WorldWideScience

Sample records for massive stars ii

  1. SPITZER VIEW OF YOUNG MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD H II COMPLEXES. II. N 159

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Chu, You-Hua; Gruendl, Robert A.; Seale, Jonathan P.; Testor, Gerard; Heitsch, Fabian; Meixner, Margaret; Sewilo, Marta

    2010-01-01

    The H II complex N 159 in the Large Magellanic Cloud is used to study massive star formation in different environments, as it contains three giant molecular clouds (GMCs) that have similar sizes and masses but exhibit different intensities of star formation. We identify candidate massive young stellar objects (YSOs) using infrared photometry, and model their spectral energy distributions to constrain mass and evolutionary state. Good fits are obtained for less evolved Type I, I/II, and II sources. Our analysis suggests that there are massive embedded YSOs in N 159B, a maser source, and several ultracompact H II regions. Massive O-type YSOs are found in GMCs N 159-E and N 159-W, which are associated with ionized gas, i.e., where massive stars formed a few Myr ago. The third GMC, N 159-S, has neither O-type YSOs nor evidence of previous massive star formation. This correlation between current and antecedent formation of massive stars suggests that energy feedback is relevant. We present evidence that N 159-W is forming YSOs spontaneously, while collapse in N 159-E may be triggered. Finally, we compare star formation rates determined from YSO counts with those from integrated Hα and 24 μm luminosities and expected from gas surface densities. Detailed dissection of extragalactic GMCs like the one presented here is key to revealing the physics underlying commonly used star formation scaling laws.

  2. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  3. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  4. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  5. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  6. THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES

    International Nuclear Information System (INIS)

    Kendrew, S.; Robitaille, T. P.; Simpson, R.; Lintott, C. J.; Bressert, E.; Povich, M. S.; Sherman, R.; Schawinski, K.; Wolf-Chase, G.

    2012-01-01

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this data set with the Red MSX Source (RMS) catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of <2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources, we find that 67% ± 3% of MYSOs and (ultra-)compact H II regions appear to be associated with a bubble. We estimate that approximately 22% ± 2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

  7. THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Kendrew, S.; Robitaille, T. P. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Simpson, R.; Lintott, C. J. [Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Bressert, E. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Povich, M. S. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Sherman, R. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Schawinski, K. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Wolf-Chase, G., E-mail: kendrew@mpia.de [Astronomy Department, Adler Planetarium, 1300 S. Lake Shore Drive, Chicago, IL 60605 (United States)

    2012-08-10

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this data set with the Red MSX Source (RMS) catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of <2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources, we find that 67% {+-} 3% of MYSOs and (ultra-)compact H II regions appear to be associated with a bubble. We estimate that approximately 22% {+-} 2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

  8. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  9. Stellar Feedback in Massive Star-Forming Regions

    Science.gov (United States)

    Baldwin, Jack; Pellegrini, Eric; Ferland, Gary; Murray, Norm; Hanson, Margaret

    2008-02-01

    Star formation rates and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study in the two nearest giant star-forming regions to nail down the physics that produces the 10-20 parsec bubbles seen to surround young massive clusters in the Milky Way. This will determine if and how the clusters disrupt their natal giant molecular clouds (GMCs). Here we request 4 nights on the Blanco telescope to obtain dense grids of optical long-slit spectra criss-crossing each nebula. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3000 different spots in each nebula. From this we can determine a number of dynamically important quantities, such as the gas density and temperature, hence pressure in and around these bubbles. These quantities can be compared to the dynamical (gravitationally induced) pressure, and the radiation pressure. All can be employed in dynamical models for the evolution of a GMC under the influence of an embedded massive star cluster. This research will elucidate the detailed workings of the star-forming regions which dominate the star formation rate in the Milky Way, and also will steadily improve our calibration and understanding of more distant, less well-resolved objects such as ULIRGS, Lyman break, and submillimeter galaxies.

  10. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  11. Formation of massive stars in OB associations and giant molecular clouds

    International Nuclear Information System (INIS)

    Lada, C.J.

    1980-01-01

    Certain interesting patterns are being perceived in the morphology of the regions which have recently produced massive OB stars. In particular, current evidence seems to favour the notion that the formation of massive stars takes place at the edges and not the centres of large molecular cloud complexes. It is this aspect of the observations that is discussed in the present paper. The phenomena described here will pertain to massive stars only. Specifically, stars with spectral types earlier than B3 will be considered since it is usually only these stars that produce sufficient havoc (e.g., maser sources, CO bright spots, H II regions) to noticeably affect their early environments. The corresponding phenomena for lower mass stars could be entirely different. A review is first presented of what has been learned about the OB star formation process from studies of the visible OB stars themselves. Then, newly derived information pertaining to the most recent episodes of OB star birth in galactic molecular clouds is discussed. Finally, a short discussion of the significance of the results and their implications for possible star formation mechanisms will be made. (U.K.)

  12. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Crowther, P. A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Sidoli, F., E-mail: lsmith@stsci.edu [London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom)

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy of #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.

  13. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  14. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Massey, Philip, E-mail: krs9tb@virginia.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-08-01

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  15. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  16. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  17. EARLY-STAGE MASSIVE STAR FORMATION NEAR THE GALACTIC CENTER: Sgr C

    Energy Technology Data Exchange (ETDEWEB)

    Kendrew, S.; Johnston, K.; Beuther, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [CASA, University of Colorado at Boulder, UCB 389, Boulder, CO 80309 (United States); Cyganowski, C. J., E-mail: kendrew@mpia.de [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ∼10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H{sub 2} and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ∼10{sup 3} M {sub ☉}, with column densities of 1-2 × 10{sup 24} cm{sup –2}. We show the host molecular cloud to hold ∼10{sup 5} M {sub ☉} of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  18. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    Science.gov (United States)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  19. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  20. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.; Assef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  1. Multi-wavelength investigations on feedback of massive star formation

    Science.gov (United States)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar

  2. The VLT-FLAMES survey of massive stars

    NARCIS (Netherlands)

    Evans, C.; Langer, N.; Brott, I.; Hunter, I.; Smartt, S.J.; Lennon, D.J.

    2008-01-01

    The VLT-FLAMES Survey of Massive Stars was an ESO Large Programme to understand rotational mixing and stellar mass loss in different metallicity environments, in order to better constrain massive star evolution. We gathered high-quality spectra of over 800 stars in the Galaxy and in the Magellanic

  3. The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae

    Science.gov (United States)

    Smartt, S. J.; Eldridge, J. J.; Crockett, R. M.; Maund, J. R.

    2009-05-01

    We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is mmin = 8.5+1-1.5Msolar and the maximum mass for II-P progenitors is mmax = 16.5 +/- 1.5Msolar, assuming a Salpeter initial mass function holds for the progenitor population (in the range Γ = -1.35+0.3-0.7). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25Msolar and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30Msolar. The reason we have not detected any high-mass red supergiant progenitors above 17Msolar is unclear, but we estimate that it is statistically significant at 2.4σ confidence. Two simple reasons for this could be that we have systematically

  4. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  5. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Hora, J. L.; Willis, S. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Gutermuth, R. A. [University of Massachusetts, Department of Astronomy, Amherst, MA 01003 (United States); Saygac, A. T., E-mail: gsaral@cfa.harvard.edu [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  6. Dynamics of H II regions around exiled O stars

    Science.gov (United States)

    Mackey, Jonathan; Langer, Norbert; Gvaramadze, Vasilii V.

    2013-11-01

    At least 25 per cent of massive stars are ejected from their parent cluster, becoming runaways or exiles, travelling with often-supersonic space velocities through the interstellar medium (ISM). Their overpressurized H II regions impart kinetic energy and momentum to the ISM, compress and/or evaporate dense clouds, and can constrain properties of both the star and the ISM. Here, we present one-, two- and (the first) three-dimensional simulations of the H II region around a massive star moving supersonically through a uniform, magnetized ISM, with properties appropriate for the nearby O star ζ Oph. The H II region leaves an expanding overdense shell behind the star and, inside this, an underdense wake that should be filled with hot gas from the shocked stellar wind. The gas column density in the shell is strongly influenced by the ISM magnetic field strength and orientation. Hα emission maps show that H II region remains roughly circular, although the star is displaced somewhat from the centre of emission. For our model parameters, the kinetic energy feedback from the H II region is comparable to the mechanical luminosity of the stellar wind, and the momentum feedback rate is >100 times larger than that from the wind and ≈10 times larger than the total momentum input rate available from radiation pressure. Compared to the star's eventual supernova explosion, the kinetic energy feedback from the H II region over the star's main-sequence lifetime is >100 times less, but the momentum feedback is up to 4 times larger. H II region dynamics are found to have only a small effect on the ISM conditions that a bow shock close to the star would encounter.

  7. Massive-Star Magnetospheres: Now in 3-D!

    Science.gov (United States)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  8. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  9. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  10. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  11. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  12. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  13. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  14. Nitrogen chronology of massive main sequence stars

    NARCIS (Netherlands)

    Köhler, K.; Borzyszkowski, M.; Brott, I.; Langer, N.; de Koter, A.

    2012-01-01

    Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity,

  15. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  16. Young Stellar Objects in the Massive Star-forming Regions W51 and W43

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Audard, M. [Department of Astronomy, University of Geneva, Ch. d’Ecogia 16, 1290 Versoix (Switzerland); Hora, J. L.; Martínez-Galarza, J. R.; Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Motte, F. [Institut de Plantologie et d’Astrophysique de Grenoble, Univ. Grenoble Alpes—CNRS-INSU, BP 53, F-38041 Grenoble Cedex 9 (France); Nguyen-Luong, Q. [National Astronomical Observatory of Japan, Chile Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Saygac, A. T. [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2017-04-20

    We present the results of our investigation of the star-forming complexes W51 and W43, two of the brightest in the first Galactic quadrant. In order to determine the young stellar object (YSO) populations in W51 and W43 we used color–magnitude relations based on Spitzer mid-infrared and 2MASS/UKIDSS near-infrared data. We identified 302 Class I YSOs and 1178 Class II/transition disk candidates in W51, and 917 Class I YSOs and 5187 Class II/transition disk candidates in W43. We also identified tens of groups of YSOs in both regions using the Minimal Spanning Tree (MST) method. We found similar cluster densities in both regions, even though Spitzer was not able to probe the densest part of W43. By using the Class II/I ratios, we traced the relative ages within the regions and, based on the morphology of the clusters, we argue that several sites of star formation are independent of one another in terms of their ages and physical conditions. We used spectral energy distribution-fitting to identify the massive YSO (MYSO) candidates since they play a vital role in the star formation process, and then examined them to see if they are related to any massive star formation tracers such as UCH ii regions, masers, or dense fragments. We identified 17 MYSO candidates in W51, and 14 in W43, respectively, and found that groups of YSOs hosting MYSO candidates are positionally associated with H ii regions in W51, though we do not see any MYSO candidates associated with previously identified massive dense fragments in W43.

  17. Observations of Bright Massive Stars Using Small Size Telescopes

    Science.gov (United States)

    Beradze, Sopia; Kochiashvili, Nino

    2017-11-01

    The size of a telescope determines goals and objects of observations. During the latest decades it becomes more and more difficult to get photometric data of bright stars because most of telescopes of small sizes do not operate already. But there are rather interesting questions connected to the properties and evolution ties between different types of massive stars. Multi-wavelength photometric data are needed for solution of some of them. We are presenting our observational plans of bright Massive X-ray binaries, WR and LBV stars using a small size telescope. All these stars, which are presented in the poster are observational targets of Sopia Beradze's future PhD thesis. We already have got very interesting results on the reddening and possible future eruption of the massive hypergiant star P Cygni. Therefore, we decided to choose some additional interesting massive stars of different type for future observations. All Massive stars play an important role in the chemical evolution of galaxies because of they have very high mass loss - up to 10-4M⊙/a year. Our targets are on different evolutionary stages and three of them are the members of massive binaries. We plan to do UBVRI photometric observations of these stars using the 48 cm Cassegrain telescope of the Abastumani Astrophisical Observatory.

  18. Neutron stars structure in the context of massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S., E-mail: hendi@shirazu.ac.ir, E-mail: ghbordbar@shirazu.ac.ir, E-mail: behzad.eslampanah@gmail.com, E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2017-07-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  19. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  20. Neutron stars structure in the context of massive gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2017-01-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  1. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  2. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  3. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  4. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  5. The evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1980-01-01

    The evolution of stars with masses between 15 M 0 and 100 M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution. The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities. Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15 M 0 and a 25 M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed. The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface. The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed. The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined. Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss. (orig.)

  6. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  7. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    Science.gov (United States)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  8. A rare encounter with very massive stars in NGC 3125-A1

    Energy Technology Data Exchange (ETDEWEB)

    Wofford, Aida [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chandar, Rupali [University of Toledo, Department of Physics and Astronomy, Toledo, OH 43606 (United States); Bouret, Jean-Claude, E-mail: wofford@iap.edu [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)

    2014-02-01

    Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad He II λ1640 emission (FWHM ∼ 1200 km s{sup –1}) of unprecedented strength (equivalent width, EW = 7.1 ± 0.4 Å). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of E(B – V) = 0.13, 0.15, and 0.13, and cluster masses of 1.7 × 10{sup 5}, 1.4 × 10{sup 5}, and 1.1 × 10{sup 5} M {sub ☉}, respectively. A1 and B2 show O V λ1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of N(WN5-6)/N(O) = 0.23 and 0.10, respectively. The high N(WN5-6)/N(O) ratio of A1 cannot be reproduced by models that use a normal initial mass function (IMF) and generic WR star line luminosities. We rule out that the extraordinary He II λ1640 emission and O V λ1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive (>120 M {sub ☉}) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses >120 M {sub ☉}.

  9. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  10. A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OF BzK-SELECTED MASSIVE STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Onodera, Masato; Daddi, Emanuele; Arimoto, Nobuo; Renzini, Alvio; Kong Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-01-01

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, Hα emission was detected in 14 objects, and for 11 of them the [N II] λ6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Hα and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Hα with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to ∼2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation (≅100 Myr) and large initial gas mass appear to be required

  11. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  12. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  13. Peering to the Heart of Massive Star Birth

    Science.gov (United States)

    Tan, Jonathan

    2015-10-01

    We propose a small survey of massive/intermediate-mass protostars with WFC3/IR to probe J and H band continuum emission, the Pa-beta and the [FeII] emission. The protostar sample is already the subject of approved SOFIA-FORCAST observations from 10-40 microns. Combined with sophisticated radiative transfer models, these observations are providing the most detailed constraints on the nature of massive protostars, their luminosities, outflow cavity structures and orientations, and distribution of surrounding dense core gas and dust. Recently, we were also awarded ALMA Cycle 3 time to study these sources at up to 0.14 resolution. The proposed HST observations, with very similar resolution, have three main goals: 1) Detect and characterize J and H band continuum emission from the massive/intermediate-mass protostars, which is expected to arise from jet and outflow knot features and from scattered light emerging from the outflow cavities; 2) Detect and characterize Pa-beta and [FeII] line emission tracing ionized and FUV-illuminated regions around the massive protostars, important diagnostics of the protostellar source and its outflow structure; 3) Search for lower-mass protostars that may be clustered around the forming massive protostar. All of these objectives will help test massive star formation theories. The high sensitivity and angular resolution of WFC3/IR enables these observations to be carried out efficiently in a timely fashion. Mid-Cycle observations are critical for near contemporaneous observation with ALMA, since jet/outflow knots may have large proper motions, and to maximize the potential time baseline for a future HST study of jet/outflow proper motions.

  14. Wind bubbles within H ii regions around slowly moving stars

    Science.gov (United States)

    Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert

    2015-01-01

    Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org

  15. EVIDENCE FOR DELAYED MASSIVE STAR FORMATION IN THE M17 PROTO-OB ASSOCIATION

    International Nuclear Information System (INIS)

    Povich, Matthew S.; Whitney, Barbara A.

    2010-01-01

    Through analysis of archival images and photometry from the Spitzer GLIMPSE and MIPSGAL surveys combined with Two Micron All Sky Survey and MSX data, we have identified 488 candidate young stellar objects (YSOs) in the giant molecular cloud M17 SWex, which extends ∼50 pc southwest from the prominent Galactic H II region M17. Our sample includes >200 YSOs with masses >3 M sun that will become B-type stars on the main sequence. Extrapolating over the stellar initial mass function (IMF), we find that M17 SWex contains >1.3 x 10 4 young stars, representing a proto-OB association. The YSO mass function is significantly steeper than the Salpeter IMF, and early O stars are conspicuously absent from M17 SWex. Assuming M17 SWex will form an OB association with a Salpeter IMF, these results reveal the combined effects of (1) more rapid circumstellar disk evolution in more massive YSOs and (2) delayed onset of massive star formation.

  16. How massive the Wolf-Rayet stars are

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1981-01-01

    If the Wolf-Rayet stars are produced by the evolution of massive stars with mass loss (Paczynski 1967, Conti 1976) from O stars to WN stars and thereafter to WC stars, then we may expect to observe a correlation of decreasing mean masses in the same sense as the evolution. Information about the masses of WR stars are obtained from studies of binary systems with WR components. (Auth.)

  17. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  18. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  19. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  20. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  1. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  2. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  3. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  4. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    Science.gov (United States)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  5. An unstable truth: how massive stars get their mass

    Science.gov (United States)

    Rosen, Anna L.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2016-12-01

    The pressure exerted by massive stars' radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this, we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform 3D radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channelled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features should be present around accreting massive stars throughout their formation.

  6. Massive runaway stars in the Large Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the

  7. NGC 346: Looking in the Cradle of a Massive Star Cluster

    Science.gov (United States)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  8. The low-metallicity starburst NGC346: massive-star population and feedback

    Science.gov (United States)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  9. Massive Star Burps, Then Explodes

    Science.gov (United States)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This

  10. Massive Stars as Progenitors of Supernovae and GRBs

    NARCIS (Netherlands)

    Langer, N.; van Marle, A.J.; Poelarends, A.J.T.; Yoon, S.C.

    2007-01-01

    The evolutionary fate of massive stars in our Milky Way is thought to be reasonably well understood: stars above ˜ 8 M_o produce neutron stars and supernovae, while those above ˜ 20...30 M_o are presumed to form black holes. At metallicities below that of the SMC, however, our knowledge becomes

  11. Star Formation and Young Population of the H II Complex Sh2-294

    Science.gov (United States)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  12. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    International Nuclear Information System (INIS)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-01-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H 2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H 2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass ( ☉ ) YSOs; however, we also detected a massive YSO (∼9 M ☉ ) of Class I nature, embedded in a cloud of visual extinction of ∼24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ∼ 4.5 × 10 6 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ∼4 × 10 6 yr B0 main-sequence star.

  13. Metallicity dependence of envelope inflation in massive stars

    Czech Academy of Sciences Publication Activity Database

    Sanyal, D.; Langer, N.; Szécsi, Dorottya; Yoon, S.-C.; Grassitelli, L.

    2017-01-01

    Roč. 597, January (2017), A71/1-A71/16 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA14-02385S Institutional support: RVO:67985815 Keywords : stars evolution * stars massive * stars interiors Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  14. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    Science.gov (United States)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  15. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  16. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    Energy Technology Data Exchange (ETDEWEB)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd; Groppi, Christopher [School of Earth and Space Exploration, Arizona State University, 550 E. Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Mullan, Brendan; Charlton, Jane [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA (United States); Konstantopoulos, Iraklis [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Knezek, Patricia M., E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: tveach@asu.edu, E-mail: cgroppi@asu.edu, E-mail: mullan@astro.psu.edu, E-mail: iraklis@aao.gov.au, E-mail: pknezek@noao.edu [WIYN Consortium, Inc., 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at the location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.

  17. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    International Nuclear Information System (INIS)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd; Groppi, Christopher; Mullan, Brendan; Charlton, Jane; Konstantopoulos, Iraklis; Knezek, Patricia M.

    2013-01-01

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio ∼4: 1 occurring ∼200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and Hα narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 μm [C II] emission at the location of the three most luminous Hα sources in the eastern tail, but not at the location of the even brighter Hα source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation

  18. The incidence of stellar mergers and mass gainers among massive stars

    International Nuclear Information System (INIS)

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-01-01

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8 −4 +9 % of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30 −15 +10 % of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  19. How Very Massive Metal Free Stars Start Cosmological Reionization

    International Nuclear Information System (INIS)

    Wise, John H.; Abel, Tom

    2007-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include non-equilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the Case B approximation using adaptively ray traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of ∼10 6 . These first sources of reionization are highly intermittent and anisotropic and first photoionize the small scales voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately 5 ionizing photons are needed per sustained ionization when star formation in 10 6 M · halos are dominant in the calculation. As the halos become larger than ∼10 7 M # circle d ot#, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15--50, in calculations with stellar feedback only. Supernova feedback in these more massive halos creates a more diffuse medium, allowing the stellar radiation to escape more easily and maintaining the ratio of 5 ionizing photons per sustained ionization

  20. B fields in OB stars (BOB): Low-resolution FORS2 spectropolarimetry of the first sample of 50 massive stars

    NARCIS (Netherlands)

    Fossati, L.; Castro, N.; Schöller, M.; Hubrig, S.; Langer, N.; Morel, T.; Briquet, M.; Herrero, A.; Przybilla, N.; Sana, H.; Schneider, F.R.N.; de Koter, A.

    2015-01-01

    Within the context of the collaboration "B fields in OB stars" (BOB), we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference magnetic massive stars. Because of the many controversies of magnetic field detections obtained with

  1. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  2. One of the most massive stars in the Galaxy may have formed in isolation

    OpenAIRE

    Oskinova, L. M.; Steinke, M.; Hamann, W. -R.; Sander, A.; Todt, H.; Liermann, A.

    2013-01-01

    Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Center. We find that two such i...

  3. Small scale kinematics of massive star-forming cores

    NARCIS (Netherlands)

    Wang, Kuo-Song

    2013-01-01

    Unlike the formation of Solar-type stars, the formation of massive stars (M>8 Msun) is not yet well understood. For Solar-type protostars, the presence of circumstellar or protoplanetary disks which provide a path for mass accretion onto protostars is well established. However, to date only few

  4. The Evolution of Massive Stars: a Selection of Facts and Questions

    Science.gov (United States)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  5. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    International Nuclear Information System (INIS)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-01-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres

  6. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  7. Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars

    NARCIS (Netherlands)

    Tramper, F.; Straal, S.M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J.S.; de Mink, S.E.; Kaper, L.

    2015-01-01

    Context. Oxygen sequence Wolf-Rayet (WO) stars are a very rare stage in the evolution of massive stars. Their spectra show strong emission lines of helium-burning products, in particular highly ionized carbon and oxygen. The properties of WO stars can be used to provide unique constraints on the

  8. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); De Mink, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); De Koter, A.; Sana, H. [Astronomical Institute " Anton Pannekoek" , Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Liermann, A., E-mail: fschneid@astro.uni-bonn.de [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  9. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    International Nuclear Information System (INIS)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >De Koter, A.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉ .

  10. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    Science.gov (United States)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  11. Observational tests for the evolution of massive stars in nearby galaxies

    International Nuclear Information System (INIS)

    Leitherer, C.

    1990-01-01

    Population synthesis calculations applicable to the massive stellar content in nearby galaxies are presented. Stellar evolution calculations are combined with mass loss, model atmospheres with line blanketing, and a spectral type calibration to compute observable parameters of massive stars as a function of the star formation rate and the initial mass function slope. The number of O stars of given spectral types, the number of W-R stars, supernova rates, and fluxes of ionizing photons are predicted. Important constraints for the theories of stellar atmospheres and stellar evolution can be derived from observations if stellar number counts and ionizing flux data are available. 94 refs

  12. Massive stars in colliding wind systems: the GLAST perspective

    International Nuclear Information System (INIS)

    Reimer, Anita; Reimer, Olaf

    2007-01-01

    Colliding winds of massive stars in binary systems arc considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory.The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems

  13. Late stages of massive star evolution and nucleosynthesis

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi; Hashimoto, Masa-aki.

    1986-01-01

    The evolution of massive stars in the mass range of 8 to 25 M solar mass is reviewed. The effect of electron degeneracy on the gravothermal nature of stars is discussed. Depending on the stellar mass, the stars form three types of cores, namely, non-degenerate, semi-degenerate, and strongly degenerate cores. The evolution for these cases is quite distinct from each other and leads to the three different types of final fate. It is suggested that our helium star model, which is equivalent to a 25 M solar mass star, will form a relatively small mass iron core despite the faster 12 C(α,γ) 16 O reaction. 50 refs., 21 figs

  14. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; de Mink, S.E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V.V.; Huβman, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass

  15. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    Science.gov (United States)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  16. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    Science.gov (United States)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  17. A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Povich, Matthew S., E-mail: alexamic@lafayette.edu, E-mail: rjh314@lehigh.edu, E-mail: mcswain@lehigh.edu, E-mail: mspovich@cpp.edu [Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768 (United States)

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had high enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.

  18. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    Science.gov (United States)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  19. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    Science.gov (United States)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  20. The role of rotation in the evolution of massive stars losing mass

    International Nuclear Information System (INIS)

    Sreenivasan, S.R.; Wilson, W.J.F.

    1979-01-01

    The role of differential and solid body rotation in the evolution of massive stars undergoing mass loss is discussed. The implications for Of, WR, β Cephei stars and shell stars are brought out. (Auth.)

  1. Effects of a new 3-alpha reaction on the s-process in massive stars

    International Nuclear Information System (INIS)

    Kikuch, Yukihiro; Ono, Masaomi; Matsuo, Yasuhide; Hashimoto, Masa-aki; Fujimoto, Shin-ichiro

    2012-01-01

    Effect of a new 3-alpha reaction rate on the s-process during the evolution of a massive star of 25 solar mass is investigated for the first time, because the s-process in massive stars have been believed to be established with only minor change. We find that the s-process with use of the new rate during the core helium burning is very inefficient compared to the case with the previous 3-alpha rate. However, the difference of the overproduction is found to be largely compensated by the subsequent carbon burning. Since the s-process in massive stars has been attributed so far to the neutron irradiation during core helium burning, our finding reveals for the first time the importance of the carbon burning for the s-process during the evolution of massive stars.

  2. DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, I-50125 Firenze (Italy); Kurtz, Stan; Lizano, Susana [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 3-72, 58090, Morelia, Michoacan (Mexico); Palau, Aina [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5p 2, E-08193 Bellaterra, Catalunya (Spain); Estalella, Robert [Dpt d' Astronomia i Meteorologia (IEEC-UB), Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, E-08028 Barcelona (Spain); Shepherd, Debra [NRAO, P.O. Box O, Socorro, NM 87801-0387 (United States); Franco, Jose [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, 04510 Mexico, D.F. (Mexico); Garay, Guido, E-mail: asanchez@arcetri.astro.it [Departamento de Astronomia, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile)

    2013-04-01

    We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H{sub 2}O and CH{sub 3}OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density {approx}3.7 Multiplication-Sign 10{sup 4} cm{sup -3}, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located {approx}6'' to the east of the cometary UCH II region, with an electron density {approx}1.3 Multiplication-Sign 10{sup 5} cm{sup -3}, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located {approx}2'' to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30 M{sub Sun }. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5 {mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.

  3. DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34

    International Nuclear Information System (INIS)

    Sánchez-Monge, Álvaro; Kurtz, Stan; Lizano, Susana; Palau, Aina; Estalella, Robert; Shepherd, Debra; Franco, José; Garay, Guido

    2013-01-01

    We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H 2 O and CH 3 OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40α and H30α). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ∼3.7 × 10 4 cm –3 , excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ∼6'' to the east of the cometary UCH II region, with an electron density ∼1.3 × 10 5 cm –3 , and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ∼2'' to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30 M ☉ . The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5 μm and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.

  4. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sana, H. [European Space Agency/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Bouquin, J.-B.; Duvert, G.; Zins, G. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Lacour, S.; Gauchet, L.; Pickel, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris Sciences et Lettres, 5 Place Jules Janssen, F-92195 Meudon (France); Berger, J.-P. [European Southern Observatory, Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Norris, B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Olofsson, J. [Max-Planck-Institut für Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Liège (Belgium); De Koter, A. [Astrophysical Institute Anton Pannekoek, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Kratter, K. [JILA, 440 UCB, University of Colorado, Boulder, CO 80309-0440 (United States); Schnurr, O. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Zinnecker, H., E-mail: hsana@stsci.edu [Deutsches SOFIA Instituut, SOFIA Science Center, NASA Ames Research Center, Mail Stop N232-12, Moffett Field, CA 94035 (United States)

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio

  5. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  6. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  7. Massive stars, successes and challenges

    OpenAIRE

    Meynet, Georges; Maeder, André; Georgy, Cyril; Ekström, Sylvia; Eggenberger, Patrick; Barblan, Fabio; Song, Han Feng

    2017-01-01

    We give a brief overview of where we stand with respect to some old and new questions bearing on how massive stars evolve and end their lifetime. We focus on the following key points that are further discussed by other contributions during this conference: convection, mass losses, rotation, magnetic field and multiplicity. For purpose of clarity, each of these processes are discussed on its own but we have to keep in mind that they are all interacting between them offering a large variety of ...

  8. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  9. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    Science.gov (United States)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  10. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    Science.gov (United States)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  11. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-02-10

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  12. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  13. The environment and star formation of H II region Sh2-163: a multi-wavelength study

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie; Li, Nan

    2014-12-01

    To investigate the environment of H II region Sh2-163 and search for evidence of triggered star formation in this region, we performed a multi-wavelength study of this H II region. Most of our data were taken from large-scale surveys: 2MASS, CGPS, MSX and SCUBA. We also made CO molecular line observations, using the 13.7-m telescope. The ionized region of Sh2-163 is detected by both the optical and radio continuum observations. Sh2-163 is partially bordered by an arc-like photodissociation region (PDR), which is coincident with the strongest optical and radio emissions, indicating interactions between the H II region and the surrounding interstellar medium. Two molecular clouds were discovered on the border of the PDR. The morphology of these two clouds suggests they are compressed by the expansion of Sh2-163. In cloud A, we found two molecular clumps. And it seems star formation in clump A2 is much more active than in clump A1. In cloud B, we found new outflow activities and massive star(s) are forming inside. Using 2MASS photometry, we tried to search for embedded young stellar object (YSO) candidates in this region. The very good agreement between CO emission, infrared shell and YSOs suggest that it is probably a star formation region triggered by the expansion of Sh2-163. We also found the most likely massive protostar related to IRAS 23314+6033.

  14. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  15. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian; Amaro-Seoane, Pau, E-mail: Xian.Chen@aei.mpg.de, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  16. Massive stars, successes and challenges

    Science.gov (United States)

    Meynet, Georges; Maeder, André; Georgy, Cyril; Ekström, Sylvia; Eggenberger, Patrick; Barblan, Fabio; Song, Han Feng

    2017-11-01

    We give a brief overview of where we stand with respect to some old and new questions bearing on how massive stars evolve and end their lifetime. We focus on the following key points that are further discussed by other contributions during this conference: convection, mass losses, rotation, magnetic field and multiplicity. For purpose of clarity, each of these processes are discussed on its own but we have to keep in mind that they are all interacting between them offering a large variety of outputs, some of them still to be discovered.

  17. How Very Massive Metal-Free Stars Start Cosmological Reionization

    Science.gov (United States)

    Wise, John H.; Abel, Tom

    2008-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include nonequilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the case B approximation using adaptively ray-traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of approx.10(exp 6). These first sources of reionization are highly intermittent and anisotropic and first photoionize the small-scale voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf-sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies, making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately five ionizing photons are needed per sustained ionization when star formation in 10(exp 6) stellar Mass halos is dominant in the calculation. As the halos become larger than approx.10(exp 7) Stellar Mass, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15-50, in calculations with stellar feedback only. Radiative feedback decreases clumping factors by 25% when compared to simulations without star formation and increases the average temperature of ionized gas to values between 3000 and 10,000 K.

  18. Multidimensional Simulations of Colliding Outbursts from very Massive Stars

    Science.gov (United States)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Massive stars that end their lives with helium cores in the range of 35 to 65 solar masses are known to produce repeated thermonuclear outbursts due to a recurring pair-instability. In some of these events, solar masses of material are ejected in repeated outbursts of several times 1050 erg each. Such models can be used to explain the strong mass loss rates at the last moment before the massive stars die. Collisions between these shells can sometimes produce very luminous transients. Previous 1D studies of these events produce thin,high-density shells as one ejection plows into another. We present the first multidimensional simulations of these collisions, we show that the development of a Rayleigh-Taylor instability truncates the growth of the high density spike and drives mixing between the shells.

  19. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  20. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    -line ratios (N II/Hα, S II/Hα, S II/S II), and FWHM (Hα) maps for the central region (30''×30'' rmax~22''~4 kpc), with a spatial resolution of 1". In the central region (r~5-6 kpc) we detected that the nuclear starburst and the extended giant H II regions (in the spiral arms) have very similar properties, i.e., high metallicity and low-ionization spectra, with Teff=35,000 K, solar abundance, a range of Te~6000-7000 K, and Ne~100-1000 cm-3. The nuclear and extended outflow shows properties typical of galactic wind/shocks, associated with the nuclear starburst. We suggest that the interaction between dynamical effects, the galactic wind (outflow), low-energy cosmic rays, and the molecular+ionized gas (probably in the inflow phase) could be the possible mechanism that generate the ``similar extended properties in the massive star formation, at a scale of 5-6 kpc!'' We have also studied the presence of the close merger/interacting systems NGC 3256C (at ~150 kpc, ΔV=-100 km s-1) and the possible association between the NGC 3256 and 3263 groups of galaxies. In conclusion, these results suggest that NGC 3256 is the product of a multiple merger, which generated an extended massive star formation process with an associated galactic wind plus a nuclear inflow. Therefore, NGC 3256 is another example in which the relation between mergers and extreme starburst (and the powerful galactic wind, ``multiple'' Type II supernova explosions) play an important role in the evolution of galaxies (the hypothesis of Rieke et al., Joseph et al., Terlevich et al., Heckman et al., and Lípari et al.). Based on observations obtained at the Hubble Space Telescope (HST; Wide Field Planetary Camera 2 [WFPC2] and NICMOS) satellite; International Ultraviolet Explorer (IUE) satellite; European Southern Observatory (ESO, NTT); Chile, Cerro Tololo Inter-American Observatory (CTIO), Chile; Complejo Astronómico el Leoncito (CASLEO), Argentina; Estación Astrofísica de Bosque Alegre (BALEGRE), Argentina.

  1. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    International Nuclear Information System (INIS)

    Grammer, Skyler; Humphreys, Roberta M.

    2013-01-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories

  2. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  3. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    Science.gov (United States)

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  4. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    Science.gov (United States)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  5. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  6. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.

  7. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  8. Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation

    Czech Academy of Sciences Publication Activity Database

    Dale, James E.; Bonnell, Ian A.

    2011-01-01

    Roč. 414, č. 1 (2011), s. 321-328 ISSN 0035-8711 R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars formation * H II regions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  9. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    Science.gov (United States)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  10. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Energy Technology Data Exchange (ETDEWEB)

    Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans/CNRS, F-45071 Orléans Cedex 02 (France); Freire, Paulo C. C. [Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Desvignes, Gregory; Lazarus, Patrick [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Stappers, Benjamin; Lyne, Andrew G. [Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Bassa, Cees [ASTRON, The Netherlands Institute for Radioastronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands)

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.

  11. Presupernova evolution of massive stars

    International Nuclear Information System (INIS)

    Weaver, T.A.; Zimmerman, G.B.; Woosley, S.E.

    1977-01-01

    Population I stars of 15 M/sub mass/ and 25 M/sub mass/ have been evolved from the zero-age main sequence through iron core collapse utilizing a numerical model that incorporates both implicit hydrodynamics and a detailed treatment of nuclear reactions. The stars end their presupernova evolution as red supergiants with photospheric radii of 3.9 x 10 13 cm and 6.7 x 10 13 cm, respectively, and density structures similar to those invoked to explain Type II supernova light curves on a strictly hydrodynamic basis. Both stars are found to form substantially neutronized ''iron'' cores of 1.56 M/sub mass/ and 1.61 M/sub mass/, and central electron abundances of 0.427 and 0.439 moles/g, respectively, during hydrostatic silicon burning. Just prior to collapse, the abundances of the elements in the 25 M/sub mass/ star (excluding the neutronized iron core) have ratios strikingly close to their solar system values over the mass range from oxygen to calcium, while the 15 M/sub mass/ star is characterized by large enhancements of Ne, Mg, and Si. It is pointed out on nucleosynthetic grounds that the mass of the neutronized core must represent a lower limit to the mass of the neutron star or black hole remnant that stars in this mass range can normally produce

  12. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NARCIS (Netherlands)

    Meyer, D.M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V.V.; Mignone, A.; Izzard, R.G.; Kaper, L.

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional

  13. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  14. Bulk yields of nucleosynthesis from massive stars

    International Nuclear Information System (INIS)

    Arnett, W.D.

    1978-01-01

    Preliminary estimates are made of the absolute yields of abundant nuclei synthesized in observed stars. The compositions of nine helium stars of mass 3 or =10M/sub sun/ is estimated. A variety of choices for the initial mass function (IMF) are used to calculate the yield per stellar generation. For standard choices of the (IMF) the absolute and relative yields of 12 C, 16 O, 20 Ne, 24 Mg, the Si to Ca group, and the iron group agree with solar system values, to the accuracy of the calculations. The relative yields are surprisingly insensitive to the slope of the IMF. In a second approach, using standard estimates (Ostriker, Richstone, and Thuan) for the current rate of stellar death, I find the present rate of nucleosynthesis in the solar neighborhood to be about 10%of the average rate over galactic history. This result is consistent with many standard models of galactic evolution (for example, the Schmidt model in which star formation goes as gas density squared). It appears that if the star formation rate is high enough to produce the stars we see around us, then the nucleosynthesis rate is large enough to produce the processed nuclei (except 4 He) seen in those stars. The typical nucleosynthesis source is massive (Mapprox. =30 M/sub sun/); the death rate of such stars is a small fraction (3-10%) of recent estimates of the total rate of supernovae

  15. Massive stars and the energy balance of the ISM: I. The imapct of an isolated 60 M star

    Science.gov (United States)

    Yorke, H. W.; Freyer, T.; Hensler, G.

    2002-01-01

    We present results of numerical simulations carried out with a 2D radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M star.

  16. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  17. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NARCIS (Netherlands)

    Szécsi, D.; Langer, N.; Yoon, S.C.; Sanyal, D.; de Mink, S.; Evans, C.J.; Dermine, T.

    2015-01-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires

  18. Formation of new stellar populations from gas accreted by massive young star clusters.

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  19. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NARCIS (Netherlands)

    Wang, K. -S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion

  20. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    International Nuclear Information System (INIS)

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D.

    2009-01-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M * > 5 x 10 10 M sun ) galaxies at 1.5 PSF ∼ 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z ∼ 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 ± 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z ∼ 3-4, in contrast to star-forming galaxies at z ∼ 2 which are extended and dominated by distributed star formation.

  1. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    Science.gov (United States)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  2. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  3. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  4. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    Science.gov (United States)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  5. Super massive black hole in galactic nuclei with tidal disruption of stars

    International Nuclear Information System (INIS)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-01-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  6. Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars

    Science.gov (United States)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  7. Thermal generation of the magnetic field in the surface layers of massive stars

    Science.gov (United States)

    Urpin, V.

    2017-11-01

    A new magnetic field-generation mechanism based on the Nernst effect is considered in hot massive stars. This mechanism can operate in the upper atmospheres of O and B stars where departures from the LTE form a region with the inverse temperature gradient.

  8. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  9. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  10. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  11. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    Energy Technology Data Exchange (ETDEWEB)

    Koshimoto, N.; Sumi, T.; Fukagawa, M.; Shibai, H. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Rattenbury, N.; Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, 464-8601 (Japan); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Muraki, Y. [Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501 (Japan); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To. [Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30} M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.

  12. Evolution of a massive binary in a star field

    International Nuclear Information System (INIS)

    Baranov, A.S.

    1984-01-01

    The orbital evolution of a massive binary system interacting with a background field of single stars whose phase density is homogeneous in configuration space is considered. The velocity distribution is assumed isotropic up to some limiting value, and a typical field star is regarded as having a velocity much higher than the orbital speed of the pair components. An expression is derived for the transfer of energy from the binary to the field stars. The time evolution of the orbit parameters a, e is established, and the evolution rate is estimated for Kardashev's (1983) model galactic nucleus containing a central black-hole binary. On the above assumptions the components should become twice as close together within only a few tens of millennia, although the picture may change fundamentally if the nucleus is rotating. 13 references

  13. HD 179821 (V1427 Aql, IRAS 19114+0002) - a massive post-red supergiant star?

    Science.gov (United States)

    Şahin, T.; Lambert, David L.; Klochkova, Valentina G.; Panchuk, Vladimir E.

    2016-10-01

    We have derived elemental abundances of a remarkable star, HD 179821, with unusual composition (e.g. [Na/Fe] = 1.0 ± 0.2 dex) and extra-ordinary spectral characteristics. Its metallicity at [Fe/H] = 0.4 dex places it among the most metal-rich stars yet analysed. The abundance analysis of this luminous star is based on high-resolution and high-quality (S/N ≈ 120-420) optical echelle spectra from McDonald Observatory and Special Astronomy Observatory. The data includes five years of observations over 21 epochs. Standard 1D local thermodynamic equilibrium analysis provides a fresh determination of the atmospheric parameters over all epochs: Teff = 7350 ± 200 K, log g= +0.6 ± 0.3, and a microturbulent velocity ξ = 6.6 ± 1.6 km s-1 and [Fe/H] = 0.4 ± 0.2, and a carbon abundance [C/Fe] = -0.19 ± 0.30. We find oxygen abundance [O/Fe] = -0.25 ± 0.28 and an enhancement of 0.9 dex in N. A supersonic macroturbulent velocity of 22.0 ± 2.0 km s-1 is determined from both strong and weak Fe I and Fe II lines. Elemental abundances are obtained for 22 elements. HD 179821 is not enriched in s-process products. Eu is overabundant relative to the anticipated [X/Fe] ≈ 0.0. Some peculiarities of its optical spectrum (e.g. variability in the spectral line shapes) is noticed. This includes the line profile variations for H α line. Based on its estimated luminosity, effective temperature and surface gravity, HD 179821 is a massive star evolving to become a red supergiant and finally a Type II supernova.

  14. Massive Star Formation: Accreting from Companion X. Chen1 ...

    Indian Academy of Sciences (India)

    Abstract. We report the possible accretion from companion in the mas- sive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO ...

  15. The Wolf-Rayet Content of the Andromeda Galaxy: What Do Massive Stars Really Do When the Metallicity is Above Solar?

    Science.gov (United States)

    Massey, Philip

    2000-08-01

    We are proposing to survey M 31 for Wolf-Rayet stars (WRs) and red supergiants (RSGs), providing much needed information about how massive stars evolve at greater-than-solar metallicities. Our understanding of massive star evolution is hampered by the effects of mass-loss on these stars; at higher metallicities mass-loss effects become ever more pronounced. Our previous work on other Local Group galaxies (Massey & Johnson 1998) has shown that the number of RSGs to WRs correlates well with metallicity, changing by a factor of 6 from NGC 6822 (log O/H+12=8.3) to the inner parts of M 33 (8.7). Our study of five small regions in M 31 suggests that above this value the ratio of RSGs to WRs doesn't change: does this mean that no massive star that becomes a WR spends any time as a RSG at above solar metallicities? We fear instead that our sample (selected, afterall, for containing WR stars) was not sufficiently well-mixed in age to provide useful global values; the study we propose here will survey all of M 31. Detection of WRs will provide fundamental data not only on massive star evolution, but also act as tracers of the most massive stars, and improve our knowledge of recent star-formation in the Andromeda Galaxy.

  16. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Andrew T.; McKee, Christopher F. [Department of Physics, University of California, Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States); Klein, Richard I. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R., E-mail: atmyers@berkeley.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-01

    We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M{sub Sun }), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for {approx}100 M{sub Sun} cores with many thermal Jeans masses of material. We also demonstrate that a {approx}40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

  17. Spectral energy distribution analysis of class I and class II FU Orionis stars

    Energy Technology Data Exchange (ETDEWEB)

    Gramajo, Luciana V.; Gómez, Mercedes [Observatorio Astronómico, Universidad Nacional de Córdoba, Argentina, Laprida 854, 5000 Córdoba (Argentina); Rodón, Javier A., E-mail: luciana@oac.uncor.edu, E-mail: mercedes@oac.uncor.edu, E-mail: jrodon@eso.org [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile)

    2014-06-01

    FU Orionis stars (FUors) are eruptive pre-main sequence objects thought to represent quasi-periodic or recurring stages of enhanced accretion during the low-mass star-forming process. We characterize the sample of known and candidate FUors in a homogeneous and consistent way, deriving stellar and circumstellar parameters for each object. We emphasize the analysis in those parameters that are supposed to vary during the FUor stage. We modeled the spectral energy distributions of 24 of the 26 currently known FUors, using the radiative transfer code of Whitney et al. We compare our models with those obtained by Robitaille et al. for Taurus class II and I sources in quiescence periods by calculating the cumulative distribution of the different parameters. FUors have more massive disks: we find that ∼80% of the disks in FUors are more massive than any Taurus class II and I sources in the sample. Median values for the disk mass accretion rates are ∼10{sup –7} M {sub ☉} yr{sup –1} versus ∼10{sup –5} M {sub ☉} yr{sup –1} for standard young stellar objects (YSOs) and FUors, respectively. While the distributions of envelope mass accretion rates for class I FUors and standard class I objects are similar, FUors, on average, have higher envelope mass accretion rates than standard class II and class I sources. Most FUors (∼70%) have envelope mass accretion rates above 10{sup –7} M {sub ☉} yr{sup –1}. In contrast, 60% of the classical YSO sample has an accretion rate below this value. Our results support the current scenario in which changes experimented by the circumstellar disk explain the observed properties of these stars. However, the increase in the disk mass accretion rate is smaller than theoretically predicted, although in good agreement with previous determinations.

  18. Star bursts and giant HII regions

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Massive star formation bursts occur in a variety of galactic environments and can temporarily dominate the light output of a galaxy even when a relatively small proportion of its mass is involved. Inferences about their ages, the IMF and its dependence on chemical composition are still somewhat wobbly owing to an excess of unknowns, but certain things can be deduced from emission spectra of associated H II regions when due regard is paid to the effects of chemical composition and ionization parameter: In particular, largest ionization parameters and effective temperatures of exciting stars, at any given oxygen abundance, are anti-correlated with the abundance, and the second effect suggests an increasing proportion of more massive stars at lower abundances, although this is not yet satisfactorily quantified. A new blue compact galaxies could be very young, but it is equally possible that there is an older population of low surface brightness. Some giant H II regions may be self-polluted with nitrogen and helium due to winds from massive stars in the associated burst. (orig.)

  19. Stellar Wind Retention and Expulsion in Massive Star Clusters

    Science.gov (United States)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  20. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Newman, S. F. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720 (United States); Burkert, A. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Carollo, C. M.; Lilly, S. J. [Institute for Astronomy, Department of Physics, Eidgenössische Technische Hochschule, 8093-CH Zürich (Switzerland); Cresci, G. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Daddi, E. [CEA Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Hicks, E. K. S. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mancini, C. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  1. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    International Nuclear Information System (INIS)

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J.; Brammer, G.

    2014-01-01

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M * /M ☉ ) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M * /M ☉ ) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS 3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s –1 ), with large [N II]/Hα ratios, above log(M * /M ☉ ) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  2. Supernova SN1961v - an explosion of a very massive star

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1983-01-01

    An investigation of the outburst of the unique supernova SN1961v in the galaxy NGC 1058 is carried out. An analysis of hydrodynamical models of supernoVa outbursts and a comparison with a considerable body of observational data on SN1961v clearly show that the SN1961v phenomenon is an explosion of a very massive star-with the mass of 2000 M and radiUs of about 100 R that results in expelling the envelope with the kinetic energy of 1.8x10 52 erg. The light curve of SN1961v furnishes direct evidence for a heterogeneity of the presupernova interior. The chemical composition produced during the evolution of the very massive star and in the final eXplosion must have a number of the essential features. In particular, hydrogen has to be underabundant relative to the solar content and distributed in the specific manner through the star. At late stages from February 1963 to February 1967, the light curve of SN1961v may be accoUnted for as interaction of the expelled envelope with the stellar wind of presupernova

  3. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  4. Asymmetric core collapse of rapidly rotating massive star

    Science.gov (United States)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  5. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M.

    2009-01-01

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 μm in the UBVIJHK s +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ∼900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L sun ≥ 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  6. Global and radial variations in the efficiency of massive star formation among galaxies

    International Nuclear Information System (INIS)

    Allen, L.E.; Young, J.S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well

  7. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    Science.gov (United States)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  8. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Hankins, M. J.; Herter, T. L. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Ressler, M. E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  9. An infrared view of (candidate accretion) disks around massive young stars

    NARCIS (Netherlands)

    Bik, A.; Lenorzer, A.; Thi, W.F.; Puga Antolín, E.; Waters, L.B.F.M.; Kaper, L.; Martín-Hernández, L.N.

    2008-01-01

    Near-infrared surveys of high-mass star-forming regions start to shed light onto their stellar content. A particular class of objects found in these regions, the so-called massive Young Stellar Objects (YSOs) are surrounded by dense circumstellar material. Several near- and mid-infrared diagnostic

  10. The secular tidal disruption of stars by low-mass Super Massive Black Holes secondaries in galactic nuclei

    Science.gov (United States)

    Fragione, Giacomo; Leigh, Nathan

    2018-06-01

    Stars passing too close to a super massive black hole (SMBH) can produce tidal disruption events (TDEs). Since the resulting stellar debris can produce an electromagnetic flare, TDEs are believed to probe the presence of single SMBHs in galactic nuclei, which otherwise remain dark. In this paper, we show how stars orbiting an IMBH secondary are perturbed by an SMBH primary. We find that the evolution of the stellar orbits are severely affected by the primary SMBH due to secular effects and stars orbiting with high inclinations with respect to the SMBH-IMBH orbital plane end their lives as TDEs due to Kozai-Lidov oscillations, hence illuminating the secondary SMBH/IMBH. Above a critical SMBH mass of ≈1.15 × 108 M⊙, no TDE can occur for typical stars in an old stellar population since the Schwarzschild radius exceeds the tidal disruption radius. Consequently, any TDEs due to such massive SMBHs will remain dark. It follows that no TDEs should be observed in galaxies more massive than ≈4.15 × 1010 M⊙, unless a lower-mass secondary SMBH or IMBH is also present. The secular mechanism for producing TDEs considered here therefore offers a useful probe of SMBH-SMBH/IMBH binarity in the most massive galaxies. We further show that the TDE rate can be ≈10-4 - 10-3 yr-1, and that most TDEs occur on ≈0.5 Myr. Finally, we show that stars may be ejected with velocities up to thousands of km s-1, which could contribute to the observed population of Galactic hypervelocity stars.

  11. Stationary bound-state massive scalar field configurations supported by spherically symmetric compact reflecting stars

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-12-15

    It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)

  12. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.

    Science.gov (United States)

    McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J

    2018-02-15

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  13. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud

    Science.gov (United States)

    McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.

    2018-02-01

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  14. Convective shells and the core He-burning phase of massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C [Padua Univ. (Italy). Ist. di Astronomia; Nasi, E [Osservatorio Astronomico, Padova, Italy

    1978-07-01

    In this paper the effect of complete homogenization in the intermediate unstable layers of massive stars is briefly discussed on the effective temperature of the core He-burning models. To this end, a 20 solar masses star of Population I chemical composition (X=0.700, Z=0.020) has been allowed to evolve from the Main Sequence into the core He-exhaustion stage without taking into account semiconvective mixing. The results show that the models are systematically bluer than those computed with the same physical parameters but with the inclusion of semiconvection.

  15. The onset of massive star formation: The evolution of temperature and density structure in an infrared dark cloud

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ginsburg, Adam; Bally, John; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2014-06-01

    We present new NH{sub 3} (1, 1), (2, 2), and (4, 4) observations from the Karl G. Jansky Very Large Array compiled with work in the literature to explore the range of conditions observed in young, massive star-forming regions. To sample the effects of evolution independent from those of distance/resolution, abundance, and large-scale environment, we compare clumps in different evolutionary stages within a single infrared dark cloud (IRDC), G32.02+0.06. We find that the early stages of clustered star formation are characterized by dense, parsec-scale filamentary structures interspersed with complexes of dense cores (<0.1 pc cores clustered in complexes separated by ∼1 pc) with masses from about 10 to 100 M {sub ☉}. The most quiescent core is the most extended while the star forming cores are denser and more compact, showing very similar column density structure before and shortly after the onset of massive star formation, with peak surface densities Σ ≳ 1 g cm{sup –2}. Quiescent cores and filaments show smoothly varying temperatures from 10 to 20 K, rising to over 40 K in star-forming cores. We calculate virial parameters for 16 cores and find that the level of support provided by turbulence is generally insufficient to support them against gravitational collapse ((α{sub vir}) ∼ 0.6). The star-forming filaments show smooth velocity fields, punctuated by discontinuities at the sites of active star formation. We discuss the massive molecular filament (M ∼ 10{sup 5} M {sub ☉}, length >60 pc) hosting the IRDC, hypothesizing that it may have been shaped by previous generations of massive stars.

  16. Massive open star clusters using the VVV survey IV. WR 62-2, a new very massive star in the core of the VVV CL041 cluster

    Czech Academy of Sciences Publication Activity Database

    Chene, A.-N.; Alegria, S.R.; Borissova, J.; O'Leary, E.; Martins, F.; Hervé, Anthony; Kuhn, M.; Kurtev, R.; Consuelo Amigo Fuentes, P.; Bonatto, C.; Minniti, D.

    2015-01-01

    Roč. 584, December (2015), A31/1-A31/8 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-02385S Institutional support: RVO:67985815 Keywords : open clusters and associations * VVV CL041 * massive star s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  17. Wolf-Rayet stars and O-star runaways with HIPPARCOS - II. Photometry

    NARCIS (Netherlands)

    Marchenko, SV; Moffat, AFJ; van der Hucht, KA; Seggewiss, W; Schrijver, H; Stenholm, B; Lundstrom, [No Value; Setia Gunawan, DYA; Sutantyo, W; van den Heuvel, EPJ; De Cuyper, JP; Gomez, AE

    Abundant HIPPARCOS photometry over 3 years of 141 O and Wolf-Rayet stars, including 8 massive X-ray binaries, provides a magnificent variety of light curves at the sigma similar to 1-5% level. Among the most interesting results, we mention: optical outbursts in HD 102567 (MXRB), coinciding with

  18. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  19. Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds

    Science.gov (United States)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2013-03-01

    We extend our previous smoothed particle hydrodynamics parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104-106 M⊙ with initial virial ratios Ekin/Epot = 2.3, allow them to form stars and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3 Myr time-scale before supernovae are expected to begin detonating, the fraction of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while low-mass clouds have large fractions of their gas reserves expelled on this time-scale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.

  20. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  1. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    Science.gov (United States)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  2. Water in massive star-forming regions with Herschel Space Observatory

    Science.gov (United States)

    Chavarria, L.; Herpin, F.; Bontemps, S.; Jacq, T.; Baudry, A.; Braine, J.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.

    2011-05-01

    High-mass stars formation process is much less understood than the low-mass case: short timescales, high opacities and long distance to the sources challenge the study of young massive stars. The instruments on board the Heschel Space Observatory permit us to investigate molecular species at high spectral resolution in the sub-milimeter wavelengths. Water, one of the most abundant molecules in the Universe, might elucidate key episodes in the process of stellar birth and it may play a major role in the formation of high-mass stars. This contribution presents the first results of the Heschel Space Observatory key-program WISH (Water In Star forming regions with Herschel) concerning high-mass protostars. The program main purpose is to follow the process of star formation during the various stages using the water molecule as a physical diagnostic throughout the evolution. In general, we aim to adress the following questions: How does protostars interact with their environment ? How and where water is formed ? How is it transported from cloud to disk ? When and where water becomes a dominant cooling or heating agent ? We use the HIFI and PACS instruments to obtain maps and spectra of ~20 water lines in ~20 massive protostars spanning a large range in physical parameters, from pre-stellar cores to UCHII regions. I will review the status of the program and focus specifically on the spectroscopic results. I will show how powerful are the HIFI high-resolution spectral observations to resolve different physical source components such as the dense core, the outflows and the extended cold cloud around the high-mass object. We derive water abundances between 10-7 and 10-9 in the outer envelope. The abundance variations derived from our models suggest that different chemical mechanisms are at work on these scales (e.g. evaporation of water-rich icy grain mantles). The detection and derived abundance ratios for rare isotopologues will be discussed. Finally, a comparison in tems

  3. Effects of mass loss on the evolution of massive stars. I. Main-sequence evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.; Hainebach, K.L.; Schramm, D.N.

    1978-01-01

    The effect of mass loss on the evolution and surface composition of massive stars during main-sequence evolution are examined. While some details of the evolutionary track depend on the formula used for the mass loss, the results appear most sensitive to the total mass removed during the main-sequence lifetime. It was found that low mass-loss rates have very little effect on the evolution of a star; the track is slightly subluminous, but the lifetime is almost unaffected. High rates of mass loss lead to a hot, high-luminosity stellar model with a helium core surrounded by a hydrogen-deficient (Xapprox.0.1) envelope. The main-sequence lifetime is extended by a factor of 2--3. These models may be identified with Wolf-Rayet stars. Between these mass-loss extremes are intermediate models which appear as OBN stars on the main sequence. The mass-loss rates required for significant observable effects range from 8 x 10 -7 to 10 -5 M/sub sun/ yr -1 , depending on the initial stellar mass. It is found that observationally consistent mass-loss rates for stars with M> or =30 M/sub sun/ may be sufficiently high that these stars lose mass on a time scale more rapidly than their main-sequence core evolution time. This result implies that the helium cores resulting from the main-sequence evolution of these massive stars may all be very similar to that of a star of Mapprox.30 M/sub sun/ regardless of the zero-age mass

  4. Supernovae from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1986-01-01

    Wolf-Rayet stars are known to originate from the most massive stars. Under the assumption that these stripped stars explode at the end of their evolution through the same instability mechanism as type II supernovae, we calculate their light curve. The latter is found to be quite similar to the typical SN I light curves but is fainter by about 2 magnitudes. A detailed study of its shape leads to identify the WR supernovae with the SNIp (or SNIb) subclass. The more massive WR stars should explode via the e + e - pair production mechanism, with negligible 56 Ni formation. Their rather dim light curve is predicted to have a ∼ 2 month plateau and afterwards a very sharp decline. A delayed manifestation of such an event might be the Cas A remnant

  5. Diffuse remnants of supernova explosions of moving massive stars

    Science.gov (United States)

    Gvaramadze, V. V.

    The modification of the ambient interstellar medium by the wind of massive stars (the progenitors of most of supernovae) results in that the structure and evolution of diffuse supernova remnants (SNRs) significantly deviate from those derived from standard models of SNRs based of the Sedov-Taylor solution. The stellar proper motion and the regular interstellar magnetic field affect the symmetry of the processed medium and cause the SNR to be non-spherically-symmetric. We show that taking into account these effects allows us to explain the diverse morphologies of the known SNRs (the particular attention is paid to the elongated axisymmetric SNRs and the SNRs consisting of two partially overlapping shells) and to infer the ``true" supernova explosion sites in some peculiar SNRs (therefore to search for new neutron stars associated with them).

  6. High-precision atmospheric parameter and abundance determination of massive stars, and consequences for stellar and Galactic evolution

    International Nuclear Information System (INIS)

    Nieva, Maria-Fernanda; Przybilla, Norbert; Irrgang, Andreas

    2011-01-01

    The derivation of high precision/accuracy parameters and chemical abundances of massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical evolution. We concentrate on the study of OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ∼6 to 25 solar masses and a range in effective temperature from ∼8000 to 35 000 K. The minimization of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum analysis technique employing a robust non-LTE line formation allows precise atmospheric parameters of massive stars to be derived, achieving 1σ-uncertainties as low as 1% in effective temperature and ∼0.05–0.10 dex in surface gravity. Consequences on the behaviour of the chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star evolution and Galactic chemical evolution, showing tight relations covered in previous work by too large statistical and systematic uncertainties. The spectral analysis of larger star samples, like from the upcoming Gaia-ESO survey, may benefit from these findings.

  7. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  8. The VLT-FLAMES Tarantula Survey. III. A very massive star in apparent isolation from the massive cluster R136

    NARCIS (Netherlands)

    Bestenlehner, J.M.; Vink, J.S.; Gräfener, G.; Najarro, F.; Evans, C.J.; Bastian, N.; Bonanos, A.Z.; Bressert, E.; Crowther, P.A.; Doran, E.; Friedrich, K.; Hénault-Brunet, V.; Herrero, A.; de Koter, A.; Langer, N.; Lennon, D.J.; Maíz Apellániz, J.; Sana, H.; Soszynski, I.; Taylor, W.D.

    2011-01-01

    VFTS 682 is located in an active star-forming region, at a projected distance of 29 pc from the young massive cluster R136 in the Tarantula Nebula of the Large Magellanic Cloud. It was previously reported as a candidate young stellar object, and more recently spectroscopically revealed as a

  9. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  10. Probing the ejecta of evolved massive stars in transition A VLT/SINFONI K-band survey

    Czech Academy of Sciences Publication Activity Database

    Oksala, Mary E.; Kraus, Michaela; Cidale, L.S.; Muratore, M.F.; Borges Fernandes, M.

    2013-01-01

    Roč. 558, October (2013), A17/1-A17/20 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GAP209/11/1198; GA MŠk 7AMB12AR021 Institutional support: RVO:67985815 Keywords : infrared stars * spectroscopic techniques * massive stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  11. KMOS"3"D Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7

    International Nuclear Information System (INIS)

    Belli, Sirio; Genzel, Reinhard; Förster Schreiber, Natascha M.; Wisnioski, Emily; Wilman, David J.; Mendel, J. Trevor; Beifiori, Alessandra; Bender, Ralf; Burkert, Andreas; Chan, Jeffrey; Davies, Rebecca L.; Davies, Ric; Fabricius, Maximilian; Fossati, Matteo; Galametz, Audrey; Lang, Philipp; Lutz, Dieter; Wuyts, Stijn; Brammer, Gabriel B.; Momcheva, Ivelina G.

    2017-01-01

    We explore the H α emission in the massive quiescent galaxies observed by the KMOS"3"D survey at 0.7 < z < 2.7. The H α line is robustly detected in 20 out of 120 UVJ -selected quiescent galaxies, and we classify the emission mechanism using the H α line width and the [N ii]/H α line ratio. We find that AGNs are likely to be responsible for the line emission in more than half of the cases. We also find robust evidence for star formation activity in nine quiescent galaxies, which we explore in detail. The H α kinematics reveal rotating disks in five of the nine galaxies. The dust-corrected H α star formation rates are low (0.2–7 M _⊙ yr"−"1), and place these systems significantly below the main sequence. The 24 μ m-based, infrared luminosities, instead, overestimate the star formation rates. These galaxies present a lower gas-phase metallicity compared to star-forming objects with similar stellar mass, and many of them have close companions. We therefore conclude that the low-level star formation activity in these nine quiescent galaxies is likely to be fueled by inflowing gas or minor mergers, and could be a sign of rejuvenation events.

  12. A TIDALLY DESTRUCTED MASSIVE PLANET AS THE PROGENITOR OF THE TWO LIGHT PLANETS AROUND THE sdB STAR KIC 05807616

    International Nuclear Information System (INIS)

    Bear, Ealeal; Soker, Noam

    2012-01-01

    We propose that the two newly detected Earth-size planets around the hot B subdwarf star KIC 05807616 are remnant of the tidally destructed metallic core of a massive planet. A single massive gas-giant planet was spiralling-in inside the envelope of the red giant branch star progenitor of the extreme horizontal branch (EHB) star KIC 05807616. The released gravitational energy unbound most of the stellar envelope, turning it into an EHB star. The massive planet reached the tidal-destruction radius of ∼1 R ☉ from the core, where the planet's gaseous envelope was tidally removed. In our scenario, the metallic core of the massive planet was tidally destructed into several Earth-like bodies immediately after the gaseous envelope of the planet was removed. Two, and possibly more, Earth-size fragments survived at orbital separations of ∼> 1 R ☉ within the gaseous disk. The bodies interact with the disk and among themselves, and migrated to reach orbits close to a 3:2 resonance. These observed planets can have a planetary magnetic field about 10 times as strong as that of Earth. This strong magnetic field can substantially reduce the evaporation rate from the planets and explain their survivability against the strong UV radiation of the EHB star.

  13. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    International Nuclear Information System (INIS)

    East, William E.

    2014-01-01

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  14. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    Energy Technology Data Exchange (ETDEWEB)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States)

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  15. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    International Nuclear Information System (INIS)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P.

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  16. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  17. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  18. Supernovae from massive stars with extended tenuous envelopes

    Science.gov (United States)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  19. Nucleosynthesis and remnants in massive stars of solar metallicity

    International Nuclear Information System (INIS)

    Woosley, S.E.; Heger, A.

    2007-01-01

    Hans Bethe contributed in many ways to our understanding of the supernovae that happen in massive stars, but, to this day, a first principles model of how the explosion is energized is lacking. Nevertheless, a quantitative theory of nucleosynthesis is possible. We present a survey of the nucleosynthesis that occurs in 32 stars of solar metallicity in the mass range 12-120M sun . The most recent set of solar abundances, opacities, mass loss rates, and current estimates of nuclear reaction rates are employed. Restrictions on the mass cut and explosion energy of the supernovae based upon nucleosynthesis, measured neutron star masses, and light curves are discussed and applied. The nucleosynthetic results, when integrated over a Salpeter initial mass function (IMF), agree quite well with what is seen in the sun. We discuss in some detail the production of the long lived radioactivities, 26 Al and 60 Fe, and why recent model-based estimates of the ratio 60 Fe/ 26 Al are overly large compared with what satellites have observed. A major source of the discrepancy is the uncertain nuclear cross sections for the creation and destruction of these unstable isotopes

  20. Ca II H and K emission from late-type stars

    International Nuclear Information System (INIS)

    Middlekoop, F.

    1982-01-01

    This thesis is based on a study of the Ca II H and K emission features of late main-sequence stars. In Chapter II it is shown that rotation periods can be determined from a modulation in the Ca II H and K signal for many stars in a broad range of spectral types. In Chapter III it is shown that a clear correlation exists between Ca II H and K emission and rotational velocity in active main-sequence stars. There is an indication for a (probably colour-dependent) critical velocity at which the Ca II H and K emission suddenly drops. Chapter IV discusses the dependence of Ca II H and K emission on the rotation rate for evolved stars. (Auth./C.F.)

  1. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  2. KMOS{sup 3D} Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Sirio; Genzel, Reinhard; Förster Schreiber, Natascha M.; Wisnioski, Emily; Wilman, David J.; Mendel, J. Trevor; Beifiori, Alessandra; Bender, Ralf; Burkert, Andreas; Chan, Jeffrey; Davies, Rebecca L.; Davies, Ric; Fabricius, Maximilian; Fossati, Matteo; Galametz, Audrey; Lang, Philipp; Lutz, Dieter [Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Wuyts, Stijn [Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Brammer, Gabriel B.; Momcheva, Ivelina G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-05-20

    We explore the H α emission in the massive quiescent galaxies observed by the KMOS{sup 3D} survey at 0.7 < z < 2.7. The H α line is robustly detected in 20 out of 120 UVJ -selected quiescent galaxies, and we classify the emission mechanism using the H α line width and the [N ii]/H α line ratio. We find that AGNs are likely to be responsible for the line emission in more than half of the cases. We also find robust evidence for star formation activity in nine quiescent galaxies, which we explore in detail. The H α kinematics reveal rotating disks in five of the nine galaxies. The dust-corrected H α star formation rates are low (0.2–7 M {sub ⊙} yr{sup −1}), and place these systems significantly below the main sequence. The 24 μ m-based, infrared luminosities, instead, overestimate the star formation rates. These galaxies present a lower gas-phase metallicity compared to star-forming objects with similar stellar mass, and many of them have close companions. We therefore conclude that the low-level star formation activity in these nine quiescent galaxies is likely to be fueled by inflowing gas or minor mergers, and could be a sign of rejuvenation events.

  3. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  4. Are Nuclear Star Clusters the Precursors of Massive Black Holes?

    Directory of Open Access Journals (Sweden)

    Nadine Neumayer

    2012-01-01

    Full Text Available We present new upper limits for black hole masses in extremely late type spiral galaxies. We confirm that this class of galaxies has black holes with masses less than 106M⊙, if any. We also derive new upper limits for nuclear star cluster masses in massive galaxies with previously determined black hole masses. We use the newly derived upper limits and a literature compilation to study the low mass end of the global-to-nucleus relations. We find the following. (1 The MBH-σ relation cannot flatten at low masses, but may steepen. (2 The MBH-Mbulge relation may well flatten in contrast. (3 The MBH-Sersic n relation is able to account for the large scatter in black hole masses in low-mass disk galaxies. Outliers in the MBH-Sersic n relation seem to be dwarf elliptical galaxies. When plotting MBH versus MNC we find three different regimes: (a nuclear cluster dominated nuclei, (b a transition region, and (c black hole-dominated nuclei. This is consistent with the picture, in which black holes form inside nuclear clusters with a very low-mass fraction. They subsequently grow much faster than the nuclear cluster, destroying it when the ratio MBH/MNC grows above 100. Nuclear star clusters may thus be the precursors of massive black holes in galaxy nuclei.

  5. Wide-field Infrared Survey Explorer Observations of the Evolution of Massive Star-forming Regions

    OpenAIRE

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from th...

  6. Collisions Between Single Stars in Dense Clusters: Runaway Formation of a Massive Object

    NARCIS (Netherlands)

    Freitag, M.; Gürkan, M.A.; Rasio, F.A.

    2007-01-01

    Using Monte Carlo codes, we follow the collisional evolution of clusters in a variety of scenarios. We consider the conditions under which a cluster of main-sequence stars may undergo rapid core collapse due to mass segregation, thus entering a phase of runaway collisions, forming a very massive

  7. Millimetre wavelength methanol masers survey towards massive star forming regions

    Science.gov (United States)

    Umemoto, T.; Mochizuki, N.; Shibata, K. M.; Roh, D.-G.; Chung, H.-S.

    2007-03-01

    We present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above -25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.

  8. ENHANCED STAR FORMATION OF LESS MASSIVE GALAXIES IN A PROTOCLUSTER AT z = 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Kodama, Tadayuki [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Tanaka, Ichi; Koyama, Yusei [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Shimakawa, Rhythm; Suzuki, Tomoko L.; Yamamoto, Moegi [Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), Mitaka, Tokyo 181-8588 (Japan); Tadaki, Ken-ichi, E-mail: masao.hayashi@nao.ac.jp [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany)

    2016-08-01

    We investigate a correlation between star formation rate (SFR) and stellar mass for H α emission-line galaxies (HAEs) in one of the richest protoclusters ever known at z∼2.5, the USS 1558-003 protocluster. This study is based on a 9.7 hr narrowband imaging data with MOIRCS on the Subaru telescope. We are able to construct a sample in combination with additional H -band data taken with WFC3 on the Hubble Space Telescope , of 100 HAEs reaching the dust-corrected SFRs down to 3 M {sub ⊙} yr{sup −1} and the stellar masses down to 10{sup 8.0} M {sub ⊙}. We find that while the star-forming galaxies with ≳10{sup 9.3} M {sub ⊙} are located on the universal SFR-mass main sequence (MS) irrespective of the environment, less massive star-forming galaxies with ≲10{sup 9.3} M {sub ⊙} show a significant upward scatter from the MS in this protocluster. This suggests that some less massive galaxies are in a starburst phase, although we do not know yet if this is due to environmental effects.

  9. Evolution of massive stars with mass loss: surface abundances

    International Nuclear Information System (INIS)

    Greggio, L.

    1984-01-01

    The location of theoretical stellar models in the upper part of the Hertzsprung-Russell diagram depends on a variety of poorly understood physical processes which may occur during the evolution of massive stars. The comparison between theoretical predictions and observations of the surface chemical composition of these objects can help in understanding their evolution and to set more stringent limits to the mentioned parameters. To this end, evolutionary sequences corresponding to 20, 40 and 60 solar masses have been computed up to core He exhaustion, following in detail the abundance variations of CNO, Ne and Mg isotopes. (Auth.)

  10. FROM THE CONVERGENCE OF FILAMENTS TO DISK-OUTFLOW ACCRETION: MASSIVE STAR FORMATION IN W33A

    International Nuclear Information System (INIS)

    Galvan-Madrid, Roberto; Zhang Qizhou; Keto, Eric; Ho, Paul T. P.; Pineda, Jaime E.; Zapata, Luis A.; RodrIguez, Luis F.; Vazquez-Semadeni, Enrique

    2010-01-01

    Interferometric observations of the W33A massive star formation region, performed with the Submillimeter Array and the Very Large Array at resolutions from 5'' (0.1 pc) to 0.''5 (0.01 pc), are presented. Our three main findings are: (1) parsec-scale, filamentary structures of cold molecular gas are detected. Two filaments at different velocities intersect in the zone where the star formation is occurring. This is consistent with triggering of the star formation activity by the convergence of such filaments, as predicted by numerical simulations of star formation initiated by converging flows. (2) The two dusty cores (MM1 and MM2) at the intersection of the filaments are found to be at different evolutionary stages, and each of them is resolved into multiple condensations. MM1 and MM2 have markedly different temperatures, continuum spectral indices, molecular-line spectra, and masses of both stars and gas. (3) The dynamics of the 'hot-core' MM1 indicates the presence of a rotating disk in its center (MM1-Main) around a faint free-free source. The stellar mass is estimated to be ∼10 M sun . A massive molecular outflow is observed along the rotation axis of the disk.

  11. The Reliability of [C II] as a Star Formation Rate Indicator

    Directory of Open Access Journals (Sweden)

    De Looze Ilse

    2011-09-01

    Full Text Available We present a calibration of the star formation rate (SFR as a function of the [C II] 157.74 μm luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW≤10 Å or ultra luminous galaxies (LTIR ≥1012 L⊙ should be handled with caution, since these objects show a non-linearity in the L[C II]-to-LFIR ratio as a function of LFIR (and thus, their star formation activity. Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  12. Effect of mass loss on the chemical yields from massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Caimmi, R [Padua Univ. (Italy). Istituto di Astronomia

    1979-01-01

    Recent results on the calculation of the chemical yields from massive stars, are rediscussed by taking into account the occurrence of mass loss by stellar wind during the core H- and He-burning phases. The new yields are found to be compatible with the observed distribution of chemical abundances in the solar system, except for He. The net enrichment of several elements over the galaxy's lifetime is found to be consistent with the current estimate of the star formation rate, if we adopt a two phase process of galaxy formation (halodisk). The relative He to heavy element enrichment rate ..delta..Y/..delta..Z turns out to agree with the observational value when mass loss by stellar wind is taken into account.

  13. Big Fish in Small Ponds: massive stars in the low-mass clusters of M83

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J. E.; Calzetti, D.; McElwee, Sean [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Chandar, R. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Elmegreen, B. G. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Kim, Hwihyun [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Lee, J. C.; Whitmore, B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); O' Connell, R. W., E-mail: jandrews@astro.umass.edu, E-mail: callzetti@astro.umass.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2014-09-20

    We have used multi-wavelength Hubble Space Telescope WFC3 data of the starbursting spiral galaxy M83 in order to measure variations in the upper end of the stellar initial mass function (uIMF) using the production rate of ionizing photons in unresolved clusters with ages ≤ 8 Myr. As in earlier papers on M51 and NGC 4214, the uIMF in M83 is consistent with a universal IMF, and stochastic sampling of the stellar populations in the ∼<10{sup 3} M {sub ☉} clusters are responsible for any deviations in this universality. The ensemble cluster population, as well as individual clusters, also imply that the most massive star in a cluster does not depend on the cluster mass. In fact, we have found that these small clusters seem to have an over-abundance of ionizing photons when compared to an expected universal or truncated IMF. This also suggests that the presence of massive stars in these clusters does not affect the star formation in a destructive way.

  14. Inferring the star-formation histories of the most massive and passive early-type galaxies at z < 0.3

    Science.gov (United States)

    Citro, Annalisa; Pozzetti, Lucia; Moresco, Michele; Cimatti, Andrea

    2016-07-01

    Context. In the Λ cold dark matter (ΛCDM) cosmological framework, massive galaxies are the end-points of the hierarchical evolution and are therefore key probes for understanding how the baryonic matter evolves within the dark matter halos. Aims: The aim of this work is to use the archaeological approach in order to infer the stellar population properties and star formation histories of the most massive (M > 1010.75 M⊙) and passive early-type galaxies (ETGs) at 0 tests have been performed to assess the reliability of STARLIGHT to retrieve the evolutionary properties of the ETG stellar populations such as the age, metallicity and star formation history. The results indicate that these properties can be derived with accuracy better than 10% at S/N ≳ 10-20, and also that the procedure of stacking galaxy spectra does not introduce significant biases into their retrieval. Results: Based on our spectral analysis, we found that the ETGs of our sample are very old systems - the most massive ones are almost as old as the Universe. The stellar metallicities are slightly supersolar, with a mean of Z ~ 0.027 ± 0.002 and Z ~ 0.029 ± 0.0015 (depending on the spectral synthesis models used for the fit) and do not depend on redshift. Dust extinction is very low, with a mean of AV ~ 0.08 ± 0.030 mag and AV ~ 0.16 ± 0.048 mag. The ETGs show an anti-hierarchical evolution (downsizing) where more massive galaxies are older. The SFHs can be approximated with a parametric function of the form SFR(t) ∝ τ- (c + 1)tc exp(-t/τ), with typical short e-folding times of τ ~ 0.6-0.8 Gyr (with a dispersion of ±0.1 Gyr) and c ~ 0.1 (with a dispersion of ±0.05). Based on the reconstructed SFHs, most of the stellar mass (≳75%) was assembled by z ~ 5 and ≲4% of it can be ascribed to stellar populations younger than ~1 Gyr. The inferred SFHs are also used to place constraints on the properties and evolution of the ETG progenitors. In particular, the ETGs of our samples should have

  15. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    International Nuclear Information System (INIS)

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.; Joint Institute for Laboratory Astrophysics, Boulder, CO; Computer Sciences Corp., El Segundo, CA; Naval Observatory, Flagstaff, AZ)

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references

  16. A NEW CLASS OF LUMINOUS TRANSIENTS AND A FIRST CENSUS OF THEIR MASSIVE STELLAR PROGENITORS

    International Nuclear Information System (INIS)

    Thompson, Todd A.; Prieto, Jose L.; Stanek, K. Z.; Beacom, John F.; Kochanek, Christopher S.; Kistler, Matthew D.

    2009-01-01

    The progenitors of SN 2008S and the 2008 luminous transient in NGC 300 were deeply dust-enshrouded massive stars, with extremely red mid-infrared (MIR) colors and relatively low bolometric luminosities (∼5 x 10 4 L sun ). The transients were optically faint compared to normal core-collapse supernovae (ccSNe), with peak absolute visual magnitudes of -13 ∼> M V ∼> -15, and their spectra exhibit narrow Balmer and [Ca II] emission lines. These events are unique among transient-progenitor pairs and hence constitute a new class. Additional members of this class may include the M85 transient, SN 1999bw, 2002bu, and others. Whether they are true supernovae or bright massive-star eruptions, we argue that their rate is of order ∼20% of the ccSN rate in star-forming galaxies. This fact is remarkable in light of the observation that a very small fraction of all massive stars in any one galaxy, at any moment, have the infrared colors of the progenitors of SN 2008S and the NGC 300 transient. We show this by extracting MIR and optical luminosity, color, and variability properties of massive stars in M33 using archival imaging. We find that the fraction of massive stars with colors consistent with the progenitors of SN 2008S and the NGC 300 transient is ∼ -4 . In fact, only ∼ 4 yr before explosion, be it death or merely eruption. We discuss the implications of this finding for the evolution and census of 'low-mass' massive stars (i.e., ∼8-12 M sun ), and we connect it with theoretical discussions of electron-capture supernovae (ecSNe) near this mass range. Other potential mechanisms, including the explosive birth of massive white dwarfs and massive star outbursts, are also discussed. A systematic census with (warm) Spitzer of galaxies in the local universe (D ∼< 10 Mpc) for analogous progenitors would significantly improve our knowledge of this channel to massive stellar explosions, and potentially to others with obscured progenitors.

  17. Radiative Feedback from Massive Stars as Traced by Multiband Imaging and Spectroscopic Mosaics

    Science.gov (United States)

    Tielens, Alexander; "PDRs4ever" team

    2018-06-01

    Massive stars disrupt their natal molecular cloud material by dissociating molecules, ionizing atoms and molecules, and heating the gas and dust. These processes drive the evolution of interstellar matter in our Galaxy and throughout the Universe from the era of vigorous star formation at redshifts of 1-3, to the present day. Much of this interaction occurs in Photo-Dissociation Regions (PDRs) where far-ultraviolet photons of these stars create a largely neutral, but warm region of gas and dust. PDR emission dominates the IR spectra of star-forming galaxies and also provides a unique tool to study in detail the physical and chemical processes that are relevant for inter- and circumstellar media including diffuse clouds, molecular cloud and protoplanetary disk surfaces, globules, planetary nebulae, and starburst galaxies.We propose to provide template datasets designed to identify key PDR characteristics in the full 1-28 μm JWST spectra in order to guide the preparation of Cycle 2 proposals on star-forming regions in our Galaxy and beyond. We plan to obtain the first spatially resolved, high spectral resolution IR observations of a PDR using NIRCam, NIRSpec and MIRI. We will observe a nearby PDR with well-defined UV illumination in a typical massive star-forming region. JWST observations will, for the first time, spatially resolve and perform a tomography of the PDR, revealing the individual IR spectral signatures from the key zones and sub-regions within the ionized gas, the PDR and the molecular cloud. These data will test widely used theoretical models and extend them into the JWST era. We will assist the community interested in JWST observations of PDRs through several science-enabling products (maps of spectral features, template spectra, calibration of narrow/broad band filters in gas lines and PAH bands, data-interpretation tools e.g. to infer gas physical conditions or PAH and dust characteristics). This project is supported by a large international team of

  18. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Proca stars: Gravitating Bose–Einstein condensates of massive spin 1 particles

    Directory of Open Access Journals (Sweden)

    Richard Brito

    2016-01-01

    Full Text Available We establish that massive complex Abelian vector fields (mass μ can form gravitating solitons, when minimally coupled to Einstein's gravity. Such Proca stars (PSs have a stationary, everywhere regular and asymptotically flat geometry. The Proca field, however, possesses a harmonic time dependence (frequency w, realizing Wheeler's concept of geons for an Abelian spin 1 field. We obtain PSs with both a spherically symmetric (static and an axially symmetric (stationary line element. The latter form a countable number of families labelled by an integer m∈Z+. PSs, like (scalar boson stars, carry a conserved Noether charge, and are akin to the latter in many ways. In particular, both types of stars exist for a limited range of frequencies and there is a maximal ADM mass, Mmax, attained for an intermediate frequency. For spherically symmetric PSs (rotating PSs with m=1,2,3, Mmax≃1.058MPl2/μ (Mmax≃1.568,2.337,3.247MPl2/μ, slightly larger values than those for (mini-boson stars. We establish perturbative stability for a subset of solutions in the spherical case and anticipate a similar conclusion for fundamental modes in the rotating case. The discovery of PSs opens many avenues of research, reconsidering five decades of work on (scalar boson stars, in particular as possible dark matter candidates.

  20. Massive stars, x-ray ridge, and galactic 26Al gamma-ray line emission

    International Nuclear Information System (INIS)

    Montmerle, T.

    1986-07-01

    Massive stars interact with their parent molecular cloud by means of their ionizing flux and strong winds, thereby creating giant, hollow HII regions. To account for the observed structure of these HII regions, it appears necessary that all the wind energy be dissipated. Dorland and Montmerle have recently proposed a new dissipation mechanism, in the process, diffuse hard X-rays are emitted. If the observed galactic X-ray ''ridge'' results from this process on a galactic scale, it can be accounted for by the interaction of ∼3000 Wolf-Rayet stars (mostly within a ∼6.5 kpc ring) with their surrounding interstellar gas. This result is essentially consistent with the suggestion by Prantzos and Casse that the galactic 26 Al γ-ray line emission originates in Wolf-Rayet stars

  1. On the Ultimate Fate of Massive Neutron Stars in an Ever Expanding Universe

    Science.gov (United States)

    Hujeirat, Ahmad A.

    2018-01-01

    General theory of relativity predicts the central densities of massive neutron stars (-MANs) to be much larger than the nuclear density. In the absence of energy production, the lifetimes of MANs should be shorter that their low-mass counterparts. Yet neither black holes nor neutron stars, whose masses are between two and five solar masses have ever been observed. Also, it is not clear what happened to the old MANs that were created through the collapse of first generation of stars shortly after the Big Bang. In this article, it is argued that MANs must end as completely invisible objects, whose cores are made of incompressible quark-gluon-superfluids and that their effective masses must have doubled through the injection of dark energy by a universal scalar field at the background of supranuclear density. It turns out that recent glitch observations of pulsars and young neutron star systems and data from particle collisions at the LHC and RHIC are in line with the presen! t scenario.

  2. MASSIVE STAR FORMATION IN THE LMC. I. N159 AND N160 COMPLEXES

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Michael S.; Jones, Terry J.; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy 116 Church St SE, University of Minnesota, Minneapolis, MN 55455 (United States); Helton, L. Andrew [USRA–SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2017-01-10

    We present images and spectral energy distributions (SEDs) of massive young stellar objects (YSOs) in three star-forming H ii regions of the Large Magellanic Cloud: N159A, N159 Papillon, and N160. We use photometry from SOFIA/FORCAST at 25.3–37.1 μ m to constrain model fits to the SEDs and determine luminosities, ages, and dust content of the embedded YSOs and their local environments. By placing these sources on mid-infrared color–magnitude and color–color diagrams, we analyze their dust properties and consider their evolutionary status. Since each object in the FORCAST images has an obvious bright near-infrared counterpart in Spitzer Space Telescope images, we do not find any evidence for new, very cool, previously undiscovered Class 0 YSOs. Additionally, based on its mid-infrared colors and model parameters, N159A is younger than N160 and the Papillon. The nature of the first extragalactic protostars in N159, P1, and P2, is also discussed.

  3. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Sean M. [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Chatzopoulos, Emmanouil [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Arnett, W. David [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Timmes, F. X., E-mail: smc@tapir.caltech.edu [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States)

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impact of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.

  4. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    International Nuclear Information System (INIS)

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David; Timmes, F. X.

    2015-01-01

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s −1 . We examine the impact of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars

  5. Impact of the uncertainty in α-captures on {sup 22}Ne on the weak s-process in massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, N. [Astrophysics group, EPSAM, Keele University, Keele, ST5 1BH, UK and NuGrid Project (United Kingdom); Hirschi, R. [Astrophysics group, EPSAM, Keele University, Keele, ST5 1BH, UK and Kavli IPMU (WPI), University of Tokyo, Kashiwa, 277-8583 (Japan); Pignatari, M. [NuGrid Project and Department of Physics, University of Basel, Basel, CH-4056 (Switzerland); Herwig, F. [NuGrid Project and Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Beard, M. [NuGrid Project and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Imbriani, G. [Dipartiment di Scienze Fisiche, Universita di Napoli Federico II, Napoli (Italy); Görres, J.; Boer, R. J. de; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-05-02

    Massive stars at solar metallicity contribute to the production of heavy elements with atomic masses between A = 60 and A = 90 via the so-called weak s-process (which takes place during core He and shell C burning phases). Furthermore, recent studies have shown that rotation boosts the s-process production in massive stars at low metallicities, with a production that may reach the barium neutron-magic peak. These results are very sensitive to neutron source and neutron poison reaction rates. For the weak s-process, the main neutron source is the reaction {sup 22}Ne(α,n){sup 25}Mg, which is in competition with {sup 22}Ne(α,γ){sup 26}Mg. The uncertainty of both rates strongly affects the nucleosynthesis predictions from stellar model calculations. In this study, we investigate the impact of the uncertainty in α-captures on {sup 22}Ne on the s-process nucleosynthesis in massive stars both at solar and at very low metallicity. For this purpose, we post-process, with the Nugrid mppnp code, non-rotating and rotating evolutionary models 25M{sub ⊙} stars at two different metallicities: Z = Z{sub ⊙} and Z = 10{sup −5}Z{sub ⊙}, respectively. Our results show that uncertainty of {sup 22}Ne(α,n){sup 25}Mg and {sup 22}Ne(α,γ){sup 26}Mg rates have a significant impact on the final elemental production especially for metal poor rotating models. Beside uncertainties in the neutron source reactions, for fast rotating massive stars at low metallicity we revisit the impact of the neutron poisoning effect by the reaction chain {sup 16}O(n,γ){sup 17}O(α,γ){sup 21}Ne, in competition with the {sup 17}O(α,n){sup 20}Ne, recycling the neutrons captured by {sup 16}O.

  6. Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    Science.gov (United States)

    Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.

    2017-07-01

    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope

  7. The comparison of physical properties derived from gas and dust in a massive star-forming region

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2014-05-10

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH{sub 3} on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH{sub 3} abundance, χ{sub NH{sub 3}} = 4.6 × 10{sup –8}. In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T {sub dust,} {sub avg} ∼ 11.6 ± 0.2 K versus T {sub gas,} {sub avg} ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH{sub 3}, which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  8. The comparison of physical properties derived from gas and dust in a massive star-forming region

    International Nuclear Information System (INIS)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy; Dunham, Miranda; Longmore, Steve

    2014-01-01

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH 3 on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH 3 abundance, χ NH 3 = 4.6 × 10 –8 . In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T dust, avg ∼ 11.6 ± 0.2 K versus T gas, avg ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH 3 , which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  9. Documentation for delivery of Star Tracker to ADEOS II

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Denver, Troelz

    1999-01-01

    The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the Flight Hardware of the Star Tracker for the Japanese satellite ADEOS II.......The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the Flight Hardware of the Star Tracker for the Japanese satellite ADEOS II....

  10. A RING/DISK/OUTFLOW SYSTEM ASSOCIATED WITH W51 NORTH: A VERY MASSIVE STAR IN THE MAKING

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Schilke, Peter; Menten, Karl; Ho, Paul T. P.; Rodriguez, Luis F.; Palau, Aina; Garrod, Robin T.

    2009-01-01

    Sensitive and high angular resolution (∼0.''4) SO 2 [22 2,20 → 22 1,21 ] and SiO[5 → 4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) toward the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M sun ) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M sun ) and collimated (∼14 0 ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity on the order of 10 5 L sun . A molecular hybrid local thermodynamic equilibrium model of a Keplerian and infalling disk with an inner cavity and a central stellar mass of more than 60 M sun agrees well with the SO 2 [22 2,20 → 22 1,21 ] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate-mass stars, might not be necessary for forming very massive stars.

  11. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Science.gov (United States)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  12. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L.

    2010-01-01

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 μm in the UBVIJHK s +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 μm in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  13. Massive stars and miniature robots: today's research and tomorrow's technologies

    Science.gov (United States)

    Taylor, William David

    2013-03-01

    This thesis documents the reduction of the VLT-FLAMES Tarantula Survey (VFTS) data set, whilst also describing the analysis for one of the serendipitous discoveries: the massive binary R139. This high-mass binary will provide an excellent future calibration point for stellar models, in part as it seems to defy certain expectations about its evolution. Out with the VFTS, a search for binary companions around a trio of B-type supergiants is presented. These stars are surrounded by nebulae that closely resemble the triple-ring structure associated with the poorly-understood SN1987A. Do these stars share a similar evolutionary fate? While strong evidence is found for periodic pulsations in one of the stars, there appears to be no indication of a short-period binary companion suggested in the literature. Gathering observations from a wide range of environments builds a fuller picture of massive stars, but the samples remain somewhat limited. The coming generation of extremely large telescopes will open new regions for studies like the VFTS. Fully utilising these remarkable telescopes will require many new technologies, and this thesis presents one such development project. For adaptive-optics corrected, multi-object instruments it will be necessary to position small pick-off mirrors in the telescope¿s focal plane to select the sub-fields on the sky. This could be most efficiently achieved if the mirrors were self-propelled, which has led to a miniature robot project called MAPS - the Micro Autonomous Positioning System. A number of robots have been built with a footprint of only 30 x 30mm. These wirelessly-controlled robots draw their power from the floor on which they operate and have shown the potential to be positioned to an accuracy of tens of microns. This thesis details much of the early design work and testing of the robots, and also the development of the camera imaging system used to determine the position of the robots. The MAPS project is ongoing and a

  14. The evolution of massive stars with mass loss: the H- and the He-burning phases

    International Nuclear Information System (INIS)

    Chieffi, Alessandro; Limongi, Marco

    2010-01-01

    The evolution of a massive star to its final fate is strongly modified by the efficient mass loss episodes it experiences during its lifetime. In the following, we will briefly summarize how the H- and the He- burning phases depend on the adopted mass loss rate.

  15. The stellar content of NGC 346 - A plethora of O stars in the SMC

    International Nuclear Information System (INIS)

    Massey, P.; Parker, J.W.; Garmany, C.D.

    1989-01-01

    The stellar content of NGC 346, the largest and brightest H II region in the SMC, was investigated using the results of CCD UBV photometry and spectroscopy. Spectra of 42 blue stars were classified, showing that 33 are of the O type, of which 11 are of type O6.5 or earlier, which is as many early-type O stars known in the rest of the SMC. The results identify 25-30 NGC 346 stars more massive than 25 solar masses, and six stars more massive than 40 solar masses, indicating that the upper-mass cutoff to the IMF is not lower in the SMC than in the Galaxy or the LMC. The presence of evolved 15 solar-mass stars in the NGC 346 indicates that some massive stars formed 15 million yr ago. The results of spatial distribution suggest that star formation began at the southwest side of the association and has spread to where the central cluster lies now, providing an example of sequential star formation in the SMC. 69 refs

  16. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    Science.gov (United States)

    Cescutti, G.; Valentini, M.; François, P.; Chiappini, C.; Depagne, E.; Christlieb, N.; Cortés, C.

    2016-11-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims: We discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods: We applied a standard one-dimensional (1D) LTE analysis to the spectrum of this star. We measured the abundances of 14 chemical elements; we computed the abundances for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, and Zn using equivalent widths; we obtained the abundances for C, Sr, and Ba by means of synthetic spectra generated by MOOG. Results: We find an abundance of [Fe/H] = -3.5 ±0.13 dex based on our high-resolution spectrum; this points to an iron content that is lower by a factor of three (0.5 dex) compared to that obtained by a low-resolution spectrum. The star has a [C/Fe] = 0.4 dex, and it is not carbon enhanced like most of the stars at this metallicity. Moreover, this star lies in the plane [Ba/Fe] versus [Fe/H] in a relatively unusual position, shared by a few other Galactic halo stars, which is only marginally explained by our past results. Conclusions: The comparison of the model results with the chemical abundance characteristics of this group of stars can be improved if we consider in our model the presence of faint supernovae coupled with rotating massive stars. These results seem to imply that rotating massive stars and faint supernovae scenarios are complementary to each other, and are both required in order to match the observed chemistry of the earliest phases of the chemical enrichment of the Universe. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 094.B-0781(A); P.I. G. Cescutti).

  17. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    Science.gov (United States)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  18. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    Science.gov (United States)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  19. Tables and intercomparisons of evolutionary sequences of models for massive stars

    International Nuclear Information System (INIS)

    Chin, Chaowen; Stothers, R.B.

    1990-01-01

    Tables of evolutionary sequences of models for massive stars have been prepared for a variety of physical input parameters that are normally treated as free. These parameters include the interior convective mixing scheme, the mixing length in the outer convective envelope, the rate of stellar-wind mass loss, the initial stellar mass, and the initial chemical composition. Ranges of specified initial mass and initial chemical composition are M = 10-120 solar masses, Xe = 0.602-0.739, and Ze = 0.021-0.044. The tables cover evolution of the star from the ZAMS to either the end of core H burning or the end of core He burning. Differences among the evolutionary tracks are illustrated primarily in terms of the interior mixing scheme, since the amount and timing of stellar wind mass loss are still very uncertain for initial masses above about 30 solar masses. 52 refs

  20. BVR PHOTOMETRY OF SUPERGIANT STARS IN HOLMBERG II

    Directory of Open Access Journals (Sweden)

    Y.-J. Sohn

    2006-03-01

    Full Text Available We report the photometric properties in BVR bands for the resolved bright supergiant stars in the dwarf galaxy Holmberg II. The color-magnitude diagrams and color-color diagram of 374 resolved stars indicate that the majority of the member stars are supergiant stars with a wide range of spectral type between B-K. A comparison with theoretical evolutionary tracks indicates that the supergiant stars in the observed field have progenitor masses between ~10M_⨀ and 20M_⨀. The exponent of luminosity function in V is in good agreement with those of the Small and Large Magellanic Clouds.

  1. Stellar neutron sources and s-process in massive stars

    Science.gov (United States)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  2. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    Science.gov (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  3. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.; Broos, Patrick S.; Townsley, Leisa K.; Luhman, Kevin L. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Naylor, Tim [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); Povich, Matthew S. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.

  4. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Energy Technology Data Exchange (ETDEWEB)

    De Buizer, James M.; Shuping, Ralph [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Liu, Mengyao; Tan, Jonathan C.; Staff, Jan E.; Tanaka, Kei E. I. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Beltrán, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Whitney, Barbara [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States)

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  5. Hyper-massive cloud, shock and stellar formation efficiency

    International Nuclear Information System (INIS)

    Louvet, Fabien

    2014-01-01

    O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarios suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine

  6. LINEAR POLARIZATION OF CLASS I METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Kang, Ji-hyun; Byun, Do-Young; Kim, Kee-Tae; Kim, Jongsoo; Lyo, A-Ran; Vlemmings, W. H. T.

    2016-01-01

    Class I methanol masers are found to be good tracers of the interaction between outflows from massive young stellar objects with their surrounding media. Although polarization observations of Class II methanol masers have been able to provide information about magnetic fields close to the central (proto)stars, polarization observations of Class I methanol masers are rare, especially at 44 and 95 GHz. We present the results of linear polarization observations of 39 Class I methanol maser sources at 44 and 95 GHz. These two lines are observed simultaneously with one of the 21 m Korean VLBI Network telescopes in single-dish mode. Approximately 60% of the observed sources have fractional polarizations of a few percent in at least one transition. This is the first reported detection of linear polarization of the 44 GHz methanol maser. The two maser transitions show similar polarization properties, indicating that they trace similar magnetic environments, although the fraction of the linear polarization is slightly higher at 95 GHz. We discuss the association between the directions of polarization angles and outflows. We also discuss some targets having different polarization properties at both lines, including DR21(OH) and G82.58+0.20, which show the 90° polarization angle flip at 44 GHz.

  7. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; König, C.; Yuan, Y.; He, Y. X.; Li, D. L.

    2017-02-01

    Context. For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature. Aims: We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps. Methods: Three 218 GHz transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO were observed with the 15 m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202 and 321-220/303-202 ratios. Results: The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 ± 9 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2, 2)/(1, 1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2, 2)/(1, 1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions. The reduced spectra (FITS files) are only

  8. Massive stellar content of some Galactic supershells

    Science.gov (United States)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  9. Gamma-ray line emission from 26Al produced by Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Prantzos, N.; Casse, M.; Gros, M.; Arnould, M.

    1985-08-01

    The recent satellite observations of the 1.8 MeV line from the decay of 26 Al has given a new impetus to the study of the nucleosynthesis of 26 Al. In this communication we discuss the production and ejection of 26 Al by massive mass-losing stars (Of and WR stars), in the light of recent stellar models. We also derive the longitude distribution of the 26 Al gamma-ray line emission produced by the galactic collection of WR stars, based on various estimates of their radial distribution. This longitude profile provides i) a specific signature of massive stars on the background of other potential 26 Al sources, as novae, supernovae, certain red giants and possibly AGB stars and ii) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments

  10. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    International Nuclear Information System (INIS)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas

  11. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Muller, Erik; Kawamura, Akiko; Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie; Sewiło, Marta; Whitney, Barbara A.; Meade, Marilyn R.; Fukui, Yasuo; Madden, Suzanne C.; Oliveira, Joana M.; Van Loon, Jacco Th.; Robitaille, Thomas P.

    2014-01-01

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M ☉ , <<45 M ☉ found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10 20 cm –2 , but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  12. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-H. Rosie; Indebetouw, Remy [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Muller, Erik; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Sewiło, Marta [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Whitney, Barbara A.; Meade, Marilyn R. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602 (Japan); Madden, Suzanne C. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Oliveira, Joana M.; Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Robitaille, Thomas P., E-mail: rchen@mpifr-bonn.mpg.de [Max Planck Institute for Astronomy, D-69117 Heidelberg (Germany)

    2014-04-20

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M {sub ☉}, <<45 M {sub ☉} found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10{sup 20} cm{sup –2}, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  13. Type II critical phenomena of neutron star collapse

    International Nuclear Information System (INIS)

    Noble, Scott C.; Choptuik, Matthew W.

    2008-01-01

    We investigate spherically symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially 'ingoing' velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma law equation of state. The initial values of (1) the amplitude of the velocity profile, and (2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Γ=2)--the observed type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.

  14. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    Science.gov (United States)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  15. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS

    International Nuclear Information System (INIS)

    Paxton, Bill; Cantiello, Matteo; Bildsten, Lars; Arras, Phil; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ☉ stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results

  16. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    Science.gov (United States)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  17. High-mass star formation possibly triggered by cloud-cloud collision in the H II region RCW 34

    Science.gov (United States)

    Hayashi, Katsuhiro; Sano, Hidetoshi; Enokiya, Rei; Torii, Kazufumi; Hattori, Yusuke; Kohno, Mikito; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Fukui, Yasuo

    2018-05-01

    We report on the possibility that the high-mass star located in the H II region RCW 34 was formed by a triggering induced by a collision of molecular clouds. Molecular gas distributions of the 12CO and 13CO J = 2-1 and 12CO J = 3-2 lines in the direction of RCW 34 were measured using the NANTEN2 and ASTE telescopes. We found two clouds with velocity ranges of 0-10 km s-1 and 10-14 km s-1. Whereas the former cloud is as massive as ˜1.4 × 104 M⊙ and has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter cloud, with a mass of ˜600 M⊙, which has not been recognized by previous observations, is distributed to just cover the bubble enclosed by the other cloud. The high-mass star with a spectral type of O8.5V is located near the boundary of the two clouds. The line intensity ratio of 12CO J = 3-2/J = 2-1 yields high values (≳1.0), suggesting that these clouds are associated with the massive star. We also confirm that the obtained position-velocity diagram shows a similar distribution to that derived by a numerical simulation of the supersonic collision of two clouds. Using the relative velocity between the two clouds (˜5 km s-1), the collisional time scale is estimated to be ˜0.2 Myr with the assumption of a distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ˜0.2 Myr via a triggering of a cloud-cloud collision.

  18. Bipolar H II regions produced by cloud-cloud collisions

    Science.gov (United States)

    Whitworth, Anthony; Lomax, Oliver; Balfour, Scott; Mège, Pierre; Zavagno, Annie; Deharveng, Lise

    2018-05-01

    We suggest that bipolar H II regions may be the aftermath of collisions between clouds. Such a collision will produce a shock-compressed layer, and a star cluster can then condense out of the dense gas near the center of the layer. If the clouds are sufficiently massive, the star cluster is likely to contain at least one massive star, which emits ionizing radiation, and excites an H II region, which then expands, sweeping up the surrounding neutral gas. Once most of the matter in the clouds has accreted onto the layer, expansion of the H II region meets little resistance in directions perpendicular to the midplane of the layer, and so it expands rapidly to produce two lobes of ionized gas, one on each side of the layer. Conversely, in directions parallel to the midplane of the layer, expansion of the H II region stalls due to the ram pressure of the gas that continues to fall towards the star cluster from the outer parts of the layer; a ring of dense neutral gas builds up around the waist of the bipolar H II region, and may spawn a second generation of star formation. We present a dimensionless model for the flow of ionized gas in a bipolar H II region created according to the above scenario, and predict the characteristics of the resulting free-free continuum and recombination-line emission. This dimensionless model can be scaled to the physical parameters of any particular system. Our intention is that these predictions will be useful in testing the scenario outlined above, and thereby providing indirect support for the role of cloud-cloud collisions in triggering star formation.

  19. Structure of massive star forming clumps from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.; Morgan, L.

    2014-01-01

    We present ammonia (1,1) and (2,2) emission maps of 61 high-mass star forming regions drawn from the Red MSX Source (RMS) Survey and observed with the Green Bank Telescope's K-Band Focal Plane Array. We use these observations to investigate the spatial distribution of the environmental conditions associated with this sample of embedded massive young stellar objects (MYSOs). Ammonia is an excellent high-density tracer of star-forming regions as its hyperfine structure allows relatively simple characterisation of the molecular environment. These maps are used to measure the column density, kinetic gas temperature distributions and velocity structure across these regions. We compare the distribution of these properties to that of the associated dust and mid-infrared emission traced by the ATLASGAL 870 micron emission maps and the Spitzer GLIMPSE IRAC images. We present a summary of these results and highlight some of more interesting finds.

  20. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  1. Do All O Stars Form in Star Clusters?

    Science.gov (United States)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  2. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  3. Massive binary stars and self-enrichment of Massive binary stars and self-enrichment of

    NARCIS (Netherlands)

    Izzard, R.G.; de Mink, S.E.; Pols, O.R.; Langer, N.; Sana, H.; de Koter, A.

    2013-01-01

    Globular clusters contain many stars with surface abundance patterns indicating contributions from hydrogen burning products, as seen in the anti-correlated elemental abundances of e.g. sodium and oxygen, and magnesium and aluminium. Multiple generations of stars can explain this phenomenon, with

  4. Radiative transfer modelling of W33A MM1: 3-D structure and dynamics of a complex massive star forming region

    Science.gov (United States)

    Izquierdo, Andrés F.; Galván-Madrid, Roberto; Maud, Luke T.; Hoare, Melvin G.; Johnston, Katharine G.; Keto, Eric R.; Zhang, Qizhou; de Wit, Willem-Jan

    2018-05-01

    We present a composite model and radiative transfer simulations of the massive star forming core W33A MM1. The model was tailored to reproduce the complex features observed with ALMA at ≈0.2 arcsec resolution in CH3CN and dust emission. The MM1 core is fragmented into six compact sources coexisting within ˜1000 au. In our models, three of these compact sources are better represented as disc-envelope systems around a central (proto)star, two as envelopes with a central object, and one as a pure envelope. The model of the most prominent object (Main) contains the most massive (proto)star (M⋆ ≈ 7 M⊙) and disc+envelope (Mgas ≈ 0.4 M⊙), and is the most luminous (LMain ˜ 104 L⊙). The model discs are small (a few hundred au) for all sources. The composite model shows that the elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament is reproduced by a parabolic trajectory with focus at the center of mass of the region. Radial collapse and fragmentation within this filament, as well as smaller filamentary flows between pairs of sources are proposed to exist. Our modelling supports an interpretation where what was once considered as a single massive star with a ˜103 au disc and envelope, is instead a forming stellar association which appears to be virialized and to form several low-mass stars per high-mass object.

  5. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    Science.gov (United States)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  6. The progenitors of local ultra-massive galaxies across cosmic time: from dusty star-bursting to quiescent stellar populations

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, Danilo; Marsan, Cemile Z. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden (Netherlands); Stefanon, Mauro [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); Brammer, Gabriel G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan); Fynbo, J. P. U.; Milvang-Jensen, Bo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dunlop, James S.; Buitrago, Fernando [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)

    2014-10-10

    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4 Gyr since z = 3 of the progenitors of local ultra-massive galaxies (log (M {sub star}/M {sub ☉}) ≈ 11.8; UMGs), providing a complete and consistent picture of how the most massive galaxies at z = 0 have assembled. By selecting the progenitors with a semi-empirical approach using abundance matching, we infer a growth in stellar mass of 0.56{sub −0.25}{sup +0.35} dex, 0.45{sub −0.20}{sup +0.16} dex, and 0.27{sub −0.12}{sup +0.08} dex from z = 3, z = 2, and z = 1, respectively, to z = 0. At z < 1, the progenitors of UMGs constitute a homogeneous population of only quiescent galaxies with old stellar populations. At z > 1, the contribution from star-forming galaxies progressively increases, with the progenitors at 2 < z < 3 being dominated by massive (M {sub star} ≈ 2 × 10{sup 11} M {sub ☉}), dusty (A {sub V} ∼ 1-2.2 mag), star-forming (SFR ∼ 100-400 M {sub ☉} yr{sup –1}) galaxies with a large range in stellar ages. At z = 2.75, ∼15% of the progenitors are quiescent, with properties typical of post-starburst galaxies with little dust extinction and strong Balmer break, and showing a large scatter in color. Our findings indicate that at least half of the stellar content of local UMGs was assembled at z > 1, whereas the remaining was assembled via merging from z ∼ 1 to the present. Most of the quenching of the star-forming progenitors happened between z = 2.75 and z = 1.25, in good agreement with the typical formation redshift and scatter in age of z = 0 UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since z = 3. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent with our findings.

  7. Chemical evolution, stellar nucleosynthesis and a variable star formation rate

    International Nuclear Information System (INIS)

    Olive, K.A.; Thielemann, F.K.; Truran, J.W.

    1986-04-01

    The effects of a decreasing star formation rate (SFR) on the galactic abundances of elements produced in massive stars (M ≥ 10 Msub solar). On the basis of a straightforward model of galactic evolution, a relation between the upper mass limit of type II supernovae (M/sub SN/) contributing to chemical evolution and the decline of the SFR (tau) is derived, when the oxygen abundance is determined only by massive stars. The additional requirement that all intermediate mass elements (Ne-Ti), which are also predominantly due to nucleosynthesis in massive stars, are produced in solar proportions leads to a unique value of M/sub SN/ and tau. The application of this method with abundance yields from Arnett (1978) and Woosley and Weaver (1986) resuults, however, in contradicting solutions: M/sub SN/ ≅ 45 Msub solar, tau = ∞, and M/sub SN/ ≅ 15 Msub solar, tau = 3 x 10 9 y. Thus, in order that this approach provide an effective probe of the SFR over the history of our galaxy it is essential that converging and more accurate predictions of the consequences of stellar and supernova nucleosynthesis will be forthcoming. 54 refs., 2 figs., 2 tabs

  8. Massive star populations in I Zw 18: A probe of stellar evolution in the early universe

    OpenAIRE

    Schaerer, Daniel; de Mello, Duilia; Leitherer, Claus; Heldmann, Jennifer

    1998-01-01

    We present a study of the gaseous and stellar emission in I Zw18, the most metal-poor star-forming galaxy known. Archival HST WFPC2 and FOS data have been used to analyze the spatial distribution of [OIII], Halpha, and HeII 4686. The latter is used to identify Wolf-Rayet stars found by ground-based spectroscopy and to locate nebular HeII emission. Most of the HeII emission is associated with the NW stellar cluster, displaced from the surrounding shell-like [OIII] and Halpha emission. We found...

  9. The formation of massive primordial stars in the presence of moderate UV backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S. [Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Grassi, T. [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen (Denmark); Spaans, M., E-mail: mlatif@astro.physik.uni-goettingen.de [Kapteyn Astronomical Institute, University of Groningen, 9700-AV Groningen (Netherlands)

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  10. Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Science.gov (United States)

    Hernán-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escudé, G.; Kane, S. R.; Barnes, J. R.; de Castro, E.; Cornide, M.

    2010-03-01

    Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims: We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods: We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results: Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations made with the Italian Telescopio Nazionale Galileo

  11. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    Science.gov (United States)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($facilities.

  12. SUBMILLIMETER ARRAY OBSERVATIONS TOWARD THE MASSIVE STAR-FORMING CORE MM1 OF W75N

    International Nuclear Information System (INIS)

    Minh, Y. C.; Su, Y.-N.; Liu, S.-Y.; Yan, C.-H.; Chen, H.-R.; Kim, S.-J.

    2010-01-01

    The massive star-forming core MM1 of W75N was observed using the Submillimeter Array with ∼1'' and 2'' spatial resolutions at 217 and 347 GHz, respectively. From the 217 GHz continuum we found that the MM1 core consists of two sources, separated by about 1'': MM1a (∼0.6 M sun ) and MM1b (∼1.4 M sun ), located near the radio continuum sources VLA 2/VLA 3 and VLA 1, respectively. Within MM1b, two gas clumps were found to be expanding away from VLA 1 at about ±3 km s -1 , as a result of the most recent star formation activity in the region. Observed molecular lines show emission peaks at two positions, MM1a and MM1b: sulfur-bearing species have emission peaks toward MM1a, but methanol and saturated species at MM1b. We identified high-temperature (∼200 K) gas toward MM1a and the hot core in MM1b. This segregation may result from the evolution of the massive star-forming core. In the very early phase of star formation, the hot core is seen through the evaporation of dust ice-mantle species. As the mantle species are consumed via evaporation the high-temperature gas species (such as the sulfur-bearing molecules) become bright. The SiO molecule is unique in having an emission peak exactly at the VLA 2 position, probably tracing a shock powered by VLA 2. The observed sulfur-bearing species show similar abundances both in MM1a and MM1b, whereas the methanol and saturated species show significant abundance enhancement toward MM1b, by about an order of magnitude, compared to MM1a.

  13. On the origin of high-velocity runaway stars

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  14. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Bill; Cantiello, Matteo; Bildsten, Lars [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Arras, Phil [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brown, Edward F. [Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, and Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48864 (United States); Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Mankovich, Christopher [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Montgomery, M. H. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Stello, Dennis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Townsend, Richard, E-mail: matteo@kitp.ucsb.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-09-15

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M{sub Sun} stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star

  15. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    Science.gov (United States)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  16. The molecular complex associated with the Galactic H II region Sh2-90: a possible site of triggered star formation

    Science.gov (United States)

    Samal, M. R.; Zavagno, A.; Deharveng, L.; Molinari, S.; Ojha, D. K.; Paradis, D.; Tigé, J.; Pandey, A. K.; Russeil, D.

    2014-06-01

    Aims: We investigate the star formation activity in the molecular complex associated with the Galactic H ii region Sh2-90. Methods: We obtain the distribution of the ionized and cold neutral gas using radio-continuum and Herschel observations. We use near-infrared and Spitzer data to investigate the stellar content of the complex. We discuss the evolutionary status of embedded massive young stellar objects (MYSOs) using their spectral energy distribution. Results: The Sh2-90 region presents a bubble morphology in the mid-infrared. Radio observations suggest it is an evolved H ii region with an electron density ~144 cm-3, emission measure ~ 6.7 × 104 cm-6 pc and an ionized mass ~55 M⊙. From Herschel and CO (J = 3 - 2) observations we found that the H ii region is part of an elongated extended molecular cloud (H2 column density ≥ 3 × 1021 cm-2 and dust temperature 18-27 K) of total mass ≥ 1 × 104 M⊙. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8-O9 V star. Five cold dust clumps, four mid-IR blobs around B stars, and a compact H ii region are found at the edge of the bubble. The velocity information derived from CO data cubes suggest that most of them are associated with the Sh2-90 region. One hundred and twenty-nine low mass (≤3 M⊙) YSOs have been identified, and they are found to be distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found. We suggest that multi-generation star formation is present in the complex. From evidence of interaction, time scales involved, and evolutionary status of stellar/protostellar sources, we argue that the star formation at the edges of Sh2-90 might have been triggered. However, several young sources in this complex are probably formed by some other processes. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A122

  17. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vink, Jorick S.; Graefener, Goetz, E-mail: jsv@arm.ac.uk [Armagh Observatory, College Hill, BT61 9DG Armagh (United Kingdom)

    2012-06-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of {approx_equal}2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot{sub trans} between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the {approx}50 M{sub Sun} mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  18. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    International Nuclear Information System (INIS)

    Vink, Jorick S.; Gräfener, Götz

    2012-01-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of ≅2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot trans between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the ∼50 M ☉ mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  19. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E.; Murphy, Jeremy D.; Graves, Genevieve J.; Gunn, James E.; Raskutti, Sudhir [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Comerford, Julia M.; Gebhardt, Karl [Department of Astronomy, UT Austin, 1 University Station C1400, Austin, TX 71712 (United States)

    2013-10-20

    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions σ{sub *} ∼> 150 km s{sup –1}. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2R{sub e} is old (∼10 Gyr), relatively metal-poor ([Fe/H] ≈ –0.5), and α-enhanced ([Mg/Fe] ≈ 0.3). The stars were made rapidly at z ≈ 1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to average Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z ≈ 1.5-2)

  20. The s-process in massive stars: the Shell C-burning contribution

    Science.gov (United States)

    Pignatari, Marco; Gallino, R.; Baldovin, C.; Wiescher, M.; Herwig, F.; Heger, A.; Heil, M.; Käppeler, F.

    In massive stars the s¡ process (slow neutron capture process) is activated at different tempera- tures, during He¡ burning and during convective shell C¡ burning. At solar metallicity, the neu- tron capture process in the convective C¡ shell adds a substantial contribution to the s¡ process yields made by the previous core He¡ burning, and the final results carry the signature of both processes. With decreasing metallicity, the contribution of the C¡ burning shell to the weak s¡ process rapidly decreases, because of the effect of the primary neutron poisons. On the other hand, also the s¡ process efficiency in the He core decreases with metallicity.

  1. First massively parallel algorithm to be implemented in Apollo-II code

    International Nuclear Information System (INIS)

    Stankovski, Z.

    1994-01-01

    The collision probability (CP) method in neutron transport, as applied to arbitrary 2D XY geometries, like the TDT module in APOLLO-II, is very time consuming. Consequently RZ or 3D extensions became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the CP method. Parallelization is applied to the energy groups, using the CMMD message passing library. In our case we use 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future fine multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 3 tabs., 4 figs., 4 refs

  2. First massively parallel algorithm to be implemented in APOLLO-II code

    International Nuclear Information System (INIS)

    Stankovski, Z.

    1994-01-01

    The collision probability method in neutron transport, as applied to arbitrary 2-dimensional geometries, like the two dimensional transport module in APOLLO-II is very time consuming. Consequently 3-dimensional extension became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the collision probability method. Parallelization is applied to the energy groups, using the CMMD massage passing library. In our case we used 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 4 refs., 4 figs., 3 tabs

  3. Life and death of the stars

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    This volume is devoted to one of the fascinating things about stars: how they evolve as they age. This evolution is different for stars of different masses. How stars end their lives when their supply of energy is exhausted also depends on their masses. Interestingly, astronomers conjectured about the ultimate fate of the stars even before the details of their evolution became clear. Part I of this book gives an account of the remarkable predictions made during the 1920s and 1930s concerning the ultimate fate of stars. Since much of this development hinged on quantum physics that emerged during this time, a detailed introduction to the relevant physics is included in the book. Part II is a summary of the life history of stars. This discussion is divided into three parts: low-mass stars, like our Sun, intermediate-mass stars, and massive stars. Many of the concepts of contemporary astrophysics were built on the foundation erected by Subrahmanyan Chandrasekhar in the 1930s. This book, written during his birth c...

  4. Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies

    Science.gov (United States)

    Zhang, Yimiao; Keres, Dusan; FIRE Team

    2018-01-01

    We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.

  5. HST/STIS ULTRAVIOLET SPECTROSCOPY OF THE COMPONENTS OF THE MASSIVE TRIPLE STAR δ ORI A

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Noel D.; Moffat, Anthony F. J. [Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada); Gull, Theodore R.; Lindler, Don J. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Corcoran, Michael F. [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Chené, André-Nicolas, E-mail: richardson@astro.umontreal.ca, E-mail: moffat@astro.umontreal.ca, E-mail: theodore.r.gull@nasa.gov, E-mail: don.j.lindler@nasa.gov, E-mail: gies@chara.gsu.edu, E-mail: michael.f.corcoran@nasa.gov, E-mail: achene@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-07-20

    The multiple star system of δ Orionis is one of the closest examples of a system containing a luminous O-type, bright giant star (component Aa1). It is often used as a spectral-type standard and has the highest observed X-ray flux of any hot-star binary. The main component Aa1 is orbited by two lower mass stars, faint Aa2 in a 5.7 day eclipsing binary, and Ab, an astrometric companion with an estimated period of 346 years. Generally the flux from all three stars is recorded in ground-based spectroscopy, and the spectral decomposition of the components has proved difficult. Here we present Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet spectroscopy of δ Ori A that provides us with spatially separated spectra of Aa and Ab for the first time. We measured radial velocities for Aa1 and Ab in two observations made near the velocity extrema of Aa1. We show tentative evidence for the detection of the Aa2 component in cross-correlation functions of the observed and model spectra. We discuss the appearance of the UV spectra of Aa1 and Ab with reference to model spectra. Both stars have similar effective temperatures, but Ab is fainter and is a rapid rotator. The results will help in the interpretation of ground-based spectroscopy and in understanding the physical and evolutionary parameters of these massive stars.

  6. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    Energy Technology Data Exchange (ETDEWEB)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Spitler, Lee R.; Cowley, Michael [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Labbé, Ivo; Straatman, Caroline M. S. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Allen, Rebecca [Australian Astronomical Observatories, P.O. Box 915, North Ryde, NSW 1670 (Australia); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hartley, W. G. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Koo, David C. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lu, Yu, E-mail: kawinwanichakij@physics.tamu.edu [Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305 (United States); and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  7. Spectroscopic survey of Kepler stars - II. FIES/NOT observations of A- and F-type stars

    Science.gov (United States)

    Niemczura, E.; Polińska, M.; Murphy, S. J.; Smalley, B.; Kołaczkowski, Z.; Jessen-Hansen, J.; Uytterhoeven, K.; Lykke, J. M.; Triviño Hage, A.; Michalska, G.

    2017-09-01

    We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed using the Fibre-Fed Échelle Spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I and Fe II lines were used to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, vsin I, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.

  8. Prompt mechanism of type II supernovae

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.

    1985-01-01

    We report in this Letter on an extensive set of hydrodynamical simulations of the stellar collapse of the cores of massive stars. A new hydro technique and a series of state-of-the art equations of state were employed. The purpose of this project was to understand in detail core implosion and immediate postbounce behavior (first 25 ms) and to investigate the viability of the hydrodynamic mechanism for Type II supernovae. We find that the bounce-shock always stalls upon encountering the massive infalling outer core for the calculated cores of stars between 8 and 25 M/sub sun/ and the standard input physics. In particular, it is found that Nomoto's 8l8 m/sub sun/ star and Woosley, Weaver, and Taam's 10 M/sub sun/ star do not explode via the prompt mechanism. Our conclusions appear to depend not on the details of the progenitor structure calculated by others but rather on the generic nature of these structures

  9. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    Science.gov (United States)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  10. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - II. Rotation

    Science.gov (United States)

    Alecian, E.; Wade, G. A.; Catala, C.; Grunhut, J. H.; Landstreet, J. D.; Böhm, T.; Folsom, C. P.; Marsden, S.

    2013-02-01

    We report the analysis of the rotational properties of our sample of Herbig Ae/Be (HAeBe) and related stars for which we have obtained high-resolution spectropolarimetric observations. Using the projected rotational velocities measured at the surface of the stars, we have calculated the angular momentum of the sample and plotted it as a function of age. We have then compared the angular momentum and the v sin i distributions of the magnetic to the non-magnetic HAeBe stars. Finally, we have predicted v sin i of the non-magnetic, non-binary (`normal') stars in our sample when they reach the zero-age main sequence (ZAMS), and compared them to various catalogues of v sin i of main-sequence stars. First, we observe that magnetic HAeBe stars are much slower rotators than normal stars, indicating that they have been more efficiently braked than the normal stars. In fact, the magnetic stars have already lost most of their angular momentum, despite their young ages (lower than 1 Myr for some of them). Secondly, our analysis suggests that the low-mass (1.5 5 M⊙) are losing angular momentum. We propose that winds, which are expected to be stronger in massive stars, are at the origin of this phenomenon.

  11. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    International Nuclear Information System (INIS)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M ⊙ and 120 M ⊙ , we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M ⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s −1 wind with a mass loss rate that begins around 0.1 M ⊙  yr −1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M ⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult

  12. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  13. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    International Nuclear Information System (INIS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-01-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  14. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    Energy Technology Data Exchange (ETDEWEB)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg [Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  15. GR 290 (ROMANO’S STAR). II. LIGHT HISTORY AND EVOLUTIONARY STATE

    International Nuclear Information System (INIS)

    Polcaro, V. F.; Nesci, R.; Chieffi, A.; Viotti, R. F.; Maryeva, O.; Calabresi, M.; Haver, R.; Galleti, S.; Gualandi, R.; Mills, O. F.; Osborn, W. H.; Pasquali, A.; Rossi, C.; Vasilyeva, T.

    2016-01-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1 m despite the 1.5 m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R 2/3 , changed between the minimum and maximum luminosity phases by a factor of three while T eff varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently

  16. GR 290 (ROMANO’S STAR). II. LIGHT HISTORY AND EVOLUTIONARY STATE

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V. F.; Nesci, R.; Chieffi, A.; Viotti, R. F. [INAF-IAPS, Via del Fosso del Cavaliere, 100, I-00133 Roma (Italy); Maryeva, O. [Special Astrophysical Observatory of the Russian Academy of Science, Nizhnii Arkhyz, 369167 (Russian Federation); Calabresi, M.; Haver, R. [ARA, Via Carlo Emanuele I, 12A, I-00185 Roma (Italy); Galleti, S.; Gualandi, R. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Mills, O. F.; Osborn, W. H. [Yerkes Observatory, 373 W. Geneva Street, Williams Bay, WI 53115 (United States); Pasquali, A. [Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg (Germany); Rossi, C. [Università La Sapienza, Pza A.Moro 5, I-00185 Roma (Italy); Vasilyeva, T., E-mail: vitofrancesco.polcaro@iaps.inaf.it [Pulkovo Astronomical Observatory, 196140, Saint-Petersburg, Pulkovskoye chaussee 65/1 (Russian Federation)

    2016-06-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1{sup m} despite the 1.5{sup m} change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R {sub 2/3}, changed between the minimum and maximum luminosity phases by a factor of three while T {sub eff} varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity

  17. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  18. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-01

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs

  19. ORIGIN AND GROWTH OF NUCLEAR STAR CLUSTERS AROUND MASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Antonini, Fabio

    2013-01-01

    The centers of stellar spheroids less luminous than ∼10 10 L ☉ are often marked by the presence of nucleated central regions, called 'nuclear star clusters' (NSCs). The origin of NSCs is still unclear. Here we investigate the possibility that NSCs originate from the migration and merger of stellar clusters at the center of galaxies where a massive black hole (MBH) may sit. We show that the observed scaling relation between NSC masses and the velocity dispersion of their host spheroids cannot be reconciled with a purely 'in situ' dissipative formation scenario. On the other hand, the observed relation appears to be in agreement with the predictions of the cluster merger model. A dissipationless formation model also reproduces the observed relation between the size of NSCs and their total luminosity, R∝√(L NSC ). When an MBH is included at the center of the galaxy, such dependence becomes substantially weaker than the observed correlation, since the size of the NSC is mainly determined by the fixed tidal field of the MBH. We evolve through dynamical friction a population of stellar clusters in a model of a galactic bulge taking into account dynamical dissolution due to two-body relaxation, starting from a power-law cluster initial mass function and adopting an initial total mass in stellar clusters consistent with the present-day cluster formation efficiency of the Milky Way (MW). The most massive clusters reach the center of the galaxy and merge to form a compact nucleus; after 10 10 years, the resulting NSC has properties that are consistent with the observed distribution of stars in the MW NSC. When an MBH is included at the center of a galaxy, globular clusters are tidally disrupted during inspiral, resulting in NSCs with lower densities than those of NSCs forming in galaxies with no MBHs. We suggest this as a possible explanation for the lack of NSCs in galaxies containing MBHs more massive than ∼10 8 M ☉ . Finally, we investigate the orbital

  20. ORIGIN AND GROWTH OF NUCLEAR STAR CLUSTERS AROUND MASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio, E-mail: antonini@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada)

    2013-01-20

    The centers of stellar spheroids less luminous than {approx}10{sup 10} L {sub Sun} are often marked by the presence of nucleated central regions, called 'nuclear star clusters' (NSCs). The origin of NSCs is still unclear. Here we investigate the possibility that NSCs originate from the migration and merger of stellar clusters at the center of galaxies where a massive black hole (MBH) may sit. We show that the observed scaling relation between NSC masses and the velocity dispersion of their host spheroids cannot be reconciled with a purely 'in situ' dissipative formation scenario. On the other hand, the observed relation appears to be in agreement with the predictions of the cluster merger model. A dissipationless formation model also reproduces the observed relation between the size of NSCs and their total luminosity, R{proportional_to}{radical}(L{sub NSC}). When an MBH is included at the center of the galaxy, such dependence becomes substantially weaker than the observed correlation, since the size of the NSC is mainly determined by the fixed tidal field of the MBH. We evolve through dynamical friction a population of stellar clusters in a model of a galactic bulge taking into account dynamical dissolution due to two-body relaxation, starting from a power-law cluster initial mass function and adopting an initial total mass in stellar clusters consistent with the present-day cluster formation efficiency of the Milky Way (MW). The most massive clusters reach the center of the galaxy and merge to form a compact nucleus; after 10{sup 10} years, the resulting NSC has properties that are consistent with the observed distribution of stars in the MW NSC. When an MBH is included at the center of a galaxy, globular clusters are tidally disrupted during inspiral, resulting in NSCs with lower densities than those of NSCs forming in galaxies with no MBHs. We suggest this as a possible explanation for the lack of NSCs in galaxies containing MBHs more massive

  1. CONSTRAINING VERY HIGH MASS POPULATION III STARS THROUGH He II EMISSION IN GALAXY BDF-521 AT z = 7.01

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng; Fan, Xiaohui; Davé, Romeel; Zabludoff, Ann [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Oh, S. Peng [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106-9530 (United States); Yang, Yujin, E-mail: caiz@email.arizona.edu [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2015-01-30

    Numerous theoretical models have long proposed that a strong He II λ1640 emission line is the most prominent and unique feature of massive Population III (Pop III) stars in high-redshift galaxies. The He II λ1640 line strength can constrain the mass and initial mass function (IMF) of Pop III stars. We use F132N narrowband filter on the Hubble Space Telescope's (HST) Wide Field Camera 3 to look for strong He II λ1640 emission in the galaxy BDF-521 at z = 7.01, one of the most distant spectroscopically confirmed galaxies to date. Using deep F132N narrowband imaging, together with our broadband imaging with F125W and F160W filters, we do not detect He II emission from this galaxy, but place a 2σ upper limit on the flux of 5.3×10{sup −19} erg s{sup −1} cm{sup −2}. This measurement corresponds to a 2σ upper limit on the Pop III star formation rate (SFR{sub PopIII}) of ∼0.2 M {sub ☉} yr{sup –1}, assuming a Salpeter IMF with 50 ≲ M/M {sub ☉} ≲ 1000. From the high signal-to-noise broadband measurements in F125W and F160W, we fit the UV continuum for BDF-521. The spectral flux density is ∼3.6×10{sup −11}×λ{sup −2.32} erg s{sup −1} cm{sup −2} Å{sup –1}, which corresponds to an overall unobscured SFR of ∼5 M {sub ☉} yr{sup –1}. Our upper limit on SFR{sub PopIII} suggests that massive Pop III stars represent ≲ 4% of the total star formation. Further, the HST high-resolution imaging suggests that BDF-521 is an extremely compact galaxy, with a half-light radius of 0.6 kpc.

  2. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Bressert, E.; Longmore, S.; Testi, L. [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching bei Muenchen (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that will allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.

  3. On the origin of high-velocity runaway stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2009-01-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100 M-circle dot star or a more massive one, formed through runaway mergers of ordinary

  4. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  5. Radiation pressure in super star cluster formation

    Science.gov (United States)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  6. CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions

    NARCIS (Netherlands)

    Falgarone, E.; Godard, B.; Cernicharo, J.; de Luca, M.; Gerin, M.; Phillips, T. G.; Black, J. H.; Lis, D. C.; Bell, T. A.; Boulanger, F.; Coutens, A.; Dartois, E.; Encrenaz, P.; Giesen, T.; Goicoechea, J. R.; Goldsmith, P. F.; Gupta, H.; Gry, C.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kaźmierczak, M.; Kołos, R.; Krełowski, J.; Martin-Pintado, J.; Monje, R.; Mookerjea, B.; Neufeld, D. A.; Perault, M.; Pearson, J. C.; Persson, C.; Plume, R.; Salez, M.; Schmidt, M.; Sonnentrucker, P.; Stutzki, J.; Teyssier, D.; Vastel, C.; Yu, S.; Menten, K.; Geballe, T. R.; Schlemmer, S.; Shipman, R.; Tielens, A. G. G. M.; Philipp, S.; Cros, A.; Zmuidzinas, J.; Samoska, L. A.; Klein, K.; Lorenzani, A.; Szczerba, R.; Péron, I.; Cais, P.; Gaufre, P.; Ravera, L.; Morris, P.; Lord, S.; Planesas, P.

    2010-01-01

    We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue 13CH+ toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the

  7. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  8. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M., E-mail: kashi@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE. Minneapolis, MN 55455 (United States)

    2016-01-20

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  9. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  10. The life and death of massive stars revealed by the observation of nuclear gamma-ray lines with the Integral/SPI spectrometer

    International Nuclear Information System (INIS)

    Martin, P.

    2008-11-01

    The aim of this research thesis is to bring up observational constraints on the mechanisms which govern life and death of massive stars, i.e. stars having an initial mass greater than eight times the Sun's mass, and smaller than 120 to 150 solar masses. Thus, it aims at detecting the vestiges of recent and close supernovae in order to find out the traces of the dynamics of their first instants. The author has explored the radiation of three radio-isotopes accessible to the nuclear gamma astronomy ( 44 Ti, 60 Fe, 26 Al) using observations performed with high resolution gamma spectrometer (SPI) on the INTEGRAL international observatory. After an overview of the present knowledge on the massive star explosion mechanism, the author presents the specificities and potential of the investigated radio-isotopes. He describes the data treatment methods and a population synthesis programme for the prediction of decay gamma streaks, and then reports its work on the inner dynamics of Cassiopeia A explosion, the stellar activity of the galaxy revealed by the radioisotope observation, the nucleo-synthetic activity of the Swan region

  11. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  12. DISCOVERY OF MASSIVE, MOSTLY STAR FORMATION QUENCHED GALAXIES WITH EXTREMELY LARGE Lyα EQUIVALENT WIDTHS AT z ∼ 3

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Nagao, Tohru; Shioya, Yasuhiro [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho, Matsuyama 790-8577 (Japan); Scoville, Nick Z.; Capak, Peter L. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States); Sanders, David B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Toft, Sune [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); McCracken, Henry J. [Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Le Fèvre, Olivier; Tasca, Lidia; Ilbert, Olivier [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), UMR 7326, F-13388 Marseille (France); Sheth, Kartik [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Renzini, Alvio [Dipartimento di Astronomia, Universita di Padova, vicolo dell’Osservatorio 2, I-35122 Padua (Italy); Lilly, Simon; Carollo, Marcella; Kovač, Katarina [Department of Physics, ETH Zurich, 8093 Zurich (Switzerland); Schinnerer, Eva, E-mail: tani@cosmos.phys.sci.ehime-u.ac.jp [MPI for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); and others

    2015-08-10

    We report a discovery of six massive galaxies with both extremely large Lyα equivalent widths (EWs) and evolved stellar populations at z ∼ 3. These MAssive Extremely STrong Lyα emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lyα emitters (LAEs) with 12 optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the spectral energy distribution fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame EWs of EW{sub 0} (Lyα) ∼ 100–300 Å, (2) M{sub ⋆} ∼ 10{sup 10.5}–10{sup 11.1} M{sub ⊙}, and (3) relatively low specific star formation rates of SFR/M{sub ⋆} ∼ 0.03–1 Gyr{sup −1}. Three of the six MAESTLOs have extended Lyα emission with a radius of several kiloparsecs, although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for active galactic nuclei, the observed extended Lyα emission is likely to be caused by a star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star formation history.

  13. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  14. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  15. Velocity-mass correlation of the O-type stars: model results

    International Nuclear Information System (INIS)

    Stone, R.C.

    1982-01-01

    This paper presents new model results describing the evolution of massive close binaries from their initial ZAMS to post-supernova stages. Unlike the previous conservative study by Stone [Astrophys. J. 232, 520 (1979) (Paper II)], these results allow explicitly for mass loss from the binary system occurring during the core hydrogen- and helium-burning stages of the primary binary star as well as during the Roche lobe overflow. Because of uncertainties in these rates, model results are given for several reasonable choices for these rates. All of the models consistently predict an increasing relation between the peculiar space velocities and masses for runaway OB stars which agrees well with the observed correlations discussed in Stone [Astron. J. 86, 544 (1981) (Paper III)] and also predict a lower limit at Mroughly-equal11M/sub sun/ for the masses of runaway stars, in agreement with the observational limit found by A. Blaauw (Bull. Astron. Inst. Neth. 15, 265, 1961), both of which support the binary-supernova scenario described by van den Heuvel and Heise for the origin of runaway stars. These models also predict that the more massive O stars will produce correspondingly more massive compact remnants, and that most binaries experiencing supernova-induced kick velocities of magnitude V/sub k/> or approx. =300 km s -1 will disrupt following the explosions. The best estimate for this velocity as established from pulsar observations is V/sub k/roughly-equal150 km s -1 , in which case probably only 15% if these binaries will be disrupted by the supernova explosions, and therefore, almost all runaway stars should have either neutron star or black hole companions

  16. ATLASGAL-selected massive clumps in the inner Galaxy. II. Characterisation of different evolutionary stages and their SiO emission

    Science.gov (United States)

    Csengeri, T.; Leurini, S.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Walmsley, M.; Bontemps, S.; Wienen, M.; Beuther, H.; Motte, F.; Nguyen-Luong, Q.; Schilke, P.; Schuller, F.; Zavagno, A.; Sanna, C.

    2016-02-01

    Context. The processes leading to the birth of high-mass stars are poorly understood. The key first step to reveal their formation processes is characterising the clumps and cores from which they form. Aims: We define a representative sample of massive clumps in different evolutionary stages selected from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), from which we aim to establish a census of molecular tracers of their evolution. As a first step, we study the shock tracer, SiO, mainly associated with shocks from jets probing accretion processes. In low-mass young stellar objects (YSOs), outflow and jet activity decreases with time during the star formation processes. Recently, a similar scenario was suggested for massive clumps based on SiO observations. Here we analyse observations of the SiO (2-1) and (5-4) lines in a statistically significant sample to constrain the change of SiO abundance and the excitation conditions as a function of evolutionary stage of massive star-forming clumps. Methods: We performed an unbiased spectral line survey covering the 3-mm atmospheric window between 84-117 GHz with the IRAM 30 m telescope of a sample of 430 sources of the ATLASGAL survey, covering various evolutionary stages of massive clumps. A smaller sample of 128 clumps has been observed in the SiO (5-4) transition with the APEX telescope to complement the (2-1) line and probe the excitation conditions of the emitting gas. We derived detection rates to assess the star formation activity of the sample, and we estimated the column density and abundance using both an LTE approximation and non-LTE calculations for a smaller subsample, where both transitions have been observed. Results: We characterise the physical properties of the selected sources, which greatly supersedes the largest samples studied so far, and show that they are representative of different evolutionary stages. We report a high detection rate of >75% of the SiO (2-1) line and a >90% detection

  17. High-velocity runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  18. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Korea 34055 (Korea, Republic of); Lacy, John [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Garay, Guido; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Zhu, Qingfeng [Astronomy Department, University of Science and Technology, Chinese Academy of Sciences, Hefei 210008 (China); Tatematsu, Ken’ichi; Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ren, Zhiyuan; Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru; Su, Yu-Nung, E-mail: liutiepku@gmail.com [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2017-11-01

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.

  19. On the origin of the hypervelocity runaway star HD 271791

    Science.gov (United States)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  20. Observational Constraints on First-Star Nucleosynthesis. II. Spectroscopy of an Ultra metal-poor CEMP-no Star

    Science.gov (United States)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Yoon, Jinmi; Chiti, Anirudh; Heger, Alexander; Chan, Conrad; Casey, Andrew R.; Christlieb, Norbert

    2016-12-01

    We report on the first high-resolution spectroscopic analysis of HE 0020-1741, a bright (V = 12.9), ultra metal-poor ([{Fe}/{{H}}] = -4.1), carbon-enhanced ([{{C}}/{Fe}] = +1.7) star selected from the Hamburg/ESO Survey. This star exhibits low abundances of neutron-capture elements ([{Ba}/{Fe}] = -1.1) and an absolute carbon abundance A(C) = 6.1 based on either criterion, HE 0020-1741 is subclassified as a carbon-enhanced metal-poor star without enhancements in neutron-capture elements (CEMP-no). We show that the light-element abundance pattern of HE 0020-1741 is consistent with predicted yields from a massive (M = 21.5 {M}⊙ ), primordial-composition, supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models (covering the mass range 10{--}100 {M}⊙ ), in order to probe the nature of their likely stellar progenitors. Our results suggest that at least two classes of progenitors are required at [{Fe}/{{H}}] \\lt -4.0, as the abundance patterns for more than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  1. Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars

    Science.gov (United States)

    Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.

    2002-08-01

    We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.

  2. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-03-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbor Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive-star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive-star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  3. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  4. STAR-FORMING ACTIVITY IN THE H ii REGIONS ASSOCIATED WITH THE IRAS 17160–3707 COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Nandakumar, G.; Veena, V. S.; Vig, S.; Tej, A. [Indian Institute of Space Science and Technology, Thiruvananthapuram 695 547 (India); Ghosh, S. K.; Ojha, D. K. [Tata Institute of Fundamental Research, Mumbai (Bombay) 400 005 (India)

    2016-11-01

    We present a multiwavelength investigation of star formation activity toward the southern H ii regions associated with IRAS 17160–3707, located at a distance of 6.2 kpc with a bolometric luminosity of 8.3 × 10{sup 5} L {sub ⊙}. The ionized gas distribution and dust clumps in the parental molecular cloud are examined in detail using measurements at infrared, submillimeter and radio wavelengths. The radio continuum images at 1280 and 610 MHz obtained using the Giant Metrewave Radio Telescope reveal the presence of multiple compact sources as well as nebulous emission. At submillimeter wavelengths, we identify seven dust clumps and estimate their physical properties such as temperature: 24–30 K, mass: 300–4800 M {sub ⊙} and luminosity: 9–317 × 10{sup 2} L {sub ⊙} using modified blackbody fits to the spectral energy distributions (SEDs) between 70 and 870 μ m. We find 24 young stellar objects (YSOs) in the mid-infrared, with a few of them coincident with the compact radio sources. The SEDs of the YSOs have been fitted by the Robitaille models and the results indicate that those having radio compact sources as counterparts host massive objects in early evolutionary stages with best fit age ≤0.2 Myr. We compare the relative evolutionary stages of clumps using various signposts such as masers, ionized gas, presence of YSOs and infrared nebulosity, and find six massive star-forming clumps and one quiescent clump. Of the former, five are in a relatively advanced stage and one in an earlier stage.

  5. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  6. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  7. The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode

    Science.gov (United States)

    Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing

    2017-08-01

    Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.

  8. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  9. The possible nature of socket stars in H II regions

    International Nuclear Information System (INIS)

    Castelaz, M.W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socket stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen. 22 refs

  10. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  11. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    Science.gov (United States)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  13. Modelling the Galactic bar using OGLE-II red clump giant stars

    NARCIS (Netherlands)

    Rattenbury, Nicholas J.; Mao, Shude; Sumi, Takahiro; Smith, Martin C.

    2007-01-01

    Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is

  14. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David [American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192 (United States); Moffat, Anthony F. J.; Doyon, Rene [Departement de Physique, Universite de Montreal, CP 6128, Succ. C-V, Montreal, QC, H3C 3J7 (Canada); Gerke, Jill [Department of Astronomy, Ohio State University, Columbus, OH 43210-1173 (United States); Artigau, Etienne; Drissen, Laurent, E-mail: mshara@amnh.org, E-mail: jfaherty@amnh.org, E-mail: dzurek@amnh.org, E-mail: moffat@astro.umontreal.ca, E-mail: doyon@astro.umontreal.ca, E-mail: gerke@astronomy.ohio-state.edu, E-mail: artigau@astro.umontreal.ca, E-mail: ldrissen@phy.ulaval.ca [Departement de Physique, Universite Laval, Pavillon Vachon, Quebec City, QC, G1K 7P4 (Canada)

    2012-06-15

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.

  15. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    International Nuclear Information System (INIS)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.; Doyon, René; Gerke, Jill; Artigau, Etienne; Drissen, Laurent

    2012-01-01

    We are continuing a J, K and narrowband imaging survey of 300 deg 2 of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150° in Galactic longitude and reaches 1° above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.

  16. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    Science.gov (United States)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  17. The Red MSX Source Survey: The Massive Young Stellar Population of Our Galaxy

    Science.gov (United States)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  18. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    International Nuclear Information System (INIS)

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B.; Urquhart, J. S.; Davies, B.; Moore, T. J. T.; Mottram, J. C.

    2013-01-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores

  19. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Urquhart, J. S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn (Germany); Davies, B.; Moore, T. J. T. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Mottram, J. C. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  20. VARIABLE STARS IN LARGE MAGELLANIC CLOUD GLOBULAR CLUSTERS. II. NGC 1786

    International Nuclear Information System (INIS)

    Kuehn, Charles A.; Smith, Horace A.; De Lee, Nathan; Catelan, Márcio; Pritzl, Barton J.; Borissova, Jura

    2012-01-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B–V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters.

  1. [C II] 158 μm EMISSION AS A STAR FORMATION TRACER

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Camus, R.; Bolatto, A. D.; Wolfire, M. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Smith, J. D. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Croxall, K. V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210 (United States); Kennicutt, R. C.; Boquien, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Helou, G. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Walter, F.; Meidt, S. E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Leroy, A. K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Sandstrom, K. M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Aniano, G. [Institut d' Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11, Batiment 121, Orsay (France); Hunt, L. K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Galametz, M. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); and others

    2015-02-10

    The [C II] 157.74 μm transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [C II] surface brightness and luminosity with SFR. We conclude that [C II] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGNs). The uncertainty of the Σ{sub [C} {sub II]} – Σ{sub SFR} calibration is ±0.21 dex. The main source of scatter in the correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted Σ{sub [C} {sub II]} – Σ{sub SFR} correlation is valid over almost five orders of magnitude in Σ{sub SFR}, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [C II] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [C II] finds that heating efficiencies are 1%-3% in normal galaxies.

  2. Metal enrichment signatures of the first stars on high-z DLAs

    Science.gov (United States)

    Ma, Q.; Maio, U.; Ciardi, B.; Salvaterra, R.

    2017-12-01

    We use numerical N-body hydrodynamical simulations with varying PopIII stellar models to investigate the possibility of detecting first star signatures with observations of high-redshift damped Lyα absorbers (DLAs). The simulations include atomic and molecular cooling, star formation, energy feedback and metal spreading due to the evolution of stars with a range of masses and metallicities. Different initial mass functions (IMFs) and corresponding metal-dependent yields and lifetimes are adopted to model primordial stellar populations. The DLAs in the simulations are selected according to either the local gas temperature (temperature selected) or the host mass (mass selected). We find that 3 per cent (40 per cent) of mass (temperature)-selected high-z (z ≥ 5.5) DLAs retain signatures of pollution from PopIII stars, independent of the first star model. Such DLAs have low halo mass ( Z⊙) and star formation rate ( generation and to constrain the first star mass ranges. Comparing the abundance ratios derived from our simulations to those observed in DLAs at z ≥ 5, we find that most of these DLAs are consistent within errors with PopII star dominated enrichment and strongly disfavour the pollution pattern of very massive first stars (i.e. 100-500 M⊙). However, some of them could still result from the pollution of first stars in the mass range [0.1, 100] M⊙. In particular, we find that the abundance ratios from SDSS J1202+3235 are consistent with those expected from PopIII enrichment dominated by massive (but not extreme) first stars.

  3. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    Science.gov (United States)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2018-03-01

    We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  4. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  5. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  6. The Ca II resonance lines in M dwarf stars without H-alpha emission

    Energy Technology Data Exchange (ETDEWEB)

    Giampapa, M.S.; Cram, L.E.; Wild, W.J. (National Solar Observatory, Tucson, AZ (USA) Sydney Univ. (Australia) Arizona Univ., Tucson (USA))

    1989-10-01

    Spectra of the Ca II H and K lines in a sample of 31 M dwarf stars without H-alpha emission are used to calculate chromospheric K line radiative losses, F(k), and to study the joint response of Ca II K and H-alpha to chromospheric heating in dwarf M stars. It is suggested that the poor correlation found in the equivalent width - log F(K) diagram may be due either to radial segregation of the H-alpha and K line forming regions or to lateral inhomogeneities in the chromospheres. The results confirm the existence of dM stars with weak H-alpha absorption and K line emission only slightly weaker than that of the dMe stars, and show that dM stars with weak H-alpha but kinematics and metallicities representative of the young disk population belong to a class characterized by a comparatively high degree of chromospheric activity. 32 refs.

  7. IRAS 06562-0337, The Ironclad Nebula: A New Young Star Cluster

    International Nuclear Information System (INIS)

    Alves, D.R.; Hoard, D.W.; Rodgers, B.

    1998-01-01

    IRAS 06562-0337 has been the recent subject of a classic debate: is it a proto endash planetary nebula or a young stellar object? We present the first 2 μm image of IRAS 06562-0337, which reveals an extended diffuse nebula containing approximately 70 stars inside a 30 double-prime radius around a bright, possibly resolved, central object. The derived stellar luminosity function is consistent with that expected from a single coeval population, and the brightness of the nebulosity is consistent with the predicted flux of unresolved low-mass stars. The stars and nebulosity are spatially coincident with strong CO line emission. We therefore identify IRAS 06562-0337 as a new young star cluster embedded in its placental molecular cloud. The central object is likely a Herbig Be star, M ∼ 20 M circle-dot , which may be seen in reflection. We present medium-resolution high signal-to-noise ratio 1997 epoch optical spectra of the central object. Comparison with previously published spectra shows new evidence for time-variable permitted and forbidden line emission, including Si ii, Fe ii, [Fe ii], and [O i]. We suggest that the origin is a dynamic stellar wind in the extended stratified atmosphere of the massive central star in IRAS 06562-0337. copyright copyright 1998. The American Astronomical Society

  8. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  9. Massive Outflows Associated with ATLASGAL Clumps

    Science.gov (United States)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  10. The range of variation of the mass of the most massive star in stellar clusters derived from 35 million Monte Carlo simulations

    International Nuclear Information System (INIS)

    Popescu, Bogdan; Hanson, M. M.

    2014-01-01

    A growing fraction of simple stellar population models, in an aim to create more realistic simulations capable of including stochastic variation in their outputs, begin their simulations with a distribution of discrete stars following a power-law function of masses. Careful attention is needed to create a correctly sampled initial mass function (IMF), and here we provide a solid mathematical method, called MASSCLEAN IMF Sampling, for doing so. We use our method to perform 10 million MASSCLEAN Monte Carlo stellar cluster simulations to determine the most massive star in a mass distribution as a function of the total mass of the cluster. We find that a maximum mass range is predicted, not a single maximum mass. This range is (1) dependent on the total mass of the cluster and (2) independent of an upper stellar mass limit, M limit , for unsaturated clusters and emerges naturally from our IMF sampling method. We then turn our analysis around, starting with our new database of 25 million simulated clusters, to constrain the highest mass star from the observed integrated colors of a sample of 40 low-mass Large Magellanic Cloud stellar clusters of known age and mass. Finally, we present an analytical description of the maximum mass range of the most massive star as a function of the cluster's total mass and present a new M max -M cluster relation.

  11. The Origins of [C ii] Emission in Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Croxall, K. V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 W. 18th Avenue, Columbus, OH, 43210 (United States); Smith, J. D. [Max-Planck-Institut fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pellegrini, E. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bolatto, A.; Wolfire, M. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Herrera-Camus, R. [Max-Planck-Institut für extraterrestrische Physik, Giessen-bachstr., D-85748 Garching (Germany); Sandstrom, K. M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Boquien, M. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dale, D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Galametz, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, 91191, Gif-sur-Yvette (France); Hunt, L., E-mail: jd.smith@utoledo.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); and others

    2017-08-20

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

  12. Dark stars: a new study of the first stars in the Universe

    International Nuclear Information System (INIS)

    Freese, Katherine; Bodenheimer, Peter; Gondolo, Paolo; Spolyar, Douglas

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the Universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a DS, powered by DM annihilation as long as there is DM fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∼10 6 L o-dot ) and cool (T surf surf > 50 000 K); hence DS should be observationally distinct from standard Pop III stars. Once the DM fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.

  13. STAR FORMATION ACTIVITY IN THE GALACTIC H II REGION Sh2-297

    International Nuclear Information System (INIS)

    Mallick, K. K.; Ojha, D. K.; Dewangan, L. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Tamura, M.

    2012-01-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm –3 and 9.15 × 10 5 cm –6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ∼7.'5 × 7.'5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H – K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ∼0.1-2 M ☉ and 0.5-2 Myr using optical (V/V–I) and NIR (J/J–H) CM diagrams. The mean age of the YSOs is found to be ∼1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  14. Star Formation Activity in the Galactic H II Region Sh2-297

    Science.gov (United States)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  15. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  16. Massive runaway stars in the Small Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  17. The formation and gravitational-wave detection of massive stellar black hole binaries

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman

    2014-01-01

    If binaries consisting of two ∼100 M ☉ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M ☉ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  18. Element Production in the S-Cl Region During Carbon Burning in Massive Stars. Using Computer Systems for Modeling of the Nuclear-Reaction Network

    CERN Document Server

    Szalanski, P; Marganeic, A; Gledenov, Yu M; Sedyshev, P V; Machrafi, R; Oprea, A; Padureanu, I; Aranghel, D

    2002-01-01

    This paper presents results of calculations for nuclear network in S-Cl region during helium burning in massive stars (25 M_{\\odot}) using integrated mathematical systems. The authors also examine other application of presented method in different physical tasks.

  19. Triggered massive star formation associated with the bubble Hii region Sh2-39 (N5)

    Science.gov (United States)

    Duronea, N. U.; Cappa, C. E.; Bronfman, L.; Borissova, J.; Gromadzki, M.; Kuhn, M. A.

    2017-09-01

    Aims: We perform a multiwavelength analysis of the bubble Hii region Sh2-39 (N5) and its environs with the aim of studying the physical properties of Galactic IR bubbles and exploring their impact in triggering massive star formation. Methods: To analyze the molecular gas, we used CO(3-2) and HCO+(4-3) line data obtained with the on-the-fly technique from the ASTE telescope. To study the distribution and physical characteristics of the dust, we made use of archival data from ATLASGAL, Herschel, and MSX, while the ionized gas was studied making use of an NVSS image. We used public WISE, Spitzer, and MSX point source catalogs to search for infrared candidate young stellar objects (YSOs) in the region. To investigate the stellar cluster [BDS2003]6 we used IR spectroscopic data obtained with the ARCoIRIS spectrograph, mounted on Blanco 4 m Telescope at CTIO, and new available IR Ks band observations from the VVVeXtended ESO Public Survey (VVVX). Results: The new ASTE observations allowed the molecular gas component in the velocity range from 30 km s-1 to 46 km s-1, associated with Sh2-39, to be studied in detail. The morphology of the molecular gas suggests that the ionized gas is expanding against its parental cloud. We identified four molecular clumps, which were likely formed by the expansion of the ionization front, and determined some of their physical and dynamical properties. Clumps with HCO+ and 870 μm counterparts show evidence of gravitational collapse. We identified several candidate YSOs across the molecular component. Their spatial distribution and the fragmentation time derived for the collected layers of the molecular gas suggest that massive star formation might have been triggered by the expansion of the nebula via the collect and collapse mechanism. The spectroscopical distance obtained for the stellar cluster [BDS2003]6, placed over one of the collapsing clumps in the border of the Hii region, reveals that this cluster is physically associated with

  20. Black Hole Universe Model for Explaining GRBs, X-Ray Flares, and Quasars as Emissions of Dynamic Star-like, Massive, and Supermassive Black Holes

    Science.gov (United States)

    Zhang, Tianxi

    2014-01-01

    Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.

  1. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  2. Star Formation in M 33 (HerM33es)

    Science.gov (United States)

    Kramer, C.; Boquien, M.; Braine, J.; Buchbender, C.; Calzetti, D.; Gratier, P.; Mookerjea, B.; Relaño, M.; Verley, S.

    2011-11-01

    Within the key project "Herschel M 33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M 33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6 μm to 500μm, along with H i, Hα, and GALEX UV data, we have studied the dust at high spatial resolutions of 150 pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [C ii], [O i], and CO maps obtained in a first spectroscopic study of one 2' × 2' subregion of M 33, located on the inner, northern spiral arm and encompassing the H ii region BCLMP 302.

  3. The binary fraction of stars in dwarf galaxies: the case of Leo II

    OpenAIRE

    Spencer, Meghin; Mateo, Mario; Walker, Matthew; Olszewski, Edward; McConnachie, Alan; Kirby, Evan; Koch, Andreas

    2017-01-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determ...

  4. On the origin of the hypervelocity runaway star HD271791

    OpenAIRE

    Gvaramadze, V. V.

    2009-01-01

    We discuss the origin of the runaway early B-type star HD271791 and show that its extremely high velocity (\\simeq 530-920 km/s) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard massive binaries or via an exchange encounter between a hard massive binary and a very massive star, formed through runaway mergers of ordinary massive stars...

  5. Element production in the S - Cl region during carbon burning in massive stars. Using computer systems for modeling of the nuclear-reaction network

    International Nuclear Information System (INIS)

    Szalanski, P.; Stepinski, M.; Marganiec, A.; Gledenov, Yu.M.; Sedyshev, P.V.; Machrafi, R.; Oprea, A.; Padureanu, I.; Aranghel, D.

    2002-01-01

    This paper presents results of calculations for nuclear network in S - Cl region during helium burning in massive stars (25 solar mass) using integrated mathematical systems. The authors also examine other application of the presented method in different physical tasks. (author)

  6. Confirming the least massive members of the Pleiades star cluster

    Science.gov (United States)

    Zapatero Osorio, M. R.; Béjar, V. J. S.; Lodieu, N.; Manjavacas, E.

    2018-03-01

    We present optical photometry (i and Z band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona fide Pleiades members that have extremely red optical and infrared colours, effective temperatures of ≈1150 and ≈1350 K, and masses in the interval 11-20 MJup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona fide members were classified as L6-L7 and show features of K I, a tentative detection of Cs I, hydrides, and water vapour with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colours of L dwarfs are not a direct evidence of ages younger than ≈100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.

  7. Ultracompact X-ray binary stars

    NARCIS (Netherlands)

    Haaften, L.M. van

    2013-01-01

    Ultracompact X-ray binary stars usually consist of a neutron star and a white dwarf, two stars bound together by their strong gravity and orbiting each other very rapidly, completing one orbit in less than one hour. Neutron stars are extremely compact remnants of the collapsed cores of massive stars

  8. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  9. The range of variation of the mass of the most massive star in stellar clusters derived from 35 million Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Bogdan; Hanson, M. M., E-mail: bogdan.popescu@uc.edu, E-mail: margaret.hanson@uc.edu [Department of Physics, University of Cincinnati, P.O. Box 210011, Cincinnati, OH 45221-0011 (United States)

    2014-01-01

    A growing fraction of simple stellar population models, in an aim to create more realistic simulations capable of including stochastic variation in their outputs, begin their simulations with a distribution of discrete stars following a power-law function of masses. Careful attention is needed to create a correctly sampled initial mass function (IMF), and here we provide a solid mathematical method, called MASSCLEAN IMF Sampling, for doing so. We use our method to perform 10 million MASSCLEAN Monte Carlo stellar cluster simulations to determine the most massive star in a mass distribution as a function of the total mass of the cluster. We find that a maximum mass range is predicted, not a single maximum mass. This range is (1) dependent on the total mass of the cluster and (2) independent of an upper stellar mass limit, M{sub limit} , for unsaturated clusters and emerges naturally from our IMF sampling method. We then turn our analysis around, starting with our new database of 25 million simulated clusters, to constrain the highest mass star from the observed integrated colors of a sample of 40 low-mass Large Magellanic Cloud stellar clusters of known age and mass. Finally, we present an analytical description of the maximum mass range of the most massive star as a function of the cluster's total mass and present a new M{sub max} -M{sub cluster} relation.

  10. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  11. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.

    Science.gov (United States)

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y

    2017-05-24

    The existence of massive (10 11 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 10 9 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  12. EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z  = 4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Intae; Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Song, Mimi; Straughn, Amber N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M.; Ryan, Russell E. Jr.; Salmon, Brett [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fontana, Adriano [INAF—Osservatorio Astronomico di Roma, via di Frascati 33, I-00040, Monte Porzio Catone (Italy); Lu, Yu [The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Papovich, Casey, E-mail: itjung@astro.as.utexas.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-01

    We perform the first spatially resolved stellar population study of galaxies in the early universe ( z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z  = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K -band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z  ∼ 5–6, contrary to massive galaxies at z ≲ 4.

  13. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with Ca II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-01-01

    Radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren 'HVR', (1986) are reported. Most of the velocities are determined to better than 2 km/s precision. The kinematic properties of the Ca II emission stars with strong Li are found to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. It is suggested following Jones and Herbig (1979), that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  14. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with CA II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-04-01

    The authors report radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren (HVR). Most of the velocities are determined to better than 2 km s-1 precision. The authors find the kinematic properties of the Ca II emission stars with strong Li to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. The authors suggest, following Jones and Herbig, that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  15. Type II supernovae: How do they explode?

    International Nuclear Information System (INIS)

    Baron, E.

    1988-01-01

    I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion

  16. 1969 - 2010: Multicolor Photometric Observations of Population II Field Horizontal-Branch Stars

    Science.gov (United States)

    Philip, A. G. Davis

    2010-05-01

    From 1969 to 2010 I have been involved in a photometric study of Population II Field Horizontal-Branch stars. I started by making Stromgren four-color observations at Kitt Peak National Observatory and then Cerro Tololo Inter-American Observatory. I had taken spectral plates of all my selected areas on which I marked all the A-type stars. These stars were then observed photometrically. New FHB stars could be identified by their large c1 indices, caused by their greater (u-b) colors. Later four new filters were added ( U V B S ). With Richard Boyle of the Vatican Observatory we observed on Mt. Graham (Arizona) on the Vatican Advanced Technology Telescope.We plan follow-up observations of the new FHB stars found.

  17. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  18. Toward Complete Statistics of Massive Binary Stars: Penultimate Results from the Cygnus OB2 Radial Velocity Survey

    OpenAIRE

    Kobulnicky, Henry A.; Kiminki, Daniel C.; Lundquist, Michael J.; Burke, Jamison; Chapman, James; Keller, Erica; Lester, Kathryn; Rolen, Emily K.; Topel, Eric; Bhattacharjee, Anirban; Smullen, Rachel A.; Alvarez, Carlos A. Vargas; Runnoe, Jessie C.; Dale, Daniel A.; Brotherton, Michael M.

    2014-01-01

    We analyze orbital solutions for 48 massive multiple-star systems in the Cygnus OB2 Association, 23 of which are newly presented here, to find that the observed distribution of orbital periods is approximately uniform in log P for P 45 d, even after correction for completeness, indicating either a lower binary fraction or a shift toward low-mass companions. A high degree of similarity (91% likelihood) between the Cyg OB2 period distribution and that of other surveys suggests that the binary p...

  19. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Youichi; Hota, Ananda [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2013-04-20

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  20. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    International Nuclear Information System (INIS)

    Ohyama, Youichi; Hota, Ananda

    2013-01-01

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  1. VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH HERSCHEL *,**

    Science.gov (United States)

    Goicoechea, Javier R.; Teyssier, D.; Etxaluze, M.; Goldsmith, P.F.; Ossenkopf, V.; Gerin, M.; Bergin, E.A.; Black, J.H.; Cernicharo, J.; Cuadrado, S.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Hacar, A.; Lis, D.C.; Marcelino, N.; Melnick, G.J.; Müller, H.S.P.; Persson, C.; Pety, J.; Röllig, M.; Schilke, P.; Simon, R.; Snell, R.L.; Stutzki, J.

    2015-01-01

    We present the first ~7.5′×11.5′ velocity-resolved (~0.2 km s−1) map of the [C ii] 158 μm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm−3) and from dense PDRs (G≳104, nH≳105 cm−3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10−2–10−3) to the more opaque star-forming cores (~10−3–10−4). The lowest values are reminiscent of the “[C ii] deficit” seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud. PMID:26568638

  2. VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH HERSCHEL.

    Science.gov (United States)

    Goicoechea, Javier R; Teyssier, D; Etxaluze, M; Goldsmith, P F; Ossenkopf, V; Gerin, M; Bergin, E A; Black, J H; Cernicharo, J; Cuadrado, S; Encrenaz, P; Falgarone, E; Fuente, A; Hacar, A; Lis, D C; Marcelino, N; Melnick, G J; Müller, H S P; Persson, C; Pety, J; Röllig, M; Schilke, P; Simon, R; Snell, R L; Stutzki, J

    2015-10-10

    We present the first ~7.5'×11.5' velocity-resolved (~0.2 km s -1 ) map of the [C ii] 158 μ m line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel /HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41 α hydrogen recombination and CO J =2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud ( G 0 >500, n H >5×10 3 cm -3 ) and from dense PDRs ( G ≳10 4 , n H ≳10 5 cm -3 ) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [ 13 C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L [C ii]/ L FIR and L FIR / M Gas ratios and show that L [C ii]/ L FIR decreases from the extended cloud component (~10 -2 -10 -3 ) to the more opaque star-forming cores (~10 -3 -10 -4 ). The lowest values are reminiscent of the "[C ii] deficit" seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L [C ii]/ L FIR ratio correlates better with the column density of dust through the molecular cloud than with L FIR / M Gas . We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L [C ii]/ L FIR variations through the cloud.

  3. THE MASSIVE PROGENITOR OF THE TYPE II-LINEAR SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Boden, Andrew F.; Kasliwal, Mansi M.; Vinko, Jozsef; Cuillandre, Jean-Charles; Foley, Ryan J.

    2010-01-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (∼26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ∼18-24 M sun . This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.

  4. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  5. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

    Science.gov (United States)

    Contenta, Filippo; Balbinot, Eduardo; Petts, James A.; Read, Justin I.; Gieles, Mark; Collins, Michelle L. M.; Peñarrubia, Jorge; Delorme, Maxime; Gualandris, Alessia

    2018-05-01

    We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ˜45 pc from its centre. Using a grid of collisional N-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a DM core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation or we are seeing an evidence for physics beyond cold DM.

  6. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    Science.gov (United States)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  7. THE 100 Myr STAR FORMATION HISTORY OF NGC 5471 FROM CLUSTER AND RESOLVED STELLAR PHOTOMETRY

    International Nuclear Information System (INIS)

    Garcia-Benito, Ruben; Perez, Enrique; Maiz Apellaniz, Jesus; Cervino, Miguel; Diaz, Angeles I.

    2011-01-01

    We show that star formation in the giant H II region NGC 5471 has been ongoing during the past 100 Myr. Using Hubble Space Telescope/Wide-Field Planetary Camera 2 F547M and F675W, ground-based JHK s , and GALEX FUV and NUV images, we have conducted a photometric study of the star formation history (SFH) in the massive giant extragalactic H II region NGC 5471 in M101. We perform a photometric study of the color-magnitude diagram (CMD) of the resolved stars and an integrated analysis of the main individual star-forming clusters and of NGC 5471 as a whole. The integrated UV-optical-NIR photometry for the whole region provides two different reference ages, 8 Myr and 60 Myr, revealing a complex SFH, clearly confirmed by the CMD-resolved stellar photometry analysis. The spatial distribution of the stars shows that the star formation in NGC 5471 has proceeded along the whole region during, at least, the last 100 Myr. The current ionizing clusters are enclosed within a large bubble, which is likely to have been produced by the stars that formed in a major event ∼20 Myr ago.

  8. FLICKERING OF 1.3 cm SOURCES IN SGR B2: TOWARD A SOLUTION TO THE ULTRACOMPACT H II REGION LIFETIME PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    De Pree, C. G.; Monsrud, A. [Agnes Scott College, 141 East College Avenue, Decatur, GA 30030 (United States); Peters, T. [Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich (Switzerland); Mac Low, M.-M. [American Museum of Natural History, New York, NY 10024 (United States); Wilner, D. J.; Keto, E. R. [Harvard-Smithsonian CfA, Cambridge, MA 02138 (United States); Goss, W. M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Galván-Madrid, R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Klessen, R. S. [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2014-02-01

    Accretion flows onto massive stars must transfer mass so quickly that they are themselves gravitationally unstable, forming dense clumps and filaments. These density perturbations interact with young massive stars, emitting ionizing radiation, alternately exposing and confining their H II regions. As a result, the H II regions are predicted to flicker in flux density over periods of decades to centuries rather than increase monotonically in size as predicted by simple Spitzer solutions. We have recently observed the Sgr B2 region at 1.3 cm with the Very Large Array in its three hybrid configurations (DnC, CnB, and BnA) at a resolution of ∼0.''25. These observations were made to compare in detail with matched continuum observations from 1989. At 0.''25 resolution, Sgr B2 contains 41 ultracompact (UC) H II regions, 6 of which are hypercompact. The new observations of Sgr B2 allow comparison of relative peak flux densities for the H II regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the most source-rich massive star forming regions in the Milky Way. The new 1.3 cm continuum images indicate that four of the 41 UC H II regions exhibit significant changes in their peak flux density, with one source (K3) dropping in peak flux density, and the other three sources (F10.303, F1, and F3) increasing in peak flux density. The results are consistent with statistical predictions from simulations of high mass star formation, suggesting that they offer a solution to the lifetime problem for UC H II regions.

  9. On the Origin of Hyperfast Neutron Stars

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  10. On the Baldwin effect of He II emission lines in WR (WN) stars

    OpenAIRE

    van Gent, J. I.; Lamers, H. J. G. L. M.; de Koter, A.; Morris, P. W.

    2001-01-01

    We investigate the relation between the equivalent width of He ii emission lines and the monochromatic continuum luminosity at the line wavelength in the spectra of Wolf-Rayet stars. Model stellar atmospheres and spectra are used to show that the equivalent width inversely correlates with the monochromatic continuum luminosity. We find the effect in Wolf-Rayet star models over a large range of stellar parameters. The effect is shown to be connected to density differences among Wolf-Rayet star...

  11. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  12. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  13. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  14. Resolved star formation on sub-galactic scales in a merger at z = 1.7

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Rigby, Jane R.; Teng, Stacy H.; Brammer, Gabriel B.; Gladders, Michael D.; Sharon, Keren; Wuyts, Eva

    2014-01-01

    We present a detailed analysis of Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G141 grism spectroscopy for seven star-forming regions of the highly magnified lensed starburst galaxy RCSGA 032727-132609 at z = 1.704. We measure the spatial variations of the extinction in RCS0327 through the observed Hγ/Hβ emission line ratios, finding a constant average extinction of E(B – V) gas = 0.40 ± 0.07. We infer that the star formation is enhanced as a result of an ongoing interaction, with measured star formation rates derived from demagnified, extinction-corrected Hβ line fluxes for the individual star-forming clumps falling >1-2 dex above the star formation sequence. When combining the HST/WFC3 [O III] λ5007/Hβ emission line ratio measurements with [N II]/Hα line ratios from Wuyts et al., we find that the majority of the individual star-forming regions fall along the local 'normal' abundance sequence. With the first detections of the He I λ5876 and He II λ4686 recombination lines in a distant galaxy, we probe the massive-star content of the star-forming regions in RCS0327. The majority of the star-forming regions have a He I λ5876 to Hβ ratio consistent with the saturated maximum value, which is only possible if they still contain hot O-stars. Two regions have lower ratios, implying that their last burst of new star formation ended ∼5 Myr ago. Together, the He I λ5876 and He II λ4686 to Hβ line ratios provide indirect evidence for the order in which star formation is stopping in individual star-forming knots of this high-redshift merger. We place the spatial variations of the extinction, star formation rate and ionization conditions in the context of the star formation history of RCS0327.

  15. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the HR diagram

    NARCIS (Netherlands)

    Briquet, M.; Hubrig, S.; Cat, P. de; Aerts, C.C.; North, P.; Schöller, M.

    2007-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods: We carry out a comparative study

  16. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    International Nuclear Information System (INIS)

    Matzner, Christopher D.; Jumper, Peter H.

    2015-01-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive

  17. Searching for WR stars in I Zw 18 -- The origin of HeII emission

    OpenAIRE

    de Mello, Duilia; Schaerer, Daniel; Heldmann, Jennifer; Leitherer, Claus

    1998-01-01

    I Zw 18 is the most metal poor star-forming galaxy known and is an ideal laboratory to probe stellar evolution theory at low metallicities. Using archival HST WFPC2 imaging and FOS spectroscopy we were able to improve previous studies. We constructed a continuum free HeII map, which was used to identify Wolf-Rayet (WR) stars recently found by ground-based spectroscopy and to locate diffuse nebular emission. Most of the HeII emission is associated with the NW stellar cluster, clearly displaced...

  18. New T Tauri stars in Chamaeleon I and Chamaeleon II

    Science.gov (United States)

    Hartigan, Patrick

    1993-01-01

    A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.

  19. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  20. First stars X. The nature of three unevolved carbon-enhanced metal-poor stars

    DEFF Research Database (Denmark)

    Sivarani, T.; Beers, T.C.; Bonifacio, P.

    2006-01-01

    Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov.......Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov....

  1. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  2. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Parkin, E. R.; Sim, S. A.

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X , remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X /L bol ). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  3. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  4. A Comparative Observational Study of YSO Classification in Four Small Star-forming H ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-Ju; Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Kerton, C. R., E-mail: sjkang@kasi.re.kr, E-mail: kerton@iastate.edu [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2017-08-10

    We have developed a new young stellar object (YSO) identification and classification technique using mid-infrared Wide-field Infrared Survey Explorer (WISE) data. We compare this new technique with previous WISE YSO detection and classification methods that used either infrared colors or spectral energy distribution slopes. In this study, we also use the new technique to detect and examine the YSO population associated with four small H ii regions: KR 7, KR 81, KR 120, and KR 140. The relatively simple structure of these regions allows us to effectively use both spatial and temporal constraints to identify YSOs that are potential products of triggered star formation. We are also able to identify regions of active star formation around these H ii regions that are clearly not influenced by the H ii region expansion, and thus demonstrate that star formation is on-going on megayear timescales in some of these molecular clouds.

  5. The High Angular Resolution Multiplicity of Massive Stars

    Science.gov (United States)

    2009-02-01

    binaries: visual – stars: early-type – stars: individual ( iota Ori, delta Ori, delta Sco) – techniques: interferometric Online-only material...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY

  6. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-06-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavour multi-energy neutrino transport. Utilizing a 70 solar mass zero-metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modelling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 M⊙ star.

  7. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-04-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavor multi-energy neutrino transport. Utilizing a 70 solar mass zero metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modeling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70M⊙ star.

  8. Supernova explosion in a very massive star

    International Nuclear Information System (INIS)

    El Eid, M.F.

    1986-07-01

    We describe the final evolution of a 100 solar mass following an evolutionary scenario during which the star evolves from a Wolf-Rayet stage through the electron- positron pair creation supernova. We find that the star is completely disrupted by explosive oxygen burning, and this type of explosion as a possible scenario for the Cassiopeia A remnant. This scenario seems to be also applicable to the supernova 1985f according to the recent observations of this object

  9. Radiative feedback by low-mass stars in the first generation

    International Nuclear Information System (INIS)

    Whalen, Daniel James; Hueckstaedt, Robert; Mcconkie, Thomas

    2009-01-01

    The survival of cosmological minihalos in both ionizing and Lyman-Werner (LW) UV fields from nearby and distant sources has attracted recent attention for its role in regulating the rise of stellar populations at high red-shifts. Numerical models suggest that the first stars form in isolation in small dark matter halos of ∼ 10 5 -10 7 M · at z ∼ 20-30 and that they are very massive, 25-500 M · . These stars form large H II regions 2.5-5 kpc in radius capable of engulfing nearby halos. With the rise of Population III stars throughout the cosmos also comes a global LW background that sterilizes mini-halos of H 2 , delaying or preventing new star formation in them. At high redshifts, ionizaing radiation is therefore relatively local while LW photons can originate from many megaparsects away because their energies lie below the ionization limit of H.

  10. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  11. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS

    International Nuclear Information System (INIS)

    Heger, Alexander; Woosley, S. E.

    2010-01-01

    The evolution and explosion of metal-free stars with masses 10-100 M sun are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 ≤ Z ≤ 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] ∼ sun ; where 1 B = 1 Bethe = 10 51 erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M sun , with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of ∼40 M sun . A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is achieved with very little mixing, and none of the metal-deficient data sets considered show the need for a high-energy explosion component. In

  12. A New Test of Copper and Zinc Abundances in Late-type Stars Using Ultraviolet Cu II and Zn II Lines

    Science.gov (United States)

    Roederer, Ian U.; Barklem, Paul S.

    2018-04-01

    We present new abundances derived from Cu I, Cu II, Zn I, and Zn II lines in six warm (5766 ≤ {T}eff} ≤ 6427 K), metal-poor (‑2.50 ≤ [Fe/H] ≤ ‑0.95) dwarf and subgiant (3.64 ≤ log g ≤ 4.44) stars. These abundances are derived from archival high-resolution ultraviolet spectra from the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and ground-based optical spectra from several observatories. Ionized Cu and Zn are the majority species, and abundances derived from Cu II and Zn II lines should be largely insensitive to departures from local thermodynamic equilibrium (LTE). We find good agreement between the [Zn/H] ratios derived separately from Zn I and Zn II lines, suggesting that departures from LTE are, at most, minimal (≲0.1 dex). We find that the [Cu/H] ratios derived from Cu II lines are 0.36 ± 0.06 dex larger than those derived from Cu I lines in the most metal-poor stars ([Fe/H] McDonald Observatory of the University of Texas at Austin.

  13. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Jens; Pillai, Thushara [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Zhang Qizhou, E-mail: jens.kauffmann@astro.caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS78, Cambridge, MA 02138 (United States)

    2013-03-10

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using CARMA and the SMA. This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2 Multiplication-Sign 10{sup 5} M{sub Sun }) into a radius of only 3 pc, but it is essentially starless. G0.253+0.016 therefore violates ''star formation laws'' presently used to explain trends in galactic and extragalactic star formation by a factor {approx}45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths {approx}< 1 km s{sup -1}-probably the narrowest lines reported for the GC region to date-are found. Evolution over several 10{sup 5} yr is needed before more massive cores, and possibly an Arches-like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.

  14. A Massive Prestellar Clump Hosting No High-mass Cores

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza, Patricio; Lu, Xing; Tatematsu, Ken’ichi [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Jackson, James M. [School of Mathematical and Physical Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 (Australia); Zhang, Qizhou; Stephens, Ian W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Guzmán, Andrés E. [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Wang, Ke, E-mail: patricio.sanhueza@nao.ac.jp [European Southern Observatory (ESO) Headquarters, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2017-06-01

    The infrared dark cloud (IRDC) G028.23-00.19 hosts a massive (1500 M {sub ⊙}), cold (12 K), and 3.6–70 μ m IR dark clump (MM1) that has the potential to form high-mass stars. We observed this prestellar clump candidate with the Submillimeter Array (∼3.″5 resolution) and Jansky Very Large Array (∼2.″1 resolution) in order to characterize the early stages of high-mass star formation and to constrain theoretical models. Dust emission at 1.3 mm wavelength reveals five cores with masses ≤15 M {sub ⊙}. None of the cores currently have the mass reservoir to form a high-mass star in the prestellar phase. If the MM1 clump will ultimately form high-mass stars, its embedded cores must gather a significant amount of additional mass over time. No molecular outflows are detected in the CO (2-1) and SiO (5-4) transitions, suggesting that the SMA cores are starless. By using the NH{sub 3} (1, 1) line, the velocity dispersion of the gas is determined to be transonic or mildly supersonic (Δ V {sub nt}/Δ V {sub th} ∼ 1.1–1.8). The cores are not highly supersonic as some theories of high-mass star formation predict. The embedded cores are four to seven times more massive than the clump thermal Jeans mass and the most massive core (SMA1) is nine times less massive than the clump turbulent Jeans mass. These values indicate that neither thermal pressure nor turbulent pressure dominates the fragmentation of MM1. The low virial parameters of the cores (0.1–0.5) suggest that they are not in virial equilibrium, unless strong magnetic fields of ∼1–2 mG are present. We discuss high-mass star formation scenarios in a context based on IRDC G028.23-00.19, a study case believed to represent the initial fragmentation of molecular clouds that will form high-mass stars.

  15. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán 58089 (Mexico)

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  16. Chromospheric Ca II H and K and H-alpha emission in single and binary stars of spectral types F6-M2

    International Nuclear Information System (INIS)

    Strassmeier, K.G.; Fekel, F.C.; Bopp, B.W.; Dempsey, R.C.; Henry, G.W.

    1990-01-01

    New observations of the Ca II H and K and H-epsilon region and/or the Balmer H-alpha line are presented for 100 mostly very active stars but also for weak or inactive stars with suspected activity. Correlations between chromospheric activity at Ca II H and K and H-alpha and effective surface temperature and rotation are identified, and several new stars with chromospheric Ca II H and K emission are discovered. No single activity-rotation relation can be derived for all luminosity classes, and there is clear evidence that evolved stars are generally more active than main-sequence stars of the same rotation period. Binary within the evolved stars appears to play no role, while main-sequence binary stars show generally higher levels of activity than their single counterparts. Chromospheric emission in the Ca II H and K lines depends on surface temperature in that flux declines with cooler temperature. 63 refs

  17. CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z ∼ 2

    International Nuclear Information System (INIS)

    Wang Tao; Gu Qiusheng; Huang Jiasheng; Fang Guanwen; Fazio, G. G.; Faber, S. M.; McGrath, Elizabeth J.; Kocevski, Dale; Wuyts, Stijn; Yan Haojing; Dekel, Avishai; Guo Yicheng; Ferguson, Henry C.; Grogin, Norman; Lotz, Jennifer M.; Lucas, Ray A.; Koekemoer, A. M.; Weiner, Benjamin; Hathi, Nimish P.; Kong Xu

    2012-01-01

    We present a study on spectral energy distributions, morphologies, and star formation for an IRAC-selected extremely red object sample in the GOODS Chandra Deep Field-South. This work was enabled by new HST/WFC3 near-IR imaging from the CANDELS survey as well as the deepest available X-ray data from Chandra 4 Ms observations. This sample consists of 133 objects with the 3.6 μm limiting magnitude of [3.6] = 21.5 and is approximately complete for galaxies with M * > 10 11 M ☉ at 1.5 ≤ z ≤ 2.5. We classify this sample into two types, quiescent and star-forming galaxies (SFGs), in the observed infrared color-color ([3.6]–[24] versus K – [3.6]) diagram. The further morphological study of this sample shows a consistent result with the observed color classification. The classified quiescent galaxies are bulge dominated and SFGs in the sample have disk or irregular morphologies. Our observed infrared color classification is also consistent with the rest-frame color (U – V versus V – J) classification. We also found that quiescent and SFGs are well separated in the nonparametric morphology parameter (Gini versus M 20 ) diagram measuring their concentration and clumpiness: quiescent galaxies have a Gini coefficient higher than 0.58 and SFGs have a Gini coefficient lower than 0.58. We argue that the star formation quenching process must lead to or be accompanied by the increasing galaxy concentration. One prominent morphological feature of this sample is that disks are commonly seen in this massive galaxy sample at 1.5 ≤ z ≤ 2.5: 30% of quiescent galaxies and 70% of SFGs with M * > 10 11 M ☉ have disks in their rest-frame optical morphologies. The prevalence of these extended, relatively undisturbed disks challenges the merging scenario as the main mode of massive galaxy formation.

  18. CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tao; Gu Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Huang Jiasheng; Fang Guanwen; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Faber, S. M.; McGrath, Elizabeth J.; Kocevski, Dale [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Guo Yicheng [Astronomy Department, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003 (United States); Ferguson, Henry C.; Grogin, Norman; Lotz, Jennifer M.; Lucas, Ray A.; Koekemoer, A. M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Weiner, Benjamin [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hathi, Nimish P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kong Xu, E-mail: taowang@nju.edu.cn [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2012-06-20

    We present a study on spectral energy distributions, morphologies, and star formation for an IRAC-selected extremely red object sample in the GOODS Chandra Deep Field-South. This work was enabled by new HST/WFC3 near-IR imaging from the CANDELS survey as well as the deepest available X-ray data from Chandra 4 Ms observations. This sample consists of 133 objects with the 3.6 {mu}m limiting magnitude of [3.6] = 21.5 and is approximately complete for galaxies with M{sub *} > 10{sup 11} M{sub Sun} at 1.5 {<=} z {<=} 2.5. We classify this sample into two types, quiescent and star-forming galaxies (SFGs), in the observed infrared color-color ([3.6]-[24] versus K - [3.6]) diagram. The further morphological study of this sample shows a consistent result with the observed color classification. The classified quiescent galaxies are bulge dominated and SFGs in the sample have disk or irregular morphologies. Our observed infrared color classification is also consistent with the rest-frame color (U - V versus V - J) classification. We also found that quiescent and SFGs are well separated in the nonparametric morphology parameter (Gini versus M{sub 20}) diagram measuring their concentration and clumpiness: quiescent galaxies have a Gini coefficient higher than 0.58 and SFGs have a Gini coefficient lower than 0.58. We argue that the star formation quenching process must lead to or be accompanied by the increasing galaxy concentration. One prominent morphological feature of this sample is that disks are commonly seen in this massive galaxy sample at 1.5 {<=} z {<=} 2.5: 30% of quiescent galaxies and 70% of SFGs with M{sub *} > 10{sup 11} M{sub Sun} have disks in their rest-frame optical morphologies. The prevalence of these extended, relatively undisturbed disks challenges the merging scenario as the main mode of massive galaxy formation.

  19. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  20. PHYSICAL AND MORPHOLOGICAL PROPERTIES OF [O II] EMITTING GALAXIES IN THE HETDEX PILOT SURVEY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Gronwall, Caryl; Ciardullo, Robin; Hagen, Alex; Zeimann, Greg; Malz, A. I.; Schneider, Donald P.

    2015-01-01

    The Hobby-Eberly Dark Energy Experiment pilot survey identified 284 [O II] λ3727 emitting galaxies in a 169 arcmin 2 field of sky in the redshift range 0 < z < 0.57. This line flux limited sample provides a bridge between studies in the local universe and higher-redshift [O II] surveys. We present an analysis of the star formation rates (SFRs) of these galaxies as a function of stellar mass as determined via spectral energy distribution fitting. The [O II] emitters fall on the ''main sequence'' of star-forming galaxies with SFR decreasing at lower masses and redshifts. However, the slope of our relation is flatter than that found for most other samples, a result of the metallicity dependence of the [O II] star formation rate indicator. The mass-specific SFR is higher for lower mass objects, supporting the idea that massive galaxies formed more quickly and efficiently than their lower mass counterparts. This is confirmed by the fact that the equivalent widths of the [O II] emission lines trend smaller with larger stellar mass. Examination of the morphologies of the [O II] emitters reveals that their star formation is not a result of mergers, and the galaxies' half-light radii do not indicate evolution of physical sizes

  1. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  2. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    Science.gov (United States)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  3. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  4. The Blue Hook Populations of Massive Globular Clusters

    Science.gov (United States)

    Brown, Thomas

    2006-07-01

    Blue hook stars are a class of hot { 35,000 K} subluminous horizontal branch stars that have been recently discovered using HST ultraviolet images of the globular clusters omega Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium core flash on the white dwarf cooling curve. This "flash mixing" produces an enormous enhancement of the surface helium and carbon abundances, which suppresses the flux in the far ultraviolet. Although flash mixing is more likely to occur in stars that are born with high helium abundances, a high helium abundance, by itself, does not explain the presence of a blue hook population - flash mixing of the envelope is required. We propose ACS ultraviolet {SBC/F150LP and HRC/F250W} observations of the five additional globular clusters for which the presence of blue hook stars is suspected from longer wavelength observations. Like omega Cen and NGC 2808, these five targets are also among the most massive globular clusters, because less massive clusters show no evidence for blue hook stars. Because our targets span 1.5 dex in metallicity, we will be able to test our prediction that flash-mixing should be less drastic in metal-rich blue hook stars. In addition, our observations will test the hypothesis that blue hook stars only form in globular clusters massive enough to retain the helium-enriched ejecta from the first stellar generation. If this hypothesis is correct, then our observations will yield important constraints on the chemical evolution and early formation history in globular clusters, as well as the role of helium self-enrichment in producing blue horizontal branch morphologies and multiple main sequence turnoffs. Finally, our observations will provide new insight into the

  5. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  6. Modeling Type II-P/II-L Supernovae Interacting with Recent Episodic Mass Ejections from Their Presupernova Stars with MESA and SNEC

    Science.gov (United States)

    Das, Sanskriti; Ray, Alak

    2017-12-01

    We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.

  7. TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. II. CEP A AND NGC 7538

    International Nuclear Information System (INIS)

    Moscadelli, L.; Reid, M. J.; Menten, K. M.; Brunthaler, A.; Xu, Y.; Zheng, X. W.

    2009-01-01

    We report trigonometric parallaxes for the sources NGC 7538 and Cep A, corresponding to distances of 2.65 +0.12 -0.11 and 0.70 +0.04 -0.04 kpc, respectively. The distance to NGC 7538 is considerably smaller than its kinematic distance and places it in the Perseus spiral arm. The distance to Cep A is also smaller than its kinematic distance and places it in the L ocalarm or spur. Combining the distance and proper motions with observed radial velocities gives the location and full space motion of the star-forming regions. We find significant deviations from circular galactic orbits for these sources: both sources show large peculiar motions (greater than 10 km s -1 ) counter to galactic rotation and NGC 7538 has a comparable peculiar motion toward the Galactic center.

  8. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    International Nuclear Information System (INIS)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei

    2017-01-01

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  9. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jincheng; Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22 (Chile); Lin, Congping; Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com [Center for Mathematical Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 4370074 (China)

    2017-05-10

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  10. Two-dimensional Molecular Gas and Ongoing Star Formation around H II Region Sh2-104

    Science.gov (United States)

    Xu, Jin-Long; Xu, Ye; Yu, Naiping; Zhang, Chuan-peng; Liu, Xiao-Lan; Wang, Jun-Jie; Ning, Chang-chun; Ju, Bing-Gang; Zhang, Guo-Yin

    2017-11-01

    We performed a multi-wavelength study toward H II region Sh2-104. New maps of 12CO J = 1 - 0 and 13CO J = 1 - 0 were obtained from the Purple Mountain Observatory 13.7 m radio telescope. Sh2-104 displays a double-ring structure. The outer ring with a radius of 4.4 pc is dominated by 12, 500 μm, 12CO J = 1 - 0, and 13CO J = 1 - 0 emission, while the inner ring with a radius of 2.9 pc is dominated by 22 μm and 21 cm emission. We did not detect CO emission inside the outer ring. The north-east portion of the outer ring is blueshifted, while the south-west portion is redshifted. The present observations have provided evidence that the collected outer ring around Sh2-104 is a two-dimensional structure. From the column density map constructed by the Hi-GAL survey data, we extract 21 clumps. About 90% of all the clumps will form low-mass stars. A power-law fit to the clumps yields M=281 {M}⊙ {(r/{pc})}1.31+/- 0.08. The selected YSOs are associated with the collected material on the edge of Sh2-104. The derived dynamical age of Sh2-104 is 1.6× {10}6 yr. Comparing the Sh2-104 dynamical age with the YSO timescale and the fragmentation time of the molecular ring, we further confirm that the collect-and-collapse process operates in this region, indicating positive feedback from a massive star for surrounding gas.

  11. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    Science.gov (United States)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  12. 1969 to 2010: Multicolor Photometric Observations of Population II Field Horizontal-Branch Stars

    Science.gov (United States)

    Philip, A. G. D.

    2011-04-01

    From 1969 to 2010 I have been involved in a photometric study of Population II Field Horizontal-Branch Stars and published several papers on this topic in BOTT from 1967 thru 1972. I started by making Strömgren four-color observations at Kitt Peak National Observatory and then at Cerro Tololo Inter-American Observatory. I had taken spectral plates of all my selected areas on which I marked all the A-type stars. These stars were then observed photometrically. New FHB stars could be identified by their large c indices, caused by their greater (u-b) colors. Later four new filters were added (U, V, B, S). With Richard Boyle of the Vatican Observatory we observed on Mt. Graham (Arizona) on the Vatican Advanced Technology Telescope. We are making follow-up observations of the new FHB stars found.

  13. A MODERN SEARCH FOR WOLF–RAYET STARS IN THE MAGELLANIC CLOUDS. II. A SECOND YEAR OF DISCOVERIES

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F. [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States); Morrell, Nidia, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2015-07-01

    The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf–Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, with WN3-type emission combined with O3-type absorption features. Yet these stars are 2–3 mag too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two “slash” WRs. This brings the total of known LMC WRs to 152, 13 (8.2%) of which were found by our survey, which is now ∼60% complete. We find that the spatial distribution of the WN3/O3s is similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that 5 of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly discovered Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey.

  14. Further Wolf-Rayet stars in the starburst cluster Westerlund 1

    OpenAIRE

    Negueruela, I.; Clark, J. S.

    2005-01-01

    We present new low and intermediate-resolution spectroscopic observations of the Wolf Rayet (WR) star population in the massive starburst cluster Westerlund 1. Finding charts are presented for five new WRs - four WNL and one WCL - raising the current total of known WRs in the cluster to 19. We also present new spectra and correct identifications for the majority of the 14 WR stars previously known, notably confirming the presence of two WNVL stars. Finally we briefly discuss the massive star ...

  15. Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786

    Science.gov (United States)

    Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2012-12-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  16. POPULATION PARAMETERS OF INTERMEDIATE-AGE STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD. II. NEW INSIGHTS FROM EXTENDED MAIN-SEQUENCE TURNOFFS IN SEVEN STAR CLUSTERS

    International Nuclear Information System (INIS)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Puzia, Thomas H.; Chandar, Rupali

    2011-01-01

    We discuss new photometry from high-resolution images of seven intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) with several different sets of theoretical isochrones and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main-sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we cannot formally rule out the latter for the three lowest-mass clusters in our sample (which have masses lower than ∼3 x 10 4 M sun ). This conclusion differs from that of some previous works which suggested that the age distribution in massive clusters in our sample is bimodal. This suggests that any secondary star formation occurred in an extended fashion rather than through short bursts. We discuss these results in the context of the nature of multiple stellar populations in star clusters.

  17. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  18. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao; Lombardi, Marco

    2009-01-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg 2 of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 μm and 70 μm, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L bol ∼ 0.2 L sun and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only ∼0.06%.

  19. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  20. The Most Massive Star Clusters: Supermassive Globular Clusters or Dwarf Galaxy Nuclei?

    Science.gov (United States)

    Harris, William

    2004-07-01

    Evidence is mounting that the most massive globular clusters, such as Omega Centauri and M31-G1, may be related to the recently discovered "Ultra-Compact Dwarfs" and the dense nuclei of dE, N galaxies. However, no systematic imaging investigation of these supermassive globular clusters - at the level of Omega Cen and beyond - has been done, and we do not know what fraction of them might bear the signatures {such as large effective radii or tidal tails} of having originated as dE nuclei. We propose to use the ACS/WFC to obtain deep images of 18 such clusters in NGC 5128 and M31, the two nearest rich globular cluster systems. These globulars are the richest star clusters that can be found in nature, the biggest of them reaching 10^7 Solar masses, and they are likely to represent the results of star formation under the densest and most extreme conditions known. Using the profiles of the clusters including their faint outer envelopes, we will carry out state-of-the-art dynamical modelling of their structures, and look for any clear evidence which would indicate that they are associated with stripped satellites. This study will build on our previous work with STIS and WFPC2 imaging designed to study the 'Fundamental Plane' of globular clusters. When our new work is combined with Archival WFPC2, STIS, and ACS material, we will also be able to construct the definitive mapping of the Fundamental Plane of globular clusters at its uppermost mass range, and confirm whether or not the UCD and dE, N objects occupy a different structural parameter space.

  1. CHEMICAL SEGREGATION TOWARD MASSIVE HOT CORES: THE AFGL2591 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Serra, I.; Zhang, Q. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Viti, S. [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Martin-Pintado, J. [Centro de Astrobiologia (CSIC/INTA), Ctra. de Torrejon a Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); De Wit, W.-J., E-mail: ijimenez-serra@cfa.harvard.edu, E-mail: qzhang@cfa.harvard.edu, E-mail: sv@star.ucl.ac.uk, E-mail: jmartin@cab.inta-csic.es, E-mail: wdewit@eso.org [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)

    2012-07-01

    We present high angular resolution observations (0.''5 Multiplication-Sign 0.''3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star-forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Types I, II, and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales {<=}3000 AU within a hot core. While Type I species (H{sub 2}S and {sup 13}CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC{sub 3}N, OCS, SO, and SO{sub 2}) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH{sub 3}OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO{sub 2}, HC{sub 3}N, and CH{sub 3}OH (185 {+-} 11 K, 150 {+-} 20 K, and 124 {+-} 12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H{sub 2}S, SO{sub 2}, and CH{sub 3}OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 M{sub Sun} star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photodissociation and a high-temperature ({approx}1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.

  2. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Förster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A.; Neri, R.; Cox, P.; Combes, F.; Bolatto, A.; Cooper, M. C.; Bournaud, F.; Burkert, A.; Comerford, J.; Davis, M.; Newman, S.; García-Burillo, S.; Naab, T.; Omont, A.

    2013-01-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z ∼ 1.2 and 2.2, with log(M * (M ☉ )) ≥ 10.4 and log(SFR(M ☉ /yr)) ≥ 1.5. Including a correction for the incomplete coverage of the M * -SFR plane, and adopting a ''Galactic'' value for the CO-H 2 conversion factor, we infer average gas fractions of ∼0.33 at z ∼ 1.2 and ∼0.47 at z ∼ 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z ∼ 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a ∼0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z ∼ 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M * , gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z ∼ 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  3. DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Spolyar, Douglas; Bodenheimer, Peter; Freese, Katherine; Gondolo, Paolo

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the universe may be dark (matter powered) stars (DSs), luminous objects powered by dark matter (DM) heating rather than by nuclear fusion, and in this paper we examine the history of these DSs. The power source is annihilation of weakly interacting massive particles (WIMPs) which are their own antiparticles. These WIMPs are the best motivated DM candidates and may be discovered by ongoing direct or indirect detection searches (e.g., Fermi/GLAST) or at the Large Hadron Collider at CERN. A new stellar phase results, powered by DM annihilation as long as there is a DM fuel, from millions to billions of years. We build up the DSs from the time DM heating becomes the dominant power source, accreting more and more matter onto them. We have included many new effects in the current study, including a variety of particle masses and accretion rates, nuclear burning, feedback mechanisms, and possible repopulation of DM density due to capture. Remarkably, we find that in all these cases, we obtain the same result: the first stars are very large, 500-1000 times as massive as the Sun; as well as puffy (radii 1-10 AU), bright (10 6 -10 7 L sun ), and cool (T surf sun and the temperatures are much hotter (T surf > 50,000 K). Hence DSs should be observationally distinct from standard Pop III stars. In addition, DSs avoid the (unobserved) element enrichment produced by the standard first stars. Once the DM fuel is exhausted, the DS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes that may provide seeds for the supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate-mass black holes.

  4. 2MASS J06562998+3002455: Not a Cool White Dwarf Candidate, but a Population II Halo Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-06-01

    2MASS J06562998+3002455 or PSS 309-6 is a high proper-motion star that was discovered during a survey with the 2.1 m telescope at Kitt Peak National Observatory. Here, we reevaluate the status of this interesting star using Gaia DR2. Our results strongly suggest that PSS 309-6 could be a Population II star as the value of its V component is close to -220 km/s, which is typical for halo stars in the immediate solar neighborhood. Kapteyn's star is the nearest known halo star and PSS 309-6 exhibits similar kinematic and photometric signatures. Its properties also resemble those of 2MASS J15484023-3544254, which was once thought to be the nearest cool white dwarf but was later reclassified as K-type subdwarf. Although it is virtually certain that PSS 309-6 is not a nearby white dwarf but a more distant Population II subdwarf, further spectroscopic information, including radial velocity measurements, is necessary to fully characterize this probable member of the Galactic halo.

  5. The STAR beam energy scan phase II physics and upgrades

    Czech Academy of Sciences Publication Activity Database

    Yang, C.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2017-01-01

    Roč. 967, č. 11 (2017), s. 800-803 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * BES-II * detector upgrade * QCD phase diagram * physics oppotrunity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016

  6. Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS

    Science.gov (United States)

    André, Ph.; Revéret, V.; Könyves, V.; Arzoumanian, D.; Tigé, J.; Gallais, P.; Roussel, H.; Le Pennec, J.; Rodriguez, L.; Doumayrou, E.; Dubreuil, D.; Lortholary, M.; Martignac, J.; Talvard, M.; Delisle, C.; Visticot, F.; Dumaye, L.; De Breuck, C.; Shimajiri, Y.; Motte, F.; Bontemps, S.; Hennemann, M.; Zavagno, A.; Russeil, D.; Schneider, N.; Palmeirim, P.; Peretto, N.; Hill, T.; Minier, V.; Roy, A.; Rygl, K. L. J.

    2016-07-01

    Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ~0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims: In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 μm. Methods: We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 μm with Herschel/HOBYS data at 70-500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8″ or Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The final ArTéMiS+SPIRE 350 μm map (Fig. 1b) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A54

  7. Mining the Obscured OB Star Population in Carina

    Science.gov (United States)

    Smith, Michael

    2016-04-01

    Massive OB stars are very influential objects in the ecology of galaxies like our own. Current catalogues of Galactic OB stars are heavily biased towards bright (g selected OB stars across the entire Southern Galactic plane, both within clusters and in the field, down to ∼20th magnitude in g. For the first time, a complete accounting of the OB star runaway phenomenon becomes possible. Along with making the primary selection using VPHAS+ colours, I have performed Markov-Chain Monte Carlo fitting of the spectral energy distributions of the selected stars by combining VPHAS+ u, g, r, i with published J, H, K photometry. This gives rough constraints on effective temperature and distance, whilst delivering much more precise reddening parameters A0 and RV - allowing us to build a much richer picture of how extinction and extinction laws vary across the Galactic Plane. My thesis begins with a description of the method of photometric selection of OB star candidates and its validation across a 2 square degree field including the well-known young massive star cluster Westerlund 2 (Mohr-Smith et al., 2015). Following on from this I present spectroscopy with AAOmega of 283 candidates identified by our method, which confirms that ∼94% of the sample are the expected O and early B stars. I then develop this method further and apply it to a Galactic Plane strip of 42 square-degrees that runs from the Carina Arm tangent region to the much studied massive cluster in NGC 3603. A new aspect I attend to in this expansion of method is tightening up the uniform photometric calibration of the data, paying particular attention to the always-challenging u band. This leads to a new and reliable catalogue of 5915 OB stars. As well as increasing the numbers of identified massive stars in this large region of the sky by nearly an order of magnitude, a more complete picture of massive star formation in the Carina Arm has emerged. I have found a broad over-density of O stars around the highly

  8. Type II Cepheids: evidence for Na-O anticorrelation for BL Her type stars?

    Science.gov (United States)

    Kovtyukh, V.; Yegorova, I.; Andrievsky, S.; Korotin, S.; Saviane, I.; Lemasle, B.; Chekhonadskikh, F.; Belik, S.

    2018-06-01

    The chemical composition of 28 Population II Cepheids and one RR Lyrae variable has been studied using high-resolution spectra. The chemical composition of W Vir variable stars (with periods longer than 8 d) is typical for the halo and thick disc stars. However, the chemical composition of BL Her variables (with periods of 0.8-4 d) is drastically different, although it does not differ essentially from that of the stars belonging to globular clusters. In particular, the sodium overabundance ([Na/Fe] ≈ 0.4) is reported for most of these stars, and the Na-O anticorrelation is also possible. The evolutionary tracks for BL Her variables (with a progenitor mass value of 0.8 solar masses) indicate that mostly helium-overabundant stars (Y = 0.30-0.35) can fall into the instability strip region. We suppose that it is the helium overabundance that accounts not only for the existence of BL Her variable stars but also for the observed abnormalities in the chemical composition of this small group of pulsating variables.

  9. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  10. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  11. Wolf-Rayet Stars in Starburst Galaxies

    OpenAIRE

    Mas-Hesse, J. Miguel; Kunth, Daniel; Cervino, Miguel

    1999-01-01

    Wolf-Rayet stars have been detected in a large number of galaxies experiencing intense bursts of star formation. All stars initially more massive than a certain, metallicity-dependent, value are believed to experience the Wolf-Rayet phase at the end of their evolution, just before collapsing in supernova explosion. The detection of Wolf-Rayet stars puts therefore important constraints on the evolutionary status of starbursts, the properties of their Initial Mass Functions and their star forma...

  12. Massive stars with mass loss: Evolution, nucleosynthesis, and astrophysical implications

    International Nuclear Information System (INIS)

    Prantzos, N.

    1986-06-01

    Evolution and nucleosynthesis of mass loss WR stars is studied, particularly evolution of stars with initial mass between 50 and 100 solar masses, during combustion of H and He. A semi-empirical mass loss formalism, the Roxburgh criterion for convection, and nuclear data are used. Composition of the stellar surface and ejecta (and ejecta contribution to cosmic ray composition) are derived. The contribution of these stars to s elements in our solar system is shown. Their production of 26 Al is compared to the quantity in the galaxy. Gamma ray emission at 1.8 MeV from the decay of this radionuclide is estimated in galactic longitude. The stars evolve as 0 and 0f stars during H combustion and spend 20% of their He combustion period as WN stars and 80% as WC-W0. Evolution always occurs in the blue part of the HR diagram, and satisfies observational constraints on its upper part [fr

  13. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu

    Science.gov (United States)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.

    2017-10-01

    Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the

  14. GeV gamma-rays and TeV neutrinos from very massive compact binary systems: The case of WR 20a

    OpenAIRE

    Bednarek, W.

    2005-01-01

    Massive Wolf-Rayet stars in a compact binary systems are characterised by very strong winds which collide creating a shock wave. If the wind nuclei accelerated at the shock can reach large enough energies, they suffer disintegration in collisions with soft thermal radiation from the massive stars injecting relativistic protons and neutrons. Protons collide with the matter of the wind and a fraction of neutrons colide with the massive stars producing gamma-rays and neutrinos. We calculate the ...

  15. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    Science.gov (United States)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  16. Dark matter, neutron stars, and strange quark matter.

    Science.gov (United States)

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  17. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  18. A study of the region of massive star formation L379IRS1 in radio lines of methanol and other molecules

    Science.gov (United States)

    Kalenskii, S. V.; Shchurov, M. A.

    2016-04-01

    The results of spectral observations of the region of massive star formation L379IRS1 (IRAS18265-1517) are presented. The observations were carried out with the 30-m Pico Veleta radio telescope (Spain) at seven frequencies in the 1-mm, 2-mm, and 3-mm wavelength bands. Lines of 24 molecules were detected, from simple diatomic or triatomic species to complex eight- or nine-atom compounds such as CH3OCHO or CH3OCH3. Rotation diagrams constructed from methanol andmethyl cyanide lines were used to determine the temperature of the quiescent gas in this region, which is about 40-50 K. In addition to this warm gas, there is a hot component that is revealed through high-energy lines of methanol and methyl cyanide, molecular lines arising in hot regions, and the presence of H2O masers and Class II methanol masers at 6.7 GHz, which are also related to hot gas. One of the hot regions is probably a compact hot core, which is located near the southern submillimeter peak and is related to a group of methanol masers at 6.7 GHz. High-excitation lines at other positions may be associated with other hot cores or hot post-shock gas in the lobes of bipolar outflows. The rotation diagrams can be use to determine the column densities and abundances of methanol (10-9) and methyl cyanide (about 10-11) in the quiescent gas. The column densities of A- and E-methanol in L379IRS1 are essentually the same. The column densities of other observedmolecules were calculated assuming that the ratios of the molecular level abundances correspond to a temperature of 40 K. The molecular composition of the quiescent gas is close to that in another region of massive star formation, DR21(OH). The only appreciable difference is that the column density of SO2 in L379IRS1 is at least a factor of 20 lower than the value in DR21(OH). The SO2/CS and SO2/OCS abundance ratios, which can be used as chemical clocks, are lower in L379IRS1 than in DR21(OH), suggesting that L379IRS1 is probably younger than DR21(OH).

  19. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    Science.gov (United States)

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.

  20. EXPLOSIVE DISINTEGRATION OF A MASSIVE YOUNG STELLAR SYSTEM IN ORION

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Schmid-Burgk, Johannes; Menten, Karl M.; Ho, Paul T. P.; Rodriguez, Luis F.

    2009-01-01

    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations that indicate the well-known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows that is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a three-dimensional view of the debris flow and to link this directly to the well-known Orion H 2 'fingers' farther out.

  1. Explosive Disintegration of a Massive Young Stellar System in Orion

    Science.gov (United States)

    Zapata, Luis A.; Schmid-Burgk, Johannes; Ho, Paul T. P.; Rodríguez, Luis F.; Menten, Karl M.

    2009-10-01

    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations that indicate the well-known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows that is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a three-dimensional view of the debris flow and to link this directly to the well-known Orion H2 "fingers" farther out.

  2. End of the Line for a Star like Ours

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    Stars of different masses have varying life spans, with the more massive stars "burning out" more quickly than stars of lower masses. How or what they do when they burn out also varies, depending on the mass of the star. All stars are called "main sequence stars" as they continue fusing hydrogen and staying in a state of equilibrium--a balance…

  3. Field O stars: formed in situ or as runaways?

    Science.gov (United States)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical

  4. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    Science.gov (United States)

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  5. The dynamics of massive starless cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kong, Shuo; Butler, Michael J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Caselli, Paola [School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT (United Kingdom); Fontani, Francesco [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  6. The many phases of massive galaxies : a near-infrared spectroscopic study of galaxies in the early universe

    NARCIS (Netherlands)

    Kriek, Mariska Therese

    2007-01-01

    A key issue in astronomy today is understanding the star-formation and assembly history of massive galaxies. Stellar population studies show that the bulk of the stars in low-redshift massive galaxies is formed at z~2 or even higher. Furthermore, there are strong indications that about 50% of the

  7. The structure of the local interstellar medium. VI. New Mg II, Fe II, and Mn II observations toward stars within 100 pc

    International Nuclear Information System (INIS)

    Malamut, Craig; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.; Ayres, Thomas R.

    2014-01-01

    We analyze high-resolution spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope toward 34 nearby stars (≤100 pc) to record Mg II, Fe II, and Mn II absorption due to the local interstellar medium (LISM). Observations span the entire sky, probing previously unobserved regions of the LISM. The heavy ions studied in this survey produce narrow absorption features that facilitate the identification of multiple interstellar components. We detected one to six individual absorption components along any given sight line, and the number of absorbers roughly correlates with the pathlength. This high-resolution near-ultraviolet (NUV) spectroscopic survey was specifically designed for sight lines with existing far-UV (FUV) observations. The FUV spectra include many intrinsically broad absorption lines (i.e., of low atomic mass ions) and are often observed at medium resolution. The LISM NUV narrow-line absorption component structure presented here can be used to more accurately interpret the archival FUV observations. As an example of this synergy, we present a new analysis of the temperature and turbulence along the line of sight toward ε Ind. The new observations of LISM velocity structure are also critical in the interpretation of astrospheric absorption derived from fitting the saturated H I Lyα profile. As an example, we reanalyze the spectrum of λ And and find that this star likely does have an astrosphere. Two stars in the sample that have circumstellar disks (49 Cet and HD141569) show evidence for absorption due to disk gas. Finally, the substantially increased number of sight lines is used to test and refine the three-dimensional kinematic model of the LISM and search for previously unidentified clouds within the Local Bubble. We find that every prediction made by the Redfield and Linsky kinematic model of the LISM is confirmed by an observed component in the new lines of sight.

  8. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-01-01

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (∼60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of ∼2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last ∼5 Myr. The central cluster NGC 602 was formed first

  9. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  10. A massive, quiescent galaxy at a redshift of 3.717

    Science.gov (United States)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  11. Tracing early evolutionary stages of high-mass star formation with molecular lines

    NARCIS (Netherlands)

    Marseille, M. G.; van der Tak, F. F. S.; Herpin, F.; Jacq, T.

    2010-01-01

    Context. Despite its major role in the evolution of the interstellar medium, the formation of high-mass stars (M >= 10 M(circle dot)) remains poorly understood. Two types of massive star cluster precursors, the so-called massive dense cores (MDCs), have been observed, which differ in terms of their

  12. Neutron star formation and the weak interaction

    International Nuclear Information System (INIS)

    Burrows, A.

    1986-01-01

    The only known direct diagnostic of the central event is its neutrino emission. The imprint of the entire internal evolution is stamped on the spectrum, mix of flavors, luminosities, and features of the accompanying neutrino burst. Detection and scrutiny of this neutrino signal will test theories concerning stellar collapse, type II supernovae, and the formation of neutron stars in ways impossible by other means. Despite the fact that an incredible 3x10 53 ergs may be emitted in neutrinos after the initiation of collapse, the very weakness of the neutrino/matter interaction that allows them to penetrate the stellar envelope and escape makes their detection at the Earth very difficult. Though neutrino astronomy is not yet a mature discipline, the physical theories of collapse have progressed to a sufficient degree that specific and detailed predictions can be made about the neutrino emissions that with future detector technology might be tested. The time seems propitious to summarize and review what is known and suspected about the neutrino signature of collapse, the potential for its detection, and how it can be used to test our ideas about the death of massive stars and the birth of neutrino stars. (orig./BBOE)

  13. Five-colour photometry of early-type stars in the direction of galactic X-ray sources

    International Nuclear Information System (INIS)

    Van Paradijs, J.; Van Amerongen, S.; Damen, E.; Van der Woerd, H.

    1986-01-01

    We present the results of five-colour photometry of 551 O- and B-type stars located in 17 fields of a few square degrees around galactic X-ray sources. From a comparison of reddening-free combinations of colour indices with theoretical values, calculated for model atmospheres of Kurucz, we derive effective temperature and surface gravity for these stars. In addition we find their absolute magnitude by combining these parameters with the results of evolutionary calculations of massive stars. These effective temperatures are in good agreement with the temperature scale of Bohm-Vitense for stars of luminosity classes II to V. For the supergiants the effective temperatures are about 40% higher. For stars of luminosity classes III to V the absolute magnitudes we find agree well with the results of independent luminosity calibrations of spectral types, but for brighter stars they deviate systematically. We suspect that the origin of these deviations lies in the failure of present low-gravity model atmospheres to represent supergiant atmospheres. We have used the photometric data to study the interstellar reddening in the direction of the X-ray sources

  14. Magnetic fields in beta Cep, SPB, and Be stars

    OpenAIRE

    Schoeller, M.; Hubrig, S.; Briquet, M.; Ilyin, I.

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic fi...

  15. THE DISCOVERY OF A MASSIVE CLUSTER OF RED SUPERGIANTS WITH GLIMPSE

    International Nuclear Information System (INIS)

    Alexander, Michael J.; Kobulnicky, Henry A.; Clemens, Dan P.; Jameson, Katherine; Pinnick, April; Pavel, Michael

    2009-01-01

    We report the discovery of a previously unknown massive Galactic star cluster at l = 29. 0 22, b = -0. 0 20. Identified visually in mid-IR images from the Spitzer GLIMPSE survey, the cluster contains at least eight late-type supergiants, based on follow-up near-IR spectroscopy, and an additional 3-6 candidate supergiant members having IR photometry consistent with a similar distance and reddening. The cluster lies at a local minimum in the 13 CO column density and 8 μm emission. We interpret this feature as a hole carved by the energetic winds of the evolving massive stars. The 13 CO hole seen in molecular maps at V LSR ∼ 95 km s -1 corresponds to near/far kinematic distances of 6.1/8.7 ± 1 kpc. We calculate a mean spectrophotometric distance of 7.0 +3.7 -2.4 kpc, broadly consistent with the kinematic distances inferred. This location places it near the northern end of the Galactic bar. For the mean extinction of A V = 12.6 ± 0.5 mag (A K = 1.5 ± 0.1 mag), the color-magnitude diagram of probable cluster members is well fit by isochrones in the age range 18-24 Myr. The estimated cluster mass is ∼20,000 M sun . With the most massive original cluster stars likely deceased, no strong radio emission is detected in this vicinity. As such, this red supergiant (RSG) cluster is representative of adolescent massive Galactic clusters that lie hidden behind many magnitudes of dust obscuration. This cluster joins two similar RSG clusters as residents of the volatile region where the end of our Galaxy's bar joins the base of the Scutum-Crux spiral arm, suggesting a recent episode of widespread massive star formation there.

  16. THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS

    International Nuclear Information System (INIS)

    Pignatari, M.; Herwig, F.; Gallino, R.; Bisterzo, S.; Heil, M.; Wiescher, M.; Kaeppeler, F.

    2010-01-01

    The slow neutron capture process in massive stars (weak s process) produces most of the s-process isotopes between iron and strontium. Neutrons are provided by the 22 Ne(α,n) 25 Mg reaction, which is activated at the end of the convective He-burning core and in the subsequent convective C-burning shell. The s-process-rich material in the supernova ejecta carries the signature of these two phases. In the past years, new measurements of neutron capture cross sections of isotopes beyond iron significantly changed the predicted weak s-process distribution. The reason is that the variation of the Maxwellian-averaged cross sections (MACS) is propagated to heavier isotopes along the s path. In the light of these results, we present updated nucleosynthesis calculations for a 25 M sun star of Population I (solar metallicity) in convective He-burning core and convective C-burning shell conditions. In comparison with previous simulations based on the Bao et al. compilation, the new measurement of neutron capture cross sections leads to an increase of s-process yields from nickel up to selenium. The variation of the cross section of one isotope along the s-process path is propagated to heavier isotopes, where the propagation efficiency is higher for low cross sections. New 74 Ge, 75 As, and 78 Se MACS result in a higher production of germanium, arsenic, and selenium, thereby reducing the s-process yields of heavier elements by propagation. Results are reported for the He core and for the C shell. In shell C-burning, the s-process nucleosynthesis is more uncertain than in the He core, due to higher MACS uncertainties at higher temperatures. We also analyze the impact of using the new lower solar abundances for CNO isotopes on the s-process predictions, where CNO is the source of 22 Ne, and we show that beyond Zn this is affecting the s-process yields more than nuclear or stellar model uncertainties considered in this paper. In particular, using the new updated initial

  17. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  18. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    Science.gov (United States)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  19. THERE ARE NO STARLESS MASSIVE PROTO-CLUSTERS IN THE FIRST QUADRANT OF THE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Bressert, E. [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching bei Muenchen (Germany)

    2012-10-20

    We search the {lambda} = 1.1 mm Bolocam Galactic Plane Survey for clumps containing sufficient mass to form {approx}10{sup 4} M{sub Sun} star clusters. Eighteen candidate massive proto-clusters are identified in the first Galactic quadrant outside of the central kiloparsec. This sample is complete to clumps with mass M{sub clump} > 10{sup 4} M{sub Sun} and radius r {approx}< 2.5 pc. The overall Galactic massive cluster formation rate is CFR(M{sub cluster} > 10{sup 4}) {approx}<5 Myr{sup -1}, which is in agreement with the rates inferred from Galactic open clusters and M31 massive clusters. We find that all massive proto-clusters in the first quadrant are actively forming massive stars and place an upper limit of {tau}{sub starless} < 0.5 Myr on the lifetime of the starless phase of massive cluster formation. If massive clusters go through a starless phase with all of their mass in a single clump, the lifetime of this phase is very short.

  20. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  1. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  2. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  3. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  4. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  5. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  6. Medium-resolution near-infrared spectroscopy of massive young stellar objects

    Science.gov (United States)

    Pomohaci, R.; Oudmaijer, R. D.; Lumsden, S. L.; Hoare, M. G.; Mendigutía, I.

    2017-12-01

    We present medium-resolution (R ∼ 7000) near-infrared echelle spectroscopic data for 36 massive young stellar objects (MYSOs) drawn from the Red MSX Source survey. This is the largest sample observed at this resolution at these wavelengths of MYSOs to date. The spectra are characterized mostly by emission from hydrogen recombination lines and accretion diagnostic lines. One MYSO shows photospheric H I absorption, a comparison with spectral standards indicates that the star is an A-type star with a low surface gravity, implying that the MYSOs are probably swollen, as also suggested by evolutionary calculations. An investigation of the Brγ line profiles shows that most are in pure emission, while 13 ± 5 per cent display P Cygni profiles, indicative of outflow, while less than 8 ± 4 per cent have inverse P Cygni profiles, indicative of infall. These values are comparable with investigations into the optically bright Herbig Be stars, but not with those of Herbig Ae and T Tauri stars, consistent with the notion that the more massive stars undergo accretion in a different fashion than lower mass objects that are undergoing magnetospheric accretion. Accretion luminosities and rates as derived from the Br γ line luminosities agree with results for lower mass sources, providing tentative evidence for massive star formation theories based on scaling of low-mass scenarios. We present Br γ/Br12 line profile ratios exploiting the fact that optical depth effects can be traced as a function of Doppler shift across the lines. These show that the winds of MYSOs in this sample are nearly equally split between constant, accelerating and decelerating velocity structures. There are no trends between the types of features we see and bolometric luminosities or near-infrared colours.

  7. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  8. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il [Department of Physics, Technion (Israel)

    2017-06-10

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.

  9. Kinematic evidence for feedback-driven star formation in NGC 1893

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  10. Variability of Massive Young Stellar Objects in Cygnus-X

    Science.gov (United States)

    Thomas, Nancy H.; Hora, J. L.; Smith, H. A.

    2013-01-01

    Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  11. The interstellar medium, expanding nebulae and triggered star formation theory and simulations

    CERN Document Server

    Bisbas, Thomas G

    2016-01-01

    This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with spectacular images of nebulae taken by talented amateur astronomers. The latter is very likely to stimulate the reader to observe the structure of nebulae from a different point of view, and better understand the associated star formation therein.

  12. The dynamical fingerprint of core scouring in massive elliptical galaxies

    International Nuclear Information System (INIS)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-01-01

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  13. Exploring the Milky Way halo with SDSS-II SN survey RR Lyrae stars

    Science.gov (United States)

    De Lee, Nathan

    This thesis details the creation of a large catalog of RR Lyrae stars, their lightcurves, and their associated photometric and kinematic parameters. This catalog contains 421 RR Lyrae stars with 305 RRab and 116 RRc. Of these, 241 stars have stellar spectra taken with either the Blanco 4m RC spectrograph or the SDSS/SEGUE survey, and in some cases taken by both. From these spectra and photometric methods derived from them, an analysis is conducted of the RR lyrae's distribution, metallicity, kinematics, and photometric properties within the halo. All of these RR Lyrae originate from the SDSS-II Supernova Survey. The SDSS-II SN Survey covers a 2.5 degree equatorial stripe ranging from -60 to +60 degrees in RA. This corresponds to relatively high southern galactic latitudes in the anti-center direction. The full catalog ranges from g 0 magnitude 13 to 20 which covers a distance of 3 to 95 kpc from the sun. Using this sample, we explore the Oosterhoff dichotomy through the D log P method as a function of | Z | distance from the plane. This results in a clear division of the RRab stars into OoI and OoII groups at lower | Z |, but the population becomes dominated by OoI stars at higher | Z |. The idea of a dual halo is explored primarily in the context of radial velocity distributions as a function of | Z |. In particular, V gsr , the radial velocity in the galactic standard of rest, is used as a proxy for V [straight phi] , the cylindrical rotational velocity. This is then compared against a single halo model galaxy, which results in very similar V gsr histograms for both at low to medium | Z |. However, at high | Z | there is a clear separation into two distinct velocity groups for the data without a corresponding separation in the model, suggesting that at least a two-component model for the halo is necessary. The final part of the analysis involves [Fe/H] measurements from both spectra and photometric relations cut in both | Z | and radial velocity. In this case

  14. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  15. Intrinsic polarization changes and the H-alpha and CA II emission features in T-Tauri stars

    Science.gov (United States)

    Svatos, J.; Solc, M.

    1981-12-01

    On the basis of the correlation between polarization and emission features observed in certain T-Tauri stars, it is concluded that flaring effects associated with UV and/or X-ray irradiation and with increased magnetic field are responsible for the intrinsic polarization changes in T-Tauri stars. The correlation between emission Ca II lines and polarization degree both in Miras and T-Tau stars is thought to support the contention that the intrinsic polarization changes are due to the irradiation of silicate-like grains. In some T-Tau stars the increase in the magnetic field can be the principal agent causing the polarization increase due to the enhanced orientation of elongated grains.

  16. VizieR Online Data Catalog: Massive star forming molecular clumps Tkin (Tang+, 2017)

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; Konig, C.; Yuan, Y.; He, Y. X.; Li, D. L.

    2016-10-01

    We have selected 30 massive clumps of the Galactic disk at various stages of high-mass star formation and with strong NH3 emission from the ATLASGAL survey (see Table 1). Our observations were carried out in 2015 April, July, and October with the 15m James Clerk Maxwell Telescope telescope (JCMT) on Mauna Kea. The beam size is ~23" and the main-beam efficiency is {eta}mb=Ta*/Tmb~=0.7 at 218GHz. The para-H2CO JKAKC =303-202, 322-221, and 321-220 transitions have rest frequencies of 218.222, 218.475, and 218.760GHz, respectively, which are measured simultaneously by employing the ACSIS digital autocorrelation spectrometer with the special backend configuration RxAH2CO250x3 allowing for three windows, each with a bandwidth of 250MHz. This provides a velocity resolution of 0.084km/s for para-H2CO (303-202 and 322-221) and 0.042km/s for para-H2CO (321-220); CH3OH (422-312) at 218.440GHz is also observed together with para-H2CO (322-221). (6 data files).

  17. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Anderson, Scott F.; Aihara, Hiroaki; Allende Prieto, Carlos; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 5 evolved, late-type stars, measuring separate abundances for ∼15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s -1 , ∼24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z ≥ 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.

  18. SPITZER ANALYSIS OF H II REGION COMPLEXES IN THE MAGELLANIC CLOUDS: DETERMINING A SUITABLE MONOCHROMATIC OBSCURED STAR FORMATION INDICATOR

    International Nuclear Information System (INIS)

    Lawton, B.; Gordon, K. D.; Meixner, M.; Sewilo, M.; Shiao, B.; Babler, B.; Bracker, S.; Meade, M.; Block, M.; Engelbracht, C. W.; Misselt, K.; Bolatto, A. D.; Carlson, L. R.; Hora, J. L.; Robitaille, T.; Indebetouw, R.; Madden, S. C.; Oey, M. S.; Oliveira, J. M.; Vijh, U. P.

    2010-01-01

    H II regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 μm. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared (IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulus photometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope's IRAC (3.6, 4.5, 8 μm) and MIPS (24, 70, 160 μm) bands. Ultraviolet rocket data (1500 and 1900 A) and SHASSA Hα data are also included. All data are convolved to the MIPS 160 μm resolution (40 arcsec full width at half-maximum), and apertures have a minimum radius of 35''. The IRAC, MIPS, UV, and Hα spatial analysis are compared with the spatial analysis of the TIR. We find that nearly all of the LMC and SMC H II region spectral energy distributions (SEDs) peak around 70 μm at all radii, from ∼10 to ∼400 pc from the central ionizing sources. As a result, we find the following: the sizes of H II regions as probed by 70 μm are approximately equal to the sizes as probed by TIR (∼70 pc in radius); the radial profile of the 70 μm flux, normalized by TIR, is constant at all radii (70 μm ∼ 0.45TIR); the 1σ standard deviation of the 70 μm fluxes, normalized by TIR, is a lower fraction of the mean (0.05-0.12 out to ∼220 pc) than the normalized 8, 24, and 160 μm normalized fluxes (0.12-0.52); and these results are the same for the LMC and the

  19. H II region-like galaxies

    International Nuclear Information System (INIS)

    French, H.B.

    1979-01-01

    Line fluxes in the region 3700 to 7100A are presented for 14 galaxies with strong, sharp, H II region-like emission lines. Ten of these galaxies are low luminosity objects (M > -17); the others have M approx. < -20. Ratios of the line fluxes are used to derive electron temperatures and densities, and the abundances of helium, oxygen, nitrogen, neon, and sulfur relative to hydrogen. The low luminosity galaxies are generally found to have oxygen abundances about 30% of normal, while the high luminosity ones generally have about 60% of normal. These galaxies are found to be almost certainly photoionized by hot main sequence stars. The velocity dispersion has been measured for one object; the mass of stars derived for it is several times smaller than the mass of neutral hydrogen which has previously been found in an extended halo around this object. The continuum colors of these galaxies are very blue, and are indistinguishable from those of extragalactic H II regions. No older red population has been convincingly detected. Galactic chemical evolution is investigated through a comparison of the relative abundances in these galaxies with their normal values. It is found that: (i) there is a primary contribution to the nitrogen abundance ((N/O)/sub p = 0.019), but that 80% of the nitrogen in the Galaxy today is of secondary origin; (ii) Ne/O appears to be constant for all objects (Ne/O = 0.23); and (iii) S/O decreases with increasing oxygen abundance, implying that most sulfur is produced in the most massive stars

  20. Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian

    2018-01-01

    Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.