biochemical systems need to deal with the movement of single molecules and particles, taking into consideration localized fluctuations, transportation phenomena, and diffusion. A common drawback of spatial models lies in their complexity: models can become very large, and their simulation could be time consuming, especially if we want to capture the systems behavior in a reliable way using stochastic methods in conjunction with a high spatial resolution. In order to deliver the promise done by systems biology to be able to understand a system as whole, we need to scale up the size of models we are able to simulate, moving from sequential to parallel simulation algorithms. In this paper, we analyze Smoldyn, a widely diffused algorithm for stochastic simulation of chemical reactions with spatial resolution and single molecule detail, and we propose an alternative, innovative implementation that exploits the parallelism of Graphics Processing Units (GPUs). The implementation executes the most computational demanding steps (computation of diffusion, unimolecular, and bimolecular reaction, as well as the most common cases of molecule-surface interaction) on the GPU, computing them in parallel on each molecule of the system. The implementation offers good speed-ups and real time, high quality graphics output
Parallelism in computations in quantum and statistical mechanics
International Nuclear Information System (INIS)
Clementi, E.; Corongiu, G.; Detrich, J.H.
1985-01-01
Often very fundamental biochemical and biophysical problems defy simulations because of limitations in today's computers. We present and discuss a distributed system composed of two IBM 4341 s and/or an IBM 4381 as front-end processors and ten FPS-164 attached array processors. This parallel system - called LCAP - has presently a peak performance of about 110 Mflops; extensions to higher performance are discussed. Presently, the system applications use a modified version of VM/SP as the operating system: description of the modifications is given. Three applications programs have been migrated from sequential to parallel: a molecular quantum mechanical, a Metropolis-Monte Carlo and a molecular dynamics program. Descriptions of the parallel codes are briefly outlined. Use of these parallel codes has already opened up new capabilities for our research. The very positive performance comparisons with today's supercomputers allow us to conclude that parallel computers and programming, of the type we have considered, represent a pragmatic answer to many computationally intensive problems. (orig.)
Multiplexed microsatellite recovery using massively parallel sequencing
Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.
2011-01-01
Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).
GPAW - massively parallel electronic structure calculations with Python-based software
DEFF Research Database (Denmark)
Enkovaara, Jussi; Romero, Nichols A.; Shende, Sameer
2011-01-01
of the productivity enhancing features together with a good numerical performance. We have used this approach in implementing an electronic structure simulation software GPAW using the combination of Python and C programming languages. While the chosen approach works well in standard workstations and Unix...... popular choice. While dynamic, interpreted languages, such as Python, can increase the effciency of programmer, they cannot compete directly with the raw performance of compiled languages. However, by using an interpreted language together with a compiled language, it is possible to have most...... environments, massively parallel supercomputing systems can present some challenges in porting, debugging and profiling the software. In this paper we describe some details of the implementation and discuss the advantages and challenges of the combined Python/C approach. We show that despite the challenges...
Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications
Sun, Xian-He
1997-01-01
Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm
Parallel computation for distributed parameter system-from vector processors to Adena computer
Energy Technology Data Exchange (ETDEWEB)
Nogi, T
1983-04-01
Research on advanced parallel hardware and software architectures for very high-speed computation deserves and needs more support and attention to fulfil its promise. Novel architectures for parallel processing are being made ready. Architectures for parallel processing can be roughly divided into two groups. One is a vector processor in which a single central processing unit involves multiple vector-arithmetic registers. The other is a processor array in which slave processors are connected to a host processor to perform parallel computation. In this review, the concept and data structure of the Adena (alternating-direction edition nexus array) architecture, which is conformable to distributed-parameter simulation algorithms, are described. 5 references.
Regional-scale calculation of the LS factor using parallel processing
Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong
2015-05-01
With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.
Parallel Computing:. Some Activities in High Energy Physics
Willers, Ian
This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.
Hybrid parallel computing architecture for multiview phase shifting
Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun
2014-11-01
The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.
Multidisciplinary Computational Research
National Research Council Canada - National Science Library
Visbal, Miguel R
2006-01-01
The purpose of this work is to develop advanced multidisciplinary numerical simulation capabilities for aerospace vehicles with emphasis on highly accurate, massively parallel computational methods...
A massively parallel method of characteristic neutral particle transport code for GPUs
International Nuclear Information System (INIS)
Boyd, W. R.; Smith, K.; Forget, B.
2013-01-01
Over the past 20 years, parallel computing has enabled computers to grow ever larger and more powerful while scientific applications have advanced in sophistication and resolution. This trend is being challenged, however, as the power consumption for conventional parallel computing architectures has risen to unsustainable levels and memory limitations have come to dominate compute performance. Heterogeneous computing platforms, such as Graphics Processing Units (GPUs), are an increasingly popular paradigm for solving these issues. This paper explores the applicability of GPUs for deterministic neutron transport. A 2D method of characteristics (MOC) code - OpenMOC - has been developed with solvers for both shared memory multi-core platforms as well as GPUs. The multi-threading and memory locality methodologies for the GPU solver are presented. Performance results for the 2D C5G7 benchmark demonstrate 25-35 x speedup for MOC on the GPU. The lessons learned from this case study will provide the basis for further exploration of MOC on GPUs as well as design decisions for hardware vendors exploring technologies for the next generation of machines for scientific computing. (authors)
Wakefield calculations on parallel computers
International Nuclear Information System (INIS)
Schoessow, P.
1990-01-01
The use of parallelism in the solution of wakefield problems is illustrated for two different computer architectures (SIMD and MIMD). Results are given for finite difference codes which have been implemented on a Connection Machine and an Alliant FX/8 and which are used to compute wakefields in dielectric loaded structures. Benchmarks on code performance are presented for both cases. 4 refs., 3 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Perera, Ajith [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Department of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)
2013-11-07
Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate
Structured Parallel Programming Patterns for Efficient Computation
McCool, Michael; Robison, Arch
2012-01-01
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of th
A 3D gyrokinetic particle-in-cell simulation of fusion plasma microturbulence on parallel computers
Williams, T. J.
1992-12-01
One of the grand challenge problems now supported by HPCC is the Numerical Tokamak Project. A goal of this project is the study of low-frequency micro-instabilities in tokamak plasmas, which are believed to cause energy loss via turbulent thermal transport across the magnetic field lines. An important tool in this study is gyrokinetic particle-in-cell (PIC) simulation. Gyrokinetic, as opposed to fully-kinetic, methods are particularly well suited to the task because they are optimized to study the frequency and wavelength domain of the microinstabilities. Furthermore, many researchers now employ low-noise delta(f) methods to greatly reduce statistical noise by modelling only the perturbation of the gyrokinetic distribution function from a fixed background, not the entire distribution function. In spite of the increased efficiency of these improved algorithms over conventional PIC algorithms, gyrokinetic PIC simulations of tokamak micro-turbulence are still highly demanding of computer power--even fully-vectorized codes on vector supercomputers. For this reason, we have worked for several years to redevelop these codes on massively parallel computers. We have developed 3D gyrokinetic PIC simulation codes for SIMD and MIMD parallel processors, using control-parallel, data-parallel, and domain-decomposition message-passing (DDMP) programming paradigms. This poster summarizes our earlier work on codes for the Connection Machine and BBN TC2000 and our development of a generic DDMP code for distributed-memory parallel machines. We discuss the memory-access issues which are of key importance in writing parallel PIC codes, with special emphasis on issues peculiar to gyrokinetic PIC. We outline the domain decompositions in our new DDMP code and discuss the interplay of different domain decompositions suited for the particle-pushing and field-solution components of the PIC algorithm.
Quantification of massively parallel sequencing libraries - a comparative study of eight methods
DEFF Research Database (Denmark)
Hussing, Christian; Kampmann, Marie-Louise; Mogensen, Helle Smidt
2018-01-01
Quantification of massively parallel sequencing libraries is important for acquisition of monoclonal beads or clusters prior to clonal amplification and to avoid large variations in library coverage when multiple samples are included in one sequencing analysis. No gold standard for quantification...... estimates followed by Qubit and electrophoresis-based instruments (Bioanalyzer, TapeStation, GX Touch, and Fragment Analyzer), while SYBR Green and TaqMan based qPCR assays gave the lowest estimates. qPCR gave more accurate predictions of sequencing coverage than Qubit and TapeStation did. Costs, time......-consumption, workflow simplicity, and ability to quantify multiple samples are discussed. Technical specifications, advantages, and disadvantages of the various methods are pointed out....
Massive parallel sequencing in sarcoma pathobiology: state of the art and perspectives.
Brenca, Monica; Maestro, Roberta
2015-01-01
Sarcomas are an aggressive and highly heterogeneous group of mesenchymal malignancies with different morphologies and clinical behavior. Current therapeutic strategies remain unsatisfactory. Cytogenetic and molecular characterization of these tumors is resulting in the breakdown of the classical histopathological categories into molecular subgroups that better define sarcoma pathobiology and pave the way to more precise diagnostic criteria and novel therapeutic opportunities. The purpose of this short review is to summarize the state-of-the-art on the exploitation of massive parallel sequencing technologies, also known as next generation sequencing, in the elucidation of sarcoma pathobiology and to discuss how these applications may impact on diagnosis, prognosis and therapy of these tumors.
Parallel computation for solving the tridiagonal linear system of equations
International Nuclear Information System (INIS)
Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.
1981-09-01
Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)
The new landscape of parallel computer architecture
International Nuclear Information System (INIS)
Shalf, John
2007-01-01
The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models
The new landscape of parallel computer architecture
Energy Technology Data Exchange (ETDEWEB)
Shalf, John [NERSC Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley California, 94720 (United States)
2007-07-15
The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models.
Parallel algorithms and architecture for computation of manipulator forward dynamics
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel computation of manipulator forward dynamics is investigated. Considering three classes of algorithms for the solution of the problem, that is, the O(n), the O(n exp 2), and the O(n exp 3) algorithms, parallelism in the problem is analyzed. It is shown that the problem belongs to the class of NC and that the time and processors bounds are of O(log2/2n) and O(n exp 4), respectively. However, the fastest stable parallel algorithms achieve the computation time of O(n) and can be derived by parallelization of the O(n exp 3) serial algorithms. Parallel computation of the O(n exp 3) algorithms requires the development of parallel algorithms for a set of fundamentally different problems, that is, the Newton-Euler formulation, the computation of the inertia matrix, decomposition of the symmetric, positive definite matrix, and the solution of triangular systems. Parallel algorithms for this set of problems are developed which can be efficiently implemented on a unique architecture, a triangular array of n(n+2)/2 processors with a simple nearest-neighbor interconnection. This architecture is particularly suitable for VLSI and WSI implementations. The developed parallel algorithm, compared to the best serial O(n) algorithm, achieves an asymptotic speedup of more than two orders-of-magnitude in the computation the forward dynamics.
Directory of Open Access Journals (Sweden)
Abdeslam Mehenni
2017-03-01
Full Text Available As our populations grow in a world of limited resources enterprise seek ways to lighten our load on the planet. The idea of modifying consumer behavior appears as a foundation for smart grids. Enterprise demonstrates the value available from deep analysis of electricity consummation histories, consumers’ messages, and outage alerts, etc. Enterprise mines massive structured and unstructured data. In a nutshell, smart grids result in a flood of data that needs to be analyzed, for better adjust to demand and give customers more ability to delve into their power consumption. Simply put, smart grids will increasingly have a flexible data warehouse attached to them. The key driver for the adoption of data management strategies is clearly the need to handle and analyze the large amounts of information utilities are now faced with. New approaches to data integration are nauseating moment; Hadoop is in fact now being used by the utility to help manage the huge growth in data whilst maintaining coherence of the Data Warehouse. In this paper we define a new Meter Data Management System Architecture repository that differ with three leaders MDMS, where we use MapReduce programming model for ETL and Parallel DBMS in Query statements(Massive Parallel Processing MPP.
The ongoing investigation of high performance parallel computing in HEP
Peach, Kenneth J; Böck, R K; Dobinson, Robert W; Hansroul, M; Norton, Alan Robert; Willers, Ian Malcolm; Baud, J P; Carminati, F; Gagliardi, F; McIntosh, E; Metcalf, M; Robertson, L; CERN. Geneva. Detector Research and Development Committee
1993-01-01
Past and current exploitation of parallel computing in High Energy Physics is summarized and a list of R & D projects in this area is presented. The applicability of new parallel hardware and software to physics problems is investigated, in the light of the requirements for computing power of LHC experiments and the current trends in the computer industry. Four main themes are discussed (possibilities for a finer grain of parallelism; fine-grain communication mechanism; usable parallel programming environment; different programming models and architectures, using standard commercial products). Parallel computing technology is potentially of interest for offline and vital for real time applications in LHC. A substantial investment in applications development and evaluation of state of the art hardware and software products is needed. A solid development environment is required at an early stage, before mainline LHC program development begins.
Stampi: a message passing library for distributed parallel computing. User's guide
International Nuclear Information System (INIS)
Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi
1998-11-01
A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on MPI2 specification. It realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Vender implemented MPI as a closed system in one parallel machine and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, and any communication on them can be processed on. (author)
GPU Parallel Bundle Block Adjustment
Directory of Open Access Journals (Sweden)
ZHENG Maoteng
2017-09-01
Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.
Locating hardware faults in a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-04-13
Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.
An Alternative Algorithm for Computing Watersheds on Shared Memory Parallel Computers
Meijster, A.; Roerdink, J.B.T.M.
1995-01-01
In this paper a parallel implementation of a watershed algorithm is proposed. The algorithm can easily be implemented on shared memory parallel computers. The watershed transform is generally considered to be inherently sequential since the discrete watershed of an image is defined using recursion.
International Nuclear Information System (INIS)
Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li
2010-01-01
A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)
General-purpose parallel simulator for quantum computing
International Nuclear Information System (INIS)
Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi
2002-01-01
With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper
Implementations of BLAST for parallel computers.
Jülich, A
1995-02-01
The BLAST sequence comparison programs have been ported to a variety of parallel computers-the shared memory machine Cray Y-MP 8/864 and the distributed memory architectures Intel iPSC/860 and nCUBE. Additionally, the programs were ported to run on workstation clusters. We explain the parallelization techniques and consider the pros and cons of these methods. The BLAST programs are very well suited for parallelization for a moderate number of processors. We illustrate our results using the program blastp as an example. As input data for blastp, a 799 residue protein query sequence and the protein database PIR were used.
Beam dynamics simulations using a parallel version of PARMILA
International Nuclear Information System (INIS)
Ryne, R.D.
1996-01-01
The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code
Beam dynamics simulations using a parallel version of PARMILA
International Nuclear Information System (INIS)
Ryne, Robert
1996-01-01
The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code. (author)
Parallel grid generation algorithm for distributed memory computers
Moitra, Stuti; Moitra, Anutosh
1994-01-01
A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.
Aggregating job exit statuses of a plurality of compute nodes executing a parallel application
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.; Mundy, Michael B.
2015-07-21
Aggregating job exit statuses of a plurality of compute nodes executing a parallel application, including: identifying a subset of compute nodes in the parallel computer to execute the parallel application; selecting one compute node in the subset of compute nodes in the parallel computer as a job leader compute node; initiating execution of the parallel application on the subset of compute nodes; receiving an exit status from each compute node in the subset of compute nodes, where the exit status for each compute node includes information describing execution of some portion of the parallel application by the compute node; aggregating each exit status from each compute node in the subset of compute nodes; and sending an aggregated exit status for the subset of compute nodes in the parallel computer.
Beam dynamics calculations and particle tracking using massively parallel processors
International Nuclear Information System (INIS)
Ryne, R.D.; Habib, S.
1995-01-01
During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking
Guermond, Jean-Luc; Minev, Peter D.; Salgado, Abner J.
2012-01-01
We provide a convergence analysis for a new fractional timestepping technique for the incompressible Navier-Stokes equations based on direction splitting. This new technique is of linear complexity, unconditionally stable and convergent, and suitable for massive parallelization. © 2012 American Mathematical Society.
Algorithms for computational fluid dynamics n parallel processors
International Nuclear Information System (INIS)
Van de Velde, E.F.
1986-01-01
A study of parallel algorithms for the numerical solution of partial differential equations arising in computational fluid dynamics is presented. The actual implementation on parallel processors of shared and nonshared memory design is discussed. The performance of these algorithms is analyzed in terms of machine efficiency, communication time, bottlenecks and software development costs. For elliptic equations, a parallel preconditioned conjugate gradient method is described, which has been used to solve pressure equations discretized with high order finite elements on irregular grids. A parallel full multigrid method and a parallel fast Poisson solver are also presented. Hyperbolic conservation laws were discretized with parallel versions of finite difference methods like the Lax-Wendroff scheme and with the Random Choice method. Techniques are developed for comparing the behavior of an algorithm on different architectures as a function of problem size and local computational effort. Effective use of these advanced architecture machines requires the use of machine dependent programming. It is shown that the portability problems can be minimized by introducing high level operations on vectors and matrices structured into program libraries
Integrated computer network high-speed parallel interface
International Nuclear Information System (INIS)
Frank, R.B.
1979-03-01
As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures
Parallel computing in genomic research: advances and applications.
Ocaña, Kary; de Oliveira, Daniel
2015-01-01
Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.
International Nuclear Information System (INIS)
Kimura, Toshiya.
1997-03-01
A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)
International Nuclear Information System (INIS)
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-01-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated
Parallel adaptive simulations on unstructured meshes
International Nuclear Information System (INIS)
Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A
2007-01-01
This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers
Advances in randomized parallel computing
Rajasekaran, Sanguthevar
1999-01-01
The technique of randomization has been employed to solve numerous prob lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often in practice. This book is a collection of articles written by renowned experts in the area of randomized parallel computing. A brief introduction to randomized algorithms In the aflalysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O( n log n). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at t...
Wilson, J Adam; Williams, Justin C
2009-01-01
The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.
Directory of Open Access Journals (Sweden)
J. Adam Wilson
2009-07-01
Full Text Available The clock speeds of modern computer processors have nearly plateaued in the past five years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card (GPU was developed for real-time neural signal processing of a brain-computer interface (BCI. The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter, followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally-intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a CPU-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.
DEFF Research Database (Denmark)
Eduardoff, M; Gross, T E; Santos, C
2016-01-01
Seq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures...
DEFF Research Database (Denmark)
Kielpinski, Lukasz J; Boyd, Mette; Sandelin, Albin
2013-01-01
Detection of reverse transcriptase termination sites is important in many different applications, such as structural probing of RNAs, rapid amplification of cDNA 5' ends (5' RACE), cap analysis of gene expression, and detection of RNA modifications and protein-RNA cross-links. The throughput...... of these methods can be increased by applying massive parallel sequencing technologies.Here, we describe a versatile method for detection of reverse transcriptase termination sites based on ligation of an adapter to the 3' end of cDNA with bacteriophage TS2126 RNA ligase (CircLigase™). In the following PCR...
An efficient parallel algorithm for matrix-vector multiplication
Energy Technology Data Exchange (ETDEWEB)
Hendrickson, B.; Leland, R.; Plimpton, S.
1993-03-01
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.
Parallel Object-Oriented Computation Applied to a Finite Element Problem
Directory of Open Access Journals (Sweden)
Jon B. Weissman
1993-01-01
Full Text Available The conventional wisdom in the scientific computing community is that the best way to solve large-scale numerically intensive scientific problems on today's parallel MIMD computers is to use Fortran or C programmed in a data-parallel style using low-level message-passing primitives. This approach inevitably leads to nonportable codes and extensive development time, and restricts parallel programming to the domain of the expert programmer. We believe that these problems are not inherent to parallel computing but are the result of the programming tools used. We will show that comparable performance can be achieved with little effort if better tools that present higher level abstractions are used. The vehicle for our demonstration is a 2D electromagnetic finite element scattering code we have implemented in Mentat, an object-oriented parallel processing system. We briefly describe the application. Mentat, the implementation, and present performance results for both a Mentat and a hand-coded parallel Fortran version.
Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)
1994-01-01
In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
Optimisation of a parallel ocean general circulation model
Beare, M. I.; Stevens, D. P.
1997-10-01
This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
Fluid dynamics parallel computer development at NASA Langley Research Center
Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.
1987-01-01
To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.
Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong
2010-10-01
Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Parallel ray tracing for one-dimensional discrete ordinate computations
International Nuclear Information System (INIS)
Jarvis, R.D.; Nelson, P.
1996-01-01
The ray-tracing sweep in discrete-ordinates, spatially discrete numerical approximation methods applied to the linear, steady-state, plane-parallel, mono-energetic, azimuthally symmetric, neutral-particle transport equation can be reduced to a parallel prefix computation. In so doing, the often severe penalty in convergence rate of the source iteration, suffered by most current parallel algorithms using spatial domain decomposition, can be avoided while attaining parallelism in the spatial domain to whatever extent desired. In addition, the reduction implies parallel algorithm complexity limits for the ray-tracing sweep. The reduction applies to all closed, linear, one-cell functional (CLOF) spatial approximation methods, which encompasses most in current popular use. Scalability test results of an implementation of the algorithm on a 64-node nCube-2S hypercube-connected, message-passing, multi-computer are described. (author)
International Nuclear Information System (INIS)
Yamazaki, Takao; Fujisaki, Masahide; Okuda, Motoi; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka
1993-01-01
The general purpose Monte Carlo code MCNP4 has been implemented on the Fujitsu AP1000 distributed memory highly parallel computer. Parallelization techniques developed and studied are reported. A shielding analysis function of the MCNP4 code is parallelized in this study. A technique to map a history to each processor dynamically and to map control process to a certain processor was applied. The efficiency of parallelized code is up to 80% for a typical practical problem with 512 processors. These results demonstrate the advantages of a highly parallel computer to the conventional computers in the field of shielding analysis by Monte Carlo method. (orig.)
A compositional reservoir simulator on distributed memory parallel computers
International Nuclear Information System (INIS)
Rame, M.; Delshad, M.
1995-01-01
This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented
Baumgärtel, M.; Ghanem, K.; Kiani, A.; Koch, E.; Pavarini, E.; Sims, H.; Zhang, G.
2017-07-01
We discuss the efficient implementation of general impurity solvers for dynamical mean-field theory. We show that both Lanczos and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-time hybridization- and interaction-expansion) exhibit excellent scaling on massively parallel supercomputers. We apply these algorithms to simulate realistic model Hamiltonians including the full Coulomb vertex, crystal-field splitting, and spin-orbit interaction. We discuss how to remove the sign problem in the presence of non-diagonal crystal-field and hybridization matrices. We show how to extract the physically observable quantities from imaginary time data, in particular correlation functions and susceptibilities. Finally, we present benchmarks and applications for representative correlated systems.
Solving the 0/1 Knapsack Problem by a Biomolecular DNA Computer
Directory of Open Access Journals (Sweden)
Hassan Taghipour
2013-01-01
Full Text Available Solving some mathematical problems such as NP-complete problems by conventional silicon-based computers is problematic and takes so long time. DNA computing is an alternative method of computing which uses DNA molecules for computing purposes. DNA computers have massive degrees of parallel processing capability. The massive parallel processing characteristic of DNA computers is of particular interest in solving NP-complete and hard combinatorial problems. NP-complete problems such as knapsack problem and other hard combinatorial problems can be easily solved by DNA computers in a very short period of time comparing to conventional silicon-based computers. Sticker-based DNA computing is one of the methods of DNA computing. In this paper, the sticker based DNA computing was used for solving the 0/1 knapsack problem. At first, a biomolecular solution space was constructed by using appropriate DNA memory complexes. Then, by the application of a sticker-based parallel algorithm using biological operations, knapsack problem was resolved in polynomial time.
A Novel Parallel Algorithm for Edit Distance Computation
Directory of Open Access Journals (Sweden)
Muhammad Murtaza Yousaf
2018-01-01
Full Text Available The edit distance between two sequences is the minimum number of weighted transformation-operations that are required to transform one string into the other. The weighted transformation-operations are insert, remove, and substitute. Dynamic programming solution to find edit distance exists but it becomes computationally intensive when the lengths of strings become very large. This work presents a novel parallel algorithm to solve edit distance problem of string matching. The algorithm is based on resolving dependencies in the dynamic programming solution of the problem and it is able to compute each row of edit distance table in parallel. In this way, it becomes possible to compute the complete table in min(m,n iterations for strings of size m and n whereas state-of-the-art parallel algorithm solves the problem in max(m,n iterations. The proposed algorithm also increases the amount of parallelism in each of its iteration. The algorithm is also capable of exploiting spatial locality while its implementation. Additionally, the algorithm works in a load balanced way that further improves its performance. The algorithm is implemented for multicore systems having shared memory. Implementation of the algorithm in OpenMP shows linear speedup and better execution time as compared to state-of-the-art parallel approach. Efficiency of the algorithm is also proven better in comparison to its competitor.
Moon, Hongsik
What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the
Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R; Ratterman, Joseph D; Smith, Brian E
2014-11-11
Endpoint-based parallel data processing with non-blocking collective instructions in a PAMI of a parallel computer is disclosed. The PAMI is composed of data communications endpoints, each including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task. The compute nodes are coupled for data communications through the PAMI. The parallel application establishes a data communications geometry specifying a set of endpoints that are used in collective operations of the PAMI by associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry; registering in each endpoint in the geometry a dispatch callback function for a collective operation; and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.
Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB
Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.
2017-01-01
Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.
Parallel computing for data science with examples in R, C++ and CUDA
Matloff, Norman
2015-01-01
Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic ""n observations, p variables"" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.With the main focus on computation, the book shows how to compute on three types of platfor
Temporal fringe pattern analysis with parallel computing
International Nuclear Information System (INIS)
Tuck Wah Ng; Kar Tien Ang; Argentini, Gianluca
2005-01-01
Temporal fringe pattern analysis is invaluable in transient phenomena studies but necessitates long processing times. Here we describe a parallel computing strategy based on the single-program multiple-data model and hyperthreading processor technology to reduce the execution time. In a two-node cluster workstation configuration we found that execution periods were reduced by 1.6 times when four virtual processors were used. To allow even lower execution times with an increasing number of processors, the time allocated for data transfer, data read, and waiting should be minimized. Parallel computing is found here to present a feasible approach to reduce execution times in temporal fringe pattern analysis
International Nuclear Information System (INIS)
Idomura, Yasuhiro; Jolliet, Sebastien
2010-01-01
A gyrokinetic toroidal five dimensional Eulerian code GT5D is ported on six advanced massively parallel platforms and comprehensive benchmark tests are performed. A parallelisation technique based on physical properties of the gyrokinetic equation is presented. By extending the parallelisation technique with a hybrid parallel model, the scalability of the code is improved on platforms with multi-core processors. In the benchmark tests, a good salability is confirmed up to several thousands cores on every platforms, and the maximum sustained performance of ∼18.6 Tflops is achieved using 16384 cores of BX900. (author)
Parallelism, fractal geometry and other aspects of computational mathematics
International Nuclear Information System (INIS)
Churchhouse, R.F.
1991-01-01
In some fields such as meteorology, theoretical physics, quantum chemistry and hydrodynamics there are problems which involve so much computation that computers of the power of a thousand times a Cray 2 could be fully utilised if they were available. Since it is unlikely that uniprocessors of such power will be available, such large scale problems could be solved by using systems of computers running in parallel. This approach, of course, requires to find appropriate algorithms for the solution of such problems which can efficiently make use of a large number of computers working in parallel. 11 refs, 10 figs, 1 tab
Prototyping and Simulating Parallel, Distributed Computations with VISA
National Research Council Canada - National Science Library
Demeure, Isabelle M; Nutt, Gary J
1989-01-01
...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...
Parallel evolutionary computation in bioinformatics applications.
Pinho, Jorge; Sobral, João Luis; Rocha, Miguel
2013-05-01
A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Parallel computation with molecular-motor-propelled agents in nanofabricated networks.
Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V
2016-03-08
The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
Parallel Implicit Algorithms for CFD
Keyes, David E.
1998-01-01
The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.
International Nuclear Information System (INIS)
Pic, Marc Michel
1995-01-01
Parallel programming covers task-parallelism and data-parallelism. Many problems need both parallelisms. Multi-SIMD computers allow hierarchical approach of these parallelisms. The T++ language, based on C++, is dedicated to exploit Multi-SIMD computers using a programming paradigm which is an extension of array-programming to tasks managing. Our language introduced array of independent tasks to achieve separately (MIMD), on subsets of processors of identical behaviour (SIMD), in order to translate the hierarchical inclusion of data-parallelism in task-parallelism. To manipulate in a symmetrical way tasks and data we propose meta-operations which have the same behaviour on tasks arrays and on data arrays. We explain how to implement this language on our parallel computer SYMPHONIE in order to profit by the locally-shared memory, by the hardware virtualization, and by the multiplicity of communications networks. We analyse simultaneously a typical application of such architecture. Finite elements scheme for Fluid mechanic needs powerful parallel computers and requires large floating points abilities. Lattice gases is an alternative to such simulations. Boolean lattice bases are simple, stable, modular, need to floating point computation, but include numerical noise. Boltzmann lattice gases present large precision of computation, but needs floating points and are only locally stable. We propose a new scheme, called multi-bit, who keeps the advantages of each boolean model to which it is applied, with large numerical precision and reduced noise. Experiments on viscosity, physical behaviour, noise reduction and spurious invariants are shown and implementation techniques for parallel Multi-SIMD computers detailed. (author) [fr
A massively parallel strategy for STR marker development, capture, and genotyping.
Kistler, Logan; Johnson, Stephen M; Irwin, Mitchell T; Louis, Edward E; Ratan, Aakrosh; Perry, George H
2017-09-06
Short tandem repeat (STR) variants are highly polymorphic markers that facilitate powerful population genetic analyses. STRs are especially valuable in conservation and ecological genetic research, yielding detailed information on population structure and short-term demographic fluctuations. Massively parallel sequencing has not previously been leveraged for scalable, efficient STR recovery. Here, we present a pipeline for developing STR markers directly from high-throughput shotgun sequencing data without a reference genome, and an approach for highly parallel target STR recovery. We employed our approach to capture a panel of 5000 STRs from a test group of diademed sifakas (Propithecus diadema, n = 3), endangered Malagasy rainforest lemurs, and we report extremely efficient recovery of targeted loci-97.3-99.6% of STRs characterized with ≥10x non-redundant sequence coverage. We then tested our STR capture strategy on P. diadema fecal DNA, and report robust initial results and suggestions for future implementations. In addition to STR targets, this approach also generates large, genome-wide single nucleotide polymorphism (SNP) panels from flanking regions. Our method provides a cost-effective and scalable solution for rapid recovery of large STR and SNP datasets in any species without needing a reference genome, and can be used even with suboptimal DNA more easily acquired in conservation and ecological studies. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
A class of parallel algorithms for computation of the manipulator inertia matrix
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.
Tutorial: Parallel Computing of Simulation Models for Risk Analysis.
Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D
2016-10-01
Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.
Optimisation of a parallel ocean general circulation model
Directory of Open Access Journals (Sweden)
M. I. Beare
1997-10-01
Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
Optimisation of a parallel ocean general circulation model
Directory of Open Access Journals (Sweden)
M. I. Beare
Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Atac, R.
1988-08-01
Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs
Small file aggregation in a parallel computing system
Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang
2014-09-02
Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.
Optimizing a massive parallel sequencing workflow for quantitative miRNA expression analysis.
Directory of Open Access Journals (Sweden)
Francesca Cordero
Full Text Available BACKGROUND: Massive Parallel Sequencing methods (MPS can extend and improve the knowledge obtained by conventional microarray technology, both for mRNAs and short non-coding RNAs, e.g. miRNAs. The processing methods used to extract and interpret the information are an important aspect of dealing with the vast amounts of data generated from short read sequencing. Although the number of computational tools for MPS data analysis is constantly growing, their strengths and weaknesses as part of a complex analytical pipe-line have not yet been well investigated. PRIMARY FINDINGS: A benchmark MPS miRNA dataset, resembling a situation in which miRNAs are spiked in biological replication experiments was assembled by merging a publicly available MPS spike-in miRNAs data set with MPS data derived from healthy donor peripheral blood mononuclear cells. Using this data set we observed that short reads counts estimation is strongly under estimated in case of duplicates miRNAs, if whole genome is used as reference. Furthermore, the sensitivity of miRNAs detection is strongly dependent by the primary tool used in the analysis. Within the six aligners tested, specifically devoted to miRNA detection, SHRiMP and MicroRazerS show the highest sensitivity. Differential expression estimation is quite efficient. Within the five tools investigated, two of them (DESseq, baySeq show a very good specificity and sensitivity in the detection of differential expression. CONCLUSIONS: The results provided by our analysis allow the definition of a clear and simple analytical optimized workflow for miRNAs digital quantitative analysis.
Optimizing a massive parallel sequencing workflow for quantitative miRNA expression analysis.
Cordero, Francesca; Beccuti, Marco; Arigoni, Maddalena; Donatelli, Susanna; Calogero, Raffaele A
2012-01-01
Massive Parallel Sequencing methods (MPS) can extend and improve the knowledge obtained by conventional microarray technology, both for mRNAs and short non-coding RNAs, e.g. miRNAs. The processing methods used to extract and interpret the information are an important aspect of dealing with the vast amounts of data generated from short read sequencing. Although the number of computational tools for MPS data analysis is constantly growing, their strengths and weaknesses as part of a complex analytical pipe-line have not yet been well investigated. A benchmark MPS miRNA dataset, resembling a situation in which miRNAs are spiked in biological replication experiments was assembled by merging a publicly available MPS spike-in miRNAs data set with MPS data derived from healthy donor peripheral blood mononuclear cells. Using this data set we observed that short reads counts estimation is strongly under estimated in case of duplicates miRNAs, if whole genome is used as reference. Furthermore, the sensitivity of miRNAs detection is strongly dependent by the primary tool used in the analysis. Within the six aligners tested, specifically devoted to miRNA detection, SHRiMP and MicroRazerS show the highest sensitivity. Differential expression estimation is quite efficient. Within the five tools investigated, two of them (DESseq, baySeq) show a very good specificity and sensitivity in the detection of differential expression. The results provided by our analysis allow the definition of a clear and simple analytical optimized workflow for miRNAs digital quantitative analysis.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer. Each compute node includes at least two processing cores. Each processing core has contribution data for the allreduce operation. Performing an allreduce operation on a plurality of compute nodes of a parallel computer includes: establishing one or more logical rings among the compute nodes, each logical ring including at least one processing core from each compute node; performing, for each logical ring, a global allreduce operation using the contribution data for the processing cores included in that logical ring, yielding a global allreduce result for each processing core included in that logical ring; and performing, for each compute node, a local allreduce operation using the global allreduce results for each processing core on that compute node.
International Nuclear Information System (INIS)
Baron, E.; Hauschildt, Peter H.
1998-01-01
We describe an important addition to the parallel implementation of our generalized nonlocal thermodynamic equilibrium (NLTE) stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is, distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition, task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000 - 300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard message passing interface (MPI) library calls and is fully portable between serial and parallel computers. copyright 1998 The American Astronomical Society
Phase space simulation of collisionless stellar systems on the massively parallel processor
International Nuclear Information System (INIS)
White, R.L.
1987-01-01
A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem
Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary
2015-01-01
Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.
Fast Parallel Computation of Polynomials Using Few Processors
DEFF Research Database (Denmark)
Valiant, Leslie G.; Skyum, Sven; Berkowitz, S.
1983-01-01
It is shown that any multivariate polynomial of degree $d$ that can be computed sequentially in $C$ steps can be computed in parallel in $O((\\log d)(\\log C + \\log d))$ steps using only $(Cd)^{O(1)} $ processors....
MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT
Energy Technology Data Exchange (ETDEWEB)
Cavanagh, J.; Cui, S.
2009-01-01
Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular Value Decomposition. However, with the ever-expanding size of datasets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. A graphics processing unit (GPU) can solve some highly parallel problems much faster than a traditional sequential processor or central processing unit (CPU). Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a PC cluster. Due to the GPU’s application-specifi c architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We presented a parallel LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic Linear Algebra Subprograms software. The performance of this implementation is compared to traditional LSA implementation on a CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran fi ve to six times faster than the CPU version. The large variation is due to architectural benefi ts of the GPU for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.
Fast parallel computation of polynomials using few processors
DEFF Research Database (Denmark)
Valiant, Leslie; Skyum, Sven
1981-01-01
It is shown that any multivariate polynomial that can be computed sequentially in C steps and has degree d can be computed in parallel in 0((log d) (log C + log d)) steps using only (Cd)0(1) processors....
Parallel computing in enterprise modeling.
Energy Technology Data Exchange (ETDEWEB)
Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.
2008-08-01
This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.
Basic design of parallel computational program for probabilistic structural analysis
International Nuclear Information System (INIS)
Kaji, Yoshiyuki; Arai, Taketoshi; Gu, Wenwei; Nakamura, Hitoshi
1999-06-01
In our laboratory, for 'development of damage evaluation method of structural brittle materials by microscopic fracture mechanics and probabilistic theory' (nuclear computational science cross-over research) we examine computational method related to super parallel computation system which is coupled with material strength theory based on microscopic fracture mechanics for latent cracks and continuum structural model to develop new structural reliability evaluation methods for ceramic structures. This technical report is the review results regarding probabilistic structural mechanics theory, basic terms of formula and program methods of parallel computation which are related to principal terms in basic design of computational mechanics program. (author)
Basic design of parallel computational program for probabilistic structural analysis
Energy Technology Data Exchange (ETDEWEB)
Kaji, Yoshiyuki; Arai, Taketoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Gu, Wenwei; Nakamura, Hitoshi
1999-06-01
In our laboratory, for `development of damage evaluation method of structural brittle materials by microscopic fracture mechanics and probabilistic theory` (nuclear computational science cross-over research) we examine computational method related to super parallel computation system which is coupled with material strength theory based on microscopic fracture mechanics for latent cracks and continuum structural model to develop new structural reliability evaluation methods for ceramic structures. This technical report is the review results regarding probabilistic structural mechanics theory, basic terms of formula and program methods of parallel computation which are related to principal terms in basic design of computational mechanics program. (author)
Identifying failure in a tree network of a parallel computer
Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.
2010-08-24
Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.
Computationally efficient implementation of combustion chemistry in parallel PDF calculations
International Nuclear Information System (INIS)
Lu Liuyan; Lantz, Steven R.; Ren Zhuyin; Pope, Stephen B.
2009-01-01
In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling, 1 (1997) 41-63; L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, Journal of Computational Physics 228 (2009) 361-386] substantially speeds up the chemistry calculations on each processor. To improve the parallel efficiency of large ensembles of such calculations in parallel computations, in this work, the ISAT algorithm is extended to the multi-processor environment, with the aim of minimizing the wall clock time required for the whole ensemble. Parallel ISAT strategies are developed by combining the existing serial ISAT algorithm with different distribution strategies, namely purely local processing (PLP), uniformly random distribution (URAN), and preferential distribution (PREF). The distribution strategies enable the queued load redistribution of chemistry calculations among processors using message passing. They are implemented in the software x2f m pi, which is a Fortran 95 library for facilitating many parallel evaluations of a general vector function. The relative performance of the parallel ISAT strategies is investigated in different computational regimes via the PDF calculations of multiple partially stirred reactors burning methane/air mixtures. The results show that the performance of ISAT with a fixed distribution strategy strongly depends on certain computational regimes, based on how much memory is available and how much overlap exists between tabulated information on different processors. No one fixed strategy consistently achieves good performance in all the regimes. Therefore, an adaptive distribution strategy, which blends PLP, URAN and PREF, is devised and implemented. It yields consistently good performance in all regimes. In the adaptive parallel
Parallel algorithms for computation of the manipulator inertia matrix
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Fencing data transfers in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Mamidala, Amith R.
2015-06-02
Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task; the compute nodes coupled for data communications through the PAMI and through data communications resources including at least one segment of shared random access memory; including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers through a segment of shared memory; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.
International Nuclear Information System (INIS)
Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang
2015-01-01
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are
Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max
1999-01-01
A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.
Big data mining analysis method based on cloud computing
Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao
2017-08-01
Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.
Programming a massively parallel, computation universal system: static behavior
Energy Technology Data Exchange (ETDEWEB)
Lapedes, A.; Farber, R.
1986-01-01
In previous work by the authors, the ''optimum finding'' properties of Hopfield neural nets were applied to the nets themselves to create a ''neural compiler.'' This was done in such a way that the problem of programming the attractors of one neural net (called the Slave net) was expressed as an optimization problem that was in turn solved by a second neural net (the Master net). In this series of papers that approach is extended to programming nets that contain interneurons (sometimes called ''hidden neurons''), and thus deals with nets capable of universal computation. 22 refs.
ESPRIT-Forest: Parallel clustering of massive amplicon sequence data in subquadratic time.
Cai, Yunpeng; Zheng, Wei; Yao, Jin; Yang, Yujie; Mai, Volker; Mao, Qi; Sun, Yijun
2017-04-01
The rapid development of sequencing technology has led to an explosive accumulation of genomic sequence data. Clustering is often the first step to perform in sequence analysis, and hierarchical clustering is one of the most commonly used approaches for this purpose. However, it is currently computationally expensive to perform hierarchical clustering of extremely large sequence datasets due to its quadratic time and space complexities. In this paper we developed a new algorithm called ESPRIT-Forest for parallel hierarchical clustering of sequences. The algorithm achieves subquadratic time and space complexity and maintains a high clustering accuracy comparable to the standard method. The basic idea is to organize sequences into a pseudo-metric based partitioning tree for sub-linear time searching of nearest neighbors, and then use a new multiple-pair merging criterion to construct clusters in parallel using multiple threads. The new algorithm was tested on the human microbiome project (HMP) dataset, currently one of the largest published microbial 16S rRNA sequence dataset. Our experiment demonstrated that with the power of parallel computing it is now compu- tationally feasible to perform hierarchical clustering analysis of tens of millions of sequences. The software is available at http://www.acsu.buffalo.edu/∼yijunsun/lab/ESPRIT-Forest.html.
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of
International Nuclear Information System (INIS)
Spencer, VN
2001-01-01
An investigation has been conducted regarding the ability of clustered personal computers to improve the performance of executing software simulations for solving engineering problems. The power and utility of personal computers continues to grow exponentially through advances in computing capabilities such as newer microprocessors, advances in microchip technologies, electronic packaging, and cost effective gigabyte-size hard drive capacity. Many engineering problems require significant computing power. Therefore, the computation has to be done by high-performance computer systems that cost millions of dollars and need gigabytes of memory to complete the task. Alternately, it is feasible to provide adequate computing in the form of clustered personal computers. This method cuts the cost and size by linking (clustering) personal computers together across a network. Clusters also have the advantage that they can be used as stand-alone computers when they are not operating as a parallel computer. Parallel computing software to exploit clusters is available for computer operating systems like Unix, Windows NT, or Linux. This project concentrates on the use of Windows NT, and the Parallel Virtual Machine (PVM) system to solve an engineering dynamics problem in Fortran
Distributed parallel computing in stochastic modeling of groundwater systems.
Dong, Yanhui; Li, Guomin; Xu, Haizhen
2013-03-01
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
An object-oriented programming paradigm for parallelization of computational fluid dynamics
International Nuclear Information System (INIS)
Ohta, Takashi.
1997-03-01
We propose an object-oriented programming paradigm for parallelization of scientific computing programs, and show that the approach can be a very useful strategy. Generally, parallelization of scientific programs tends to be complicated and unportable due to the specific requirements of each parallel computer or compiler. In this paper, we show that the object-oriented programming design, which separates the parallel processing parts from the solver of the applications, can achieve the large improvement in the maintenance of the codes, as well as the high portability. We design the program for the two-dimensional Euler equations according to the paradigm, and evaluate the parallel performance on IBM SP2. (author)
Monte Carlo calculations on a parallel computer using MORSE-C.G
International Nuclear Information System (INIS)
Wood, J.
1995-01-01
The general purpose particle transport Monte Carlo code, MORSE-C.G., is implemented on a parallel computing transputer-based system having MIMD architecture. Example problems are solved which are representative of the 3-principal types of problem that can be solved by the original serial code, namely, fixed source, eigenvalue (k-eff) and time-dependent. The results from the parallelized version of the code are compared in tables with the serial code run on a mainframe serial computer, and with an independent, deterministic transport code. The performance of the parallel computer as the number of processors is varied is shown graphically. For the parallel strategy used, the loss of efficiency as the number of processors is increased, is investigated. (author)
Directory of Open Access Journals (Sweden)
Sonja Hall-Mendelin
Full Text Available Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.
Solving the Fokker-Planck equation on a massively parallel computer
International Nuclear Information System (INIS)
Mirin, A.A.
1990-01-01
The Fokker-Planck package FPPAC had been converted to the Connection Machine 2 (CM2). For fine mesh cases the CM2 outperforms the Cray-2 when it comes to time-integrating the difference equations. For long Legendre expansions the CM2 is also faster at computing the Fokker-Planck coefficients. 3 refs
An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.
Wang, Runchun M; Thakur, Chetan S; van Schaik, André
2018-01-01
This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.
An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator
Directory of Open Access Journals (Sweden)
Runchun M. Wang
2018-04-01
Full Text Available This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons. This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.
Energy Technology Data Exchange (ETDEWEB)
Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)
2014-01-31
The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.
Parallel diffusion calculation for the PHAETON on-line multiprocessor computer
International Nuclear Information System (INIS)
Collart, J.M.; Fedon-Magnaud, C.; Lautard, J.J.
1987-04-01
The aim of the PHAETON project is the design of an on-line computer in order to increase the immediate knowledge of the main operating and safety parameters in power plants. A significant stage is the computation of the three dimensional flux distribution. For cost and safety reason a computer based on a parallel microprocessor architecture has been studied. This paper presents a first approach to parallelized three dimensional diffusion calculation. A computing software has been written and built in a four processors demonstrator. We present the realization in progress, concerning the final equipment. 8 refs
Parallel computation of nondeterministic algorithms in VLSI
Energy Technology Data Exchange (ETDEWEB)
Hortensius, P D
1987-01-01
This work examines parallel VLSI implementations of nondeterministic algorithms. It is demonstrated that conventional pseudorandom number generators are unsuitable for highly parallel applications. Efficient parallel pseudorandom sequence generation can be accomplished using certain classes of elementary one-dimensional cellular automata. The pseudorandom numbers appear in parallel on each clock cycle. Extensive study of the properties of these new pseudorandom number generators is made using standard empirical random number tests, cycle length tests, and implementation considerations. Furthermore, it is shown these particular cellular automata can form the basis of efficient VLSI architectures for computations involved in the Monte Carlo simulation of both the percolation and Ising models from statistical mechanics. Finally, a variation on a Built-In Self-Test technique based upon cellular automata is presented. These Cellular Automata-Logic-Block-Observation (CALBO) circuits improve upon conventional design for testability circuitry.
Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing
Meng, Xiang
The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In
Parallel computing for homogeneous diffusion and transport equations in neutronics
International Nuclear Information System (INIS)
Pinchedez, K.
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Streaming Parallel GPU Acceleration of Large-Scale filter-based Spiking Neural Networks
L.P. Slazynski (Leszek); S.M. Bohte (Sander)
2012-01-01
htmlabstractThe arrival of graphics processing (GPU) cards suitable for massively parallel computing promises a↵ordable large-scale neural network simulation previously only available at supercomputing facil- ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of
The specification of Stampi, a message passing library for distributed parallel computing
International Nuclear Information System (INIS)
Imamura, Toshiyuki; Takemiya, Hiroshi; Koide, Hiroshi
2000-03-01
At CCSE, Center for Promotion of Computational Science and Engineering, a new message passing library for heterogeneous and distributed parallel computing has been developed, and it is called as Stampi. Stampi enables us to communicate between any combination of parallel computers as well as workstations. Currently, a Stampi system is constructed from Stampi library and Stampi/Java. It provides functions to connect a Stampi application with not only those on COMPACS, COMplex Parallel Computer System, but also applets which work on WWW browsers. This report summarizes the specifications of Stampi and details the development of its system. (author)
Sierra toolkit computational mesh conceptual model
International Nuclear Information System (INIS)
Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.
2010-01-01
The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.
A method of paralleling computer calculation for two-dimensional kinetic plasma model
International Nuclear Information System (INIS)
Brazhnik, V.A.; Demchenko, V.V.; Dem'yanov, V.G.; D'yakov, V.E.; Ol'shanskij, V.V.; Panchenko, V.I.
1987-01-01
A method for parallel computer calculation and OSIRIS program complex realizing it and designed for numerical plasma simulation by the macroparticle method are described. The calculation can be carried out either with one or simultaneously with two computers BESM-6, that is provided by some package of interacting programs functioning in every computer. Program interaction in every computer is based on event techniques realized in OS DISPAK. Parallel computer calculation with two BESM-6 computers allows to accelerate the computation 1.5 times
A Parallel Computational Model for Multichannel Phase Unwrapping Problem
Imperatore, Pasquale; Pepe, Antonio; Lanari, Riccardo
2015-05-01
In this paper, a parallel model for the solution of the computationally intensive multichannel phase unwrapping (MCh-PhU) problem is proposed. Firstly, the Extended Minimum Cost Flow (EMCF) algorithm for solving MCh-PhU problem is revised within the rigorous mathematical framework of the discrete calculus ; thus permitting to capture its topological structure in terms of meaningful discrete differential operators. Secondly, emphasis is placed on those methodological and practical aspects, which lead to a parallel reformulation of the EMCF algorithm. Thus, a novel dual-level parallel computational model, in which the parallelism is hierarchically implemented at two different (i.e., process and thread) levels, is presented. The validity of our approach has been demonstrated through a series of experiments that have revealed a significant speedup. Therefore, the attained high-performance prototype is suitable for the solution of large-scale phase unwrapping problems in reasonable time frames, with a significant impact on the systematic exploitation of the existing, and rapidly growing, large archives of SAR data.
MEDUSA - An overset grid flow solver for network-based parallel computer systems
Smith, Merritt H.; Pallis, Jani M.
1993-01-01
Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2016-03-15
Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.
Parallel algorithms and archtectures for computational structural mechanics
Patrick, Merrell; Ma, Shing; Mahajan, Umesh
1989-01-01
The determination of the fundamental (lowest) natural vibration frequencies and associated mode shapes is a key step used to uncover and correct potential failures or problem areas in most complex structures. However, the computation time taken by finite element codes to evaluate these natural frequencies is significant, often the most computationally intensive part of structural analysis calculations. There is continuing need to reduce this computation time. This study addresses this need by developing methods for parallel computation.
Event parallelism: Distributed memory parallel computing for high energy physics experiments
International Nuclear Information System (INIS)
Nash, T.
1989-05-01
This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC systems, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described. 6 figs
Event parallelism: Distributed memory parallel computing for high energy physics experiments
International Nuclear Information System (INIS)
Nash, T.
1989-01-01
This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC systems, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described. (orig.)
Event parallelism: Distributed memory parallel computing for high energy physics experiments
Nash, Thomas
1989-12-01
This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC system, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described.
Parallel processing architecture for H.264 deblocking filter on multi-core platforms
Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao
2012-03-01
Massively parallel computing (multi-core) chips offer outstanding new solutions that satisfy the increasing demand for high resolution and high quality video compression technologies such as H.264. Such solutions not only provide exceptional quality but also efficiency, low power, and low latency, previously unattainable in software based designs. While custom hardware and Application Specific Integrated Circuit (ASIC) technologies may achieve lowlatency, low power, and real-time performance in some consumer devices, many applications require a flexible and scalable software-defined solution. The deblocking filter in H.264 encoder/decoder poses difficult implementation challenges because of heavy data dependencies and the conditional nature of the computations. Deblocking filter implementations tend to be fixed and difficult to reconfigure for different needs. The ability to scale up for higher quality requirements such as 10-bit pixel depth or a 4:2:2 chroma format often reduces the throughput of a parallel architecture designed for lower feature set. A scalable architecture for deblocking filtering, created with a massively parallel processor based solution, means that the same encoder or decoder will be deployed in a variety of applications, at different video resolutions, for different power requirements, and at higher bit-depths and better color sub sampling patterns like YUV, 4:2:2, or 4:4:4 formats. Low power, software-defined encoders/decoders may be implemented using a massively parallel processor array, like that found in HyperX technology, with 100 or more cores and distributed memory. The large number of processor elements allows the silicon device to operate more efficiently than conventional DSP or CPU technology. This software programing model for massively parallel processors offers a flexible implementation and a power efficiency close to that of ASIC solutions. This work describes a scalable parallel architecture for an H.264 compliant deblocking
A parallel solution for high resolution histological image analysis.
Bueno, G; González, R; Déniz, O; García-Rojo, M; González-García, J; Fernández-Carrobles, M M; Vállez, N; Salido, J
2012-10-01
This paper describes a general methodology for developing parallel image processing algorithms based on message passing for high resolution images (on the order of several Gigabytes). These algorithms have been applied to histological images and must be executed on massively parallel processing architectures. Advances in new technologies for complete slide digitalization in pathology have been combined with developments in biomedical informatics. However, the efficient use of these digital slide systems is still a challenge. The image processing that these slides are subject to is still limited both in terms of data processed and processing methods. The work presented here focuses on the need to design and develop parallel image processing tools capable of obtaining and analyzing the entire gamut of information included in digital slides. Tools have been developed to assist pathologists in image analysis and diagnosis, and they cover low and high-level image processing methods applied to histological images. Code portability, reusability and scalability have been tested by using the following parallel computing architectures: distributed memory with massive parallel processors and two networks, INFINIBAND and Myrinet, composed of 17 and 1024 nodes respectively. The parallel framework proposed is flexible, high performance solution and it shows that the efficient processing of digital microscopic images is possible and may offer important benefits to pathology laboratories. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
IPython: components for interactive and parallel computing across disciplines. (Invited)
Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.
2013-12-01
Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.
Parallel algorithms for interactive manipulation of digital terrain models
Davis, E. W.; Mcallister, D. F.; Nagaraj, V.
1988-01-01
Interactive three-dimensional graphics applications, such as terrain data representation and manipulation, require extensive arithmetic processing. Massively parallel machines are attractive for this application since they offer high computational rates, and grid connected architectures provide a natural mapping for grid based terrain models. Presented here are algorithms for data movement on the massive parallel processor (MPP) in support of pan and zoom functions over large data grids. It is an extension of earlier work that demonstrated real-time performance of graphics functions on grids that were equal in size to the physical dimensions of the MPP. When the dimensions of a data grid exceed the processing array size, data is packed in the array memory. Windows of the total data grid are interactively selected for processing. Movement of packed data is needed to distribute items across the array for efficient parallel processing. Execution time for data movement was found to exceed that for arithmetic aspects of graphics functions. Performance figures are given for routines written in MPP Pascal.
Directory of Open Access Journals (Sweden)
Ling Kang
2017-03-01
Full Text Available Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The horizontal momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step method is used to solve the model equations. A parallel strategy based on block decomposition computation is utilized. The original computational domain is subdivided into two subdomains that are physically connected via a virtual boundary technique. Two sub-threads are created and tasked with the computation of the two subdomains. The producer–consumer model and the thread lock technique are used to achieve synchronous communication between sub-threads. The validity of the model was verified by solitary wave propagation experiments over a flat bottom and slope, followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing method proposed here was found to effectively enhance computational efficiency and save 20%–40% computation time compared to serial computing. The parallel acceleration rate and acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing method makes a contribution to the popularization of non-hydrostatic models.
Link failure detection in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Megerian, Mark G.; Smith, Brian E.
2010-11-09
Methods, apparatus, and products are disclosed for link failure detection in a parallel computer including compute nodes connected in a rectangular mesh network, each pair of adjacent compute nodes in the rectangular mesh network connected together using a pair of links, that includes: assigning each compute node to either a first group or a second group such that adjacent compute nodes in the rectangular mesh network are assigned to different groups; sending, by each of the compute nodes assigned to the first group, a first test message to each adjacent compute node assigned to the second group; determining, by each of the compute nodes assigned to the second group, whether the first test message was received from each adjacent compute node assigned to the first group; and notifying a user, by each of the compute nodes assigned to the second group, whether the first test message was received.
Internode data communications in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Miller, Douglas R.; Parker, Jeffrey J.; Ratterman, Joseph D.; Smith, Brian E.
2013-09-03
Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.
Parallel processing algorithms for hydrocodes on a computer with MIMD architecture (DENELCOR's HEP)
International Nuclear Information System (INIS)
Hicks, D.L.
1983-11-01
In real time simulation/prediction of complex systems such as water-cooled nuclear reactors, if reactor operators had fast simulator/predictors to check the consequences of their operations before implementing them, events such as the incident at Three Mile Island might be avoided. However, existing simulator/predictors such as RELAP run slower than real time on serial computers. It appears that the only way to overcome the barrier to higher computing rates is to use computers with architectures that allow concurrent computations or parallel processing. The computer architecture with the greatest degree of parallelism is labeled Multiple Instruction Stream, Multiple Data Stream (MIMD). An example of a machine of this type is the HEP computer by DENELCOR. It appears that hydrocodes are very well suited for parallelization on the HEP. It is a straightforward exercise to parallelize explicit, one-dimensional Lagrangean hydrocodes in a zone-by-zone parallelization. Similarly, implicit schemes can be parallelized in a zone-by-zone fashion via an a priori, symbolic inversion of the tridiagonal matrix that arises in an implicit scheme. These techniques are extended to Eulerian hydrocodes by using Harlow's rezone technique. The extension from single-phase Eulerian to two-phase Eulerian is straightforward. This step-by-step extension leads to hydrocodes with zone-by-zone parallelization that are capable of two-phase flow simulation. Extensions to two and three spatial dimensions can be achieved by operator splitting. It appears that a zone-by-zone parallelization is the best way to utilize the capabilities of an MIMD machine. 40 references
Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves
Qiu, Shi; Liu, Kuang; Eliasson, Veronica
2016-10-01
Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.
Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-Parallel Ones
Directory of Open Access Journals (Sweden)
Norman Matloff
2016-07-01
Full Text Available The growth in the use of computationally intensive statistical procedures, especially with big data, has necessitated the usage of parallel computation on diverse platforms such as multicore, GPUs, clusters and clouds. However, slowdown due to interprocess communication costs typically limits such methods to "embarrassingly parallel" (EP algorithms, especially on non-shared memory platforms. This paper develops a broadlyapplicable method for converting many non-EP algorithms into statistically equivalent EP ones. The method is shown to yield excellent levels of speedup for a variety of statistical computations. It also overcomes certain problems of memory limitations.
Parallel Evolutionary Optimization for Neuromorphic Network Training
Energy Technology Data Exchange (ETDEWEB)
Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)
2016-01-01
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.
New Parallel Algorithms for Landscape Evolution Model
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Pacing a data transfer operation between compute nodes on a parallel computer
Blocksome, Michael A [Rochester, MN
2011-09-13
Methods, systems, and products are disclosed for pacing a data transfer between compute nodes on a parallel computer that include: transferring, by an origin compute node, a chunk of an application message to a target compute node; sending, by the origin compute node, a pacing request to a target direct memory access (`DMA`) engine on the target compute node using a remote get DMA operation; determining, by the origin compute node, whether a pacing response to the pacing request has been received from the target DMA engine; and transferring, by the origin compute node, a next chunk of the application message if the pacing response to the pacing request has been received from the target DMA engine.
Tiling as a Durable Abstraction for Parallelism and Data Locality
Energy Technology Data Exchange (ETDEWEB)
Unat, Didem [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Cy P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Weiqun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2013-11-18
Tiling is a useful loop transformation for expressing parallelism and data locality. Automated tiling transformations that preserve data-locality are increasingly important due to hardware trends towards massive parallelism and the increasing costs of data movement relative to the cost of computing. We propose TiDA as a durable tiling abstraction that centralizes parameterized tiling information within array data types with minimal changes to the source code. The data layout information can be used by the compiler and runtime to automatically manage parallelism, optimize data locality, and schedule tasks intelligently. In this study, we present the design features and early interface of TiDA along with some preliminary results.
Parallel community climate model: Description and user`s guide
Energy Technology Data Exchange (ETDEWEB)
Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others
1996-07-15
This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.
Fast electrostatic force calculation on parallel computer clusters
International Nuclear Information System (INIS)
Kia, Amirali; Kim, Daejoong; Darve, Eric
2008-01-01
The fast multipole method (FMM) and smooth particle mesh Ewald (SPME) are well known fast algorithms to evaluate long range electrostatic interactions in molecular dynamics and other fields. FMM is a multi-scale method which reduces the computation cost by approximating the potential due to a group of particles at a large distance using few multipole functions. This algorithm scales like O(N) for N particles. SPME algorithm is an O(NlnN) method which is based on an interpolation of the Fourier space part of the Ewald sum and evaluating the resulting convolutions using fast Fourier transform (FFT). Those algorithms suffer from relatively poor efficiency on large parallel machines especially for mid-size problems around hundreds of thousands of atoms. A variation of the FMM, called PWA, based on plane wave expansions is presented in this paper. A new parallelization strategy for PWA, which takes advantage of the specific form of this expansion, is described. Its parallel efficiency is compared with SPME through detail time measurements on two different computer clusters
Energy Technology Data Exchange (ETDEWEB)
Azmy, Yousry
2014-06-10
We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.
SWAMP+: multiple subsequence alignment using associative massive parallelism
Energy Technology Data Exchange (ETDEWEB)
Steinfadt, Shannon Irene [Los Alamos National Laboratory; Baker, Johnnie W [KENT STATE UNIV.
2010-10-18
A new parallel algorithm SWAMP+ incorporates the Smith-Waterman sequence alignment on an associative parallel model known as ASC. It is a highly sensitive parallel approach that expands traditional pairwise sequence alignment. This is the first parallel algorithm to provide multiple non-overlapping, non-intersecting subsequence alignments with the accuracy of Smith-Waterman. The efficient algorithm provides multiple alignments similar to BLAST while creating a better workflow for the end users. The parallel portions of the code run in O(m+n) time using m processors. When m = n, the algorithmic analysis becomes O(n) with a coefficient of two, yielding a linear speedup. Implementation of the algorithm on the SIMD ClearSpeed CSX620 confirms this theoretical linear speedup with real timings.
Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H
2013-08-01
Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.
Heterogeneous Computing in Economics
DEFF Research Database (Denmark)
Dziubinski, M.P.; Grassi, S.
2014-01-01
This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of C++ Accelerated Massive Parallelism (C++ AMP) recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (J Econ Dyn...
Parallelized Seeded Region Growing Using CUDA
Directory of Open Access Journals (Sweden)
Seongjin Park
2014-01-01
Full Text Available This paper presents a novel method for parallelizing the seeded region growing (SRG algorithm using Compute Unified Device Architecture (CUDA technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.
TME (Task Mapping Editor): tool for executing distributed parallel computing. TME user's manual
International Nuclear Information System (INIS)
Takemiya, Hiroshi; Yamagishi, Nobuhiro; Imamura, Toshiyuki
2000-03-01
At the Center for Promotion of Computational Science and Engineering, a software environment PPExe has been developed to support scientific computing on a parallel computer cluster (distributed parallel scientific computing). TME (Task Mapping Editor) is one of components of the PPExe and provides a visual programming environment for distributed parallel scientific computing. Users can specify data dependence among tasks (programs) visually as a data flow diagram and map these tasks onto computers interactively through GUI of TME. The specified tasks are processed by other components of PPExe such as Meta-scheduler, RIM (Resource Information Monitor), and EMS (Execution Management System) according to the execution order of these tasks determined by TME. In this report, we describe the usage of TME. (author)
Stampi: a message passing library for distributed parallel computing. User's guide, second edition
International Nuclear Information System (INIS)
Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi
2000-02-01
A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on the MPI2 specification, and it realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Main features of Stampi are summarized as follows: (i) an automatic switch function between external- and internal communications, (ii) a message routing/relaying with a routing module, (iii) a dynamic process creation, (iv) a support of two types of connection, Master/Slave and Client/Server, (v) a support of a communication with Java applets. Indeed vendors implemented MPI libraries as a closed system in one parallel machine or their systems, and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, moreover on eight kinds of parallel machines, totally fourteen systems. Stampi provides us MPI communication functionality on them. This report describes mainly the usage of Stampi. (author)
Towards Interactive Visual Exploration of Parallel Programs using a Domain-Specific Language
Klein, Tobias; Bruckner, Stefan; Grö ller, M. Eduard; Hadwiger, Markus; Rautek, Peter
2016-01-01
The use of GPUs and the massively parallel computing paradigm have become wide-spread. We describe a framework for the interactive visualization and visual analysis of the run-time behavior of massively parallel programs, especially OpenCL kernels. This facilitates understanding a program's function and structure, finding the causes of possible slowdowns, locating program bugs, and interactively exploring and visually comparing different code variants in order to improve performance and correctness. Our approach enables very specific, user-centered analysis, both in terms of the recording of the run-time behavior and the visualization itself. Instead of having to manually write instrumented code to record data, simple code annotations tell the source-to-source compiler which code instrumentation to generate automatically. The visualization part of our framework then enables the interactive analysis of kernel run-time behavior in a way that can be very specific to a particular problem or optimization goal, such as analyzing the causes of memory bank conflicts or understanding an entire parallel algorithm.
Towards Interactive Visual Exploration of Parallel Programs using a Domain-Specific Language
Klein, Tobias
2016-04-19
The use of GPUs and the massively parallel computing paradigm have become wide-spread. We describe a framework for the interactive visualization and visual analysis of the run-time behavior of massively parallel programs, especially OpenCL kernels. This facilitates understanding a program\\'s function and structure, finding the causes of possible slowdowns, locating program bugs, and interactively exploring and visually comparing different code variants in order to improve performance and correctness. Our approach enables very specific, user-centered analysis, both in terms of the recording of the run-time behavior and the visualization itself. Instead of having to manually write instrumented code to record data, simple code annotations tell the source-to-source compiler which code instrumentation to generate automatically. The visualization part of our framework then enables the interactive analysis of kernel run-time behavior in a way that can be very specific to a particular problem or optimization goal, such as analyzing the causes of memory bank conflicts or understanding an entire parallel algorithm.
Contributions to computational stereology and parallel programming
DEFF Research Database (Denmark)
Rasmusson, Allan
rotator, even without the need for isotropic sections. To meet the need for computational power to perform image restoration of virtual tissue sections, parallel programming on GPUs has also been part of the project. This has lead to a significant change in paradigm for a previously developed surgical...
Statistical method to compare massive parallel sequencing pipelines.
Elsensohn, M H; Leblay, N; Dimassi, S; Campan-Fournier, A; Labalme, A; Roucher-Boulez, F; Sanlaville, D; Lesca, G; Bardel, C; Roy, P
2017-03-01
Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines.
Optical Interconnection Via Computer-Generated Holograms
Liu, Hua-Kuang; Zhou, Shaomin
1995-01-01
Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.
History and future perspectives of the Monte Carlo shell model -from Alphleet to K computer-
International Nuclear Information System (INIS)
Shimizu, Noritaka; Otsuka, Takaharu; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio; Abe, Takashi
2013-01-01
We report a history of the developments of the Monte Carlo shell model (MCSM). The MCSM was proposed in order to perform large-scale shell-model calculations which direct diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel computation of the MCSM. Since 2011 we participated the High Performance Computing Infrastructure Strategic Program and developed a new MCSM code for current massively parallel computers such as K computer. We discuss future perspectives concerning a new framework and parallel computation of the MCSM by incorporating conjugate gradient method and energy-variance extrapolation
Vector and parallel processors in computational science
International Nuclear Information System (INIS)
Duff, I.S.; Reid, J.K.
1985-01-01
These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)
Directory of Open Access Journals (Sweden)
Asker Noomi
2009-07-01
Full Text Available Abstract Background The teleost Zoarces viviparus (eelpout lives along the coasts of Northern Europe and has long been an established model organism for marine ecology and environmental monitoring. The scarce information about this species genome has however restrained the use of efficient molecular-level assays, such as gene expression microarrays. Results In the present study we present the first comprehensive characterization of the Zoarces viviparus liver transcriptome. From 400,000 reads generated by massively parallel pyrosequencing, more than 50,000 pieces of putative transcripts were assembled, annotated and functionally classified. The data was estimated to cover roughly 40% of the total transcriptome and homologues for about half of the genes of Gasterosteus aculeatus (stickleback were identified. The sequence data was consequently used to design an oligonucleotide microarray for large-scale gene expression analysis. Conclusion Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates enough genomic information for adequate de novo assembly of a large number of genes in a higher vertebrate. The generated sequence data, including the validated microarray probes, are publicly available to promote genome-wide research in Zoarces viviparus.
WEKA-G: Parallel data mining on computational grids
Directory of Open Access Journals (Sweden)
PIMENTA, A.
2009-12-01
Full Text Available Data mining is a technology that can extract useful information from large amounts of data. However, mining a database often requires a high computational power. To resolve this problem, this paper presents a tool (Weka-G, which runs in parallel algorithms used in the mining process data. As the environment for doing so, we use a computational grid by adding several features within a WAN.
Effecting a broadcast with an allreduce operation on a parallel computer
Almasi, Gheorghe; Archer, Charles J.; Ratterman, Joseph D.; Smith, Brian E.
2010-11-02
A parallel computer comprises a plurality of compute nodes organized into at least one operational group for collective parallel operations. Each compute node is assigned a unique rank and is coupled for data communications through a global combining network. One compute node is assigned to be a logical root. A send buffer and a receive buffer is configured. Each element of a contribution of the logical root in the send buffer is contributed. One or more zeros corresponding to a size of the element are injected. An allreduce operation with a bitwise OR using the element and the injected zeros is performed. And the result for the allreduce operation is determined and stored in each receive buffer.
Performance modeling of parallel algorithms for solving neutron diffusion problems
International Nuclear Information System (INIS)
Azmy, Y.Y.; Kirk, B.L.
1995-01-01
Neutron diffusion calculations are the most common computational methods used in the design, analysis, and operation of nuclear reactors and related activities. Here, mathematical performance models are developed for the parallel algorithm used to solve the neutron diffusion equation on message passing and shared memory multiprocessors represented by the Intel iPSC/860 and the Sequent Balance 8000, respectively. The performance models are validated through several test problems, and these models are used to estimate the performance of each of the two considered architectures in situations typical of practical applications, such as fine meshes and a large number of participating processors. While message passing computers are capable of producing speedup, the parallel efficiency deteriorates rapidly as the number of processors increases. Furthermore, the speedup fails to improve appreciably for massively parallel computers so that only small- to medium-sized message passing multiprocessors offer a reasonable platform for this algorithm. In contrast, the performance model for the shared memory architecture predicts very high efficiency over a wide range of number of processors reasonable for this architecture. Furthermore, the model efficiency of the Sequent remains superior to that of the hypercube if its model parameters are adjusted to make its processors as fast as those of the iPSC/860. It is concluded that shared memory computers are better suited for this parallel algorithm than message passing computers
Parallel Computing Characteristics of CUPID code under MPI and Hybrid environment
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeon, Byoung Jin; Choi, Hyoung Gwon [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of)
2014-05-15
In this paper, a characteristic of parallel algorithm is presented for solving an elliptic type equation of CUPID via domain decomposition method using the MPI and the parallel performance is estimated in terms of a scalability which shows the speedup ratio. In addition, the time-consuming pattern of major subroutines is studied. Two different grid systems are taken into account: 40,000 meshes for coarse system and 320,000 meshes for fine system. Since the matrix of the CUPID code differs according to whether the flow is single-phase or two-phase, the effect of matrix shape is evaluated. Finally, the effect of the preconditioner for matrix solver is also investigated. Finally, the hybrid (OpenMP+MPI) parallel algorithm is introduced and discussed in detail for solving pressure solver. Component-scale thermal-hydraulics code, CUPID has been developed for two-phase flow analysis, which adopts a three-dimensional, transient, three-field model, and parallelized to fulfill a recent demand for long-transient and highly resolved multi-phase flow behavior. In this study, the parallel performance of the CUPID code was investigated in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the neighboring domain. For managing the sparse matrix effectively, the CSR storage format is used. To take into account the characteristics of the pressure matrix which turns to be asymmetric for two-phase flow, both single-phase and two-phase calculations were run. In addition, the effect of the matrix size and preconditioning was also investigated. The fine mesh calculation shows better scalability than the coarse mesh because the number of coarse mesh does not need to decompose the computational domain excessively. The fine mesh can be present good scalability when dividing geometry with considering the ratio between computation and communication time. For a given mesh, single-phase flow
Locating hardware faults in a data communications network of a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-01-12
Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.
International Nuclear Information System (INIS)
Laurent, C.; Chassery, J.M.; Peyrin, F.; Girerd, C.
1996-01-01
This paper deals with the parallel implementations of reconstruction methods in 3D tomography. 3D tomography requires voluminous data and long computation times. Parallel computing, on MIMD computers, seems to be a good approach to manage this problem. In this study, we present the different steps of the parallelization on an abstract parallel computer. Depending on the method, we use two main approaches to parallelize the algorithms: the local approach and the global approach. Experimental results on MIMD computers are presented. Two 3D images reconstructed from realistic data are showed
10th International Workshop on Parallel Tools for High Performance Computing
Gracia, José; Hilbrich, Tobias; Knüpfer, Andreas; Resch, Michael; Nagel, Wolfgang
2017-01-01
This book presents the proceedings of the 10th International Parallel Tools Workshop, held October 4-5, 2016 in Stuttgart, Germany – a forum to discuss the latest advances in parallel tools. High-performance computing plays an increasingly important role for numerical simulation and modelling in academic and industrial research. At the same time, using large-scale parallel systems efficiently is becoming more difficult. A number of tools addressing parallel program development and analysis have emerged from the high-performance computing community over the last decade, and what may have started as collection of small helper script has now matured to production-grade frameworks. Powerful user interfaces and an extensive body of documentation allow easy usage by non-specialists.
A learnable parallel processing architecture towards unity of memory and computing.
Li, H; Gao, B; Chen, Z; Zhao, Y; Huang, P; Ye, H; Liu, L; Liu, X; Kang, J
2015-08-14
Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named "iMemComp", where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped "iMemComp" with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on "iMemComp" can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.
A learnable parallel processing architecture towards unity of memory and computing
Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J.
2015-08-01
Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.
On the efficient parallel computation of Legendre transforms
Inda, M.A.; Bisseling, R.H.; Maslen, D.K.
2001-01-01
In this article, we discuss a parallel implementation of efficient algorithms for computation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop an approach to the Driscoll-Healy algorithm using polynomial arithmetic and present experimental results on the
On the efficient parallel computation of Legendre transforms
Inda, M.A.; Bisseling, R.H.; Maslen, D.K.
1999-01-01
In this article we discuss a parallel implementation of efficient algorithms for computation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop an approach to the Driscoll-Healy algorithm using polynomial arithmetic and present experimental results on the
A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale
Energy Technology Data Exchange (ETDEWEB)
Moreland, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)
2014-11-01
The evolution of the computing world from teraflop to petaflop has been relatively effortless, with several of the existing programming models scaling effectively to the petascale. The migration to exascale, however, poses considerable challenges. All industry trends infer that the exascale machine will be built using processors containing hundreds to thousands of cores per chip. It can be inferred that efficient concurrency on exascale machines requires a massive amount of concurrent threads, each performing many operations on a localized piece of data. Currently, visualization libraries and applications are based off what is known as the visualization pipeline. In the pipeline model, algorithms are encapsulated as filters with inputs and outputs. These filters are connected by setting the output of one component to the input of another. Parallelism in the visualization pipeline is achieved by replicating the pipeline for each processing thread. This works well for today’s distributed memory parallel computers but cannot be sustained when operating on processors with thousands of cores. Our project investigates a new visualization framework designed to exhibit the pervasive parallelism necessary for extreme scale machines. Our framework achieves this by defining algorithms in terms of worklets, which are localized stateless operations. Worklets are atomic operations that execute when invoked unlike filters, which execute when a pipeline request occurs. The worklet design allows execution on a massive amount of lightweight threads with minimal overhead. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale machine.
Parallel computing in experimental mechanics and optical measurement: A review (II)
Wang, Tianyi; Kemao, Qian
2018-05-01
With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.
8th International Workshop on Parallel Tools for High Performance Computing
Gracia, José; Knüpfer, Andreas; Resch, Michael; Nagel, Wolfgang
2015-01-01
Numerical simulation and modelling using High Performance Computing has evolved into an established technique in academic and industrial research. At the same time, the High Performance Computing infrastructure is becoming ever more complex. For instance, most of the current top systems around the world use thousands of nodes in which classical CPUs are combined with accelerator cards in order to enhance their compute power and energy efficiency. This complexity can only be mastered with adequate development and optimization tools. Key topics addressed by these tools include parallelization on heterogeneous systems, performance optimization for CPUs and accelerators, debugging of increasingly complex scientific applications, and optimization of energy usage in the spirit of green IT. This book represents the proceedings of the 8th International Parallel Tools Workshop, held October 1-2, 2014 in Stuttgart, Germany – which is a forum to discuss the latest advancements in the parallel tools.
Java parallel secure stream for grid computing
International Nuclear Information System (INIS)
Chen, J.; Akers, W.; Chen, Y.; Watson, W.
2001-01-01
The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. The authors present a pure Java package called JPARSS (Java Parallel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addition X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed
Eduardoff, M; Gross, T E; Santos, C; de la Puente, M; Ballard, D; Strobl, C; Børsting, C; Morling, N; Fusco, L; Hussing, C; Egyed, B; Souto, L; Uacyisrael, J; Syndercombe Court, D; Carracedo, Á; Lareu, M V; Schneider, P M; Parson, W; Phillips, C; Parson, W; Phillips, C
2016-07-01
The EUROFORGEN Global ancestry-informative SNP (AIM-SNPs) panel is a forensic multiplex of 128 markers designed to differentiate an individual's ancestry from amongst the five continental population groups of Africa, Europe, East Asia, Native America, and Oceania. A custom multiplex of AmpliSeq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures, and the ancestry differentiation power of the final panel design, which required substitution of three original ancestry-informative SNPs with alternatives. Fourteen populations that had not been previously analyzed were genotyped using the custom multiplex and these studies allowed assessment of genotyping performance by comparison of data across five laboratories. Results indicate a low level of genotyping error can still occur from sequence misalignment caused by homopolymeric tracts close to the target SNP, despite careful scrutiny of candidate SNPs at the design stage. Such sequence misalignment required the exclusion of component SNP rs2080161 from the Global AIM-SNPs panel. However, the overall genotyping precision and sensitivity of this custom multiplex indicates the Ion PGM™ assay for the Global AIM-SNPs is highly suitable for forensic ancestry analysis with massively parallel sequencing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Eighth SIAM conference on parallel processing for scientific computing: Final program and abstracts
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This SIAM conference is the premier forum for developments in parallel numerical algorithms, a field that has seen very lively and fruitful developments over the past decade, and whose health is still robust. Themes for this conference were: combinatorial optimization; data-parallel languages; large-scale parallel applications; message-passing; molecular modeling; parallel I/O; parallel libraries; parallel software tools; parallel compilers; particle simulations; problem-solving environments; and sparse matrix computations.
How to Build an AppleSeed: A Parallel Macintosh Cluster for Numerically Intensive Computing
Decyk, V. K.; Dauger, D. E.
We have constructed a parallel cluster consisting of a mixture of Apple Macintosh G3 and G4 computers running the Mac OS, and have achieved very good performance on numerically intensive, parallel plasma particle-incell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the main stream of computing.
Fast parallel molecular algorithms for DNA-based computation: factoring integers.
Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui
2005-06-01
The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.
Gunnels, John; Lee, Jon; Margulies, Susan
2010-01-01
We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.
Gunnels, John
2010-06-01
We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.
Electromagnetic Physics Models for Parallel Computing Architectures
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2014-01-07
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a computer node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2013-07-23
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a compute node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Efficient linear precoding for massive MIMO systems using truncated polynomial expansion
Müller, Axel
2014-06-01
Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.
Fast Evaluation of Segmentation Quality with Parallel Computing
Directory of Open Access Journals (Sweden)
Henry Cruz
2017-01-01
Full Text Available In digital image processing and computer vision, a fairly frequent task is the performance comparison of different algorithms on enormous image databases. This task is usually time-consuming and tedious, such that any kind of tool to simplify this work is welcome. To achieve an efficient and more practical handling of a normally tedious evaluation, we implemented the automatic detection system, with the help of MATLAB®’s Parallel Computing Toolbox™. The key parts of the system have been parallelized to achieve simultaneous execution and analysis of segmentation algorithms on the one hand and the evaluation of detection accuracy for the nonforested regions, such as a study case, on the other hand. As a positive side effect, CPU usage was reduced and processing time was significantly decreased by 68.54% compared to sequential processing (i.e., executing the system with each algorithm one by one.
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...
Establishing a group of endpoints in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.; Xue, Hanhong
2016-02-02
A parallel computer executes a number of tasks, each task includes a number of endpoints and the endpoints are configured to support collective operations. In such a parallel computer, establishing a group of endpoints receiving a user specification of a set of endpoints included in a global collection of endpoints, where the user specification defines the set in accordance with a predefined virtual representation of the endpoints, the predefined virtual representation is a data structure setting forth an organization of tasks and endpoints included in the global collection of endpoints and the user specification defines the set of endpoints without a user specification of a particular endpoint; and defining a group of endpoints in dependence upon the predefined virtual representation of the endpoints and the user specification.
Noise simulation in cone beam CT imaging with parallel computing
International Nuclear Information System (INIS)
Tu, S.-J.; Shaw, Chris C; Chen, Lingyun
2006-01-01
We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation
Energy-Efficient FPGA-Based Parallel Quasi-Stochastic Computing
Directory of Open Access Journals (Sweden)
Ramu Seva
2017-11-01
Full Text Available The high performance of FPGA (Field Programmable Gate Array in image processing applications is justified by its flexible reconfigurability, its inherent parallel nature and the availability of a large amount of internal memories. Lately, the Stochastic Computing (SC paradigm has been found to be significantly advantageous in certain application domains including image processing because of its lower hardware complexity and power consumption. However, its viability is deemed to be limited due to its serial bitstream processing and excessive run-time requirement for convergence. To address these issues, a novel approach is proposed in this work where an energy-efficient implementation of SC is accomplished by introducing fast-converging Quasi-Stochastic Number Generators (QSNGs and parallel stochastic bitstream processing, which are well suited to leverage FPGA’s reconfigurability and abundant internal memory resources. The proposed approach has been tested on the Virtex-4 FPGA, and results have been compared with the serial and parallel implementations of conventional stochastic computation using the well-known SC edge detection and multiplication circuits. Results prove that by using this approach, execution time, as well as the power consumption are decreased by a factor of 3.5 and 4.5 for the edge detection circuit and multiplication circuit, respectively.
Dynamic file-access characteristics of a production parallel scientific workload
Kotz, David; Nieuwejaar, Nils
1994-01-01
Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the expected workload, but thus far there have been no comprehensive workload characterizations of multiprocessor file systems. This paper presents the results of a three week tracing study in which all file-related activity on a massively parallel computer was recorded. Our instrumentation differs from previous efforts in that it collects information about every I/O request and about the mix of jobs running in a production environment. We also present the results of a trace-driven caching simulation and recommendations for designers of multiprocessor file systems.
Parallel Computing for Brain Simulation.
Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A
2017-01-01
The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A hybrid method for the parallel computation of Green's functions
DEFF Research Database (Denmark)
Petersen, Dan Erik; Li, Song; Stokbro, Kurt
2009-01-01
of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds...... of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green's and lesser Green's function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only...... require computing a small number of entries of the inverse matrix. Then. we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size....
Computing NLTE Opacities -- Node Level Parallel
Energy Technology Data Exchange (ETDEWEB)
Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-09-11
Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.
Radiation-magnetohydrodynamics of fusion plasmas on parallel supercomputers
International Nuclear Information System (INIS)
Yasar, O.; Moses, G.A.; Tautges, T.J.
1993-01-01
A parallel computational model to simulate fusion plasmas in the radiation-magnetohydrodynamics (R-MHD) framework is presented. Plasmas are often treated in a fluid dynamics context (magnetohydrodynamics, MHD), but when the flow field is coupled with the radiation field it falls into a more complex category, radiation magnetohydrodynamics (R-MHD), where the interaction between the flow field and the radiation field is nonlinear. The solution for the radiation field usually dominates the R-MHD computation. To solve for the radiation field, one usually chooses the S N discrete ordinates method (a deterministic method) rather than the Monte Carlo method if the geometry is not complex. The discrete ordinates method on a massively parallel processor (Intel iPSC/860) is implemented. The speedup is 14 for a run on 16 processors and the performance is 3.7 times better than a single CRAY YMP processor implementation. (orig./DG)
Numerical computations with GPUs
Kindratenko, Volodymyr
2014-01-01
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to
Massively parallel algorithms for trace-driven cache simulations
Nicol, David M.; Greenberg, Albert G.; Lubachevsky, Boris D.
1991-01-01
Trace driven cache simulation is central to computer design. A trace is a very long sequence of reference lines from main memory. At the t(exp th) instant, reference x sub t is hashed into a set of cache locations, the contents of which are then compared with x sub t. If at the t sup th instant x sub t is not present in the cache, then it is said to be a miss, and is loaded into the cache set, possibly forcing the replacement of some other memory line, and making x sub t present for the (t+1) sup st instant. The problem of parallel simulation of a subtrace of N references directed to a C line cache set is considered, with the aim of determining which references are misses and related statistics. A simulation method is presented for the Least Recently Used (LRU) policy, which regradless of the set size C runs in time O(log N) using N processors on the exclusive read, exclusive write (EREW) parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N processors. Timings are presented of the second algorithm's implementation on the MasPar MP-1, a machine with 16384 processors. A broad class of reference based line replacement policies are considered, which includes LRU as well as the Least Frequently Used and Random replacement policies. A simulation method is presented for any such policy that on any trace of length N directed to a C line set runs in the O(C log N) time with high probability using N processors on the EREW model. The algorithms are simple, have very little space overhead, and are well suited for SIMD implementation.
Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.
2010-01-01
Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, of...
Line-plane broadcasting in a data communications network of a parallel computer
Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.
2010-06-08
Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.
International Nuclear Information System (INIS)
Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin
2012-01-01
Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate
Teaching Scientific Computing: A Model-Centered Approach to Pipeline and Parallel Programming with C
Directory of Open Access Journals (Sweden)
Vladimiras Dolgopolovas
2015-01-01
Full Text Available The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking, and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative introduction to pipelining and parallel computing. The programming language C for developing programming models and message passing interface (MPI and OpenMP parallelization tools have been chosen for implementation.
QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays.
Kalita, Cynthia A; Moyerbrailean, Gregory A; Brown, Christopher; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger
2018-03-01
The majority of the human genome is composed of non-coding regions containing regulatory elements such as enhancers, which are crucial for controlling gene expression. Many variants associated with complex traits are in these regions, and may disrupt gene regulatory sequences. Consequently, it is important to not only identify true enhancers but also to test if a variant within an enhancer affects gene regulation. Recently, allele-specific analysis in high-throughput reporter assays, such as massively parallel reporter assays (MPRAs), have been used to functionally validate non-coding variants. However, we are still missing high-quality and robust data analysis tools for these datasets. We have further developed our method for allele-specific analysis QuASAR (quantitative allele-specific analysis of reads) to analyze allele-specific signals in barcoded read counts data from MPRA. Using this approach, we can take into account the uncertainty on the original plasmid proportions, over-dispersion, and sequencing errors. The provided allelic skew estimate and its standard error also simplifies meta-analysis of replicate experiments. Additionally, we show that a beta-binomial distribution better models the variability present in the allelic imbalance of these synthetic reporters and results in a test that is statistically well calibrated under the null. Applying this approach to the MPRA data, we found 602 SNPs with significant (false discovery rate 10%) allele-specific regulatory function in LCLs. We also show that we can combine MPRA with QuASAR estimates to validate existing experimental and computational annotations of regulatory variants. Our study shows that with appropriate data analysis tools, we can improve the power to detect allelic effects in high-throughput reporter assays. http://github.com/piquelab/QuASAR/tree/master/mpra. fluca@wayne.edu or rpique@wayne.edu. Supplementary data are available online at Bioinformatics. © The Author (2017). Published by
Computational acceleration for MR image reconstruction in partially parallel imaging.
Ye, Xiaojing; Chen, Yunmei; Huang, Feng
2011-05-01
In this paper, we present a fast numerical algorithm for solving total variation and l(1) (TVL1) based image reconstruction with application in partially parallel magnetic resonance imaging. Our algorithm uses variable splitting method to reduce computational cost. Moreover, the Barzilai-Borwein step size selection method is adopted in our algorithm for much faster convergence. Experimental results on clinical partially parallel imaging data demonstrate that the proposed algorithm requires much fewer iterations and/or less computational cost than recently developed operator splitting and Bregman operator splitting methods, which can deal with a general sensing matrix in reconstruction framework, to get similar or even better quality of reconstructed images.
Electromagnetic Physics Models for Parallel Computing Architectures
International Nuclear Information System (INIS)
Amadio, G; Bianchini, C; Iope, R; Ananya, A; Apostolakis, J; Aurora, A; Bandieramonte, M; Brun, R; Carminati, F; Gheata, A; Gheata, M; Goulas, I; Nikitina, T; Bhattacharyya, A; Mohanty, A; Canal, P; Elvira, D; Jun, S Y; Lima, G; Duhem, L
2016-01-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well. (paper)
Speed up of MCACE, a Monte Carlo code for evaluation of shielding safety, by parallel computer, (3)
International Nuclear Information System (INIS)
Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka; Onodera, Emi; Imawaka, Tsuneyuki; Yoda, Yoshihisa.
1993-07-01
The parallel computing of the MCACE code has been studied on two platforms; 1) Shared Memory Type Vector-Parallel Computer Monte-4 and 2) Networked Several Workstations. On the Monte-4, a disk-file has been allocated to collect all results computed by 4 CPUs in parallel, executing the copy of the MCACE code on each CPU. On the workstations under network environment, two parallel models have been evaluated; 1) a host-node model and 2) the model used on the Monte-4 where no software for parallelization has been employed but only standard FORTRAN language. The measurement of computing times has showed that speed up of about 3 times has been achieved by using 4 CPUs of the Monte-4. Further, connecting 4 workstations by network, the computing speed by parallelization has achieved faster than our scalar main frame computer, FACOM M-780. (author)
Algorithm comparison and benchmarking using a parallel spectra transform shallow water model
Energy Technology Data Exchange (ETDEWEB)
Worley, P.H. [Oak Ridge National Lab., TN (United States); Foster, I.T.; Toonen, B. [Argonne National Lab., IL (United States)
1995-04-01
In recent years, a number of computer vendors have produced supercomputers based on a massively parallel processing (MPP) architecture. These computers have been shown to be competitive in performance with conventional vector supercomputers for some applications. As spectral weather and climate models are heavy users of vector supercomputers, it is interesting to determine how these models perform on MPPS, and which MPPs are best suited to the execution of spectral models. The benchmarking of MPPs is complicated by the fact that different algorithms may be more efficient on different architectures. Hence, a comprehensive benchmarking effort must answer two related questions: which algorithm is most efficient on each computer and how do the most efficient algorithms compare on different computers. In general, these are difficult questions to answer because of the high cost associated with implementing and evaluating a range of different parallel algorithms on each MPP platform.
Mapping robust parallel multigrid algorithms to scalable memory architectures
Overman, Andrea; Vanrosendale, John
1993-01-01
The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.
Parallel, distributed and GPU computing technologies in single-particle electron microscopy.
Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-07-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.
Managing internode data communications for an uninitialized process in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E
2014-05-20
A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior to initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.
Energy Technology Data Exchange (ETDEWEB)
Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)
1992-01-01
The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.
Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing
Qiang Liu; Yi Qin; Guodong Li
2018-01-01
Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...
Shredder: GPU-Accelerated Incremental Storage and Computation
Bhatotia, Pramod; Rodrigues, Rodrigo; Verma, Akshat
2012-01-01
Redundancy elimination using data deduplication and incremental data processing has emerged as an important technique to minimize storage and computation requirements in data center computing. In this paper, we present the design, implementation and evaluation of Shredder, a high performance content-based chunking framework for supporting incremental storage and computation systems. Shredder exploits the massively parallel processing power of GPUs to overcome the CPU bottlenecks of content-ba...
On the adequacy of message-passing parallel supercomputers for solving neutron transport problems
International Nuclear Information System (INIS)
Azmy, Y.Y.
1990-01-01
A coarse-grained, static-scheduling parallelization of the standard iterative scheme used for solving the discrete-ordinates approximation of the neutron transport equation is described. The parallel algorithm is based on a decomposition of the angular domain along the discrete ordinates, thus naturally producing a set of completely uncoupled systems of equations in each iteration. Implementation of the parallel code on Intcl's iPSC/2 hypercube, and solutions to test problems are presented as evidence of the high speedup and efficiency of the parallel code. The performance of the parallel code on the iPSC/2 is analyzed, and a model for the CPU time as a function of the problem size (order of angular quadrature) and the number of participating processors is developed and validated against measured CPU times. The performance model is used to speculate on the potential of massively parallel computers for significantly speeding up real-life transport calculations at acceptable efficiencies. We conclude that parallel computers with a few hundred processors are capable of producing large speedups at very high efficiencies in very large three-dimensional problems. 10 refs., 8 figs
Efficient Parallel Engineering Computing on Linux Workstations
Lou, John Z.
2010-01-01
A C software module has been developed that creates lightweight processes (LWPs) dynamically to achieve parallel computing performance in a variety of engineering simulation and analysis applications to support NASA and DoD project tasks. The required interface between the module and the application it supports is simple, minimal and almost completely transparent to the user applications, and it can achieve nearly ideal computing speed-up on multi-CPU engineering workstations of all operating system platforms. The module can be integrated into an existing application (C, C++, Fortran and others) either as part of a compiled module or as a dynamically linked library (DLL).
Software Engineering for Scientific Computer Simulations
Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.
2004-11-01
Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.
Herrera, I.; Herrera, G. S.
2015-12-01
Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
Applications of parallel computer architectures to the real-time simulation of nuclear power systems
International Nuclear Information System (INIS)
Doster, J.M.; Sills, E.D.
1988-01-01
In this paper the authors report on efforts to utilize parallel computer architectures for the thermal-hydraulic simulation of nuclear power systems and current research efforts toward the development of advanced reactor operator aids and control systems based on this new technology. Many aspects of reactor thermal-hydraulic calculations are inherently parallel, and the computationally intensive portions of these calculations can be effectively implemented on modern computers. Timing studies indicate faster-than-real-time, high-fidelity physics models can be developed when the computational algorithms are designed to take advantage of the computer's architecture. These capabilities allow for the development of novel control systems and advanced reactor operator aids. Coupled with an integral real-time data acquisition system, evolving parallel computer architectures can provide operators and control room designers improved control and protection capabilities. Current research efforts are currently under way in this area
Parallel, distributed and GPU computing technologies in single-particle electron microscopy
International Nuclear Information System (INIS)
Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-01-01
An introduction to the current paradigm shift towards concurrency in software. Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined
GPU Computing Gems Emerald Edition
Hwu, Wen-mei W
2011-01-01
".the perfect companion to Programming Massively Parallel Processors by Hwu & Kirk." -Nicolas Pinto, Research Scientist at Harvard & MIT, NVIDIA Fellow 2009-2010 Graphics processing units (GPUs) can do much more than render graphics. Scientists and researchers increasingly look to GPUs to improve the efficiency and performance of computationally-intensive experiments across a range of disciplines. GPU Computing Gems: Emerald Edition brings their techniques to you, showcasing GPU-based solutions including: Black hole simulations with CUDA GPU-accelerated computation and interactive display of
Heterogeneous Computing in Economics: A Simplified Approach
DEFF Research Database (Denmark)
Dziubinski, Matt P.; Grassi, Stefano
This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of the C++ Accelerated Massive Parallelism recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (2011) we document a ...
GPU Computing For Particle Tracking
International Nuclear Information System (INIS)
Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong
2011-01-01
This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ (2) is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.
Valasek, Lukas; Glasa, Jan
2017-12-01
Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.
Semi-coarsening multigrid methods for parallel computing
Energy Technology Data Exchange (ETDEWEB)
Jones, J.E.
1996-12-31
Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.
International Nuclear Information System (INIS)
Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.
2013-01-01
Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).
Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.
Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias
2011-01-01
The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.
Fast parallel algorithms that compute transitive closure of a fuzzy relation
Kreinovich, Vladik YA.
1993-01-01
The notion of a transitive closure of a fuzzy relation is very useful for clustering in pattern recognition, for fuzzy databases, etc. The original algorithm proposed by L. Zadeh (1971) requires the computation time O(n(sup 4)), where n is the number of elements in the relation. In 1974, J. C. Dunn proposed a O(n(sup 2)) algorithm. Since we must compute n(n-1)/2 different values s(a, b) (a not equal to b) that represent the fuzzy relation, and we need at least one computational step to compute each of these values, we cannot compute all of them in less than O(n(sup 2)) steps. So, Dunn's algorithm is in this sense optimal. For small n, it is ok. However, for big n (e.g., for big databases), it is still a lot, so it would be desirable to decrease the computation time (this problem was formulated by J. Bezdek). Since this decrease cannot be done on a sequential computer, the only way to do it is to use a computer with several processors working in parallel. We show that on a parallel computer, transitive closure can be computed in time O((log(sub 2)(n))2).
The FORCE: A portable parallel programming language supporting computational structural mechanics
Jordan, Harry F.; Benten, Muhammad S.; Brehm, Juergen; Ramanan, Aruna
1989-01-01
This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor.
Cooperative storage of shared files in a parallel computing system with dynamic block size
Bent, John M.; Faibish, Sorin; Grider, Gary
2015-11-10
Improved techniques are provided for parallel writing of data to a shared object in a parallel computing system. A method is provided for storing data generated by a plurality of parallel processes to a shared object in a parallel computing system. The method is performed by at least one of the processes and comprises: dynamically determining a block size for storing the data; exchanging a determined amount of the data with at least one additional process to achieve a block of the data having the dynamically determined block size; and writing the block of the data having the dynamically determined block size to a file system. The determined block size comprises, e.g., a total amount of the data to be stored divided by the number of parallel processes. The file system comprises, for example, a log structured virtual parallel file system, such as a Parallel Log-Structured File System (PLFS).
Data communications in a parallel active messaging interface of a parallel computer
Davis, Kristan D; Faraj, Daniel A
2013-07-09
Algorithm selection for data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including specifications of a client, a context, and a task, endpoints coupled for data communications through the PAMI, including associating in the PAMI data communications algorithms and ranges of message sizes so that each algorithm is associated with a separate range of message sizes; receiving in an origin endpoint of the PAMI a data communications instruction, the instruction specifying transmission of a data communications message from the origin endpoint to a target endpoint, the data communications message characterized by a message size; selecting, from among the associated algorithms and ranges, a data communications algorithm in dependence upon the message size; and transmitting, according to the selected data communications algorithm from the origin endpoint to the target endpoint, the data communications message.
Dynamic stability calculations for power grids employing a parallel computer
Energy Technology Data Exchange (ETDEWEB)
Schmidt, K
1982-06-01
The aim of dynamic contingency calculations in power systems is to estimate the effects of assumed disturbances, such as loss of generation. Due to the large dimensions of the problem these simulations require considerable computing time and costs, to the effect that they are at present only used in a planning state but not for routine checks in power control stations. In view of the homogeneity of the problem, where a multitude of equal generator models, having different parameters, are to be integrated simultaneously, the use of a parallel computer looks very attractive. The results of this study employing a prototype parallel computer (SMS 201) are presented. It consists of up to 128 equal microcomputers bus-connected to a control computer. Each of the modules is programmed to simulate a node of the power grid. Generators with their associated control are represented by models of 13 states each. Passive nodes are complemented by 'phantom'-generators, so that the whole power grid is homogenous, thus removing the need for load-flow-iterations. Programming of microcomputers is essentially performed in FORTRAN.
High spatial resolution CT image reconstruction using parallel computing
International Nuclear Information System (INIS)
Yin Yin; Liu Li; Sun Gongxing
2003-01-01
Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)
A homotopy method for solving Riccati equations on a shared memory parallel computer
International Nuclear Information System (INIS)
Zigic, D.; Watson, L.T.; Collins, E.G. Jr.; Davis, L.D.
1993-01-01
Although there are numerous algorithms for solving Riccati equations, there still remains a need for algorithms which can operate efficiently on large problems and on parallel machines. This paper gives a new homotopy-based algorithm for solving Riccati equations on a shared memory parallel computer. The central part of the algorithm is the computation of the kernel of the Jacobian matrix, which is essential for the corrector iterations along the homotopy zero curve. Using a Schur decomposition the tensor product structure of various matrices can be efficiently exploited. The algorithm allows for efficient parallelization on shared memory machines
International Nuclear Information System (INIS)
Orii, Shigeo
1998-06-01
A benchmark specification for performance evaluation of parallel computers for numerical analysis is proposed. Level 1 benchmark, which is a conventional type benchmark using processing time, measures performance of computers running a code. Level 2 benchmark proposed in this report is to give the reason of the performance. As an example, scalar-parallel computer SP2 is evaluated with this benchmark specification in case of a molecular dynamics code. As a result, the main causes to suppress the parallel performance are maximum band width and start-up time of communication between nodes. Especially the start-up time is proportional not only to the number of processors but also to the number of particles. (author)
CUDA/GPU Technology : Parallel Programming For High Performance Scientific Computing
YUHENDRA; KUZE, Hiroaki; JOSAPHAT, Tetuko Sri Sumantyo
2009-01-01
[ABSTRACT]Graphics processing units (GP Us) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. In the high performance computation capabilities, graphic processing units (GPU) lead to much more powerful performance than conventional CPUs by means of parallel processing. In 2007, the birth of Compute Unified Device Architecture (CUDA) and CUDA-enabled GPUs by NVIDIA Corporation brought a revolution in the general purpose GPU a...
Directory of Open Access Journals (Sweden)
JONG WOON KIM
2014-04-01
In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17∼42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.
New adaptive differencing strategy in the PENTRAN 3-d parallel Sn code
International Nuclear Information System (INIS)
Sjoden, G.E.; Haghighat, A.
1996-01-01
It is known that three-dimensional (3-D) discrete ordinates (S n ) transport problems require an immense amount of storage and computational effort to solve. For this reason, parallel codes that offer a capability to completely decompose the angular, energy, and spatial domains among a distributed network of processors are required. One such code recently developed is PENTRAN, which iteratively solves 3-D multi-group, anisotropic S n problems on distributed-memory platforms, such as the IBM-SP2. Because large problems typically contain several different material zones with various properties, available differencing schemes should automatically adapt to the transport physics in each material zone. To minimize the memory and message-passing overhead required for massively parallel S n applications, available differencing schemes in an adaptive strategy should also offer reasonable accuracy and positivity, yet require only the zeroth spatial moment of the transport equation; differencing schemes based on higher spatial moments, in spite of their greater accuracy, require at least twice the amount of storage and communication cost for implementation in a massively parallel transport code. This paper discusses a new adaptive differencing strategy that uses increasingly accurate schemes with low parallel memory and communication overhead. This strategy, implemented in PENTRAN, includes a new scheme, exponential directional averaged (EDA) differencing
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
A two-level parallel direct search implementation for arbitrarily sized objective functions
Energy Technology Data Exchange (ETDEWEB)
Hutchinson, S.A.; Shadid, N.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States)] [and others
1994-12-31
In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.
Akl, Selim G
1985-01-01
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the
Lattice QCD Dslash Operator with Dataflow Computing
Energy Technology Data Exchange (ETDEWEB)
Janson, Thomas; Kebschull, Udo [Infrastructure and Computer Systems for Data Processing, Goethe University Frankfurt (Germany)
2016-07-01
We investigate new methods in computational particle physics and high performance computing for applications in the field of Quantum Chromodynamic simulation with Dataflow Engines. We describe an algorithm as a directed graph using the high-level dataflow programming language openSPL from Maxeler and others. Such a graph models the parallel flow of data and operations on an algorithmic abstraction level and exposes the highest possible parallelism and locality of a given algorithm in a natural way. In this concept, the data flows through pipelines of an FPGA with many arithmetic units which are all connected to perform the massive parallel computation of an algorithm. We have shown and verified by simulation that we can describe the naive Dslash operator fully as a dataflow graph. Here, all multiplication and addition to update one spinor are computed in one clock cycle. The data flows over six DDR3 channels into the FPGA.