WorldWideScience

Sample records for massive anthropogenic release

  1. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2012-11-01

    Preparing for a nuclear accident implies understanding potential consequences. While many specialized experts have been working on different particular aspects, surprisingly little effort has been dedicated to establishing the big picture and providing a global and balanced image of all major consequences. IRSN has been working on the cost of nuclear accidents, an exercise which must strive to be as comprehensive as possible since any omission obviously underestimates the cost. It therefore provides (ideally) an estimate of all cost components, thus revealing the structure of accident costs, and hence sketching a global picture. On a French PWR, it appears that controlled releases would cause an 'economical' accident with limited radiological consequences when compared to other costs; in contrast, massive releases would trigger a major crisis with strong radiological consequences. The two types of crises would confront managers with different types of challenges. (authors)

  2. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2013-01-01

    In this article, the authors report identification and assessment of different types of costs associated with nuclear accidents. They first outline that these cost assessments must be as exhaustive or comprehensive as possible. While referring to past accidents, they define the different categories of costs: on-site costs (decontamination and dismantling, electricity not produced on the site), off-site costs (health costs, psychological costs, farming losses), image-related costs (impact on food and farm product exports, decrease of other exports), costs related to energy production, costs related to contaminated areas (refugees, lands). They give an assessment of a severe nuclear accident (i.e. an accident with important but controlled radiological releases) in France and outline that it would be a national catastrophe which could be however managed. They discuss the possible variations of the estimated costs. Then, they show that a major accident (i.e. an accident with massive radiological releases) in France would be an unmanageable European catastrophe because of the radiological consequences, of high economic costs, and of huge losses

  3. Massive radioactive releases have a great impact on the accident costs

    International Nuclear Information System (INIS)

    Pascucci-Cahen, L.; Momal, P.

    2013-01-01

    This article investigates the costs of the consequences of a nuclear accident. The importance of the costs is very dependant on the amount of radioactivity released in the environment during the accident. 2 severe accidents are considered, each accident involves the fusion of the core but the first is characterized by a limited amount of radioactivity released in the atmosphere while the second involves massive radioactive releases. The list of consequences is as comprehensive as possible: site decontamination and dismantlement, land decontamination, sanitary impacts, population displacement, agricultural and economical losses, impact on tourism, impact on the production of electricity...In the first case the total cost reaches 120 billion euros which is still manageable at the scale of a country whereas in the second case the bill reaches 430 billion euros which is unbearable for a country. The very slight probability of such events does not compensate for their catastrophic potentials. (A.C.)

  4. Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction

    Science.gov (United States)

    Kaiho, Kunio; Koga, Seizi

    2013-08-01

    The largest mass extinction of animals and plants in both the ocean and on land occurred in the late Permian (252 Ma), largely coinciding with the largest flood basalt volcanism event in Siberia and an oceanic anoxic/euxinic event. We investigated the impacts of a massive release of methane (CH4) from the Siberian igneous province and the ocean and/or hydrogen sulfide (H2S) from the euxinic ocean on oxygen and ozone using photochemical model calculations. Our calculations indicated that an approximate of 14% decrease in atmospheric O2 levels would have occurred in the case of a large combined CH4 and H2S flux to the atmosphere, whereas an approximate of 8 to 10% decrease would have occurred from the CH4 flux and oxidation of all H2S in the ocean. The slight decrease in atmospheric O2 levels may have contributed to the extinction event. We demonstrate for the first time that a massive release of CH4 from the Siberian igneous province and a coincident massive release of CH4 and H2S did not cause ozone collapse. A collapse of stratospheric ozone leading to an increase in UV is not supported by the maximum model input levels for CH4 and H2S. These conclusions on O2 and O3 are correspondent to every H2S release percentages from the ocean to the atmosphere.

  5. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  6. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  7. Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics.

    Science.gov (United States)

    Chen, Dingjiang; Huang, Hong; Hu, Minpeng; Dahlgren, Randy A

    2014-05-20

    This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures.

  8. Arthroscopic repair of massive contracted rotator cuff tears: aggressive release with anterior and posterior interval slides do not improve cuff healing and integrity.

    Science.gov (United States)

    Kim, Sung-Jae; Kim, Sung-Hwan; Lee, Su-Keon; Seo, Jae-Wan; Chun, Yong-Min

    2013-08-21

    Few studies of large-to-massive contracted rotator cuff tears have examined the arthroscopic complete repair obtained by a posterior interval slide and whether the clinical outcomes or structural integrity achieved are better than those after partial repair without the posterior interval slide. The study included forty-one patients with large-to-massive contracted rotator cuff tears, not amenable to complete repair with margin convergence alone. The patients underwent either arthroscopic complete repair with a posterior interval slide and side-to-side repair of the interval slide edge (twenty-two patients; Group P) or partial repair with margin convergence (nineteen patients; Group M). The patient assignment was not randomized. The Simple Shoulder Test (SST), American Shoulder and Elbow Surgeons (ASES) score, University of California at Los Angeles (UCLA) shoulder score, and range of motion were used to compare the functional outcomes. Preoperative and six-month postoperative magnetic resonance arthrography (MRA) images were compared within or between groups. At the two-year follow-up evaluation, the SST, ASES score, UCLA score, and range of motion had significantly improved (p repair group with an aggressive release had no better clinical or structural outcomes compared with the partial repair group with margin convergence alone for large-to-massive contracted rotator cuff tears. In addition, the complete repair group had a 91% retear rate and a greater defect on follow-up MRA images. Even though this study had a relatively short-term follow-up, a complete repair of large-to-massive contracted rotator cuff tears, with an aggressive release such as posterior interval slide, may not have an increased benefit compared with partial repair without posterior interval slide.

  9. A comparison of functional outcomes in patients undergoing revision arthroscopic repair of massive rotator cuff tears with and without arthroscopic suprascapular nerve release

    Directory of Open Access Journals (Sweden)

    Savoie III FH

    2016-10-01

    Full Text Available Felix H Savoie III,1 Mark Zunkiewicz,2 Larry D Field,2 William H Replogle,3 Michael J O’Brien1 1Tulane Institute of Sports Medicine, Tulane University School of Medicine, New Orleans, LA, USA; 2Mississippi Sports Medicine and Orthopaedic Center, Jackson, MS, USA; 3Department of Family Medicine, University of Mississippi Medical Center, Jackson, MS, USA Purpose: This study was designed to compare functional outcomes in patients undergoing revision repair of massive rotator cuff tears (retracted medial to the glenoid with Goutallier Grade 4 atrophy and concomitant release of the suprascapular nerve to a similar group of patients with Grade 3 atrophy undergoing revision rotator cuff repair (RTCR without nerve release. We hypothesized that patients undergoing nerve release would have more favorable functional outcomes as measured by the Modified University of California at Los Angeles shoulder rating scale (UCLA. Patients and methods: Twenty-two patients underwent revision repair of massive rotator cuff tears with release of the suprascapular nerve at the suprascapular notch. We compared total preoperative, postoperative, and change in UCLA score in these patients to a similar group of 22 patients undergoing revision RTCR without suprascapular nerve release. Additionally, UCLA subscores between the two groups were compared preoperatively and at final follow-up. Results: The average preoperative UCLA score in the nerve-release group was 7.91, and final follow-up average was 27.86; average 3.05 grades of strength were recovered. In the comparison group, average preoperative UCLA score was 11.77, and final follow-up average was 29.09; average 1.32 grades of strength were recovered. The average preoperative UCLA score was significantly worse in the nerve-release group (P=0.007. The average postoperative UCLA score was not significantly different (P=0.590 between the groups, indicating a better improvement in the nerve-release group with significantly

  10. Relationship between anthropogenic impacts and bleaching-associated tissue mortality of corals in Curaçao (Netherlands Antilles)

    NARCIS (Netherlands)

    Nagelkerken, I.

    2007-01-01

    Chronic anthropogenic impacts can have a negative effect on coral health and on coral energy budgets needed for regeneration of lesions. I therefore hypothesise that during massive bleaching events, the degree of corals showing bleaching-related tissue mortality is higher in areas subject to chronic

  11. Understanding Cu release into environment from Kure massive sulfide ore deposits, Kastamonu, NW Turkey

    Science.gov (United States)

    Demirel, Cansu; Sonmez, Seref; Balci, Nurgul

    2014-05-01

    Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and

  12. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, M H; Hvidberg, A; Juul, A

    1995-01-01

    levels of insulin-like growth factor-I (IGF-I), IGF-binding protein-3 (IGFBP-3), as well as insulin in obese subjects before and after a massive weight loss. We studied 18 obese subjects (age, 26 +/- 1 yr; body mass index, 40.9 +/- 1.1 kg/m2); 18 normal age-, and sex-matched control subjects; and 9...... using anthropometric measurements and dual energy x-ray absorptiometry scanning (DXA). In the obese subjects, 24-h spontaneous GH release profiles and the GH responses to insulin-induced hypoglycemia and L-arginine as well as basal IGF-I levels and the IGF-I/IGFBP-3 molar ratio were decreased, whereas...

  13. The Effects of Anthropogenic Heat Release on Urban Meteorology and Implication for Haze Pollution in the Beijing-Tianjin-Hebei Region

    Directory of Open Access Journals (Sweden)

    Ruiting Liu

    2016-01-01

    Full Text Available In this study, the effect of anthropogenic heat release (AHR on meteorological variables and atmospheric diffusion capability and implication for haze pollution in the Beijing-Tianjin-Hebei region in January 2013 were investigated by using Weather Research and Forecasting (WRF model with an urban canopy model (UCM and an AHR scheme. The comparison with observation demonstrated the WRF/UCM model taking AHR into account apparently improved meteorological prediction, especially for surface air temperature at 2 m (T2. The model also exhibited a better performance for planetary boundary layer (PBL height. This study revealed that AHR from cities exerted a significant impact on meteorology by generally increasing surface air temperature and wind speed, decreasing relative humidity, and elevating PBL height and near surface turbulent kinetic energy (TKE, which could consequently reduce surface pollutant concentration and mitigate haze pollution by enhancing atmospheric instability and turbulent mixing and reducing aerosol hygroscopic growth.

  14. Scaled biotic disruption during early Eocene global warming events

    NARCIS (Netherlands)

    Gibbs, S.J.; Bown, P.R.; Murphy, B.H.; Sluijs, A.; Edgar, K.M.; Pälike, H.; Bolton, C.T.; Zachos, J.C.

    2012-01-01

    Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are

  15. IDENTIFYING ANTHROPOGENIC METALLIC POLLUTANTS USING FREQUENCY DEPENDENT MAGNETIC SUSCEPTIBILITY MEASUREMENTS IN ABUJA METROPOLIS

    Directory of Open Access Journals (Sweden)

    Jatto S. Solomon

    2017-07-01

    Full Text Available Soil formed from lithological and weathering processes of parent rocks generally exhibit paramagnetic properties due to some minerals contained in the rocks and thus have significant value of magnetic susceptibility. This susceptibility arising from the influence of the parent rocks tend to mask anthropogenic grains pollutants released into the environment by human activities. Hence, it becomes difficult to identify the effect of the lithological and anthropogenic magnetic susceptibility in complex soil found in urban areas. The superparamagnetic effect of lithological soil, a single state domain and multi-domain state of anthropogenic grains can easily be investigated by frequency dependent measurements where readings between 0-2.0% indicates the absence of lithological influence, 2.0-8.0% indicates multi-domain grains or mixture of both single stage and multi-domian grains and 8.0-12% indicates the superparamagntic (SP grain from lithological origin. In this work frequency dependent measurements were carried out along 5 selected road networks within the 5 districts of Abuja phase 1. Measurements were also carried out in 379 random points at the surface and depth of 40.0cm to investigate the distribution of anthropogenic grains in Abuja metropolis using the Bartington susceptibility meter. Frequency dependent measurements along the selected road networks indicate0-3.0% immediately after the roads pavement to a distance of about 3.0m from the road, indicating that the magnetic susceptibility arise mostly form anthropogenic influence rather than lithological processes. At the distance of 3.0-8.0m, frequency dependent values of about 3.0-8.0% were recorded, indicating mixture of both superparamagnetic and multi-domain grains. Beyond the distance of 8.0m, the frequency dependent values are mostly above 8.0.0%, indicating virtually all SP grains. The spatial distribution frequency dependent surface map shows the presence of anthropogenic grains in

  16. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  17. Past and Future of the Anthropogenic Biosphere

    Science.gov (United States)

    Ellis, E. C.

    2010-12-01

    Human populations and their use of land have now transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes). As anthromes have emerged as the dominant global forms of ecological pattern and process, human interactions with terrestrial ecosystems have become a key earth system process, determining the structure and functioning of the biosphere. This presentation explores Ester Boserup’s land use intensification theories as models for understanding the emergence and dynamics of anthromes and their ecological processes, including their biogeochemistry and community structure, from the mostly wild biosphere of the Holocene to the primarily anthropogenic biosphere of the present and future. Existing global models and data for human population growth and land use over the Holocene differ in their portrayal of the global transition to a mostly anthropogenic biosphere. Yet there is little doubt that human populations have continued to grow over the long term and that anthromes have been increasingly important global ecological systems for millennia. This is conclusive evidence that human interactions with ecosystems can be sustained over the long-term, albeit under conditions that may no longer be realizable by either Earth or human systems. The classic Malthusian paradigm, in which human population growth outstrips natural resources leading to population collapse is unsupported by historical observations at global scale. Boserupian intensification is the better model, providing a robust theoretical foundation in which socio-ecological systems evolve as human populations increase, towards increasingly efficient use of limiting natural resources and enhanced production of anthropogenic ecological services such as food. This is not a story of technical advance, but rather of the forced adoption of ever more energy-intensive technical solutions in support of ever increasing population demands. And it does explain historical changes in the biosphere

  18. Modeling Fallout of Anthropogenic I-129

    DEFF Research Database (Denmark)

    Englund, Edvard; Aldahan, Als; Possnert, Göran

    2008-01-01

    Despite the relatively well-recognized emission rates of the anthropogenic 1291, there is little knowledge about the temporal fallout patterns and magnitude of fluxes since the start of the atomic era at the early 1940s. We here present measurements of annual 1291 concentrations in sediment......, a numerical model approach was used taking into account the emission rates/estimated fallout, transport pathways, and the sediment system. The model outcomes suggest a relatively dominating marine source of 1291 to north Europe compared to direct gaseous releases. A transfer rate of 1291 from sea...... to atmosphere is derived for pertinent sea areas (English Channel, Irish Sea, and North Sea), which is estimated at 0.04 to 0.21 y(-1)....

  19. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    Science.gov (United States)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  20. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  1. Massive branes

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Ortin, T.

    1998-01-01

    We investigate the effective world-volume theories of branes in a background given by (the bosonic sector of) 10-dimensional massive IIA supergravity (''''massive branes'''') and their M-theoretic origin. In the case of the solitonic 5-brane of type IIA superstring theory the construction of the Wess-Zumino term in the world-volume action requires a dualization of the massive Neveu-Schwarz/Neveu-Schwarz target space 2-form field. We find that, in general, the effective world-volume theory of massive branes contains new world-volume fields that are absent in the massless case, i.e. when the mass parameter m of massive IIA supergravity is set to zero. We show how these new world-volume fields can be introduced in a systematic way. (orig.)

  2. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  3. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    Science.gov (United States)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  4. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  5. Evaluation of anthropogenic urban soils. Final report; Bewertung anthropogener Stadtboeden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Schleuss, U. [eds.

    1997-12-31

    The research project `Evaluation of Anthropogenic Urban Soils` was subsidized by the German Federal Ministry of Education, Science, Research and Technology and adviced by the working group `Stadtboeden` of the German Society of Soil Science. It was realized as a cooperation between the universities of Berlin (TU), Halle-Wittenberg, Hohenheim, Kiel and Rostock and had three objectives: - to characterize soils developed from anthropogenic substratums (`urban soils`), - to figure out distribution patterns of such soils and - to verify whether urban soils could be evaluated according to their filtering and habitat function in the same way as soils developed from natural parent material. Evaluation methods based on easily obtainable field data had to be adapted to `urban soils` respectively developed anew. For that reason some typical soils of anthropogenic lithogenesis had to be examined between 1993 and 1996 both on their importance as habitats for plants and soil organisms and on their filtering, buffering and transforming capacities for organic and inorganic pollutants. Accordingly representative `urban soils` were gathered in the towns of Berlin, Eckernfoerde, Essen, Halle, Kiel, Rostock and Stuttgart; these soils had developed from technogenic substratums (brick and mortar debris, municipal waste, ashes, slag, sludge) and redeposited alkaline resp. acidic natural substratums (mud, coal mine and coking plant deposits). Some of the soils were influenced by ground water, and all soils developed from the same kind of parent material belonged to different stages of development. (orig./SR) [Deutsch] Ziele des vom BMBF gefoerderten und vom Arbeitskreis Stadtboeden der Deutschen Bodenkundlichen Gesellschaft beratenen Verbundprojektes `Bewertung anthropogener Stadtboeden` waren die Charakterisierung von Boeden anthropogener Substrate, die exemplarische Ermittlung des Verteilungsmusters derartiger Boeden und die Pruefung, inwieweit sie sich aehnlich den Boeden natuerlicher

  6. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  7. Quantitative Assessment on Anthropogenic Contributions to the Rainfall Extremes Associated with Typhoon Morakot (2009)

    Science.gov (United States)

    Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.

    2017-12-01

    More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.

  8. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments

    Directory of Open Access Journals (Sweden)

    David Kocman

    2017-02-01

    Full Text Available Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg, as inorganic Hg can be converted to toxic methylmercury (MeHg in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes associated with anthropogenic activities have a lower bound of ~1000 Mg· a−1. Artisanal and small-scale gold mining (ASGM represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget.

  9. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.

    Science.gov (United States)

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-05-10

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.

  10. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  11. Sources of anthropogenic radionuclides in the environment: a review

    International Nuclear Information System (INIS)

    Hu Qinhong; Weng Jianqing; Wang Jinsheng

    2010-01-01

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview on sources of anthropogenic radionuclides in the environment, as well as a brief discussion of salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current developments that have lead, or could potentially contribute, to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) uranium mining and milling; (5) commercial fuel reprocessing; (6) geological repository of high-level nuclear wastes that include radionuclides might be released in the future, and (7) nuclear accidents. Then, we briefly summarize the inventory of radionuclides 99 Tc and 129 I, as well as geochemical behavior for radionuclides 99 Tc, 129 I, and 237 Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment; biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  12. Massive-Star Magnetospheres: Now in 3-D!

    Science.gov (United States)

    Townsend, Richard

    prototyped. Simulation data from these codes will be used to synthesize observables, suitable for comparison with datasets from ground- and space-based facilities. Project results will be disseminated in the form of journal papers, presentations, data and visualizations, to facilitate the broad communication of our results. In addition, we will release the project codes under an open- source license, to encourage other groups' involvement in modeling massive-star magnetospheres. Through furthering our insights into these magnetospheres, the project is congruous with NASA's Strategic Goal 2, 'Expand scientific understanding of the Earth and the universe in which we live'. By making testable predictions of X-ray emission and UV line profiles, it is naturally synergistic with observational studies of magnetic massive stars using NASA's ROSAT, Chandra, IUE and FUSE missions. By exploring magnetic braking, it will have a direct impact on theoretical predictions of collapsar yields, and thereby help drive forward the analysis and interpretation of gamma-ray burst observations by NASA's Swift and Fermi missions. And, through its general contribution toward understanding the lifecycle of massive stars, the project will complement the past, present and future investments in studying these stars using NASA's other space-based observatories.

  13. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate.

    Science.gov (United States)

    Pavlova, Martina; Klvana, Martin; Prokop, Zbynek; Chaloupkova, Radka; Banas, Pavel; Otyepka, Michal; Wade, Rebecca C; Tsuda, Masataka; Nagata, Yuji; Damborsky, Jiri

    2009-10-01

    Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels connecting the buried active site with bulk solvent by rational design and randomized them by directed evolution. The most active mutant has large aromatic residues at two out of three randomized positions and two positions modified by site-directed mutagenesis. These changes apparently enhance activity with TCP by decreasing accessibility of the active site for water molecules, thereby promoting activated complex formation. Kinetic analyses confirmed that the mutations improved carbon-halogen bond cleavage and shifted the rate-limiting step to the release of products. Engineering access tunnels by combining computer-assisted protein design with directed evolution may be a valuable strategy for refining catalytic properties of enzymes with buried active sites.

  14. Development of massively parallel quantum chemistry program SMASH

    International Nuclear Information System (INIS)

    Ishimura, Kazuya

    2015-01-01

    A massively parallel program for quantum chemistry calculations SMASH was released under the Apache License 2.0 in September 2014. The SMASH program is written in the Fortran90/95 language with MPI and OpenMP standards for parallelization. Frequently used routines, such as one- and two-electron integral calculations, are modularized to make program developments simple. The speed-up of the B3LYP energy calculation for (C 150 H 30 ) 2 with the cc-pVDZ basis set (4500 basis functions) was 50,499 on 98,304 cores of the K computer

  15. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere

    OpenAIRE

    Yamamoto, A.; Yamanaka, Y.; Tajika, E.

    2009-01-01

    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  16. Use of amazonian anthropogenic soils: Comparison between Caboclos communities and Tikunas indigenous group

    International Nuclear Information System (INIS)

    Torres Sanabria, Camilo; Cuartas Ricaurte, Jorge Armando

    2013-01-01

    In general terms, Amazonian soils are infertile and have several constraints for agricultural production. However, use by ancient human societies since pre-columbian times has driven landscape transformation of massive areas and development of anthropogenic soils called Terra Preta do Indio (TP) or Amazonian Dark Earths (ADE). ADE characterization, in terms of fertility and composition, has allowed the development of intensive agricultural activities over time. The current use of ADE for the Brazilian amazon peasants (Caboclos) is different from the indigenous communities in Colombia. The indigenous people in Colombia (Tikunas) no use this type of soils on behalf of cultural restrictions that avoid the use of ancient places. We are comparing the institutional conditions, migrations, social characterization and cultural factors that determine the use/no-use of these soils by the Amazonian societies.

  17. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    Science.gov (United States)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing

  18. Maternal transfer of anthropogenic radionuclides to eggs in a small shark

    International Nuclear Information System (INIS)

    Jeffree, Ross A.; Oberhansli, Francois; Teyssie, Jean-Louis; Fowler, Scott W.

    2015-01-01

    Maternal transfer of radionuclides to progeny is one of the least known sources of contamination in marine biota and more information is needed to assess its radiological significance. A radiotracer study on spotted dogfish, Scyliorhinus canicula, evaluated the hypothesis that four anthropogenic radionuclides (Cobalt-60, Zinc-65, Americium-241 and Cesium-134) could be maternally transferred to eggs and each of their major components during maternal ingestion of radiolabelled food. The linear regressions between cumulative radioactivity that had been maternally ingested and the level in subsequently laid eggs were used to derive maternal-to-egg transfer factors (mTFs). These maternal transfers varied over an order of magnitude and were ranked 134 Cs >  65 Zn >  60 Co >  241 Am. This ranking was the same as their relative assimilation efficiencies in radiolabelled food consumed by adults. Among these four radionuclides the potential radiological exposure of embryos is accentuated for 65 Zn and 134 Cs due to their predominant transfer to egg yolk where they are available for subsequent absorption by the embryo as it develops prior to hatching from the egg capsule. Thus, for cartilaginous fish like shark, the potential radioecological consequences of a pulsed release of these radionuclides into the marine environment may extend beyond the temporal duration of the release. - Highlights: • Dogfish maternally transfer anthropogenic radionuclides to eggs. • Transfers are ranked 134 Cs >  65 Zn >  60 Co >  241 Am. • Both 65 Zn and 60 Co are mainly deposited in yolk

  19. Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Kennicutt, Mahlon C II; Klein, Andrew; Montagna, Paul; Palmer, Terence; Sweet, Stephen; Wade, Terry; Sericano, Jose; Denoux, Guy

    2010-01-01

    Human visitations to Antarctica have increased in recent decades, raising concerns about preserving the continent's environmental quality. To understand the spatial and temporal patterns of anthropogenic disturbances at the largest scientific station in Antarctica, McMurdo Station, a long-term monitoring program has been implemented. Results from the first nine years (1999-2007) of monitoring are reported. Most physical disturbance of land surfaces occurred prior to 1970 during initial establishment of the station. Hydrocarbons from fuel and anthropogenic metals occur in patches of tens to hundreds of square meters in areas of fuel usage and storage. Most soil contaminant concentrations are not expected to elicit biological responses. Past disposal practices have contaminated marine sediments with polychlorinated biphenyls (PCBs), petroleum hydrocarbons, and metals in close proximity to the station that often exceed concentrations expected to elicit biological responses. Chemical contamination and organic enrichment reduced marine benthic ecological integrity within a few hundred meters offshore of the station. Contaminants were detected in marine benthic organisms confirming bioavailability and uptake. PCBs in sediments are similar to suspected source materials, indicating minimal microbial degradation decades after release. Anthropogenic disturbance of the marine environment is likely to persist for decades. A number of monitoring design elements, indicators and methodologies used in temperate climates were effective and provide guidance for monitoring programs elsewhere in Antarctica.

  20. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  1. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  2. Sustained release of radioprotective agents

    International Nuclear Information System (INIS)

    Shani, J.

    1980-11-01

    New pharmaceutical formulations for the sustained release into the G.I. tract of radioprotective agents have been developed by the authors. The experimental method initially consisted in the production of methylcellulose microcapsules. This method failed apparently because of the premature ''explosion'' of the microcapsules and the consequent premature release of massive amounts of the drug. A new method has been developed which consists in drying and pulverising cysteamine and cysteine preparations, mixing them in various proportions with stearic acid and ethylcellulose as carriers. The mixture is then compressed into cylindrical tablets at several pressure values and the leaching rate of the radioprotective agents is then measured by spectrophotometry. The relation between the concentration of the active drug and its rate of release, and the effect on the release rate of the pressure applied to the tablet during its formation were also investigated. Results indicating that the release rate was linearly related to the square root of ''t'' seem to be in agreement with what is predictable, according to Higuchi's equation, save for the very initial and terminal phases. A clear correlation was also established between the stearic acid/ethylcellulose ratios and the release of 20% cysteine, namely a marked decrease in the rate of cysteine release was observed with increasing concentrations of stearic acid. Finally, it was observed that a higher formation pressure results in quicker release of the drug

  3. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  4. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  5. PCDD/PCDF release inventories

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, H. [UNEP Chemicals, Chatelaine (Switzerland)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs) entered into force on 17 May 2004 with 50 Parties. In May 2004, 59 countries had ratified or acceded the Convention. The objective of the Convention is ''to protect human health and the environment from persistent organic pollutants''. For intentionally produced POPs, e.g., pesticides and industrial chemicals such as hexachlorobenzene and polychlorinated biphenyls, this will be achieved by stop of production and use. For unintentionally generated POPs, such as polychlorinated dibenzo-pdioxins (PCDD) and polychlorinated dibenzofurans (PCDF), measures have to be taken to ''reduce the total releases derived from anthropogenic sources''; the final goal is ultimate elimination, where feasible. Under the Convention, Parties have to establish and maintain release inventories to prove the continuous release reduction. Since many countries do not have the technical and financial capacity to measure all releases from all potential PCDD/PCDF sources, UNEP Chemicals has developed the ''Standardized Toolkit for the Identification of Quantification of Dioxin and Furan Releases'' (''Toolkit'' for short), a methodology to estimate annual releases from a number of sources. With this methodology, annual releases can be estimated by multiplying process-specific default emission factors provided in the Toolkit with national activity data. At the seventh session of the Intergovernmental Negotiating Committee, the Toolkit was recommended to be used by countries when reporting national release data to the Conference of the Parties. The Toolkit is especially used by developing countries and countries with economies in transition where no measured data are available. Results from Uruguay, Thailand, Jordan, Philippines, and Brunei Darussalam have been published.

  6. Development of massively parallel quantum chemistry program SMASH

    Energy Technology Data Exchange (ETDEWEB)

    Ishimura, Kazuya [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan)

    2015-12-31

    A massively parallel program for quantum chemistry calculations SMASH was released under the Apache License 2.0 in September 2014. The SMASH program is written in the Fortran90/95 language with MPI and OpenMP standards for parallelization. Frequently used routines, such as one- and two-electron integral calculations, are modularized to make program developments simple. The speed-up of the B3LYP energy calculation for (C{sub 150}H{sub 30}){sub 2} with the cc-pVDZ basis set (4500 basis functions) was 50,499 on 98,304 cores of the K computer.

  7. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  8. Massive graviton geons

    Science.gov (United States)

    Aoki, Katsuki; Maeda, Kei-ichi; Misonoh, Yosuke; Okawa, Hirotada

    2018-02-01

    We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-Poisson equations with the tensor "wave function" in the Newtonian limit. We obtain a nonspherically symmetric solution with j =2 , ℓ=0 as well as a spherically symmetric solution with j =0 , ℓ=2 in this system where j is the total angular momentum quantum number and ℓ is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)stability of the Minkowski spacetime, and a quantum transition of the spacetime.

  9. Estimating animal mortality from anthropogenic hazards

    Science.gov (United States)

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  10. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  11. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  12. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil.

    Science.gov (United States)

    Medeiros, Patricia Matheus; Bícego, Márcia Caruso; Castelao, Renato Menezes; Del Rosso, Clarissa; Fillmann, Gilberto; Zamboni, Ademilson Josemar

    2005-01-01

    The Patos Lagoon Estuary, southern Brazil, is an area of environmental interest not only because of tourism, but also because of the presence of the second major port of Brazil, with the related industrial and shipping activities. Thus, potential hydrocarbon pollution was examined in this study. Sediment samples were collected at 10 sites in the estuary, extracted, and analyzed by GC-FID and GC-MS for composition and concentration of the following organic geochemical markers: normal and isoprenoid alkanes, petroleum biomarkers, linear alkylbenzenes (LABs), and polycyclic aromatic hydrocarbons (PAHs). The total concentrations varied from 1.1 to 129.6 microg g(-1) for aliphatic hydrocarbons, from 17.8 to 4510.6 ng g(-1) for petroleum biomarkers, from 3.2 to 1601.9 ng g(-1) for LABs, and from 37.7 to 11,779.9 ng g(-1) for PAHs. Natural hydrocarbons were mainly derived from planktonic inputs due to a usual development of blooms in the estuary. Terrestrial plant wax compounds prevailed at sites located far from Rio Grande City and subject to stronger currents. Anthropogenic hydrocarbons are related to combustion/pyrolysis processes of fossil fuel, release of unburned oil products and domestic/industrial waste outfalls. Anthropogenic hydrocarbon inputs were more apparent at sites associated with industrial discharges (petroleum distributor and refinery), shipping activities (dry docking), and sewage outfalls (sewage). The overall concentrations of anthropogenic hydrocarbons revealed moderate to high hydrocarbon pollution in the study area.

  13. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    Science.gov (United States)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  14. Wild mallards have more "goose-like" bills than their ancestors: a case of anthropogenic influence?

    Directory of Open Access Journals (Sweden)

    Pär Söderquist

    Full Text Available Wild populations of the world's most common dabbling duck, the mallard (Anas platyrhynchos, run the risk of genetic introgression by farmed conspecifics released for hunting purposes. We tested whether bill morphology of free-living birds has changed since large-scale releases of farmed mallards started. Three groups of mallards from Sweden, Norway and Finland were compared: historical wild (before large-scale releases started, present-day wild, and present-day farmed. Higher density of bill lamellae was observed in historical wild mallards (only males. Farmed mallards had wider bills than present-day and historical wild ones. Present-day wild and farmed mallards also had higher and shorter bills than historical wild mallards. Present-day mallards thus tend to have more "goose-like" bills (wider, higher, and shorter than their ancestors. Our study suggests that surviving released mallards affect morphological traits in wild population by introgression. We discuss how such anthropogenic impact may lead to a maladapted and genetically compromised wild mallard population. Our study system has bearing on other taxa where large-scale releases of conspecifics with 'alien genes' may cause a cryptic invasive process that nevertheless has fitness consequences for individual birds.

  15. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  16. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  17. Four new massive pulsating white dwarfs including an ultramassive DAV

    Science.gov (United States)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  18. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    Science.gov (United States)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  19. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  20. Exploring the Potential of the Massive, Open, Online Astronomy Course

    Science.gov (United States)

    Austin, Carmen; Impey, C. D.; Wenger, M.

    2014-01-01

    Astronomy: State of the Art is a massive, open, online course (MOOC) in astronomy. Course content was released weekly, over 7 weeks, in the spring of 2013. More than 10 hours of video lectures were produced and deployed along with supplementary readings, podcasts, and realtime Q&A sessions with professor Chris Impey. All content is still available online as a self-paced course. Over 5,000 students have enrolled in the course through the online course platform Udemy. This poster presents student engagement data, and a discussion of lessons learned and opportunities for future improvement.

  1. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model.

    Science.gov (United States)

    Paul, Mathilde; Tavornpanich, Saraya; Abrial, David; Gasqui, Patrick; Charras-Garrido, Myriam; Thanapongtharm, Weerapong; Xiao, Xiangming; Gilbert, Marius; Roger, Francois; Ducrot, Christian

    2010-01-01

    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the "second wave" of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. INRA, EDP Sciences, 2010.

  2. Anthropogenic combustion iron as a complex climate forcer.

    Science.gov (United States)

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  3. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  4. Sulfate cooling effects on climate through in-cloud oxidation of anthropogenic SO2

    International Nuclear Information System (INIS)

    Lelieveld, J.; Heintzenberg, J.

    1992-01-01

    Anthropogenic SO 2 emissions may exert a significant cooling effect on climate in the Northern Hemisphere through backscattering of solar radiation by sulfate particles. Earlier estimates of the sulfate climate forcing were based on a limited number of sulfate-scattering correlation measurements from which a high sulfate-scattering efficiency was derived. Model results suggest that cloud processing of air is the underlying mechanism. aqueous phase oxidation of SO 2 into sulfate and the subsequent release of the dry aerosol by cloud evaporation render sulfate a much more efficient scatterer than through gas-phase SO 2 oxidation

  5. Measurement of anthropogenic radionuclides in the atmosphere with a radionuclide monitoring network for nuclear tests

    International Nuclear Information System (INIS)

    Yonezawa, Chushiro; Yamamoto, Yoichi

    2011-01-01

    A worldwide radionuclide monitoring network for nuclear tests has detected the anthropogenic radioactive materials released in the atmosphere due to the accident of the Fukushima Daiichi Nuclear Power Plant impacted by the Great East Japan Earthquake on March 11, 2011. After four months have passed since the accident occurred, most overseas stations do not detect the radionuclides of Fukushima origin any more. The Takasaki station in Japan, however, is still detecting them every day. This paper describes radionuclide monitoring stations and the network of them as part of the International Monitoring System (IMS) in the Comprehensive Nuclear Test Ban Treaty (CTBT), as well as the measurement results of radionuclide particulates and radioactive isotopes of xenon released from the Fukushima Daiichi Nuclear Power Plant with the monitoring network. (J.P.N.)

  6. Characterization of anthropogenic sediment particles after a transboundary water pollution of river Tisza using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Osan, Janos E-mail: osan@sunserv.kfki.hu; Toeroek, Szabina; Alfoeldy, Balint; Falkenberg, Gerald

    2004-05-21

    At the beginning of 2000, a major mining accident occurred in the Romanian part of the Tisza catchment area due to tailings dam failure releasing huge amounts of heavy metals to the river. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to characterize the anthropogenic particles in river sediment previously selected by single-particle electron probe X-ray microanalysis (EPMA). The trace element composition, heterogeneity and heavy metal speciation of individual particles was studied using synchrotron radiation-based microbeam X-ray emission and absorption methods. Particles were selected only from samples regarded as polluted sediment. White-beam micro X-ray fluorescence ({mu}-XRF) allowed the quantitative determination of heavy metals such as cadmium in individual particles. The maximum observed concentration of cadmium (>700 {mu}g/g) indicates that this highly toxic heavy metal is concentrated in individual anthropogenic particles. Using the combination of micro X-ray absorption near-edge structure and target-transformation principle component analysis, quantitative chemical speciation of copper and zinc was feasible on individual sediment particles. Heavy metals in most of the particles released from the pollution site remained in the sulfide form resulting in a limited mobility of these metals. Based on the information obtained using microanalytical methods, the estimation of the environmental mobility of heavy metals connected to microparticles becomes possible.

  7. Vaidya spacetime in massive gravity's rainbow

    Directory of Open Access Journals (Sweden)

    Yaghoub Heydarzade

    2017-11-01

    Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.

  8. Capturing the externalities: National and watershed scale damages from release of reactive nitrogen beyond the farm, factory, tailpipe and table

    Science.gov (United States)

    Compton, J.; Sobota, D. J.; McCrackin, M. L.; Harrison, J.

    2014-12-01

    Human demand for food, fuel, and industrial products results in the release of 61% of the newly fixed anthropogenic N to the environment in the US each year. This 15.8 Tg N yr-1 input to air, land and water has important social, economic and environmental consequences, yet little research clearly links this N release to the full suite of effects. Here we connect the biogeochemical fluxes of N with existing data on N-associated damages in order to quantify the externalities of N release related to human health, ecosystems and climate regulation for the US at national and watershed scales. Release of N to the environment was estimated circa 2000 with models describing N inputs by source, nutrient uptake efficiency, leaching losses, and gaseous emissions at the scale of 8-digit US Geologic Survey Hydrologic Unit Codes (HUC8s). Potential damages or benefits of anthropogenic N leaked to the environment were calculated by scaling specific N fluxes with the costs associated with human health, agriculture, ecosystems, and the climate system. For the US, annual damage costs of anthropogenic N leaked to the environment in 2000 totaled 289 billion USD. Approximately 57% of the total damages were associated with fossil fuel combustion, driven by the human respiratory health impacts of NOx as a precursor of ozone and a component of particulates. Another 37% of the damage costs were associated with agricultural N. Damages associated with agriculture were 85.5 billion, largely through eutrophication and harmful effects on aquatic habitat. Through aggressive but tangible improvements in atmospheric emissions, agricultural N use and wastewater treatment, we could reduce N export to the coast by nearly 25% within 30 years. These improvements would reduce the externalities associated with the leakage of N beyond its intended uses in agriculture, transportation and energy with minimal impact to these sectors dependent on anthropogenic N fixation.

  9. Differentiating between anthropogenic and geological sources of nitrate using multiple geochemical tracers

    Science.gov (United States)

    Linhoff, B.; Norton, S.; Travis, R.; Romero, Z.; Waters, B.

    2017-12-01

    Nitrate contamination of groundwater is a major problem globally including within the Albuquerque Basin in New Mexico. Ingesting high concentrations of nitrate (> 10 mg/L as N) can lead to an increased risk of cancer and to methemoglobinemia in infants. Numerous anthropogenic sources of nitrate have been identified within the Albuquerque Basin including fertilizers, landfills, multiple sewer pipe releases, sewer lagoons, domestic septic leach fields, and a nitric acid line outfall. Furthermore, groundwater near ephemeral streams often exhibits elevated NO3 concentrations and high NO3/Cl ratios incongruous with an anthropogenic source. These results suggest that NO3 can be concentrated through evaporation beneath ephemeral streams and mobilized via irrigation or land use change. This study seeks to use extensive geochemical analyses of groundwater and surface water to differentiate between various sources of NO3 contamination. The U.S. Geological Survey collected 54 groundwater samples from wells and six samples from ephemeral streams from within and from outside of areas of known nitrate contamination. To fingerprint the sources of nitrate pollution, samples were analyzed for major ions, trace metals, nutrients, dissolved gases, δ15N and δ18O in NO3, δ15N within N2 gas, and, δ2H and δ18O in H2O. Furthermore, most sites were sampled for artificial sweeteners and numerous contaminants of emerging concern including pharmaceutical drugs, caffeine, and wastewater indicators. This study will also investigate the age distribution of groundwater and the approximate age of anthropogenic NO3 contamination using 3He/4He, δ13C, 14C, 3H, as well as pharmaceutical drugs and artificial sweeteners with known patent and U.S. Food and Drug Administration approval dates. This broad suite of analytes will be used to differentiate between naturally occurring and multiple anthropogenic NO3 sources, and to potentially determine the approximate date of NO3 contamination.

  10. MassiveNuS: cosmological massive neutrino simulations

    Science.gov (United States)

    Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.

    2018-03-01

    The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.

  11. Holographically viable extensions of topologically massive and minimal massive gravity?

    Science.gov (United States)

    Altas, Emel; Tekin, Bayram

    2016-01-01

    Recently [E. Bergshoeff et al., Classical Quantum Gravity 31, 145008 (2014)], an extension of the topologically massive gravity (TMG) in 2 +1 dimensions, dubbed as minimal massive gravity (MMG), which is free of the bulk-boundary unitarity clash that inflicts the former theory and all the other known three-dimensional theories, was found. Field equations of MMG differ from those of TMG at quadratic terms in the curvature that do not come from the variation of an action depending on the metric alone. Here we show that MMG is a unique theory and there does not exist a deformation of TMG or MMG at the cubic and quartic order (and beyond) in the curvature that is consistent at the level of the field equations. The only extension of TMG with the desired bulk and boundary properties having a single massive degree of freedom is MMG.

  12. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  13. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  14. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  15. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  16. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  17. Characterizing aquifer hydrogeology and anthropogenic chemical influences on groundwater near the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Fromm, J.M.

    1995-01-01

    A conceptual model of the Eastern Snake River Plain aquifer in the vicinity of monitoring well USGS-44, downgradient of the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL), was developed by synthesis and comparison of previous work (40 years) and new investigations into local natural hydrogeological conditions and anthropogenic influences. Quantitative tests of the model, and other recommendations are suggested. The ICPP recovered fissionable uranium from spent nuclear fuel rods and disposed of waste fluids by release to the regional aquifer and lithosphere. Environmental impacts were assessed by a monitoring well network. The conceptual model identifies multiple, highly variable, interacting, and transient components, including INEL facilities multiple operations and liquid waste handling, systems; the anisotropic, in homogeneous aquifer; the network of monitoring and production wells, and the intermittent flow of the Big Lost River. Pre anthropogenic natural conditions and early records of anthropogenic activities were sparsely or unreliably documented making reconstruction of natural conditions or early hydrologic impacts impossible or very broad characterizations

  18. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  19. Massive Supergravity and Deconstruction

    CERN Document Server

    Gregoire, T; Shadmi, Y; Gregoire, Thomas; Schwartz, Matthew D; Shadmi, Yael

    2004-01-01

    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various qu...

  20. COLA with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-10-01

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.

  1. Trends in anthropogenic mercury emissions estimated for South Africa during 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Masekoameng, K.E.; Leaner, J.; Dabrowski, J. [CSIR, Pretoria (South Africa)

    2010-08-15

    Recent studies suggest an increase in mercury (Hg) emissions to the global environment, particularly as a result of anthropogenic activities. This has prompted many countries to complete Hg emission inventories, based on country-specific Hg sources. In this study, information on annual coal consumption and Hg-containing commodities produced in South Africa, was used to estimate Hg emissions during 2000-2006. Based on the information, the UNEP toolkit was used to estimate the amount of Hg released to air and general waste from each activity; using South Africa specific and toolkit based emission factors. In both atmospheric and solid waste releases, coal-fired power plants were estimated to be the largest contributors of Hg emissions, viz. 27.1 to 38.9 tonnes y{sup -1} in air, and 5.8 to 7.4 tonnes y{sup -1} in waste. Cement production was estimated to be the second largest atmospheric Hg emission contributor (2.2-3.9 tonnes y{sup -1}), while coal gasification was estimated to be the second largest Hg contributor in terms of general waste releases (2.9-4.2 tonnes y{sup -1}). Overall, there was an increase in total atmospheric Hg emissions from all activities, estimated at ca. 34 tonnes in 2000, to 50 tonnes in 2006, with some fluctuations between the years. Similarly, the total Hg emissions released to general waste was estimated to be 9 tonnes in 2000, with an increase to 12 tonnes in 2006.

  2. Minimal massive 3D gravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Merbis, Wout; Hohm, Olaf; Routh, Alasdair J; Townsend, Paul K

    2014-01-01

    We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)

  3. Anthropogenic infrastructure as a component of urbogeosystems

    Directory of Open Access Journals (Sweden)

    Oleksii Chuiev

    2017-11-01

    Full Text Available This article deals with the definition of the concept of "anthropogenic infrastructure" and attempts to find its place in the structure of urbogeosystems. The concept itself can not be called new, as many foreign authors have already used it, but the final definition never happened. The reasons why city studies are becoming more relevant in the face of ever-accelerating urbanization are briefly presented. Prerequisites for the emergence of the urban environment and approaches to its study are given. A special attention is paid to the consideration of urbosystems and their component structure. The main four components are described, which include the technosphere, biosphere, population and abiotic nature. The causes of the appearance of urban ecosystems and their specific features are analyzed. Based on the deficiencies of the "Urbosphere", "Urbosystem" and "Urboecosystem", the notion of "Urbogeosystem" is formed once again. Since architectural and construction objects are key components of such systems, their integration into anthropogenic infrastructure allows us to operate with a more general concept. Functional zones of the city, which are part of the anthropogenic infrastructure, are described. These include residential, industrial, forest and park areas. Examples of the use and functioning of each of the zones are given. An attempt has been made to estimate the boundaries of urbogeosystems. The existing approaches to the classification of anthropogenic infrastructure are analyzed. For one of them, it is advisable to allocate separately "hard" and "soft" infrastructure by the nature of the tasks of society, which they are called upon to satisfy. An alternative approach is to divide the anthropogenic infrastructure into "human" and "physical" ones. If the first satisfies the socio-cultural needs of people, the second is used for production, development, establishment of communications, transportation. It is proved why it is expedient to

  4. Mercury profiles in sediment from the marginal high of Arabian Sea: An indicator of increasing anthropogenic Hg input

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Vudamala, K.; Chennuri, K.; Armoury, K.; Linsy, P.; Ramteke, D.; Sebastian, T.; Jayachandran, S.; Naik, C.; Naik, R.; Nath, B.N.

    provided the sediments remain undisturbed by either natural or anthropogenic forces (Engstrom et al. 2007). However, it has also been suggested that early diagenesis in sediment column may increase mobility of Hg and can alter concentration profile of Hg... the mobility of Hg in sediment (Dehairq 1989; Gagnon and Mucci 1997; van der Zee and van Raaphorst 2004; Konovalov et al. 2007). Oxidation of sedimentary organic matter also appears to release significant amounts of mercury (associated with organic phase...

  5. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    Science.gov (United States)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  6. Discriminating background from anthropogenic lead by isotopic methods

    International Nuclear Information System (INIS)

    Nelson, B.K.; O'Brien, H.E.

    1995-01-01

    The goal of this pilot project was to evaluate the practicality of using natural variations in the isotopic composition of lead to test for the presence of anthropogenic lead in soil, surface water and ground water. Complex chemical reactions in the environment may cause measured lead concentrations to be ambiguous indicators of anthropogenic lead component. The lead isotope tracer technique has the potential to identify both the presence and proportion of anthropogenic lead in the environment. The tested the lead isotope technique at Eielson Air Force Base, Alaska, on sources of suspected fuel contamination. Although the results are specific to this base, the general technique of using lead isotopes to trace the movement of anthropogenic lead is applicable to other CERCLA sites. The study had four objectives: (1) characterize the natural lead isotope composition of bedrock, stream sediment and soils; (2) characterize the isotopic composition of the contaminant lead derived from fuel; (3) evaluate the sensitivity of the isotopic method to distinguishing between anthropogenic and natural lead in soil and water samples and (4) evaluate the analytical feasibility and accuracy of the method at the Isotope Geochemistry Laboratory at the University of Washington

  7. Nonsingular universe in massive gravity's rainbow

    Science.gov (United States)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  8. ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Taylor, Edward N.; Franx, Marijn; Brinchmann, Jarle; Glazebrook, Karl; Van der Wel, Arjen; Van Dokkum, Pieter G

    2010-01-01

    We set out to test the claim that the recently identified population of compact, massive, and quiescent galaxies at z ∼ 2.3 must undergo significant size evolution to match the properties of galaxies found in the local universe. Using data from the Sloan Digital Sky Survey (SDSS; Data Release 7), we have conducted a search for local red sequence galaxies with sizes and masses comparable to those found at z ∼ 2.3. The SDSS spectroscopic target selection algorithm excludes high surface brightness objects; we show that this makes incompleteness a concern for such massive, compact galaxies, particularly for low redshifts (z ∼ * >10 10.7 M sun (∼5 x 10 10 M sun ) red sequence galaxies at 0.066 spec 5000. This result cannot be explained by incompleteness: in the 0.066 75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ∼20%. In order to confirm that the absence of such compact massive galaxies in SDSS is not produced by spectroscopic selection effects, we have also looked for such galaxies in the basic SDSS photometric catalog, using photometric redshifts. While we do find signs of a slight bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high-redshift results, it is clear that massive galaxies must undergo significant structural evolution over z ∼< 2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism (e.g., major mergers) cannot be the primary driver of this strong size evolution.

  9. A retrospect of anthropogenic radioactivity in the global marine environment

    DEFF Research Database (Denmark)

    Aarkrog, A.

    1998-01-01

    . The IAEA's IASAP study has evaluated the radiological consequences of these dumpings. In a recent international study (MARDOS) by the IAEA it was concluded that the doses to man from anthropogenic radionuclides in the marine environment are generally one to two orders of magnitude less than the doses from......Man-made radionuclides were introduced into the marine environment in the mid forties with the exploitation of nuclear fission for military purposes. Plutonium production reactors at Hanford, USA, released radioactivity to the Pacific Ocean via the Columbia River. In the former Soviet Union (FSU......) the military nuclear establishment at Cheliabinsk (later MAYAK) a few years later began direct discharging of fission products to the nearby Techa River, which is a part of the Ob river system, and the Arctic Ocean received man made radioactivity. In the 1950s, when atmospheric testing of thermonuclear weapons...

  10. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  11. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Zumkehr, Andrew [Sierra Nevada Research Institute, University of California, Merced California USA; Hilton, Timothy W. [Sierra Nevada Research Institute, University of California, Merced California USA; Whelan, Mary [Sierra Nevada Research Institute, University of California, Merced California USA; Smith, Steve [Joint Global Change Research Institute, PNNL, College Park Maryland USA; Campbell, J. Elliott [Sierra Nevada Research Institute, University of California, Merced California USA

    2017-02-21

    Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

  12. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  13. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  14. Spacetime structure of massive Majorana particles and massive gravitino

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, D.V.; Kirchbach, M. [Theoretical Physics Group, Facultad de Fisica, Universidad Autonoma de Zacatecas, A.P. 600, 98062 Zacatecas (Mexico)

    2003-07-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear {gamma} {mu} p{sub {mu}}, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The latter is distributed uniformly, i.e. as 1/4, among the two spin-1/2+ and spin-1/2- states of opposite parities. From that we draw the conclusion that the massive gravitino should be interpreted as a particle of multiple spin. (Author)

  15. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  16. Effects of Didymosphenia geminata massive growth on stream communities: Smaller organisms and simplified food web structure.

    Science.gov (United States)

    Ladrera, Rubén; Gomà, Joan; Prat, Narcís

    2018-01-01

    This study aims to contribute to the understanding of the impact of Didymosphenia geminata massive growths upon river ecosystem communities' composition and functioning. This is the first study to jointly consider the taxonomic composition and functional structure of diatom and macroinvertebrate assemblages in order to determine changes in community structure, and the food web alterations associated with this invasive alga. This study was carried out in the Lumbreras River (Ebro Basin, La Rioja, Northern Spain), which has been affected by a considerable massive growth of D. geminata since 2011. The study shows a profound alteration in both the river community composition and in the food web structure at the sites affected by the massive growth, which is primarily due to the alteration of the environmental conditions, thus demonstrating that D. geminata has an important role as an ecosystem engineer in the river. Thick filamentous mats impede the movement of large invertebrates-especially those that move and feed up on it-and favor small, opportunistic, herbivorous organisms, mainly chironomids, that are capable of moving between filaments and are aided by the absence of large trophic competitors and predators -prey release effect-. Only small predators, such as hydra, are capable of surviving in the new environment, as they are favored by the increase in chironomids, a source of food, and by the reduction in both their own predators and other midge predators -mesopredator release-. This change in the top-down control affects the diatom community, since chironomids may feed on large diatoms, increasing the proportion of small diatoms in the substrate. The survival of small and fast-growing pioneer diatoms is also favored by the mesh of filaments, which offers them a new habitat for colonization. Simultaneously, D. geminata causes a significant reduction in the number of diatoms with similar ecological requirements (those attached to the substrate). Overall, D

  17. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  18. Massive neutrinos in astrophysics

    International Nuclear Information System (INIS)

    Qadir, A.

    1982-08-01

    Massive neutrinos are among the big hopes of cosmologists. If they happen to have the right mass they can close the Universe, explain the motion of galaxies in clusters, provide galactic halos and even, possibly, explain galaxy formation. Tremaine and Gunn have argued that massive neutrinos cannot do all these things. I will explain, here, what some of us believe is wrong with their arguments. (author)

  19. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components

    Science.gov (United States)

    Menzer, Olaf; McFadden, Joseph P.

    2017-12-01

    Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.

  20. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    Science.gov (United States)

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  1. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  2. Isotopic fingerprints of anthropogenic molybdenum in lake sediments.

    Science.gov (United States)

    Chappaz, Anthony; Lyons, Timothy W; Gordon, Gwyneth W; Anbar, Ariel D

    2012-10-16

    We measured the molybdenum isotope compositions (δ(98)Mo) of well-dated sediment cores from two lakes in eastern Canada in an effort to distinguish between natural and anthropogenic contributions to these freshwater aquatic systems. Previously, Chappaz et al. (1) ascribed pronounced 20th-century Mo concentration enrichments in these lakes to anthropogenic inputs. δ(98)Mo values in the deeper sediments (reflecting predominantly natural Mo sources) differ dramatically between the two lakes: -0.32 ± 0.17‰ for oxic Lake Tantare and +0.64 ± 0.09‰ for anoxic Lake Vose. Sediment layers previously identified as enriched in anthropogenic Mo, however, reveal significant δ(98)Mo shifts of ± 0.3‰, resulting in isotopically heavier values of +0.05 ± 0.18‰ in Lake Tantare and lighter values of +0.31 ± 0.03‰ in Lake Vose. We argue that anthropogenic Mo modifies the isotopic composition of the recent sediments, and we determine δ(98)Mo(anthropogenic) values of 0.1 ± 0.1‰ (Lake Vose) and 0.2 ± 0.2‰ (Lake Tantare). These calculated inputs are consistent with the δ(98)Mo of molybdenite (MoS(2)) likely delivered to the lakes via smelting of porphyry copper deposits (Lake Vose) or through combustion of coal and oil also containing Mo (Lake Tantare). Our results confirm the utility of Mo isotopes as a promising fingerprint of human impacts and perhaps the specific sources of contamination. Importantly, the magnitudes of the anthropogenic inputs are large enough, relative to the natural Mo cycles in each lake, to have an impact on the microbiological communities.

  3. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  4. Massive stellar content of some Galactic supershells

    Science.gov (United States)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  5. Blue whales respond to anthropogenic noise.

    Directory of Open Access Journals (Sweden)

    Mariana L Melcón

    Full Text Available Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood.

  6. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity

    Science.gov (United States)

    Sarhan, Mohammad Abdelfattah

    2017-12-01

    The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.

  7. ANTHROPOGENIC ACTIVITIES THREATENING THE ...

    African Journals Online (AJOL)

    Osondu

    2012-02-17

    Feb 17, 2012 ... anthropogenic activities across the protected areas in the country. ... education and provision of fund to support sustainable livelihood practices. ... wildlife conservation and tourism. ... Fig: 1 Map of Oyo State showing location of Old Oyo National Park and adjoining community. #. #. # .... This was the view of.

  8. Massive Born--Infeld and Other Dual Pairs

    CERN Document Server

    Ferrara, S

    2015-01-01

    We consider massive dual pairs of p-forms and (D-p-1)-forms described by non-linear Lagrangians, where non-linear curvature terms in one theory translate into non-linear mass-like terms in the dual theory. In particular, for D=2p and p even the two non-linear structures coincide when the non-linear massless theory is self-dual. This state of affairs finds a natural realization in the four-dimensional massive N=1 supersymmetric Born-Infeld action, which describes either a massive vector multiplet or a massive linear (tensor) multiplet with a Born-Infeld mass-like term. These systems should play a role for the massive gravitino multiplet obtained from a partial super-Higgs in N=2 Supergravity.

  9. Assessment of global industrial-age anthropogenic arsenic contamination.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  10. MASSIVE+: The Growth Histories of MASSIVE Survey Galaxies from their Globular Cluster Colors

    Science.gov (United States)

    Blakeslee, John

    2017-08-01

    The MASSIVE survey is targeting the 100 most massive galaxies within 108 Mpc that are visible in the northern sky. These most massive galaxies in the present-day universe reside in a surprisingly wide variety of environments, from rich clusters to fossil groups to near isolation. We propose to use WFC3/UVIS and ACS to carry out a deep imaging study of the globular cluster populations around a selected subset of the MASSIVE targets. Though much is known about GC systems of bright galaxies in rich clusters, we know surprisingly little about the effects of environment on these systems. The MASSIVE sample provides a golden opportunity to learn about the systematics of GC systems and what they can tell us about environmental drivers on the evolution of the highest mass galaxies. The most pressing questions to be addressed include: (1) Do isolated giants have the same constant mass fraction of GCs to total halo mass as BCGs of similar luminosity? (2) Do their GC systems show the same color (metallicity) distribution, which is an outcome of the mass spectrum of gas-rich halos during hierarchical growth? (3) Do the GCs in isolated high-mass galaxies follow the same radial distribution versus metallicity as in rich environments (a test of the relative importance of growth by accretion)? (4) Do the GCs of galaxies in sparse environments follow the same mass function? Our proposed second-band imaging will enable us to secure answers to these questions and add enormously to the legacy value of existing HST imaging of the highest mass galaxies in the universe.

  11. Experiments to Measure Hydrogen Release from Graphite Walls During Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E.M.; Pablant, N.A.; Rudakov, D.L.; Boedo, J.A.; Brooks, N.H.; Jernigan, Thomas C.; Pigarov, A.Y.

    2009-01-01

    Spectroscopy and wall the bake-out measurements are performed in the DIII-D tokamak to estimate the amount of hydrogen stored in and released from the walls during disruptions. Both naturally occurring disruptions and disruptions induced by massive gas injection (MGI) are investigated. The measurements indicate that both types of disruptions cause a net release of order 10(21) hydrogen (or deuterium) atoms from the graphite walls. This is comparable to the pre-disruptions plasma particle inventory, so the released hydrogen is important for accurate modeling of disruptions. However, the amount of hydrogen released is small compared to the total saturated wall inventory of order 10(22)-10(23), So it appears that many disruptions are necessary to provide full pump-out of the vessel walls. (C) 2009 Published by Elsevier B.V.

  12. Modelling of anthropogenic and natural climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Mikolajewicz, U; Bakan, S [Max Planck Institute of Meteorology, Hamburg (Germany)

    1993-06-01

    The delay of anthropogenic climate change caused by oceans and other slowly reacting climate system components forces us to numerical modeling as the basis of decisions. For three three-dimensional numerical examples, namely transient coupled ocean-atmosphere models for the additional greenhouse effect, internal ocean-atmosphere variability, and disturbance by soot particles from burning oil wells, the present-day status is described. From all anthropogenic impacts on the radiative balance, the contribution from trace gases is the most important.

  13. Red to Mediterranean Sea bioinvasion: natural drift through the Suez Canal, or anthropogenic transport?

    Science.gov (United States)

    Shefer, Sigal; Abelson, Avigdor; Mokady, Ofer; Geffen, Eli

    2004-08-01

    The biota of the eastern basin of the Mediterranean Sea has experienced dramatic changes in the last decades, in part as a result of the massive invasion of Red Sea species. The mechanism generally hypothesized for the 'Red-to-Med' invasion is that of natural dispersal through the Suez Canal. To date, however, this hypothesis has not been tested. This study examines the mode of invasion, using as a model the mussel Brachidontes pharaonis, an acclaimed 'Lessepsian migrant' that thrives along the eastern Mediterranean coast. Our findings reveal two distinct lineages of haplotypes, and five possible explanations are discussed for this observation. We show that the genetic exchange among the Mediterranean, Gulf of Suez and the northern Red Sea is sufficiently large to counteract the build up of sequential genetic structure. Nevertheless, these basins are rich in unique haplotypes of unknown origin. We propose that it is historic secondary contact, an ongoing anthropogenic transport or both processes, that participate in driving the population dynamics of B. pharaonis in the Mediterranean and northern Red Sea. Copyright 2004 Blackwell Publishing Ltd

  14. Conservation and the 4 Rs, which are rescue, rehabilitation, release, and research.

    Science.gov (United States)

    Pyke, Graham H; Szabo, Judit K

    2018-02-01

    Vertebrate animals can be injured or threatened with injury through human activities, thus warranting their "rescue." Details of wildlife rescue, rehabilitation, release, and associated research (our 4 Rs) are often recorded in large databases, resulting in a wealth of available information. This information has huge research potential and can contribute to understanding of animal biology, anthropogenic impacts on wildlife, and species conservation. However, such databases have been little used, few studies have evaluated factors influencing success of rehabilitation and/or release, recommended actions to conserve threatened species have rarely arisen, and direct benefits for species conservation are yet to be demonstrated. We therefore recommend that additional research be based on data from rescue, rehabilitation, and release of animals that is broader in scope than previous research and would have community support. © 2017 Society for Conservation Biology.

  15. Development, description and validation of a Tritium Environmental Release Model (TERM).

    Science.gov (United States)

    Jeffers, Rebecca S; Parker, Geoffrey T

    2014-01-01

    Tritium is a radioisotope of hydrogen that exists naturally in the environment and may also be released through anthropogenic activities. It bonds readily with hydrogen and oxygen atoms to form tritiated water, which then cycles through the hydrosphere. This paper seeks to model the migration of tritiated species throughout the environment - including atmospheric, river and coastal systems - more comprehensively and more consistently across release scenarios than is currently in the literature. A review of the features and underlying conceptual models of some existing tritium release models was conducted, and an underlying aggregated conceptual process model defined, which is presented. The new model, dubbed 'Tritium Environmental Release Model' (TERM), was then tested against multiple validation sets from literature, including experimental data and reference tests for tritium models. TERM has been shown to be capable of providing reasonable results which are broadly comparable with atmospheric HTO release models from the literature, spanning both continuous and discrete release conditions. TERM also performed well when compared with atmospheric data. TERM is believed to be a useful tool for examining discrete and continuous atmospheric releases or combinations thereof. TERM also includes further capabilities (e.g. river and coastal release scenarios) that may be applicable to certain scenarios that atmospheric models alone may not handle well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Anthropogenic features and hillslope processes interaction

    Science.gov (United States)

    Tarolli, Paolo; Sofia, Giulia

    2016-04-01

    Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of

  17. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    International Nuclear Information System (INIS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng

    2010-01-01

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  18. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  19. Topological massive sigma models

    International Nuclear Information System (INIS)

    Lambert, N.D.

    1995-01-01

    In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))

  20. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  1. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    Science.gov (United States)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  2. Evolution and alteration in situ of a massive iron duricrust in Central Africa

    Science.gov (United States)

    Bitom, Dieudonné; Volkoff, Boris; Abossolo-Angue, Monique

    2003-08-01

    A soil sequence with iron duricrust is described in an area covered by tropical rain forest in South Cameroon. The dismantling of the iron duricrust is documented through a close observation of a soft duricrust, which corresponds to a transitional stage in the degradation of a massive iron duricrust into a loose nodular horizon. In the initial massive and hematitic duricrust, nodular shapes are progressively formed. The nodules and the internodular matrix remain hematitic. The internodular matrix undergoes goethitization and a pronounced deferruginisation before loosening; the primary structure of the iron duricrust is maintained, however, due to internodular bridges, relics of internodular matrix which escaped the process of goethitization. The iron is gradually released from these hematitic bridges, which become softer. This leads to the collapse of the initial structures of the iron duricrust and to the formation of a loose nodular material with a clayey matrix containing kaolinite and goethite. Many loose nodular horizons, which are found all over Central Africa, may have been formed by such alteration of a former iron duricrust.

  3. High-Resolution Mapping of Anthropogenic Heat in China from 1992 to 2010

    Directory of Open Access Journals (Sweden)

    Wangming Yang

    2014-04-01

    Full Text Available Anthropogenic heat generated by human activity contributes to urban and regional climate warming. Due to the resolution and accuracy of existing anthropogenic heat data, it is difficult to analyze and simulate the corresponding effects. This study exploited a new method to estimate high spatial and temporal resolutions of anthropogenic heat based on long-term data of energy consumption and the US Air Force Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS data from 1992 to 2010 across China. Our results showed that, throughout the entire study period, there are apparent increasing trends in anthropogenic heat in three major metropoli, i.e., the Beijing-Tianjin region, the Yangzi River delta and the Pearl River delta. The annual mean anthropogenic heat fluxes for Beijing, Shanghai and Guangzhou in 2010 were 17 Wm−2, 19 and 7.8 Wm−2, respectively. Comparisons with previous studies indicate that DMSP-OLS data could provide a better spatial proxy for estimating anthropogenic heat than population density and our analysis shows better performance at large scales for estimation of anthropogenic heat.

  4. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  5. Epidemiology of massive transfusion

    DEFF Research Database (Denmark)

    Halmin, M A; Chiesa, F; Vasan, S K

    2015-01-01

    and to describe characteristics and mortality of massively transfused patients. Methods: We performed a retrospective cohort study based on the Scandinavian Donations and Transfusions (SCANDAT2) database, linking data on blood donation, blood components and transfused patients with inpatient- and population.......4% among women transfused for obstetrical bleeding. Mortality increased gradually with age and among all patients massively transfused at age 80 years, only 26% were alive [TABLE PRESENTED] after 5 years. The relative mortality, early after transfusion, was high and decreased with time since transfusion...

  6. Reappraising the concept of massive transfusion in trauma

    DEFF Research Database (Denmark)

    Stanworth, Simon J; Morris, Timothy P; Gaarder, Christine

    2010-01-01

    ABSTRACT : INTRODUCTION : The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens...... of modern trauma care are targeted to the early correction of acute traumatic coagulopathy. The aim of this study was to identify a clinically relevant definition of trauma massive transfusion based on clinical outcomes. We also examined whether the concept was useful in that early prediction of massive...... transfusion as a concept in trauma has limited utility, and emphasis should be placed on identifying patients with massive hemorrhage and acute traumatic coagulopathy....

  7. The role of a northern town in a massively multiplayer online roleplaying game:Bruma in The Elder Scrolls Online: Tamriel Unlimited

    OpenAIRE

    Pelkonen, M. (Minna)

    2016-01-01

    Abstract This Master’s Thesis explores the gameplay and imagery offered to players in a town called Bruma in the PC version of the Massively Multiplayer Online Roleplaying Game (MMORPG) The Elder Scrolls Online: Tamriel Unlimited by Zenimax Online Studios. The game was originally released in 2014 under the name The Elder Scrolls Online. The thesis main...

  8. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  9. Detecting anthropogenic climate change with an optimal fingerprint method

    International Nuclear Information System (INIS)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K.; Santer, B.D.; Jones, P.D.

    1994-01-01

    We propose a general fingerprint strategy to detect anthropogenic climate change and present application to near surface temperature trends. An expected time-space-variable pattern of anthropogenic climate change (the 'signal') is identified through application of an appropriate optimally matched space-time filter (the 'fingerprint') to the observations. The signal and the fingerprint are represented in a space with sufficient observed and simulated data. The signal pattern is derived from a model-generated prediction of anthropogenic climate change. Application of the fingerprint filter to the data yields a scalar detection variable. The statistically optimal fingerprint is obtained by weighting the model-predicted pattern towards low-noise directions. A combination of model output and observations is used to estimate the noise characteristics of the detection variable, arising from the natural variability of climate in the absence of external forcing. We test then the null hypothesis that the observed climate change is part of natural climate variability. We conclude that a statistically significant externally induced warming has been observed, with the caveat of a possibly inadequate estimate of the internal climate variability. In order to attribute this warming uniquely to anthropogenic greenhouse gas forcing, more information on the climate's response to other forcing mechanisms (e.g. changes in solar radiation, volcanic or anthropogenic aerosols) and their interaction is needed. (orig./KW)

  10. How I treat patients with massive hemorrhage

    DEFF Research Database (Denmark)

    Johansson, Pär I; Stensballe, Jakob; Oliveri, Roberto

    2014-01-01

    Massive hemorrhage is associated with coagulopathy and high mortality. The transfusion guidelines up to 2006 recommended that resuscitation of massive hemorrhage should occur in successive steps using crystalloids, colloids and red blood cells (RBC) in the early phase, and plasma and platelets...... in the late phase. With the introduction of the cell-based model of hemostasis in the mid 1990ties, our understanding of the hemostatic process and of coagulopathy has improved. This has contributed to a change in resuscitation strategy and transfusion therapy of massive hemorrhage along with an acceptance...... outcome, although final evidence on outcome from randomized controlled trials are lacking. We here present how we in Copenhagen and Houston, today, manage patients with massive hemorrhage....

  11. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  12. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  13. Massive supermultiplets in four-dimensional superstring theory

    International Nuclear Information System (INIS)

    Feng Wanzhe; Lüst, Dieter; Schlotterer, Oliver

    2012-01-01

    We extend the discussion of Feng et al. (2011) on massive Regge excitations on the first mass level of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal supermultiplets common to all four-dimensional compactifications with N=1,2 and N=4 spacetime supersymmetry are constructed respectively - both their vertex operators and their supersymmetry variations. Massive spinor helicity methods shed light on the interplay between individual polarization states.

  14. Update on massive transfusion.

    Science.gov (United States)

    Pham, H P; Shaz, B H

    2013-12-01

    Massive haemorrhage requires massive transfusion (MT) to maintain adequate circulation and haemostasis. For optimal management of massively bleeding patients, regardless of aetiology (trauma, obstetrical, surgical), effective preparation and communication between transfusion and other laboratory services and clinical teams are essential. A well-defined MT protocol is a valuable tool to delineate how blood products are ordered, prepared, and delivered; determine laboratory algorithms to use as transfusion guidelines; and outline duties and facilitate communication between involved personnel. In MT patients, it is crucial to practice damage control resuscitation and to administer blood products early in the resuscitation. Trauma patients are often admitted with early trauma-induced coagulopathy (ETIC), which is associated with mortality; the aetiology of ETIC is likely multifactorial. Current data support that trauma patients treated with higher ratios of plasma and platelet to red blood cell transfusions have improved outcomes, but further clinical investigation is needed. Additionally, tranexamic acid has been shown to decrease the mortality in trauma patients requiring MT. Greater use of cryoprecipitate or fibrinogen concentrate might be beneficial in MT patients from obstetrical causes. The risks and benefits for other therapies (prothrombin complex concentrate, recombinant activated factor VII, or whole blood) are not clearly defined in MT patients. Throughout the resuscitation, the patient should be closely monitored and both metabolic and coagulation abnormalities corrected. Further studies are needed to clarify the optimal ratios of blood products, treatment based on underlying clinical disorder, use of alternative therapies, and integration of laboratory testing results in the management of massively bleeding patients.

  15. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  16. A TIDALLY DESTRUCTED MASSIVE PLANET AS THE PROGENITOR OF THE TWO LIGHT PLANETS AROUND THE sdB STAR KIC 05807616

    International Nuclear Information System (INIS)

    Bear, Ealeal; Soker, Noam

    2012-01-01

    We propose that the two newly detected Earth-size planets around the hot B subdwarf star KIC 05807616 are remnant of the tidally destructed metallic core of a massive planet. A single massive gas-giant planet was spiralling-in inside the envelope of the red giant branch star progenitor of the extreme horizontal branch (EHB) star KIC 05807616. The released gravitational energy unbound most of the stellar envelope, turning it into an EHB star. The massive planet reached the tidal-destruction radius of ∼1 R ☉ from the core, where the planet's gaseous envelope was tidally removed. In our scenario, the metallic core of the massive planet was tidally destructed into several Earth-like bodies immediately after the gaseous envelope of the planet was removed. Two, and possibly more, Earth-size fragments survived at orbital separations of ∼> 1 R ☉ within the gaseous disk. The bodies interact with the disk and among themselves, and migrated to reach orbits close to a 3:2 resonance. These observed planets can have a planetary magnetic field about 10 times as strong as that of Earth. This strong magnetic field can substantially reduce the evaporation rate from the planets and explain their survivability against the strong UV radiation of the EHB star.

  17. Massive lepton pair production in massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Raychaudhuri, P.

    1976-01-01

    The pp → l + +l - +x inclusive interaction has been studied at high energies in terms of the massive quantum electrodynamics. The differential cross-section (dsigma/dQ 2 ) is derived and proves to be proportional to Q -4 , where Q-mass of the lepton pair. Basic features of the cross-section are demonstrated to be consistent with the Drell-Yan model

  18. Anthropogenic impact on environmental filamentous fungi communities along the Mediterranean littoral.

    Science.gov (United States)

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Mauffrey, Jean-François; Ranque, Stéphane

    2017-07-01

    We hypothesised that anthropogenic influences impact the filamentous fungi community structure and that particular species or species patterns might serve as markers to characterise ecosystems. This study aimed to describe the filamentous fungi community structure in various biotopes along the Mediterranean shore that were exposed to various levels of anthropogenic influence. We sampled filamentous fungi from yellow-legged gull faecal samples at five study sites along the Mediterranean littoral in southern France. The sites were characterised by variable anthropogenic influence, ranging from building rooftops in two cities to a natural reserve. The sites also included two suburban ecoclines, one of which was exposed to sewer pollution. Filamentous fungal colonies were quantified and identified via MALDI-TOF mass spectrometry. Interestingly, we found that both fungal diversity and abundance were low in urban areas compared with suburban ecocline or environments little affected by anthropogenic influence. Furthermore, some fungal species were clearly associated with particular environments. In particular, Mucor circinelloides was associated with a natural environment with little anthropogenic impact and distant from human settlements. Whereas, Scedosporium apiospermum was associated with an ecocline polluted by sewage. Our findings indicate that particular fungal species or species combination might be used as surrogate markers of ecosystems exposed to anthropogenic pollution. © 2017 Blackwell Verlag GmbH.

  19. Epidemiology of Massive Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Chiesa, Flaminia; Vasan, Senthil K

    2016-01-01

    in Sweden from 1987 and in Denmark from 1996. A total of 92,057 patients were included. Patients were followed until the end of 2012. MEASUREMENTS AND MAIN RESULTS: Descriptive statistics were used to characterize the patients and indications. Post transfusion mortality was expressed as crude 30-day...... mortality and as long-term mortality using the Kaplan-Meier method and using standardized mortality ratios. The incidence of massive transfusion was higher in Denmark (4.5 per 10,000) than in Sweden (2.5 per 10,000). The most common indication for massive transfusion was major surgery (61.2%) followed...

  20. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  1. Assessing the observed impact of anthropogenic climate change

    OpenAIRE

    Hansen, G; Stone, D

    2016-01-01

    © 2016 Macmillan Publishers Limited. All rights reserved. Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC's Fifth Assessment Report. We find that almost two-thirds of the impacts...

  2. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea).

    Science.gov (United States)

    Drira, Zaher; Kmiha-Megdiche, Salma; Sahnoun, Houda; Hammami, Ahmed; Allouche, Noureddine; Tedetti, Marc; Ayadi, Habib

    2016-03-15

    The coastal marine area of Sfax (Tunisia), which is well-known for its high productivity and fisheries, is also subjected to anthropogenic inputs from diverse industrial, urban and agriculture activities. We investigated the spatial distribution of physical, chemical and biogeochemical parameters in the surface waters of the southern coastal area of Sfax. Pertinent tracers of anthropogenic inputs were identified. Twenty stations were sampled during March 2013 in the vicinity of the coastal areas reserved for waste discharge. Phosphogypsum wastes dumped close to the beaches were the main source of PO4(3-), Cl(-) and SO4(2-) in seawater. The high content in total polyphenolic compounds was due to the olive oil treatment waste water released from margins. These inorganic and organic inputs in the surface waters were associated with elevated COD. The BOD5/COD (3) ratios highlighted a chemical pollution with organic load of a low biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Shindell, Drew T.; Asner, Gregory P.

    2016-08-01

    A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980-2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.

  4. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Cai, Qing-yu [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Zhan, Ming-sheng [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Chinese Academy of Sciences, Center for Cold Atom Physics, Wuhan (China)

    2010-08-15

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  5. Anthropogenic radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  6. Environmental and anthropogenic determinants of vegetation distribution across Africa

    DEFF Research Database (Denmark)

    Greve, Michelle; Lykke, Anne Mette; Overgaard, Anne Blach

    2011-01-01

    Aim  To assess the influence of natural environmental factors and historic and current anthropogenic processes as determinants of vegetation distributions at a continental scale. Location  Africa. Methods  Boosted regression trees (BRTs) were used to model the distribution of African vegetation...... types, represented by remote-sensing-based land-cover (LC) types, as a function of environmental factors. The contribution of each predictor variable to the best models and the accuracy of all models were assessed. Subsequently, to test for anthropogenic vegetation transformation, the relationship...... between the number of BRT false presences per grid cell and human impact was evaluated using hurdle models. Finally, the relative contributions of environmental, current and historic anthropogenic factors on vegetation distribution were assessed using regression-based variation partitioning. Results...

  7. Exact Solutions in 3D New Massive Gravity

    Science.gov (United States)

    Ahmedov, Haji; Aliev, Alikram N.

    2011-01-01

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  8. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  9. Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus.

    Science.gov (United States)

    Saransaari, P; Oja, S S

    1997-08-01

    Taurine has been shown to be essential for neuronal development and survival in the central nervous system. The release of preloaded [3H]taurine was studied in hippocampal slices from seven-day-, three-month- and 18-22-month-old mice in cell-damaging conditions. The slices were superfused in hypoxic, hypoglycemic and ischemic conditions and exposed to free radicals and oxidative stress. The release of taurine was greatly enhanced in the above conditions in all age groups, except in oxidative stress. The release was large in ischemia, particularly in the hippocampus of aged mice. Potassium stimulation was still able to release taurine in cell-damaging conditions in immature mice, whereas in adult and aged animals the release was so substantial that this additional stimulus failed to work. Taurine release was partially Ca2+-dependent in all cases. The massive release of the inhibitory amino acid taurine in ischemic conditions could act neuroprotectively, counteracting in several ways the effects of simultaneous release of excitatory amino acids. This protection could be of great importance in developing brain tissue, while also having an effect in aged brains.

  10. Two Mechanisms for Methane Release at the Paleocene/Eocene Boundary

    Science.gov (United States)

    Katz, M. E.; Cramer, B. S.; Mountain, G. S.; Mountain, G. S.; Katz, S.; Miller, K. G.; Miller, K. G.

    2001-12-01

    The rapid global warming of the Paleocene/Eocene thermal maximum (PETM) has been attributed to a massive methane release from marine gas hydrate reservoirs. Two mechanisms have been proposed for this methane release. The first relies on a deepwater circulation change and water temperature increase that was sufficiently large and rapid to trigger massive thermal dissociation of gas hydrate frozen beneath the seafloor (Dickens et al., 1995). The second relies on slope failure (via erosion or seismic activity) of the oversteepened continental margins of the western North Atlantic to allow methane to escape from gas reservoirs trapped between the hydrate-bearing sediments and the underlying reef front (Katz et al., in press). We evaluate thermal dissociation by modeling heat flow through the sediments to show the effect of the temperature change on the gas hydrate stability zone through time. We use Paleocene bottom water temperatures (constrained by isotope records) and assume an instantaneous water temperature increase (i.e., no time allotted for ocean circulation change and water mass mixing). This yields an end-member minimum estimate of >2350 years necessary to melt all gas hydrate at locations shallower than 1570m; gas hydrates at greater depths remain frozen. We also use this model to predict the amount of C12-enriched methane that could have contributed to the carbon isotope excursion (CIE). Using reasonable methane distributions within sediments, we conclude that thermal dissociation alone cannot account for the full magnitude of the CIE. We propose that thermal dissociation did not initiate the CIE; rather, a different mechanism injected a large amount of carbon into the atmosphere, causing global greenhouse warming that could have led to subsequent thermal dissociation. Methane remains a plausible source for this initial carbon injection; however, initial release would have resulted from mechanical disruption of sediments rather than thermal dissociation

  11. Spacetime structure of massive Majorana particles and massive gravitino

    CERN Document Server

    Ahluwalia, D V

    2003-01-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear gamma mu p submu, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The ...

  12. Massive vector fields and black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1977-04-01

    A massive vector field inside the event horizon created by the static sources located outside the black hole is investigated. It is shown that the back reaction of such a field on the metric near r = 0 cannot be neglected. The possibility of the space-time structure changing near r = 0 due to the external massive field is discussed

  13. Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: A comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods

    International Nuclear Information System (INIS)

    Tassi, F.; Capecchiacci, F.; Buccianti, A.; Vaselli, O.

    2012-01-01

    In the present study, two sampling and analytical methods for VOC determination in fumarolic exhalations related to hydrothermal-magmatic reservoirs in volcanic and geothermal areas and biogas released from waste landfills were compared: (a) Solid Traps (STs), consisting of three phase (Carboxen B, Carboxen C and Carbosieve S111) absorbent stainless steel tubes and (b) Solid Phase Micro Extraction (SPME) fibers, composed of DiVinylBenzene (DVB), Carboxen and PolyDimethylSiloxane. These techniques were applied to pre-concentrate VOCs discharged from: (i) low-to-high temperature fumaroles collected at Vulcano Island, Phlegrean Fields (Italy), and Nisyros Island (Greece), (ii) recovery wells in a solid waste disposal site located near Florence (Italy). A glass condensing system cooled with water was used to collect the dry fraction of the fumarolic gases, in order to allow more efficient VOC absorption avoiding any interference by water vapor and acidic gases, such as SO 2 , H 2 S, HF and HCl, typically present at relatively high concentrations in these fluids. Up to 37 organic species, in the range of 40–400 m/z, were determined by coupling gas chromatography to mass spectrometry (GC–MS). This study shows that the VOC compositions of fumaroles and biogas determined via SPME and ST are largely consistent and can be applied to the analysis of VOCs in gases released from different natural and anthropogenic environments. The SPME method is rapid and simple and more appropriate for volcanic and geothermal emissions, where VOCs are present at relatively high concentrations and prolonged gas sampling may be hazardous for the operator. The ST method, allowing the collection of large quantities of sample, is to be preferred to analyze the VOC composition of fluids from diffuse emissions and air, where these compounds are present at relatively low concentrations.

  14. Anthropogenic Radionuglides in Marine Polar Regions

    Science.gov (United States)

    Holm, Elis

    The polar regions are important for the understanding of long range water and atmospheric transport of anthropogenic substances. Investigations show that atmospheric transport of anthropogenic radionuclides is the most important route of transport to the Antarctic while water transport plays a greater role for the Arctic. Fallout from nuclear detonation tests is the major source in the Antarctic while in the Arctic other sources, especially European reprocessing facilities, dominate for conservatively behaving rdionuclides such as 137Cs . The flux of 137Cs and 239+240Pu in the Antarctic is about 1/10 of that for the Arctic and the resulting concentrations in surface sea-water show the same ratio for the two areas. In the Antarctic concentration factors for 137Cs are higher than in the Arctic for similar species

  15. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    Science.gov (United States)

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

  16. Investigation of the status quo of massive blood transfusion in China and a synopsis of the proposed guidelines for massive blood transfusion.

    Science.gov (United States)

    Yang, Jiang-Cun; Wang, Qiu-Shi; Dang, Qian-Li; Sun, Yang; Xu, Cui-Xiang; Jin, Zhan-Kui; Ma, Ting; Liu, Jing

    2017-08-01

    The aim of this study was to provide an overview of massive transfusion in Chinese hospitals, identify the important indications for massive transfusion and corrective therapies based on clinical evidence and supporting experimental studies, and propose guidelines for the management of massive transfusion. This multiregion, multicenter retrospective study involved a Massive Blood Transfusion Coordination Group composed of 50 clinical experts specializing in blood transfusion, cardiac surgery, anesthesiology, obstetrics, general surgery, and medical statistics from 20 tertiary general hospitals across 5 regions in China. Data were collected for all patients who received ≥10 U red blood cell transfusion within 24 hours in the participating hospitals from January 1 2009 to December 31 2010, including patient demographics, pre-, peri-, and post-operative clinical characteristics, laboratory test results before, during, and after transfusion, and patient mortality at post-transfusion and discharge. We also designed an in vitro hemodilution model to investigate the changes of blood coagulation indices during massive transfusion and the correction of coagulopathy through supplement blood components under different hemodilutions. The experimental data in combination with the clinical evidence were used to determine the optimal proportion and timing for blood component supplementation during massive transfusion. Based on the findings from the present study, together with an extensive review of domestic and international transfusion-related literature and consensus feedback from the 50 experts, we drafted the guidelines on massive blood transfusion that will help Chinese hospitals to develop standardized protocols for massive blood transfusion.

  17. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  18. Anthropogenic noise alters bat activity levels and echolocation calls

    OpenAIRE

    Bunkley, Jessie P.; McClure, Christopher J.W.; Kleist, Nathan J.; Francis, Clinton D.; Barber, Jesse R.

    2015-01-01

    Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband nois...

  19. Collisions of massive particles, timelike thin shells and formation of black holes in three dimensions

    International Nuclear Information System (INIS)

    Lindgren, Jonathan

    2016-01-01

    We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in http://dx.doi.org/10.1088/0264-9381/33/14/145009. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.

  20. Collisions of massive particles, timelike thin shells and formation of black holes in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Jonathan [Theoretische Natuurkunde, Vrije Universiteit Brussel, and the International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium)

    2016-12-13

    We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in http://dx.doi.org/10.1088/0264-9381/33/14/145009. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.

  1. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    Science.gov (United States)

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  2. Impact of anthropogenic climate change on wildfire across western US forests.

    Science.gov (United States)

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  3. Management of massive haemoptysis | Adegboye | Nigerian Journal ...

    African Journals Online (AJOL)

    Background: This study compares two management techniques in the treatment of massive haemotysis. Method: All patients with massive haemoptysis treated between January 1969 and December 1980 (group 1) were retrospectively reviewed and those prospectively treated between January 1981 and August 1999 ...

  4. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Sonja Hall-Mendelin

    Full Text Available Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  5. Topologically massive gravity and Ricci-Cotton flow

    Energy Technology Data Exchange (ETDEWEB)

    Lashkari, Nima; Maloney, Alexander, E-mail: lashkari@physics.mcgill.ca, E-mail: maloney@physics.mcgill.ca [McGill Physics Department, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2011-05-21

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  6. Topologically massive gravity and Ricci-Cotton flow

    International Nuclear Information System (INIS)

    Lashkari, Nima; Maloney, Alexander

    2011-01-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  7. Neutron stars structure in the context of massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S., E-mail: hendi@shirazu.ac.ir, E-mail: ghbordbar@shirazu.ac.ir, E-mail: behzad.eslampanah@gmail.com, E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2017-07-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  8. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  9. Neutron stars structure in the context of massive gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2017-01-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  10. Permutations of massive vacua

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine [Department of Physics, Universidad de Oviedo, Avenida Calvo Sotelo 18, 33007 Oviedo (Spain); Troost, Jan [Laboratoire de Physique Théorique de l’É cole Normale Supérieure, CNRS,PSL Research University, Sorbonne Universités, 75005 Paris (France)

    2017-05-09

    We discuss the permutation group G of massive vacua of four-dimensional gauge theories with N=1 supersymmetry that arises upon tracing loops in the space of couplings. We concentrate on superconformal N=4 and N=2 theories with N=1 supersymmetry preserving mass deformations. The permutation group G of massive vacua is the Galois group of characteristic polynomials for the vacuum expectation values of chiral observables. We provide various techniques to effectively compute characteristic polynomials in given theories, and we deduce the existence of varying symmetry breaking patterns of the duality group depending on the gauge algebra and matter content of the theory. Our examples give rise to interesting field extensions of spaces of modular forms.

  11. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  12. Anthropogenic climate change affects meteorological drought risk in Europe

    International Nuclear Information System (INIS)

    Gudmundsson, L; Seneviratne, S I

    2016-01-01

    Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across the continent. Climate model simulations with increasing greenhouse gas concentrations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the north. Observed changes in water balance components and drought indicators resemble the projected pattern. However, assessments of possible causes of the reported regional changes have so far been inconclusive. Here we investigate whether anthropogenic emissions have altered past and present meteorological (precipitation) drought risk. For doing so we first estimate the magnitude of 20 year return period drought years that would occur without anthropogenic effects on the climate. Subsequently we quantify to which degree the occurrence probability, i.e. the risk, of these years has changed if anthropogenic climate change is accounted for. Both an observational and a climate model-based assessment suggest that it is >95% likely that human emissions have increased the probability of drought years in the Mediterranean, whereas it is >95% likely that the probability of dry years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results highlight that anthropogenic climate change has already increased drought risk in southern Europe, stressing the need to develop efficient mitigation measures. (letter)

  13. Nitrogen chronology of massive main sequence stars

    NARCIS (Netherlands)

    Köhler, K.; Borzyszkowski, M.; Brott, I.; Langer, N.; de Koter, A.

    2012-01-01

    Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity,

  14. Anthropogenic impacts on Costa Rican bat parasitism are sex specific.

    Science.gov (United States)

    Frank, Hannah K; Mendenhall, Chase D; Judson, Seth D; Daily, Gretchen C; Hadly, Elizabeth A

    2016-07-01

    While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex-specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite-disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex-specific parasite-disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long-term population health and survival.

  15. Using massive digital libraries a LITA guide

    CERN Document Server

    Weiss, Andrew

    2014-01-01

    Some have viewed the ascendance of the digital library as some kind of existential apocalypse, nothing less than the beginning of the end for the traditional library. But Weiss, recognizing the concept of the library as a ""big idea"" that has been implemented in many ways over thousands of years, is not so gloomy. In this thought-provoking and unabashedly optimistic book, he explores how massive digital libraries are already adapting to society's needs, and looks ahead to the massive digital libraries of tomorrow, coveringThe author's criteria for defining massive digital librariesA history o

  16. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  17. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  18. Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2015-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we...

  19. Hunting for a massive neutrino

    CERN Document Server

    AUTHOR|(CDS)2108802

    1997-01-01

    A great effort is devoted by many groups of physicists all over the world to give an answer to the following question: Is the neutrino massive ? This question has profound implications with particle physics, astrophysics and cosmology, in relation to the so-called Dark Matter puzzle. The neutrino oscillation process, in particular, can only occur if the neutrino is massive. An overview of the neutrino mass measurements, of the oscillation formalism and experiments will be given, also in connection with the present experimental programme at CERN with the two experiments CHORUS and NOMAD.

  20. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are

  1. The Early Anthropogenic Hypothesis: Top-Down and Bottom-up Evidence

    Science.gov (United States)

    Ruddiman, W. F.

    2014-12-01

    Two complementary lines of evidence support the early anthropogenic hypothesis. Top-down evidence comes from comparing Holocene greenhouse-gas trends with those during equivalent intervals of previous interglaciations. The increases in CO2 and CH4 during the late Holocene are anomalous compared to the decreasing trends in a stacked average of previous interglaciations, thereby supporting an anthropogenic origin. During interglacial stage 19, the closest Holocene insolation analog, CO2 fell to 245 ppm by the time equivalent to the present, in contrast to the observed pre-industrial rise to 280-285 ppm. The 245-ppm level measured in stage 19 falls at the top of the natural range predicted by the original anthropogenic hypothesis of Ruddiman (2003). Bottom-up evidence comes from a growing list of archeological and other compilations showing major early anthropogenic transformations of Earth's surface. Key examples include: efforts by Dorian Fuller and colleagues mapping the spread of irrigated rice agriculture across southern Asia and its effects on CH4 emissions prior to the industrial era; an additional effort by Fuller showing the spread of methane-emitting domesticated livestock across Asia and Africa (coincident with the spread of fertile crescent livestock across Europe); historical compilations by Jed Kaplan and colleagues documenting very high early per-capita forest clearance in Europe, thus underpinning simulations of extensive pre-industrial clearance and large CO2 emissions; and wide-ranging studies by Erle Ellis and colleagues of early anthropogenic land transformations in China and elsewhere.

  2. Black holes in massive gravity as heat engines

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.

    2018-06-01

    The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.

  3. Direct radiative effects by anthropogenic particles at a polluted site: Rome (Italy)

    International Nuclear Information System (INIS)

    Bergamo, A.; De Tomasi, F.; Perrone, M.R.

    2008-01-01

    The direct radiative effect (DRE) by all (anthropogenic plus natural) and anthropogenic aerosols is calculated at the solar (0.34 μm) and infrared (4-200 μm) spectral range to better address the annual cycle of the anthropogenic aerosols impact at a site (Rome, Italy) significantly affected by pollution. Aerosol optical and microphysical properties from 2003 AERONET Sun/sky-photometer measurements and solar albedos based on MODIS satellite sensor data constitute the necessary input to radiative transfer simulations. Clear- and all-sky conditions are investigated by adopting ISCCP monthly products for high-, mid-and low-cloud cover. It is shown that monthly mean values of aerosol optical depths by anthropogenic particles (AOD a ) are on average more than 50% of the corresponding all-aerosol-optical-depth (AOD) monthly means. In particular, the AOD a /AOD ratio that varies within the (0.51-0.83) on autumn-winter (A W, October-March), varies within the (0.50-0.71 range on spring-summer (S S, April-September) as a consequence of the larger contribution of natural particles on S S. The surface (sfc), all-sky DRE by anthropogenic particles that is negative all year round at solar wave-lengths, represents on average 60% and 51% of the all-sky sfc-DRE by all aerosols on A W and S S, respectively. The all-sky atmospheric forcing by anthropogenic particles (AF a ) that is positive all year round, is little dependent on seasons: it varies within the (1.0-4.1) W/m 2 and (2.0-4.2) W/m 2 range an A W and S S, respectively. Conversely, the all-sky A F by all aerosols is characterized by a marked seasonality. As a consequence, the atmospheric forcing by anthropogenic particles that on average is 50% of the A F value on A W, decreases down to 36% of the A F value on S S. Infrared aerosols DREs that are positive all year round are significantly smaller than the corresponding absolute values of solar DREs. Clouds decrease on average ToA- and sfc-DRE absolute values by anthropogenic

  4. The VLT-FLAMES survey of massive stars

    NARCIS (Netherlands)

    Evans, C.; Langer, N.; Brott, I.; Hunter, I.; Smartt, S.J.; Lennon, D.J.

    2008-01-01

    The VLT-FLAMES Survey of Massive Stars was an ESO Large Programme to understand rotational mixing and stellar mass loss in different metallicity environments, in order to better constrain massive star evolution. We gathered high-quality spectra of over 800 stars in the Galaxy and in the Magellanic

  5. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  6. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  7. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  8. On massive gravitons in 2+1 dimensions

    NARCIS (Netherlands)

    Bergshoeff, Eric; Hohm, Olaf; Townsend, Paul; Lazkoz, R; Vera, R

    2010-01-01

    The Fierz-Pauli (FP) free field theory for massive spin-2 particles can be extended, in a spacetime of (1+2) dimensions (3D), to a generally covariant parity-preserving interacting field theory, in at least two ways. One is "new massive gravity" (NMG), with an action that involves curvature-squared

  9. Holographic heat engine within the framework of massive gravity

    Science.gov (United States)

    Mo, Jie-Xiong; Li, Gu-Qiang

    2018-05-01

    Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.

  10. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  11. Natural and anthropogenic radionuclides in the environment

    International Nuclear Information System (INIS)

    Hille, R.

    1984-01-01

    A survey is given on the actual knowledge about occurence and environmental relevancy of the most important radionuclides from natural and anthropogenic origin. The contribution of AGF installation is emphasized. (orig.) [de

  12. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya.

    Science.gov (United States)

    Rather, Mohmmad Irshad; Rashid, Irfan; Shahi, Nuzhat; Murtaza, Khalid Omar; Hassan, Khalida; Yousuf, Abdul Rehman; Romshoo, Shakil Ahmad; Shah, Irfan Yousuf

    2016-03-01

    The pristine aquatic ecosystems in the Himalayas are facing an ever increasing threat from various anthropogenic pressures which necessitate better understanding of the spatial and temporal variability of pollutants, their sources, and possible remedies. This study demonstrates the multi-disciplinary approach utilizing the multivariate statistical techniques, data from remote sensing, lab, and field-based observations for assessing the impact of massive land system changes on water quality of the river Jhelum. Land system changes over a period of 38 years have been quantified using multi-spectral satellite data to delineate the extent of different anthropogenically driven land use types that are the main non-point sources of pollution. Fifteen water quality parameters, at 12 sampling sites distributed uniformly along the length of the Jhelum, have been assessed to identify the possible sources of pollution. Our analysis indicated that 18% of the forested area has degraded into sparse forest or scrublands from 1972 to 2010, and the areas under croplands have decreased by 24% as people shifted from irrigation-intensive agriculture to orchard farming while as settlements showed a 397% increase during the observation period. One-way ANOVA revealed that all the water quality parameters had significant spatio-temporal differences (p < 0.01). Cluster analysis (CA) helped us to classify all the sampling sites into three groups. Factor analysis revealed that 91.84% of the total variance was mainly explained by five factors. Drastic changes in water quality of the Jhelum since the past three decades are manifested by increases in nitrate-nitrogen, TDS, and electric conductivity. The especially high levels of nitrogen (858 ± 405 μgL(-1)) and phosphorus (273 ± 18 μgL(-1)) in the Jhelum could be attributed to the reckless application of fertilizers, pesticides, and unplanned urbanization in the area.

  13. Characterizing the anthropogenic signature in the LCLU dynamics in the Central Asia region

    Science.gov (United States)

    Tatarskii, V.; Sokolik, I. N.; de Beurs, K.; Shiklomanov, A. I.

    2017-12-01

    Humans have been changing the LCLU dynamics over time through the world. In the Central Asia region, these changes have been especially pronounced due to the political and economic transformation. We present a detailed analysis, focusing on identifying and quantifying the anthropogenic signature in the water and land use across the region. We have characterized the anthropogenic dust emission by combining the modeling and observations. The model is a fully coupled model called WRF-Chem-DuMo that takes explicitly into account the vegetation treatment in modeling the dust emission. We have reconstructed the anthropogenic dust sources in the region, such as the retreat of the Aral Sea, changes in agricultural fields, etc. In addition, we characterize the anthropogenic water use dynamics, including the changes in the water use for the agricultural production. Furthermore, we perform an analysis to identify the anthropogenic signature in the NDVI pattern. The NDVI were analyzed in conjunction with the meteorological fields that were simulated at the high special resolution using the WRF model. Meteorological fields of precipitation and temperature were used for the correlation analysis to separate the natural vs. anthropogenic changes. In this manner, we were able to identify the regions that have been affected by human activities. We will present the quantitative assessment of the anthropogenic changes. The diverse consequences for the economy of the region, as well as, the environment will be addressed.

  14. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  15. Massively Parallel Algorithms for Solution of Schrodinger Equation

    Science.gov (United States)

    Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad

    1994-01-01

    In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.

  16. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  17. Critical N = (1, 1) general massive supergravity

    Science.gov (United States)

    Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan

    2018-04-01

    In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

  18. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Bressert, E.; Longmore, S.; Testi, L. [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching bei Muenchen (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that will allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.

  19. Massive type IIA supergravity and E10

    International Nuclear Information System (INIS)

    Henneaux, M.; Kleinschmidt, A.; Persson, D.; Jamsin, E.

    2009-01-01

    In this talk we investigate the symmetry under E 10 of Romans' massive type IIA supergravity. We show that the dynamics of a spinning particle in a non-linear sigma model on the coset space E 10 /K(E 10 ) reproduces the bosonic and fermionic dynamics of massive IIA supergravity, in the standard truncation. In particular, we identify Romans' mass with a generator of E 10 that is beyond the realm of the generators of E 10 considered in the eleven-dimensional analysis, but using the same, underformed sigma model. As a consequence, this work provides a dynamical unification of the massless and massive versions of type IIA supergravity inside E 10 . (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Hyper-massive cloud, shock and stellar formation efficiency

    International Nuclear Information System (INIS)

    Louvet, Fabien

    2014-01-01

    O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarios suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine

  1. CLASSIFICATION OF ANTHROPOGENIC TRANSFORMATIONS SOILS URBOECOSYSTEMS OF DNEPROPETROVSK

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T.F.

    2015-12-01

    Full Text Available Raising of problem. The functioning of the city, as artificially created system of the result of the anthropogenic activity, promotes degradation and, sometimes, destruction of the environment, with change it to the technogenic replacement. First of all suffers the soil, as a basic component of any ecosystem, where the circulation of materials close, because it is a powerful biogeochemical barrier to their migration, able to deposit toxicants a long time through its protective functions. The leading role of the formation of the urban soil plays an anthropogenic factor, which is able to influence directly – the destruction of the soil profile due to construction activity and indirectly – with aerogenic or hydrogenous pollution xenobiotics contained in the emissions and discharges of the industrial enterprises; and it is determined by the type of economic use and history of area developing. The variability of using the urban soil is reflected in the soil profile and contributed to the creation of the organic-mineral layer by the mixing, mound, burial and (or contamination of the different substances on the surface. Therefore, classification of the urban soils by the anthropogenic destruction degree of the soil profile is very important scientific and practical task for the urban ecology to the achievement standards of the ecological safety of the modern city, because the restoring of their protective functions is impossible without knowledge of the morphological structure. Purpose. Classify the anthropogenical soils of city Dnipropetrovsk disturbed by the construction activities by the determining of the morphological characteristics of the soil profile structure with separation of the anthropogenic and technogenic surface formations compared to the zonal soil – ordinery chernozem. Conclusion. Within urboecosystem city Dnipropetrovsk long-term human impact to the zonal soil – chernozem led to its transformation into urbanozem witch

  2. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  3. Anthropogenic disturbance on the vegetation in makurunge

    African Journals Online (AJOL)

    Mgina

    landscape in Tanzania that has been severely affected by anthropogenic disturbance ... Fragmentation of habitats formed patches that have reduced plant species population sizes, and ... by the movement of the Inter-Tropical ..... of pollinators.

  4. Reappraising the concept of massive transfusion in trauma

    DEFF Research Database (Denmark)

    Stanworth, Simon J; Morris, Timothy P; Gaarder, Christine

    2010-01-01

    ABSTRACT : INTRODUCTION : The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens o...

  5. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  6. An effective theory of massive gauge bosons

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.

    1986-01-01

    The coupling of a group-valued massive scalar field to a gauge field through a symmetric rank-2 field strenght is studied. By considering energies very small compared with the mass of the scalar and invoking the decoupling theorem, one is left with a low-energy effective theory describing a dynamics of massive vector fields. (Author) [pt

  7. Development of a national anthropogenic heating database with an extrapolation for international cities

    Science.gov (United States)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential

  8. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  9. Massive gravity with mass term in three dimensions

    International Nuclear Information System (INIS)

    Nakasone, Masashi; Oda, Ichiro

    2009-01-01

    We analyze the effect of the Pauli-Fierz mass term on a recently established, new massive gravity theory in three space-time dimensions. We show that the Pauli-Fierz mass term makes the new massive gravity theory nonunitary. Moreover, although we add the gravitational Chern-Simons term to this model, the situation remains unchanged and the theory stays nonunitary despite that the structure of the graviton propagator is greatly changed. Thus, the Pauli-Fierz mass term is not allowed to coexist with mass-generating higher-derivative terms in the new massive gravity.

  10. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  11. Reappraising the concept of massive transfusion in trauma

    NARCIS (Netherlands)

    Stanworth, Simon J.; Morris, Timothy P.; Gaarder, Christine; Goslings, J. Carel; Maegele, Marc; Cohen, Mitchell J.; König, Thomas C.; Davenport, Ross A.; Pittet, Jean-Francois; Johansson, Pär I.; Allard, Shubha; Johnson, Tony; Brohi, Karim

    2010-01-01

    The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens of modern trauma care are

  12. Key Technologies in Massive MIMO

    Directory of Open Access Journals (Sweden)

    Hu Qiang

    2018-01-01

    Full Text Available The explosive growth of wireless data traffic in the future fifth generation mobile communication system (5G has led researchers to develop new disruptive technologies. As an extension of traditional MIMO technology, massive MIMO can greatly improve the throughput rate and energy efficiency, and can effectively improve the link reliability and data transmission rate, which is an important research direction of 5G wireless communication. Massive MIMO technology is nearly three years to get a new technology of rapid development and it through a lot of increasing the number of antenna communication, using very duplex communication mode, make the system spectrum efficiency to an unprecedented height.

  13. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea).

    Science.gov (United States)

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-09-13

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan's coral reefs.

  14. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea)

    Science.gov (United States)

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-09-01

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs.

  15. Complicated Massive Choledochal Cyst: A Case Report | Okoromah ...

    African Journals Online (AJOL)

    Choledochal cysts are rare congenital anomalies resulting from congenital dilatations of the common bile duct (CBD) and usually they present during infancy with cholestatic jaundice. This report is on a massive-sized choledochal cyst associated with massive abdominal distention, respiratory embarrassment, postprandial ...

  16. Conservation implications of anthropogenic impacts on visual communication and camouflage.

    Science.gov (United States)

    Delhey, Kaspar; Peters, Anne

    2017-02-01

    Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human-induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities

  17. Simulations of the global carbon cycle and anthropogenic CO2 transient

    International Nuclear Information System (INIS)

    Sarmiento, J.L.

    1994-01-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report

  18. Observations of Bright Massive Stars Using Small Size Telescopes

    Science.gov (United States)

    Beradze, Sopia; Kochiashvili, Nino

    2017-11-01

    The size of a telescope determines goals and objects of observations. During the latest decades it becomes more and more difficult to get photometric data of bright stars because most of telescopes of small sizes do not operate already. But there are rather interesting questions connected to the properties and evolution ties between different types of massive stars. Multi-wavelength photometric data are needed for solution of some of them. We are presenting our observational plans of bright Massive X-ray binaries, WR and LBV stars using a small size telescope. All these stars, which are presented in the poster are observational targets of Sopia Beradze's future PhD thesis. We already have got very interesting results on the reddening and possible future eruption of the massive hypergiant star P Cygni. Therefore, we decided to choose some additional interesting massive stars of different type for future observations. All Massive stars play an important role in the chemical evolution of galaxies because of they have very high mass loss - up to 10-4M⊙/a year. Our targets are on different evolutionary stages and three of them are the members of massive binaries. We plan to do UBVRI photometric observations of these stars using the 48 cm Cassegrain telescope of the Abastumani Astrophisical Observatory.

  19. Extensive tumor reconstruction with massive allograft

    International Nuclear Information System (INIS)

    Zulmi Wan

    1999-01-01

    Massive deep-frozen bone allografts were implanted in four patients after wide tumor resection. Two cases were solitary proximal femur metastases, secondary to Thyroid cancer and breast cancer respectively; while the other two cases were primary in nature i.e. Chondrosarcoma proximal humerus and Osteosarcoma proximal femur. All were treated with a cemented alloprosthesis except in the upper limb where shoulder fusion was performed. Augmentation of these techniques were done with a segment 1 free vascularised fibular composite graft to the proximal femur of breast secondaries and proximal humerus Chondrosarcoma. Coverage of the wound of the latter was also contributed by lattisimus dorsi flap. The present investigations demonstrated the massive bone allografts were intimately anchored by host bone and there had been no evidence of aseptic loosening at the graft-cement interface. This study showed that with good effective tumor control, reconstructive surgery with massive allografts represented a good alternative to prosthetic implants in tumors of the limbs. No infection was seen in all four cases

  20. Finding even more anthropogenic indicators in mildly prepared sediment samples

    DEFF Research Database (Denmark)

    Enevold, Renée; Odgaard, Bent Vad

    2016-01-01

    be worth the effort to prepare the NPP samples with as mild a preparation method as possible. We have mildly prepared NPP samples from a small forest hollow, Tårup Lund, Denmark. From the recovered NPP assemblages we attempt identifying anthropogenic indicators by comparing to the environmental information......NPPs in anthropogenic soils and archaeological samples are often numerous in types as well as in abundance. Preparing these soil samples with methods based on acid digestion holds the potential of severe bias leaving the NPP assemblages devoid of acid vulnerable NPPs. In many cases it might...... derived from sediment, pollen and macrofossil analyses. The sediment from the forest hollow encompasses environmental information from the last 6000 years, including a period of locally intense pastoral and/or agricultural activity during the Iron Age. Keywords: NPP diversity, forest hollow, anthropogenic...

  1. Massive Splenomegaly in Children: Laparoscopic Versus Open Splenectomy

    OpenAIRE

    Hassan, Mohamed E.; Al Ali, Khalid

    2014-01-01

    Background and Objectives: Laparoscopic splenectomy for massive splenomegaly is still a controversial procedure as compared with open splenectomy. We aimed to compare the feasibility of laparoscopic splenectomy versus open splenectomy for massive splenomegaly from different surgical aspects in children. Methods: The data of children aged

  2. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2016-01-01

    Full Text Available Atmospheric deposition of anthropogenic soluble iron (Fe to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate. Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1–2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols. The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05–0.07 Tg Fe yr−1 in the preindustrial era to 0.11–0.12 Tg Fe yr−1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC regions

  3. Sinks as integrative elements of the anthropogenic metabolism

    Science.gov (United States)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  4. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. Palmiéri

    2015-02-01

    Full Text Available Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air–sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between −0.005 and −0.06 pH units.

  5. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Lahdenoja Olli

    2007-01-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  6. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ari Paasio

    2006-12-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  7. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  8. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  9. MCBooster: a tool for MC generation for massively parallel platforms

    CERN Multimedia

    Alves Junior, Antonio Augusto

    2016-01-01

    MCBooster is a header-only, C++11-compliant library for the generation of large samples of phase-space Monte Carlo events on massively parallel platforms. It was released on GitHub in the spring of 2016. The library core algorithms implement the Raubold-Lynch method; they are able to generate the full kinematics of decays with up to nine particles in the final state. The library supports the generation of sequential decays as well as the parallel evaluation of arbitrary functions over the generated events. The output of MCBooster completely accords with popular and well-tested software packages such as GENBOD (W515 from CERNLIB) and TGenPhaseSpace from the ROOT framework. MCBooster is developed on top of the Thrust library and runs on Linux systems. It deploys transparently on NVidia CUDA-enabled GPUs as well as multicore CPUs. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of perfor...

  10. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  11. Peering to the Heart of Massive Star Birth

    Science.gov (United States)

    Tan, Jonathan

    2015-10-01

    We propose a small survey of massive/intermediate-mass protostars with WFC3/IR to probe J and H band continuum emission, the Pa-beta and the [FeII] emission. The protostar sample is already the subject of approved SOFIA-FORCAST observations from 10-40 microns. Combined with sophisticated radiative transfer models, these observations are providing the most detailed constraints on the nature of massive protostars, their luminosities, outflow cavity structures and orientations, and distribution of surrounding dense core gas and dust. Recently, we were also awarded ALMA Cycle 3 time to study these sources at up to 0.14 resolution. The proposed HST observations, with very similar resolution, have three main goals: 1) Detect and characterize J and H band continuum emission from the massive/intermediate-mass protostars, which is expected to arise from jet and outflow knot features and from scattered light emerging from the outflow cavities; 2) Detect and characterize Pa-beta and [FeII] line emission tracing ionized and FUV-illuminated regions around the massive protostars, important diagnostics of the protostellar source and its outflow structure; 3) Search for lower-mass protostars that may be clustered around the forming massive protostar. All of these objectives will help test massive star formation theories. The high sensitivity and angular resolution of WFC3/IR enables these observations to be carried out efficiently in a timely fashion. Mid-Cycle observations are critical for near contemporaneous observation with ALMA, since jet/outflow knots may have large proper motions, and to maximize the potential time baseline for a future HST study of jet/outflow proper motions.

  12. Assessing the relation between anthropogenic pressure and PAH concentrations in surface water in the Seine River basin using multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Uher, Emmanuelle, E-mail: emmanuelle.uher@irstea.fr [Irstea, UR HBAN Hydrosystèmes et bioprocédés, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony cedex (France); FIRE, FR-30204 place Jussieu, 75005 Paris (France); Mirande-Bret, Cécile [LISA, 61 avenue du général de Gaulle, 94010 Créteil (France); Gourlay-Francé, Catherine [Anses, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex (France)

    2016-07-01

    Understanding the relation between polycyclic aromatic hydrocarbons (PAHs) in freshwater and anthropogenic pressure is fundamental to finding a solution to reduce the presence of PAHs in water, and thus their potential impact on aquatic life. In this paper we propose to gain greater insight into the variability, sources and partitioning of PAHs in labile (or freely dissolved = not associated to the organic matter), dissolved and particulate phases in freshwater. This study was conducted using land use data as a marker of anthropogenic pressure and coupling it with chemical measurements. This study was conducted on 30 sites in the Seine River basin, which is subjected to a strong human impact and exhibits a wide range of land uses. Half of the sites were studied twice. Labile PAHs were measured by semi-permeable membrane devices (SPMDs), and dissolved and particulate phases by grab samples. Partial least squares regressions were performed between chemical measurements and data of anthropogenic pressure. The results indicate different sources for the dissolved phase and particles. Dissolved and labile phases were more related to the population density of the watershed, while particles were more related to a local pressure. Season and land use data are necessary information to correctly interpret and compare PAH concentrations from different sites. Furthermore, the whole data set of the 45 field deployments comprising labile, dissolved, total and particulate PAH concentrations as well as the physico-chemical parameters is available in the supplementary information. - Highlights: • A large-scale deployment of semi-permeable membrane devices was performed at the Seine Catchment scale • Partial least squares regressions were performed between chemical measurements and data of anthropogenic pressure • The results seem to show a PAHs release from particles to dissolved phase slower than in laboratory work • Dissolved and labile phases were related to a pressure at

  13. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  14. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  15. On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.

  16. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    Science.gov (United States)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  17. Massively Parallel QCD

    International Nuclear Information System (INIS)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-01-01

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  18. Effects of anthropogenic aerosol particles on the radiation balance of the atmosphere. Einfluss anthropogener Aerosolteilchen auf den Strahlungshaushalt der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Newiger, M

    1985-01-01

    The influence of aerosol particles is assessed on the basis of the changes in the climate parameters ''albedo'' and ''neutron flux''. Apart from the directly emitted particles, particles formed in the atmosphere as a result of SO/sub 2/ emissions are investigated. The model of aerosol effects on the radiation field takes account of the feedback with the microphysical parameters of the clouds. In the investigation, given particle concentrations were recalculated for three size classes using a two-dimensional transport model. The particle size distribution is described by a modified power function. Extreme-value estimates are made because the absorption capacity of anthropogenic particles is little known. A comparison of the climatic effects of anthropogenic activities shows that aerosol particles and SO/sub 2/ emissions have opposite effects on the radiation balance. (orig./PW).

  19. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  20. Reconstructing the massive black hole cosmic history through gravitational waves

    International Nuclear Information System (INIS)

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-01-01

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  1. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  2. Massive vulval oedema in multiple pregnancies at Bugando Medical ...

    African Journals Online (AJOL)

    In this report we describe two cases of massive vulval oedema seen in two ... passage of yellow-whitish discharge per vagina (Figure 1). Examination revealed massive oedema, and digital vaginal examination was difficult due to tenderness.

  3. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  4. Dual descriptions of massive spin-2 particles in D=3+1

    International Nuclear Information System (INIS)

    Dalmazi, Denis

    2013-01-01

    Full text: Since the sixties (last century) one speculates on the effects of a possible (tiny) mass for the graviton. One expects a decrease in the gravitational interaction at large distances which comes handy regarding the experimental data of the last 15 years on the accelerated expansion of the universe. There has been a growing interest in massive quantum gravity in the last years. Almost all recent works are built up on the top of a free (quadratic) action for a massive spin-2 particle known as massive Fierz-Pauli (FP) theory which has first appeared in 1939. In this theory the basic field is a symmetric rank-2 tensor. It is a common belief in the massive gravity community that the massive FP theory is the unique self-consistent (ghost free, Poincare covariant, correct number of degrees of freedom) description of massive spin-2 particles in terms of a rank-2 tensor. We have shown recently that there are other possibilities if we start with a general (non-symmetric) rank-2 tensor. Here we show how our previous work is related with the well known massive FP theory via the introduction of spectators fields of rank-0 (scalar) and rank-1 (vector). We comment on the introduction of interacting vertices and how they affect the free duality with the massive FP theory (author)

  5. Quark–hadron phase transition in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    2016-11-15

    We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  6. A rare case of massive hepatosplenomegaly due to acute ...

    African Journals Online (AJOL)

    massive hepatosplenomegaly include chronic lymphoproliferative malignancies, infections (malaria, leishmaniasis) and glycogen storage diseases (Gaucher's disease).[4] In our case the probable causes of the massive hepatosplenomegaly were a combination of late presentation after symptom onset, leukaemic infiltration.

  7. On-Line Fission Gas Release Monitoring System in the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Laurie, M.; Fuetterer, M. A.; Appelman, K.H.; Lapetite, J.-M.; Marmier, A.; Knol, S.; Best, J.

    2013-06-01

    For HTR fuel irradiation tests in the HFR Petten a specific installation was designed and installed dubbed the 'Sweep Loop Facility' (SLF). The SLF is tasked with three functions, namely temperature control by gas mixture technique, surveillance of safety parameters (temperature, pressure, radioactivity etc.) and analysis of fission gas release for three individual capsules in two separate experimental rigs. The SLF enables continuous and independent surveillance of all gas circuits. The release of volatile fission products (FP) from the in-pile experiments is monitored by continuous gas purging. The fractional release of these FP, defined as the ratio between release rate of a gaseous fission isotope (measured) to its instantaneous birth rate (calculated), is a licensing-relevant test for HTR fuel. The developed gamma spectrometry station allows for higher measurement frequencies, thus enabling follow-up of rapid and massive release transients. The designed stand-alone system was tested and fully used through the final irradiation period of the HFR-EU1 experiment which was terminated on 18 February 2010. Its robustness allowed the set up to be used as extra safety instrumentation. This paper describes the gas activity measurement technique based on HPGe gamma spectrometry and illustrates how qualitative and quantitative analysis of volatile FP can be performed on-line. (authors)

  8. Anthropogenic heat fluxes over Moscow agglomeration and other Russian and world cities

    Science.gov (United States)

    Belova, Iya; Ginzburg, Alexander

    2010-05-01

    Urbanization, particularly with respect to its sustainability, remains to be a great challenge in all regions of the world. Urbanization has an influence on soils, hydrology, and climate, these changes have effect on global climate, pollution, increase of anthropogenic greenhouse gases in the earth's atmosphere and human health. Thus anthropogenic heat flux is an important factor for estimation of development of global climate. The simple formula for anthropogenic heat fluxes (AHF) was proposed in the EGU General Assembly 2008 presentation [1] AHF = k × PD × EC, were PD is urban population density and EC is total energy consumption per capita. It was estimated that two of the world megacities - Seoul and Moscow - have the highest AHF values - 83 and 56 W/m2 correspondently. In presented paper it was studied the reasons of such high anthropogenic heat fluxes within Moscow region as well as AHF over the major Russian cities. It was shown that main reason of this circumstance is the administrative divisions in Moscow region. Moscow is ringed by Moscow circle motor road. Accordingly the city has sharply defined boundaries and densely populated residential suburbs are cut off and don't included in Moscow city administrative area. It was constructed the special graph to illuminate why Moscow city has such a high anthropogenic heat factor and how much Moscow agglomeration AHF could be if consider not only Moscow city itself but also the nearest suburb towns. Using the data from World Bank [2] and Russian governmental statistic agency [3] anthropogenic heat fluxes for Russian cities with population more than 500 000 were estimated. Energy consumption data for different Russian regions were calculated by special routine using in the Web-atlas [4]. This research is supported by RAS Fundamental Research Project 'Influence of anthropogenic heat fluxes and aerosol pollution on heat balance and climate of urbanized areas'. Other results of this project is presented in paper [5

  9. Imported anthropogenic bacteria may survive the Antarctic winter and introduce new genes into local bacterial communities

    Directory of Open Access Journals (Sweden)

    Brat Kristian

    2016-03-01

    Full Text Available We studied dynamic changes in anthropogenic bacterial communities at a summer-operated Czech research base (the Mendel Research Station in the Antarctic during 2012 and 2013. We observed an increase in total numbers of detected bacteria between the beginning and the end of each stay in the Antarctic. In the first series of samples, bacteria of Bacillus sp. predominated. Surprisingly, high numbers of Gram-positive cocci and coliforms were found (including opportunistic human pathogens, although the conditions for bacterial life were unfavourable (Antarctic winter. In the second series of samples, coliforms and Gram-positive cocci predominated. Dangerous human pathogens were also detected. Yersinia enterocolitica was identified as serotype O:9. Antibiotic susceptibility testing showed medium-to-high resistance rates to ampicillin, cefalotin, cefuroxime, amoxicillin-clavulanate and gentamicin in Enterobacteriaceae. 16S rRNA sequencing showed high rates of accordance between nucleotide sequences among the tested strains. Three conclusions were drawn: (1 Number of anthropogenic bacteria were able to survive the harsh conditions of the Antarctic winter (inside and outside the polar station. Under certain circumstances (e.g. impaired immunity, the surviving bacteria might pose a health risk to the participants of future expeditions or to other visitors to the base. (2 The bacteria released into the outer environment might have impacts on local ecosystems. (3 New characteristics (e.g. resistance to antibiotics may be introduced into local bacterial communities.

  10. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  11. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  12. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this ...

  13. Massive antenatal fetomaternal hemorrhage

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Koldkjaer, Ole; Berkowicz, Adela

    2005-01-01

    Massive fetomaternal hemorrhage (FMH) can lead to life-threatening anemia. Quantification based on flow cytometry with anti-hemoglobin F (HbF) is applicable in all cases but underestimation of large fetal bleeds has been reported. A large FMH from an ABO-compatible fetus allows an estimation...

  14. Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane

    International Nuclear Information System (INIS)

    Holmstrand, Henry; Zencak, Zdenek; Mandalakis, Manolis; Andersson, Per; Gustafsson, Orjan

    2010-01-01

    Research highlights: → TCPMe is a bioaccumulating organochlorine found at significant levels in organisms at high trophic levels, e.g. birds and mammals. → Previous investigations have suggested TCPMe being co-released as a trace byproduct in pesticides such as DDT. → The results from compound-specific chlorine isotope analysis of TCPMe supports the hypothesis that the source of TCPMe is indeed the extensive historical use of DDT. - Abstract: Compound-specific Cl-isotope analysis was performed on the persistent and bioaccumulating compound tris-(4-chlorophenyl)methane (4,4',4''-TCPMe, referred to as TCPMe in this study) to elucidate whether its main source is natural or anthropogenic. Blubber from the Baltic grey seal (Halichoerus grypus) was extracted by continuous acetonitrile partitioning, and the TCPMe was isolated from the extract by preparative-capillary gas chromatography. Chlorine isotope analysis was subsequently performed by sealed-tube combustion in conjunction with thermal-ionization mass spectrometry (TIMS). The δ 37 Cl of TCPMe was -3.5 ± 0.5 per mille, similar to the previously reported δ 37 Cl of technical grade p,p'-DDT (referred to as DDT in this study). The data is not consistent with a putative marine natural source of TCPMe, as enzymatic (biotic) production is reported to give values of δ 37 Cl 37 Cl-TCPMe data thus supports the hypothesis that TCPMe is produced as a byproduct during DDT synthesis and is released to the environment through the same pathways as DDT. It is also consistent with tris-(4-chlorophenyl)methanol as the primary biotransformation product of TCPMe.

  15. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  16. Phases of massive gravity

    CERN Document Server

    Dubovsky, S L

    2004-01-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...

  17. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  18. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  19. Massive Multiplayer Online Gaming: A Research Framework for Military Training and Education

    Science.gov (United States)

    2005-03-01

    Effects of violent video games on aggressive behavior, aggressive cognition, physiological arousal, and prosocial behavior: A meta...Massive Multiplayer Online Games 2.1 Massive Multiplayer Online Games Defined Massive multiplayer online games (MMOGs) allow users to interact ...2002) suggested various principles for group design and interactions in “massively multiplayer games ” (p. 1). In particular, he agued that it

  20. Dynamic soil properties in response to anthropogenic disturbance

    Science.gov (United States)

    Vanacker, Veerle; Ortega, Raúl

    2013-04-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns

  1. Cosmological stability bound in massive gravity and bigravity

    International Nuclear Information System (INIS)

    Fasiello, Matteo; Tolley, Andrew J.

    2013-01-01

    We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity

  2. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  3. The importance of invertebrates when considering the impacts of anthropogenic noise.

    Science.gov (United States)

    Morley, Erica L; Jones, Gareth; Radford, Andrew N

    2014-02-07

    Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise.

  4. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA

    Science.gov (United States)

    Hansen, Jeffrey; Jurgens, Bryant; Fram, Miranda S.

    2018-01-01

    Total dissolved solids (TDS) concentrations in groundwater tapped for beneficial uses (drinking water, irrigation, freshwater industrial) have increased on average by about 100 mg/L over the last 100 years in the San Joaquin Valley, California (SJV). During this period land use in the SJV changed from natural vegetation and dryland agriculture to dominantly irrigated agriculture with growing urban areas. Century-scale salinity trends were evaluated by comparing TDS concentrations and major ion compositions of groundwater from wells sampled in 1910 (Historic) to data from wells sampled in 1993-2015 (Modern). TDS concentrations in subregions of the SJV, the southern (SSJV), western (WSJV), northeastern (NESJV), and southeastern (SESJV) were calculated using a cell-declustering method. TDS concentrations increased in all regions, with the greatest increases found in the SSJV and SESJV. Evaluation of the Modern data from the NESJV and SESJV found higher TDS concentrations in recently recharged (post-1950) groundwater from shallow (soil amendments combined. Bicarbonate showed the greatest increase among major ions, resulting from enhanced silicate weathering due to recharge of irrigation water enriched in CO2 during the growing season. The results of this study demonstrate that large anthropogenic changes to the hydrologic regime, like massive development of irrigated agriculture in semi-arid areas like the SJV, can cause large changes in groundwater quality on a regional scale.

  6. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of {sup 134}Cs, {sup 137}Cs and {sup 90}Sr from these sources has been decreasing during the 1990`s, while {sup 129}I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest {sup 137}Cs, {sup 129}I and {sup 90}Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived {sup 137}Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990`s the fraction to total {sup 137}Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of {sup 239}, {sup 240}Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  7. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    International Nuclear Information System (INIS)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of 134 Cs, 137 Cs and 90 Sr from these sources has been decreasing during the 1990's, while 129 I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest 137 Cs, 129 I and 90 Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived 137 Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990's the fraction to total 137 Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of 239 , 240 Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  8. Mapping 1995 global anthropogenic emissions of mercury

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    2003-01-01

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1degrees x 1degrees latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg

  9. The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.H.

    2014-01-01

    Surface mass balance (SMB) trends influence observed Greenland Ice Sheet (GrIS) mass loss, but the component of these trends related to anthropogenic forcing is unclear. Here we study the simulated spatial pattern of emergence of an anthropogenically derived GrIS SMB signal between 1850 and 2100

  10. Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China

    Science.gov (United States)

    Peng, Xia; She, Qiannan; Long, Lingbo; Liu, Min; Xu, Qian; Zhang, Jiaxin; Xiang, Weining

    2017-10-01

    The Yangtze River Delta (YRD), including Shanghai City, Jiangsu and Zhejiang Provinces, is the largest metropolitan region in China. In the past decades, the region has experienced massive urbanization and detrimentally affected the environment in the region. Identifying the spatio-temporal variations of climate change and its influencing mechanism in the YRD is an important task for assessing their impacts on the local society and ecosystem. Based on long-term (1958-2014) observation data of meteorological stations, three temperature indices, i.e. extreme maximum temperature (TXx), extreme minimum temperature (TNn), and mean temperature (TMm), were selected and spatialized with climatological calculations and spatial techniques. Evolution and spatial heterogeneity of three temperature indices over YRD as well as their links to atmospheric circulation and anthropogenic activity were investigated. In the whole YRD, a statistically significant overall uptrend could be detected in three temperature indices with the Mann-Kendall (M-K) trend test method. The linear increasing trend for TMm was 0.31 °C/10 a, which was higher than the global average (0.12 °C/10 a during 1951-2012). For TXx and TNn, the increasing rates were 0.41 °C/10 a and 0.52 °C/10 a. Partial correlation analysis indicated that TMm was more related with TXx (rp = 0.68, p < 0.001) than TNn (rp = 0.48, p < 0.001). Furthermore, it was detected with M-K analysis at pixel scale that 62.17%, 96.75% and 97.05% of the areas in the YRD showed significant increasing trends for TXx, TNn and TMm, respectively. The increasing trend was more obvious in the southern mountainous areas than the northern plains areas. Further analysis indicated that the variation of TXx over YRD was mainly influenced by anthropogenic activities (e.g. economic development), while TNn was more affected by atmospheric circulations (e.g., the Eurasian zonal circulation index (EAZ) and the cold air activity index (CA)). For TMm, it was a

  11. Massive gravity and Fierz-Pauli theory

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)

    2017-09-15

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  12. Massive gravity and Fierz-Pauli theory

    International Nuclear Information System (INIS)

    Blasi, Alberto; Maggiore, Nicola

    2017-01-01

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  13. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  14. On the spontaneous breakdown of massive gravities in 2 + 1 dimension

    International Nuclear Information System (INIS)

    Aragone, C.; Aria, P.J.; Andes Merida, Univ.; Khoudeir, A.

    1997-01-01

    This paper shows that locally Lorentz-invariant, third-order, topological massive gravity cannot be broken down either to the local diffeomorphism subgroup or to the rigid Poincare' group. On the other hand, the recently formulated, locally diffeomorphism-invariant, second order massive tradic (translational) Chern-Simons gravity breaks down on rigid Minkowski space to a double massive spin-two system. This flat double massive action is the uniform spin-two generalization of the Maxwell-Chern-Simons-Proca system which one is left with after U(1) Abelian gauge invariance breaks down in the presence of a sextic Higgs potential

  15. Formation of massive seed black holes via collisions and accretion

    Science.gov (United States)

    Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.

    2018-05-01

    Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.

  16. Natural and anthropogenic radiation exposure of humans in Germany

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2016-12-01

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  17. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  18. U.S. ozone air quality under changing climate and anthropogenic emissions.

    Science.gov (United States)

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  19. The dynamics of massive starless cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kong, Shuo; Butler, Michael J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Caselli, Paola [School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT (United Kingdom); Fontani, Francesco [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  20. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections.

    Science.gov (United States)

    Sordillo, Peter P; Helson, Lawrence

    2015-01-01

    The terminal stage of Ebola and other viral diseases is often the onset of a cytokine storm, the massive overproduction of cytokines by the body's immune system. The actions of curcumin in suppressing cytokine release and cytokine storm are discussed. Curcumin blocks cytokine release, most importantly the key pro-inflammatory cytokines, interleukin-1, interleukin-6 and tumor necrosis factor-α. The suppression of cytokine release by curcumin correlates with clinical improvement in experimental models of disease conditions where a cytokine storm plays a significant role in mortality. The use of curcumin should be investigated in patients with Ebola and cytokine storm. Intravenous formulations may allow achievement of therapeutic blood levels of curcumin. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Massive and mass-less Yang-Mills and gravitational fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Dam, H. van

    1970-01-01

    Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in

  2. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  3. Natural and anthropogenic {sup 236}U in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Peter [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria)], E-mail: peter.steier@univie.ac.at; Bichler, Max [Atominstitut der Osterreichischen Universitaeten, Technische Universitaet Wien, Stadionallee 2, Wien A-1020 (Austria); Keith Fifield, L. [Department of Nuclear Physics, RSPhysSE, Australian National University, Canberra, ACT 0200 (Australia); Golser, Robin; Kutschera, Walter; Priller, Alfred [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); Quinto, Francesca [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, via Vivaldi 43, Caserta 81100 (Italy); Richter, Stephan [Euopean Commission, Directorate-General Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Srncik, Michaela [Institut fuer Anorganische Chemie, Universitaet Wien, Waehringer Strasse 42, A-1090 Wien (Austria); Terrasi, Philippo [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, via Vivaldi 43, Caserta 81100 (Italy); Wacker, Lukas [Institute for Particle Physics, HPK H25, Schafmattstrasse 20, CH-8093 Zuerich (Switzerland); Wallner, Anton [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); Wallner, Gabriele [Institut fuer Anorganische Chemie, Universitaet Wien, Waehringer Strasse 42, A-1090 Wien (Austria); Wilcken, Klaus M. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 OQF (United Kingdom); Maria Wild, Eva [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria)

    2008-05-15

    The interaction of thermal neutrons with {sup 235}U results in fission with a probability of {approx}85% and in the formation of {sup 236}U (t{sub 1/2} = 2.3 x 10{sup 7} yr) with a probability of {approx}15%. While anthropogenic {sup 236}U is, therefore, present in spent nuclear fuel at levels of {sup 236}U/U up to 10{sup -2}, the expected natural ratios in the pre-anthropogenic environment range from 10{sup -14} to 10{sup -10}. At VERA, systematic investigations suggest a detection limit below {sup 236}U/U = 5 x 10{sup -12} for samples of 0.5 mg U, while chemistry blanks of {approx}2 x 10{sup 7} atoms {sup 236}U per sample limit the sensitivity for smaller samples. We have found natural isotopic ratios in uranium reagents separated before the onset of human nuclear activities, in uranium ores from various origins and in water from a subsurface well in Bad Gastein, Austria. Anthropogenic contamination was clearly visible in soil and rivulet samples from Salzburg, Austria, whereas river sediments from Garigliano river (Southern Italy) were close to the detection limit. Finally, our natural in-house standard Vienna-KkU was calibrated against a certified reference material (IRMM REIMEP-18 A)

  4. Simulating nonlinear cosmological structure formation with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Arka; Dalal, Neal, E-mail: abanerj6@illinois.edu, E-mail: dalaln@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States)

    2016-11-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  5. Simulating nonlinear cosmological structure formation with massive neutrinos

    International Nuclear Information System (INIS)

    Banerjee, Arka; Dalal, Neal

    2016-01-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  6. Stochastic spin-one massive field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1984-01-01

    Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)

  7. Minimal theory of massive gravity

    International Nuclear Information System (INIS)

    De Felice, Antonio; Mukohyama, Shinji

    2016-01-01

    We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than) −1 without introducing any extra degrees of freedom.

  8. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2013-01-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''

  9. 443 ANTHROPOGENIC IMPACTS ON CORAL REEFS AND THEIR ...

    African Journals Online (AJOL)

    Osondu

    Data collection methodology included household questionnaire survey, key informant interviews, participant .... Anthropogenic Impacts on Coral Reefs and Their Effect on Fishery ................Mbije & ... common along Kilwa coastline, away of large markets ... questionnaire whereas content analysis was used for analyzing ...

  10. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  11. QUALITY OF LIFE IN PATIENTS AFTER MASSIVE PULMONARY EMBOLISM

    Directory of Open Access Journals (Sweden)

    Dragan Kovačić

    2004-04-01

    Full Text Available Background. Pulmonary embolism is a disease, which has a 30% mortality if untreated, while an early diagnosis and treatment lowers it to 2–8%. Health related quality of life (HRQL of patients who survived massive pulmonary embolism is unknown in published literature. In our research we tried to apply experience of foreign experts in estimation of quality of life in some other diseases to the field of massive pulmonary embolism.Patients and methods. Eighteen patients with shock or hypotension due to massive pulmonary embolism, treated with thrombolysis, between July 1993 and November 2000, were prospectively included in the study. Control group included 18 gender and age matched persons. There were no significant differences regarding demographic data between the groups. The HRQL and aerobic capacity of patients and control group were tested with short questions and questionnaires (Veterans brief, self administered questionnaire (VSAQ, EuroQuality questionnaire (EQ, Living with heart failure questionnaire (LlhHF. With LlhHF physical (F-LlhHF and emotional (E-LlhHF HRQL was assessed at hospitalization and 12 months later.Results. One year after massive pulmonary embolism aerobic capacity (–9.5%, p < 0.017 and HRQL (EQ (–34.5%, F-LlhHF (–85.4%, E-LlhHF (–48.7% decreased in massive pulmonary embolism group compared to aerobic capacity 6 months before massive pulmonary embolism and HRQL. Heart rate before thrombolysis correlated with aerobic capacity (r = 0.627, p < 0.01, EQ (r = 0.479, p < 0.01 and F-LlhHF (r = 0.479, p = 0.04 1 year after massive pulmonary embolism. Total pulmonary resistance at 12 hours after start of treatment correlated with aerobic capacity at 1 year (r = 0.354, p < 0.01.With short question (»Did you need any help in everyday activities in last 2 weeks?« we successfully separated patients with decreased HRQL in EQ (74.3 ± 20.8 vs. 24.5 ± 20.7, p < 0.001 and F-LlhHF (21.7 ± 6.7 vs. 32.8 ± 4.3, p < 0.01, but we

  12. Collaborative Calibrated Peer Assessment in Massive Open Online Courses

    Science.gov (United States)

    Boudria, Asma; Lafifi, Yacine; Bordjiba, Yamina

    2018-01-01

    The free nature and open access courses in the Massive Open Online Courses (MOOC) allow the facilities of disseminating information for a large number of participants. However, the "massive" propriety can generate many pedagogical problems, such as the assessment of learners, which is considered as the major difficulty facing in the…

  13. Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data

    Science.gov (United States)

    Kurt Riitters; James Wickham; Timothy Wade

    2009-01-01

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple...

  14. Radiology in massive hemoptysis

    International Nuclear Information System (INIS)

    Marini, M.; Castro, J.M.; Gayol, A.; Aguilera, C.; Blanco, M.; Beraza, A.; Torres, J.

    1995-01-01

    We have reviewed our experience in diseases involving massive hemoptysis, systematizing the most common causes which include tuberculosis, bronchiectasis and cancer of the lung. Other less frequent causes, such as arteriovenous fistula, Aspergilloma, aneurysm, etc.; are also evaluated, and the most demonstrative images of each produced by the most precise imaging methods for their assessment are presented

  15. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  16. A spin-4 analog of 3D massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kovacevic, Marija; Rosseel, Jan; Townsend, Paul K.; Yin, Yihao

    2011-01-01

    A sixth-order, but ghost-free, gauge-invariant action is found for a fourth-rank symmetric tensor potential in a three-dimensional (3D) Minkowski spacetime. It propagates two massive modes of spin 4 that are interchanged by parity and is thus a spin-4 analog of linearized 'new massive gravity'. Also

  17. Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade

    Science.gov (United States)

    Chu, Sophie N.; Wang, Zhaohui Aleck; Doney, Scott C.; Lawson, Gareth L.; Hoering, Katherine A.

    2016-07-01

    In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 µmol kg-1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached ˜300 m depth, whereas at 33.5°N, penetration depth reached ˜600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41 ± 0.12 mol m-2 yr-1 across the transect. Lower values down to 0.20 mol m-2 yr-1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol m-2 yr-1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002 ± 0.0003 pH units yr-1 and a 1.8 ± 0.4 m yr-1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4 ± 15.5 µmol kg-1 centered on isopycnal surface 26.6 kg m-3 from 2001 to 2012 was also observed.

  18. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Science.gov (United States)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  19. NEW APPROACHES TO EFFICIENCY OF MASSIVE ONLINE COURSE

    Directory of Open Access Journals (Sweden)

    Liubov S. Lysitsina

    2014-09-01

    Full Text Available This paper is focused on efficiency of e-learning, in general, and massive online course in programming and information technology, in particular. Several innovative approaches and scenarios have been proposed, developed, implemented and verified by the authors, including 1 a new approach to organize and use automatic immediate feedback that significantly helps a learner to verify developed code and increases an efficiency of learning, 2 a new approach to construct learning interfaces – it is based on “develop a code – get a result – validate a code” technique, 3 three scenarios of visualization and verification of developed code, 4 a new multi-stage approach to solve complex programming assignments, 5 a new implementation of “perfectionism” game mechanics in a massive online course. Overall, due to implementation of proposed and developed approaches, the efficiency of massive online course has been considerably increased, particularly 1 the additional 27.9 % of students were able to complete successfully “Web design and development using HTML5 and CSS3” massive online course at ITMO University, and 2 based on feedback from 5588 students a “perfectionism” game mechanics noticeably improves students’ involvement into course activities and retention factor.

  20. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  1. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change

    Gerrit Hansen

    Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced

  2. ALFIL: A Crowd Simulation Serious Game for Massive Evacuation Training and Awareness

    Science.gov (United States)

    García-García, César; Fernández-Robles, José Luis; Larios-Rosillo, Victor; Luga, Hervé

    2012-01-01

    This article presents the current development of a serious game for the simulation of massive evacuations. The purpose of this project is to promote self-protection through awareness of the procedures and different possible scenarios during the evacuation of a massive event. Sophisticated behaviors require massive computational power and it has…

  3. Effects of massive transfusion on oxygen availability

    Directory of Open Access Journals (Sweden)

    José Otávio Costa Auler Jr

    Full Text Available OBJECTIVE: To determine oxygen derived parameters, hemodynamic and biochemical laboratory data (2,3 Diphosphoglycerate, lactate and blood gases analysis in patients after cardiac surgery who received massive blood replacement. DESIGN: Prospective study. SETTING: Heart Institute (Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Brazil. PARTICIPANTS: Twelve patients after cardiac surgery who received massive transfusion replacement; six of them evolved to a fatal outcome within the three-day postoperative follow-up. MEASUREMENTS AND MAIN RESULTS: The non-survivors group (n=6 presented high lactate levels and low P50 levels, when compared to the survivors group (p<0.05. Both groups presented an increase in oxygen consumption and O2 extraction, and there were no significant differences between them regarding these parameters. The 2,3 DPG levels were slightly reduced in both groups. CONCLUSIONS: This study shows that patients who are massively transfused following cardiovascular surgery present cell oxygenation disturbances probably as a result of O2 transport inadequacy.

  4. Transcatheter emboilization therapy of massive colonic bleeding

    International Nuclear Information System (INIS)

    Shin, G. H.; Oh, J. H.; Yoon, Y.

    1996-01-01

    To evaulate the efficacy and safety of emergent superselective transcatheter embolization for controlling massive colonic bleeding. Six of the seven patients who had symptom of massive gastrointestinal bleeding underwent emergent transcatheter embolization for control of the bleeding. Gastrointestinal bleeding in these patients was originated from various colonic diseases: rectal cancer(n=1), proctitis(n=1), benign ulcer(n=1), mucosal injury by ventriculoperitoneal shunt(n=1), and unknown(n=2). All patients except one with rectal cancer were critically ill. Superselective embolization were done by using Gelfoam particles and/or coils. The vessels embolized were ileocolic artery(n=1). superior rectal artery(n=2), inferior rectal artery (n=1), and middle and inferior rectal arteries(n=1). Hemostasis was successful immediately in all patients. Two underwnet surgery due to recurrent bleeding developed 3 days after the procedure(n=1) or in associalion with underlying rectal cancer(n=1). On surgical specimen of two cases, there was no mucosal ischemic change. Transcatheter embolization is a safe and effective treatment of method for the control of massive colonic bleeding

  5. Relativistic N-body simulations with massive neutrinos

    Science.gov (United States)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  6. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    Science.gov (United States)

    Peise, J.; Kruse, I.; Lange, K.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Hammerer, K.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-03-01

    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, as shown successfully with light fields. Here, we report on the production of massive particles which meet the EPR criterion for continuous phase/amplitude variables. The created quantum state of ultracold atoms shows an EPR parameter of 0.18(3), which is 2.4 standard deviations below the threshold of 1/4. Our state presents a resource for tests of quantum nonlocality with massive particles and a wide variety of applications in the field of continuous-variable quantum information and metrology.

  7. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greene, Jenny E.; Murphy, Jeremy D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); McConnell, Nicholas [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Janish, Ryan [Department of Physics, University of California, Berkeley, CA 94720 (United States); Blakeslee, John P. [Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7 (Canada); Thomas, Jens, E-mail: cpma@berkeley.edu [Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany)

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  8. Spin-3 topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bin, E-mail: bchen01@pku.edu.cn [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Long Jiang, E-mail: longjiang0301@gmail.com [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wu Junbao, E-mail: wujb@ihep.ac.cn [Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-11-24

    In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS{sub 3} vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W{sub 3} algebra and central charge c{sub R}=3l/G.

  9. Minimal theory of massive gravity

    Directory of Open Access Journals (Sweden)

    Antonio De Felice

    2016-01-01

    Full Text Available We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than −1 without introducing any extra degrees of freedom.

  10. Deglacial climate modulated by the storage and release of Arctic sea ice

    Science.gov (United States)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  11. LiDAR DTMs and anthropogenic feature extraction: testing the feasibility of geomorphometric parameters in floodplains

    Science.gov (United States)

    Sofia, G.; Tarolli, P.; Dalla Fontana, G.

    2012-04-01

    In floodplains, massive investments in land reclamation have always played an important role in the past for flood protection. In these contexts, human alteration is reflected by artificial features ('Anthropogenic features'), such as banks, levees or road scarps, that constantly increase and change, in response to the rapid growth of human populations. For these areas, various existing and emerging applications require up-to-date, accurate and sufficiently attributed digital data, but such information is usually lacking, especially when dealing with large-scale applications. More recently, National or Local Mapping Agencies, in Europe, are moving towards the generation of digital topographic information that conforms to reality and are highly reliable and up to date. LiDAR Digital Terrain Models (DTMs) covering large areas are readily available for public authorities, and there is a greater and more widespread interest in the application of such information by agencies responsible for land management for the development of automated methods aimed at solving geomorphological and hydrological problems. Automatic feature recognition based upon DTMs can offer, for large-scale applications, a quick and accurate method that can help in improving topographic databases, and that can overcome some of the problems associated with traditional, field-based, geomorphological mapping, such as restrictions on access, and constraints of time or costs. Although anthropogenic features as levees and road scarps are artificial structures that actually do not belong to what is usually defined as the bare ground surface, they are implicitly embedded in digital terrain models (DTMs). Automatic feature recognition based upon DTMs, therefore, can offer a quick and accurate method that does not require additional data, and that can help in improving flood defense asset information, flood modeling or other applications. In natural contexts, morphological indicators derived from high

  12. Quantifying Anthropogenic Stress on Groundwater Resources

    OpenAIRE

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R. Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-01-01

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (hout) and inflow (hin). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to e...

  13. Simple but accurate GCM-free approach for quantifying anthropogenic climate change

    Science.gov (United States)

    Lovejoy, S.

    2014-12-01

    We are so used to analysing the climate with the help of giant computer models (GCM's) that it is easy to get the impression that they are indispensable. Yet anthropogenic warming is so large (roughly 0.9oC) that it turns out that it is straightforward to quantify it with more empirically based methodologies that can be readily understood by the layperson. The key is to use the CO2 forcing as a linear surrogate for all the anthropogenic effects from 1880 to the present (implicitly including all effects due to Greenhouse Gases, aerosols and land use changes). To a good approximation, double the economic activity, double the effects. The relationship between the forcing and global mean temperature is extremely linear as can be seen graphically and understood without fancy statistics, [Lovejoy, 2014a] (see the attached figure and http://www.physics.mcgill.ca/~gang/Lovejoy.htm). To an excellent approximation, the deviations from the linear forcing - temperature relation can be interpreted as the natural variability. For example, this direct - yet accurate approach makes it graphically obvious that the "pause" or "hiatus" in the warming since 1998 is simply a natural cooling event that has roughly offset the anthropogenic warming [Lovejoy, 2014b]. Rather than trying to prove that the warming is anthropogenic, with a little extra work (and some nonlinear geophysics theory and pre-industrial multiproxies) we can disprove the competing theory that it is natural. This approach leads to the estimate that the probability of the industrial scale warming being a giant natural fluctuation is ≈0.1%: it can be dismissed. This destroys the last climate skeptic argument - that the models are wrong and the warming is natural. It finally allows for a closure of the debate. In this talk we argue that this new, direct, simple, intuitive approach provides an indispensable tool for communicating - and convincing - the public of both the reality and the amplitude of anthropogenic warming

  14. Red Sea Acropora hemprichii Bacterial Population Dynamics under Adverse Anthropogenic Conditions

    KAUST Repository

    Lizcano, Javier

    2012-08-01

    Reef-building corals are cornerstones of life in the oceans. Understanding their interactions with microorganisms and their surrounding physicochemical conditions is important to comprehend reef functioning and ultimately protect coral reef ecosystems. Corals associate with a complex and specific array of microorganisms that supposedly affect their physiology and therefore can significantly determine the condition of a coral ecosystem. As environmental conditions may shape bacterial diversity and ecology in the coral symbiosis, ecosystem changes might have unfavorable consequences for the holobiont, to date poorly understood. Here, we were studying microbial community changes in A. hemprichii as a consequence of simulated eutrophication and overfishing over a period of 16 weeks by using in situ caging and slow release fertilizer treatments in an undisturbed Red Sea reef (22.18ºN, 38.57ºW). We used 16S rDNA amplicon sequencing to evaluate the individual and combined effects of overnutrification and fishing pressure, two of the most common local threats to coral reefs. With our data we hope to better understand bacterial population dynamics under anthropogenic influences and its role in coral resilience. Projecting further, this data will be useful to better predict the consequences of human activity on reef ecosystems.

  15. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  16. Anthropogenic signatures of lead in the Northeast Atlantic

    NARCIS (Netherlands)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E.P.; Annett, A.L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J.M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-01-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic

  17. Environmental challenges of anthropogenic metals flows and cycles

    DEFF Research Database (Denmark)

    van der Voet, Ester; Salminen, Reijo; Eckelman, Matthew

    This report from the UNEP-hosted International Resource Panel, Environmental Risk and Challenges of Anthropogenic Metals Flows and Cycles, gives a clear picture of the potential environmental impacts of metals at different stages of the life-cycle while linking with other areas of resource use...

  18. Multimodality imaging findings of massive ovarian edema in children

    Energy Technology Data Exchange (ETDEWEB)

    Dahmoush, Hisham [Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, CA (United States); Anupindi, Sudha A.; Chauvin, Nancy A. [University of Pennsylvania, The Children' s Hospital of Philadelphia, Department of Radiology, Perelman School of Medicine, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA (United States)

    2017-05-15

    Massive ovarian edema is a rare benign condition that predominantly affects childbearing women as well as preadolescent girls. It is thought to result from intermittent or partial torsion of the ovary compromising the venous and lymphatic drainage but with preserved arterial supply. The clinical features of massive ovarian edema are nonspecific and can simulate tumors, leading to unnecessary oophorectomy. To demonstrate imaging features that should alert radiologists to consider the diagnosis of massive ovarian edema preoperatively so that fertility-sparing surgery may be considered. We identified five girls diagnosed with massive ovarian edema at pathology. Presenting symptoms, sidedness, imaging appearance, preoperative diagnosis, and operative and histopathological findings were reviewed. Age range was 9.6-14.3 years (mean age: 12.5 years). Common imaging findings included ovarian enlargement with edema of the stroma, peripherally placed follicles, isointense signal on T1-W MRI and markedly hyperintense signal on T2-W MRI, preservation of color Doppler flow by US, and CT Hounsfield units below 40. The uterus was deviated to the affected side in all patients. Two of the five patients had small to moderate amounts of free pelvic fluid. Mean ovarian volume on imaging was 560 mL (range: 108-1,361 mL). While the clinical presentation of massive ovarian edema is nonspecific, an enlarged ovary with stromal edema, peripherally placed follicles and preservation of blood flow may be suggestive and wedge biopsy should be considered intraoperatively to avoid unnecessary removal of the ovary. (orig.)

  19. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    International Nuclear Information System (INIS)

    Bluhm, Robert; Fung Shuhong; Kostelecky, V. Alan

    2008-01-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  20. Multimodality imaging findings of massive ovarian edema in children

    International Nuclear Information System (INIS)

    Dahmoush, Hisham; Anupindi, Sudha A.; Chauvin, Nancy A.; Pawel, Bruce R.

    2017-01-01

    Massive ovarian edema is a rare benign condition that predominantly affects childbearing women as well as preadolescent girls. It is thought to result from intermittent or partial torsion of the ovary compromising the venous and lymphatic drainage but with preserved arterial supply. The clinical features of massive ovarian edema are nonspecific and can simulate tumors, leading to unnecessary oophorectomy. To demonstrate imaging features that should alert radiologists to consider the diagnosis of massive ovarian edema preoperatively so that fertility-sparing surgery may be considered. We identified five girls diagnosed with massive ovarian edema at pathology. Presenting symptoms, sidedness, imaging appearance, preoperative diagnosis, and operative and histopathological findings were reviewed. Age range was 9.6-14.3 years (mean age: 12.5 years). Common imaging findings included ovarian enlargement with edema of the stroma, peripherally placed follicles, isointense signal on T1-W MRI and markedly hyperintense signal on T2-W MRI, preservation of color Doppler flow by US, and CT Hounsfield units below 40. The uterus was deviated to the affected side in all patients. Two of the five patients had small to moderate amounts of free pelvic fluid. Mean ovarian volume on imaging was 560 mL (range: 108-1,361 mL). While the clinical presentation of massive ovarian edema is nonspecific, an enlarged ovary with stromal edema, peripherally placed follicles and preservation of blood flow may be suggestive and wedge biopsy should be considered intraoperatively to avoid unnecessary removal of the ovary. (orig.)

  1. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Energy Technology Data Exchange (ETDEWEB)

    Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans/CNRS, F-45071 Orléans Cedex 02 (France); Freire, Paulo C. C. [Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Desvignes, Gregory; Lazarus, Patrick [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Stappers, Benjamin; Lyne, Andrew G. [Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Bassa, Cees [ASTRON, The Netherlands Institute for Radioastronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands)

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.

  2. The Fate of Massive Black Holes in Gas-Rich Galaxy Mergers

    Science.gov (United States)

    Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D.

    2006-06-01

    Using SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by the very massive nuclear gas disks observed in the central regions of merging galaxies. Here we present results that expand on the treatment in previous works (Escala et al. 2004, 2005), by studying the evolution of a binary with different black holes masses in a massive gas disk.

  3. Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Cai, Wenju; Yang, Yang

    2018-02-01

    Severe haze pollution in eastern China has caused substantial health impacts and economic loss. Conducive atmospheric conditions are important to affect occurrence of severe haze events, and circulation changes induced by future global climate warming are projected to increase the frequency of such events. However, a potential contribution of an anthropogenic influence to recent most severe haze (December 2015 and January 2013) over eastern China remains unclear. Here we show that the anthropogenic influence, which is estimated by using large ensemble runs with a climate model forced with and without anthropogenic forcings, has already increased the probability of the atmospheric patterns conducive to severe haze by at least 45% in January 2013 and 27% in December 2015, respectively. We further confirm that simulated atmospheric circulation pattern changes induced by anthropogenic influence are driven mainly by increased greenhouse gas emissions. Our results suggest that more strict reductions in pollutant emissions are needed under future anthropogenic warming.

  4. The formation and gravitational-wave detection of massive stellar black hole binaries

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman

    2014-01-01

    If binaries consisting of two ∼100 M ☉ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M ☉ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  5. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Adam E. Duerr; Tricia A. Miller; Kerri L. Cornell Duerr; Michael J. Lanzone; Amy Fesnock; Todd E. Katzner

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such...

  6. f (T) Non-linear Massive Gravity and the Cosmic Acceleration

    International Nuclear Information System (INIS)

    Wu You; Chen Zu-Cheng; Wei Hao; Wang Jia-Xin

    2015-01-01

    Inspired by the f (R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f (T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the f (T) theory. We then investigate the cosmological evolution of f (T) massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase (w_d_e > −1) to the phantom-like one (w_d_e < −1) as redshift decreases. (paper)

  7. Deployment and Implementation Strategies for Massive MIMO in 5G

    DEFF Research Database (Denmark)

    Panzner, Berthold; Zirwas, Wolfgang; Dierks, Stefan

    2015-01-01

    for 5G is a successful and cost-efficient integration in the overall network concept. This work highlights deployment and implementation strategies for massive MIMO in the context of 5G indoor small cell scenarios. Different massive MIMO deployment scenarios are analyzed for a standard 3GPP indoor...... to spatial streams is varied stepwise from equality to a factor of ten. For implementation of massive MIMO in 5G networks trends in beamforming techniques, mutually coupled subarrays, over the calibration procedure and estimated ADC performance in 2020 time-frame are discussed. Based on the debate the paper...

  8. A dynamical theory for linearized massive superspin 3/2

    International Nuclear Information System (INIS)

    Gates, James S. Jr.; Koutrolikos, Konstantinos

    2014-01-01

    We present a new theory of free massive superspin Y=3/2 irreducible representation of the 4D, N=1 Super-Poincaré group, which has linearized non-minimal supergravity (superhelicity Y=3/2) as it’s massless limit. The new results will illuminate the underlying structure of auxiliary superfields required for the description of higher massive superspin systems

  9. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...

  10. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    KAUST Repository

    Roder, Cornelia; Wu, Zhongjie; Richter, Claudio; Zhang, Jing

    2013-01-01

    Hainan's coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated. © 2012 Elsevier Ltd.

  11. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    KAUST Repository

    Roder, Cornelia

    2013-04-01

    Hainan\\'s coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated. © 2012 Elsevier Ltd.

  12. Classical and quantum cosmology of minimal massive bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F., E-mail: f.darabi@azaruniv.edu; Mousavi, M., E-mail: mousavi@azaruniv.edu

    2016-10-10

    In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  13. Classical and quantum cosmology of minimal massive bigravity

    International Nuclear Information System (INIS)

    Darabi, F.; Mousavi, M.

    2016-01-01

    In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  14. Impact of Anthropogenic Factor on Urboecological Space Development

    Directory of Open Access Journals (Sweden)

    Kuprina Tamara

    2016-01-01

    Full Text Available The article discusses the issues of the impact of the anthropogenic factor on urboecological space development. The issues are considered taking into account retrospective theoretical data to show the process of Anthropoecology development as a new branch of sociological science. At present the noosphere acquires features of anthropoecosystems having a number of parameters from the endogenous and exogenous point of view. Anthropoecology has special socio-cultural significance as considers the interaction of all actors of international space. There introduced the new branch Ecopsycology as the outer world is the reflection of the inner human world. There is a definition of the sustainability of ecological system. In the practical part of the article there is an example of academic mobility as the basis of the human potential with possible transfer into the human capital supporting by survey data. In conclusion there are recommendations on management and adaptation of the anthropogenic factor (a kind of biogenesis in modern urboecological space.

  15. Equisetum telmateia Ehrh. morphotypes related to anthropogenic habitats

    Directory of Open Access Journals (Sweden)

    Dominik Wróbel

    2011-01-01

    Full Text Available The Giant Horsetail (Equisetum telmateia is the only representative of Equisetum genus included in the list of strictly protected species. In Central and Western Europe the species is found in communities belonging to alliances: Alno-Padion and Calthion. With progressing destruction of these biotopes, one can observe the phenomenon of this species moving to the habitats extremely anthropogenic in character. Frequent and intensive observations of this phenomenon were conducted in the Jasło - Krosno Dale area in southern Poland in three anthropogenic localities. In these localities three interesting, irregular Equisetum telmateia morphotypes were found: fo. serotinum subfo. proliferum, fo. spiralis and a morphotype with branched shoot. The phenomenon of morphological plasticity of sporophytes is thought to be connected with the action of genes, which regulate the identity of developing plant organs and their distribution. These genes perform a superior part in relation to the system of growth regulators.

  16. Anthropogenic Signatures of Lead in the Northeast Atlantic

    Science.gov (United States)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E. P.; Annett, A. L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J. M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-03-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by fourfold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (>2,500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb, and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to "buffer" the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.

  17. Cosmology in general massive gravity theories

    International Nuclear Information System (INIS)

    Comelli, D.; Nesti, F.; Pilo, L.

    2014-01-01

    We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory

  18. Proliferation of massive destruction weapons: fantasy or reality?

    International Nuclear Information System (INIS)

    Duval, M.

    2001-01-01

    This article evaluates the threat of massive destruction weapons (nuclear, chemical, biological) for Europe and recalls the existing safeguards against the different forms of nuclear proliferation: legal (non-proliferation treaty (NPT), comprehensive nuclear test ban treaty (CTBT), fissile material cut off treaty (FMCT) etc..), technical (fabrication of fissile materials, delays). However, all these safeguards can be overcome as proven by the activities of some countries. The situation of proliferation for the other type of massive destruction weapons is presented too. (J.S.)

  19. Kundt solutions of minimal massive 3D gravity

    Science.gov (United States)

    Deger, Nihat Sadik; Sarıoǧlu, Ã.-zgür

    2015-11-01

    We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to deformations of round and warped (A)dS. We also find an explicit non-CSI Kundt solution at the merger point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre classification) and show that their Segre types match with the types of their counterparts in TMG.

  20. Complexity growth in minimal massive 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study the complexity growth by using "complexity =action " (CA) proposal in the minimal massive 3D gravity (MMG) model which is proposed for resolving the bulk-boundary clash problem of topologically massive gravity (TMG). We observe that the rate of the complexity growth for Banados-Teitelboim-Zanelli (BTZ) black hole saturates the proposed bound by physical mass of the BTZ black hole in the MMG model, when the angular momentum parameter and the inner horizon of black hole goes to zero.

  1. Chinese mineral dust and anthropogenic aerosol inter-continental transport: a Greenland perspective

    Science.gov (United States)

    Bory, A.; Abouchami, W.; Galer, S.; Svensson, A.; Biscaye, P.

    2012-04-01

    Impurities contained in snow and ice layers in Greenland provide a record of the history of atmospheric dustiness and pollution in the Northern Hemisphere. The source of the particles deposited onto the ice cap may be investigated using specific intrinsic tracers. Provenance discrimination may then provide valuable constraints for the validation of atmospheric transport models as well as for the monitoring of natural and anthropogenic aerosols emissions at a global scale. Clay mineralogy combined with the strontium and neodymium isotope composition of the insoluble particles extracted from recent snow deposits at NorthGRIP (75.1°N, 042.3°W), for instance, enabled us to demonstrate that the Taklimakan desert of North-western China was the main source of mineral dust reaching central Greenland at present [Bory et al., EPSL, 2002 ; GRL, 2003a]. Here we report the lead isotopic signature of these snow-pit samples, covering the 1989-1995 and 1998-2001 time periods. Unradiogenic lead isotopic composition of our Greenland samples, compared to Asian dust isotopic fingerprints, implies that most of the insoluble lead reaching the ice cap is of anthropogenic origin. Lead isotopes reveal likely contributions from European/Canadian and, to a lesser extent, US sources, as well as a marked overprinted signature typical of Chinese anthropogenic lead sources. The relative contribution of the latter appears to have been increasing steadily over the last decade of the 20th century. Quantitative estimates suggest that, in addition to providing most of the dust, China may have already become the most important supplier of anthropogenic lead deposited in Greenland by the turn of the 20th to the 21st century. The close timing between dust and anthropogenic particles deposition onto the ice cap provides new insights for our understanding of Chinese aerosols transport to Greenland.

  2. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    Science.gov (United States)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  3. Detecting the anthropogenic influences on recent changes in ocean carbon uptake

    International Nuclear Information System (INIS)

    Seferian, Roland; Ribes, Aurelien; Bopp, Laurent

    2014-01-01

    Anthropogenic greenhouse gas emissions have modified the rate at which oceans have absorbed atmospheric CO 2 over the last centuries through rising atmospheric CO 2 and modifications in climate. However, there are still missing pieces in our understanding of the recent evolution of air-sea CO 2 exchanges related to the magnitude of their response to anthropogenic forcing versus that controlled by the internal variability. Here, to detect and attribute anthropogenic influences on oceanic CO 2 uptake between 1960 and 2005, we compare an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model simulations forced by individual drivers to ocean-only model reconstructions. We demonstrate that the evolution of the global oceanic carbon sink over the last decades can be understood without invoking climate change, attributing rising atmospheric CO 2 as prominent driver of the oceanic sink. Nonetheless, at regional scale, the influence of climate change on air-sea CO 2 exchanges seems to emerge from the internal variability within the low-latitude oceans. (authors)

  4. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  5. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability

    International Nuclear Information System (INIS)

    Viana, Inés G.; Bode, Antonio

    2013-01-01

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ 15 N). In this study δ 15 N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ 15 N was not related to either inorganic nitrogen concentrations or δ 15 N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ 15 N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ 15 N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15 × 10 3 inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ 15 N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. - Highlights: ► Anthropogenic versus upwelling nitrogen effect on macroalgal δ 15 N was studied. ► The influence of populations and upwelling has not been made before on macroalgal δ 15 N. ► Natural variability has not been taken into account in most biomonitoring studies. ► Upwelling explains most of the variability in δ 15 N in macroalgae

  6. Hyperspectral observation of anthropogenic and biogenic pollution in coastal zone

    Science.gov (United States)

    Lavrova, Olga; Loupian, Evgeny; Mityagina, Marina; Uvarov, Ivan

    The work presents results of anthropogenic and biogenic pollution detection in coastal zones of the Black and Caspian Seas based on satellite hyperspetral data provided by the Hyperion and HICO instruments. Techniques developed on the basis of the analysis of spectral characteristics calculated in special points were employed to address the following problems: (a) assessment of the blooming intensity of cyanobacteria and their distribution in bays of western Crimea and discrimination between anthropogenic pollutant discharge events and algae bloom; (b) detection of anthropogenic pollution in Crimean lakes utilized as industrial liquid discharge reservoirs; (c) detection of oil pollution in areas of shelf oil production in the Caspian Sea. Information values of different spectral bands and their composites were estimated in connection with the retrieval of the main sea water components: phytoplankton, suspended matter and colored organic matter, and also various anthropogenic pollutants, including oil. Software tools for thematic hyperspectral data processing in application to the investigation of sea coastal zones and internal water bodies were developed on the basis of the See the Sea geoportal created by the Space Research Institute RAS. The geoportal is focused on the study of processes in the world ocean with the emphasis on the advantages of satellite systems of observation. The tools that were introduced into the portal allow joint analysis of quasi-simultaneous satellite data, in particular data from the Hyperion, HICO, OLI Landsat-8, ETM Landsat-7 and TM Landsat-5 instruments. Results of analysis attempts combining data from different sensors are discussed. Their strong and weak points are highlighted. The study was completed with partial financial support from The Russian Foundation for Basic Research grants # 14-05-00520-a and 13-07-12017.

  7. Massive Star Burps, Then Explodes

    Science.gov (United States)

    2007-04-01

    evolved stars that have shed their outer envelopes. Swift XRT Image Swift XRT Image (Credit: NASA / GSFC / CXC /S.Immler) Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists. "It challenges some aspects of our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova." "SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about." SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli. See also NASA Goddard press release at: http://www.nasa.gov/centers/goddard/news/topstory/ 2007/supernova_imposter.html

  8. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  9. Massive Neurofibroma of the Breast

    African Journals Online (AJOL)

    Valued eMachines Customer

    Neurofibromas are benign nerve sheath tumors that are extremely rare in the breast. We report a massive ... plexiform breast neurofibromas may transform into a malignant peripheral nerve sheath tumor1. We present a case .... Breast neurofibroma. http://www.breast-cancer.ca/type/breast-neurofibroma.htm. August 2011. 2.

  10. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  11. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  12. The Massive Yang-Mills Model and Diffractive Scattering

    CERN Document Server

    Forshaw, J R; Parrinello, C

    1999-01-01

    We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mechanism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation, we perform in this model explicit calculations of S-matrix elements between quark states, at tree level, one loop, and two loops, and discuss issues of renormalisability and unitarity. In particular, it is shown that the S-matrix element for quark scattering is renormalisable at one-loop order and is only logarithmically non-renormalisable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of this model and those of massless QCD are discussed in detail. In addition, some of the similarities and differences between the massive Yang-Mills model and theories with a Higgs mechanism are analysed at the level of the S-matrix. As an elementary application of the model ...

  13. Massive fields as systematics for single field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongliang; Wang, Yi, E-mail: hjiangag@connect.ust.hk, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-06-01

    During inflation, massive fields can contribute to the power spectrum of curvature perturbation via a dimension-5 operator. This contribution can be considered as a bias for the program of using n {sub s} and r to select inflation models. Even the dimension-5 operator is suppressed by Λ = M {sub p} , there is still a significant shift on the n {sub s} - r diagram if the massive fields have m ∼ H . On the other hand, if the heavy degree of freedom appears only at the same energy scale as the suppression scale of the dimension-5 operator, then significant shift on the n {sub s} - r diagram takes place at m =Λ ∼ 70 H , which is around the inflationary time-translation symmetry breaking scale. Hence, the systematics from massive fields pose a greater challenge for future high precision experiments for inflationary model selection. This result can be thought of as the impact of UV sensitivity to inflationary observables.

  14. Massive MIMO meets small cell backhaul and cooperation

    CERN Document Server

    Yang, Howard H

    2017-01-01

    This brief explores the utilization of large antenna arrays in massive multiple-input-multiple-output (MIMO) for both interference suppression, where it can improve cell-edge user rates, and for wireless backhaul in small cell networks, where macro base stations can forward data to small access points in an energy efficient way. Massive MIMO is deemed as a critical technology for next generation wireless technology. By deploying an antenna array that has active elements in excess of the number of users, massive MIMO not only provides tremendous diversity gain but also powers new aspects for network design to improve performance. This brief investigates a better utilization of the excessive spatial dimensions to improve network performance. It combines random matrix theory and stochastic geometry to develop an analytical framework that accounts for all the key features of a network, including number of antenna array, base station density, inter-cell interference, random base station deployment, and network tra...

  15. Scattering of massive open strings in pure spinor

    International Nuclear Information System (INIS)

    Park, I.Y.

    2011-01-01

    In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.

  16. Quantifying Anthropogenic Stress on Groundwater Resources.

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-10-10

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (h out ) and inflow (h in ). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to evaluate the current aquifer regime. We subsequently present two scenarios of changes in human water withdrawals and return flow to the system (individually and combined). Results show that approximately one-third of the selected aquifers in the USA, and half of the selected aquifers in Iran are dominated by human activities, while the selected aquifers in Germany are natural flow-dominated. The scenario analysis results also show that reduced human withdrawals could help with regime change in some aquifers. For instance, in two of the selected USA aquifers, a decrease in anthropogenic influences by ~20% may change the condition of depleted regime to natural flow-dominated regime. We specifically highlight a trending threat to the sustainability of groundwater in northwest Iran and California, and the need for more careful assessment and monitoring practices as well as strict regulations to mitigate the negative impacts of groundwater overexploitation.

  17. The evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1980-01-01

    The evolution of stars with masses between 15 M 0 and 100 M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution. The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities. Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15 M 0 and a 25 M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed. The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface. The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed. The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined. Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss. (orig.)

  18. Three-dimensional massive gravity and the bigravity black hole

    International Nuclear Information System (INIS)

    Banados, Maximo; Theisen, Stefan

    2009-01-01

    We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.

  19. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  20. Frontiers of massively parallel scientific computation

    International Nuclear Information System (INIS)

    Fischer, J.R.

    1987-07-01

    Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented

  1. Adapting algorithms to massively parallel hardware

    CERN Document Server

    Sioulas, Panagiotis

    2016-01-01

    In the recent years, the trend in computing has shifted from delivering processors with faster clock speeds to increasing the number of cores per processor. This marks a paradigm shift towards parallel programming in which applications are programmed to exploit the power provided by multi-cores. Usually there is gain in terms of the time-to-solution and the memory footprint. Specifically, this trend has sparked an interest towards massively parallel systems that can provide a large number of processors, and possibly computing nodes, as in the GPUs and MPPAs (Massively Parallel Processor Arrays). In this project, the focus was on two distinct computing problems: k-d tree searches and track seeding cellular automata. The goal was to adapt the algorithms to parallel systems and evaluate their performance in different cases.

  2. M2M massive wireless access

    DEFF Research Database (Denmark)

    Zanella, Andrea; Zorzi, Michele; Santos, André F.

    2013-01-01

    In order to make the Internet of Things a reality, ubiquitous coverage and low-complexity connectivity are required. Cellular networks are hence the most straightforward and realistic solution to enable a massive deployment of always connected Machines around the globe. Nevertheless, a paradigm...... shift in the conception and design of future cellular networks is called for. Massive access attempts, low-complexity and cheap machines, sporadic transmission and correlated signals are among the main properties of this new reality, whose main consequence is the disruption of the development...... Access Reservation, Coded Random Access and the exploitation of multiuser detection in random access. Additionally, we will show how the properties of machine originated signals, such as sparsity and spatial/time correlation can be exploited. The end goal of this paper is to provide motivation...

  3. Nonperturbative construction of massive Yang-Mills fields without the Higgs field

    Science.gov (United States)

    Kondo, Kei-Ichi

    2013-01-01

    In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD, we give a nonperturbative construction of a massive vector field describing a non-Abelian massive spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e., the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application, we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation, and color rotation.

  4. Screening of anthropogenic compounds in polluted sediments and soils

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de; Leer, E.W.B. de; Schuyl, P.J.W.

    1986-01-01

    The use of flash evaporation and pyrolysis gas chromatography- mass spectrometry as a fast screening procedure for anthropogenic substances In environmental samples is demonstrated by the analysis of polluted soil and sediment samples. Polycyclic aromatic hydrocarbons, haloorganics,

  5. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion

    KAUST Repository

    Mü ller, Axel; Kammoun, Abla; Bjö rnson, Emil; Debbah, Mé roú ane

    2014-01-01

    Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding

  6. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    Science.gov (United States)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  7. Time Factor in the Theory of Anthropogenic Risk Prediction in Complex Dynamic Systems

    Science.gov (United States)

    Ostreikovsky, V. A.; Shevchenko, Ye N.; Yurkov, N. K.; Kochegarov, I. I.; Grishko, A. K.

    2018-01-01

    The article overviews the anthropogenic risk models that take into consideration the development of different factors in time that influence the complex system. Three classes of mathematical models have been analyzed for the use in assessing the anthropogenic risk of complex dynamic systems. These models take into consideration time factor in determining the prospect of safety change of critical systems. The originality of the study is in the analysis of five time postulates in the theory of anthropogenic risk and the safety of highly important objects. It has to be stressed that the given postulates are still rarely used in practical assessment of equipment service life of critically important systems. That is why, the results of study presented in the article can be used in safety engineering and analysis of critically important complex technical systems.

  8. Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences

    Science.gov (United States)

    King, Andrew D.

    2017-11-01

    Record-breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record-breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human-induced forcings, it is demonstrated that the effect of climate change on global record-breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record-breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.

  9. Airborne anthropogenic radioactivity measurements from an international radionuclide monitoring system

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, J.D.; Williams, D.L.

    1998-01-01

    Anthropogenic radioactivity is being measured in near-real time by an international monitoring system designed to verify the Comprehensive Nuclear Test Ban Treaty. Airborne radioactivity measurements are conducted in-situ by stations that are linked to a central data processing and analysis facility. Aerosols are separated by high-volume air sampling with high-efficiency particulate filters. Radio-xenon is separated from other gases through cryogenic methods. Gamma-spectrometry is performed by high purity germanium detectors and the raw spectral data is immediately transmitted to the central facility via Internet, satellite, or modem. These highly sensitive sensors, combined with the automated data processing at the central facility, result in a system capable of measuring environmental radioactivity on the microbecquerel scale where the data is available to scientists within minutes of the field measurement. During the past year, anthropogenic radioactivity has been measured at approximately half of the stations in the current network. Sources of these measured radionuclides include nuclear power plant emissions, Chernobyl resuspension, and isotope production facilities. The ability to thoroughly characterize site-specific radionuclides, which contribute to the radioactivity of the ambient environment, will be necessary to reduce the number of false positive events. This is especially true of anthropogenic radionuclides that could lead to ambiguous analysis. (author)

  10. Massive stars in colliding wind systems: the GLAST perspective

    International Nuclear Information System (INIS)

    Reimer, Anita; Reimer, Olaf

    2007-01-01

    Colliding winds of massive stars in binary systems arc considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory.The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems

  11. Geometric approach to a massive p form duality

    International Nuclear Information System (INIS)

    Arias, Pio J.; Leal, Lorenzo; Perez-Mosquera, J. C.

    2003-01-01

    Massive theories of Abelian p forms are quantized in a generalized path representation that leads to a description of the phase space in terms of a pair of dual nonlocal operators analogous to the Wilson loop and the 't Hooft disorder operators. Special attention is devoted to the study of the duality between the topologically massive and self-dual models in 2+1 dimensions. It is shown that these models share a geometric representation in which just one nonlocal operator suffices to describe the observables

  12. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  13. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  14. Topologically Massive Higher Spin Gravity

    NARCIS (Netherlands)

    Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.

    2011-01-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the

  15. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  16. Using Massively Multiplayer Online Role-Playing Games for Online Learning

    Science.gov (United States)

    Childress, Marcus D.; Braswell, Ray

    2006-01-01

    This article addresses the use of a massively multiplayer online role-playing game (MMORPG) to foster communication and interaction and to facilitate cooperative learning in an online course. The authors delineate the definition and history of massively multiplayer online games (MMOGs), and describe current uses of MMORPGs in education, including…

  17. An Alternative Technique in the Control of Massive Presacral Rectal ...

    African Journals Online (AJOL)

    Bleeding control was provided by GORE‑TEX® graft. We conclude that fıxatıon of GORE‑TEX® aortic patch should be kept in mind for uncontrolled massive presacral bleeding. KEYWORDS: GORE‑TEX® graft, presacral bleeding, rectal cancer. An Alternative Technique in the Control of Massive Presacral Rectal. Bleeding: ...

  18. Soil Landscape Pattern Changes in Response to Rural Anthropogenic Activity across Tiaoxi Watershed, China

    Science.gov (United States)

    Xiao, Rui; Jiang, Diwei; Christakos, George; Fei, Xufeng; Wu, Jiaping

    2016-01-01

    Soil sealing (loss of soil resources due to extensive land covering for the purpose of house building, road construction etc.) and subsequent soil landscape pattern changes constitute typical environmental problems in many places worldwide. Previous studies concentrated on soil sealing in urbanized regions, whereas rural areas have not been given sufficient attention. Accordingly, this paper studies soil landscape pattern dynamics (i.e., landscape pattern changes in response to rural anthropogenic activities) in the Tiaoxi watershed (Zhejiang province, eastern China), in which surface sealing is by far the predominant component of human forcing with respect to environmental change. A novel approach of quantifying the impacts of rural anthropogenic activities on soil resources is presented. Specifically, quantitative relationships were derived between five soil landscape pattern metrics (patch density, edge density, shape index, Shannon’s diversity index and aggregation index) and three rural anthropogenic activity indicators (anthropogenic activity intensity, distance to towns, and distance to roads) at two landscape block scales (3 and 5 km) between 1985 and 2010. The results showed that the Tiaoxi watershed experienced extensive rural settlement expansion and high rates of soil sealing. Soil landscapes became more fragmented, more irregular, more isolated, and less diverse. Relationships between soil landscape pattern changes and rural anthropogenic activities differed with the scale (spatial and temporal) and variable considered. In particular, the anthropogenic activity intensity was found to be the most important indicator explaining social development intensity, whereas the other two proximity indicators had a significant impact at certain temporal interval. In combination with scale effects, spatial dependency (correlation) was shown to play a key role that should be carefully taken into consideration in any relevant environmental study. Overall, the

  19. Rapid Assessment of Anthropogenic Impacts of Exposed Sandy ...

    African Journals Online (AJOL)

    We applied a rapid assessment methodology to estimate the degree of human impact of exposed sandy beaches in Ghana using ghost crabs as ecological indicators. The use of size ranges of ghost crab burrows and their population density as ecological indicators to assess extent of anthropogenic impacts on beaches ...

  20. Anthropogenic impacts on mosquito populations in North America over the past century

    Science.gov (United States)

    Rochlin, Ilia; Faraji, Ary; Ninivaggi, Dominick V.; Barker, Christopher M.; Kilpatrick, A. Marm

    2016-12-01

    The recent emergence and spread of vector-borne viruses including Zika, chikungunya and dengue has raised concerns that climate change may cause mosquito vectors of these diseases to expand into more temperate regions. However, the long-term impact of other anthropogenic factors on mosquito abundance and distributions is less studied. Here, we show that anthropogenic chemical use (DDT; dichlorodiphenyltrichloroethane) and increasing urbanization were the strongest drivers of changes in mosquito populations over the last eight decades in areas on both coasts of North America. Mosquito populations have increased as much as tenfold, and mosquito communities have become two- to fourfold richer over the last five decades. These increases are correlated with the decay in residual environmental DDT concentrations and growing human populations, but not with temperature. These results illustrate the far-reaching impacts of multiple anthropogenic disturbances on animal communities and suggest that interactions between land use and chemical use may have unforeseen consequences on ecosystems.

  1. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  2. The disturbance-diversity relationship: integrating biodiversity conservation and resource management in anthropogenic landscapes

    OpenAIRE

    Sharma, Lila Nath

    2016-01-01

    Disturbance, natural or anthropogenic, is ubiquitous to forest and grassland ecosystems across the globe. Many of these ecosystems have evolved alongside centuries old anthropogenic disturbance regimes. Understanding how disturbance impacts biodiversity and ecosystem service delivery is a topic of paramount importance as high biodiversity is likely to provide a wide array of ecosystem goods and services to an ever-growing human population. There is a general consensus that dist...

  3. On the inflationary perturbations of massive higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, Antonio, E-mail: kehagias@central.ntua.gr, E-mail: Antonio.Riotto@unige.ch [Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2017-07-01

    Cosmological perturbations of massive higher-spin fields are generated during inflation, but they decay on scales larger than the Hubble radius as a consequence of the Higuchi bound. By introducing suitable couplings to the inflaton field, we show that one can obtain statistical correlators of massive higher-spin fields which remain constant or decay very slowly outside the Hubble radius. This opens up the possibility of new observational signatures from inflation.

  4. Enzymatic production by tissue extracts of a metabolite of nicotinamide adenine dinucleotide with calcium-releasing ability

    International Nuclear Information System (INIS)

    Tich, N.R.

    1989-01-01

    This research investigated the occurrence and characterization of the metabolite in mammalian tissues. In all mammalian tissues tested, including rabbit liver, heart, spleen, kidney, and brain, the factor to convert NAD into its active metabolite was present. The conversion exhibited many characteristics of an enzymatic process such as temperature sensitivity, concentration dependence and protease sensitivity. Production of the NAD metabolite occurred within a time frame of 15-45 minutes at 37 degree C, depending upon the particular preparation. The metabolite was isolated using high performance liquid chromatography from all mammalian tissues. This purified metabolite was then tested for its effectiveness in releasing intracellular calcium in an intact cell by microinjecting it into unfertilized sea urchin eggs. These eggs undergo a massive morphological change upon fertilization which is dependent upon the release of calcium from inside the cell. Upon injection of the NAD metabolite into unfertilized eggs, this same morphological change was observed showing indirectly that the metabolite released intracellular calcium from an intact, viable cell. In addition, radioactive studies using 45 Ca 2+ loaded into permeabilized hepatocytes, indicated in preliminary studies that the NAD metabolite could also release calcium from intracellular stores of mammalian cells

  5. Long-term outcomes of patients receiving a massive transfusion after trauma.

    Science.gov (United States)

    Mitra, Biswadev; Gabbe, Belinda J; Kaukonen, Kirsi-Maija; Olaussen, Alexander; Cooper, David J; Cameron, Peter A

    2014-10-01

    Resuscitation of patients presenting with hemorrhagic shock after major trauma has evolved to incorporate multiple strategies to maintain tissue perfusion and oxygenation while managing coagulation disorders. We aimed to study changes across time in long-term outcomes in patients with major trauma. A retrospective observational study in a single major trauma center in Australia was conducted. We included all patients with major trauma and massive blood transfusion within the first 24 h during a 6-year period (from 2006 to 2011). The main outcome measures were Glasgow Outcome Score-Extended (GOSE) and work capacity at 6 and 12 months. There were 5,915 patients with major trauma of which 365 (6.2%; 95% confidence interval [95% CI], 5.6 - 6.8) received a massive transfusion. The proportion of major trauma patients receiving a massive transfusion decreased across time from 8.2% to 4.4% (P GOSE at 6 months, and 44% unfavorable GOSE at 12 months. Massive transfusion was independently associated with unfavorable outcomes at 6 months after injury (adjusted odds ratio, 1.56; 95% CI, 1.05 - 2.31) but not at 12 months (adjusted odds ratio, 0.85; 95% CI, 0.72 - 1.01). A significant reduction in massive transfusion rates was observed. Unfavorable long-term outcomes among patients receiving a massive transfusion after trauma were frequent with a substantial proportion of survivors experiencing poor functional status 1 year after injury.

  6. Anthropogenic Pollutants in Extracts from Maritsa Iztok Dumps

    Science.gov (United States)

    Stefanova, Maya; Milakovska, Zlatka; Marinov, Stefan

    2017-12-01

    Coals are suspected for many human health problems and are an object of the new discipline - “medical geology”. Potential human health risk of organic compounds with coal/lignite provenance includes endocrine disruption, nephrotoxicity, cancer, etc. Recent investigations proved that different organic components, i.e. hydrocarbons, phenols etc. move through/release out of the dump area as a result of alteration processes of the organic matter (OM) caused by the wash-out and/or drainage processes. The timeliness of the present study is based on the scarcity of information on organic geochemistry of dump materials from open pit coal mines and weathered lignites in particular. The limited number of studies on dumps clarifies that even for the “short” time span (some tens of years) in geological point of view, processes of transformation of the extractable OM are detectable. The secondary phases, a result of the OM transformations, move through and out of the dump area and could be potential contaminants for the surface/underground waters and soils in the area. Another environmental problem comes from the air-born VOCs and products of the modern chemical industry. By GC-MS in the slightly polar fractions of the chloroform extracts of dump samples a broad set of components was determined, i.e. phthalates (dominant), i-propyl palmitate, i-propyl myristate, n-hexyl benzoates, etc. These organic contaminants could be regarded more likely as anthropogenic (originating from plasticizers, industrial pollutants, etc.). Presently, it seems that the identified compounds do not represent an acute toxic risk from an environmental viewpoint. However, some compounds could raise concerns and further attention is needed to be focused on them.

  7. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    Science.gov (United States)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  8. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  9. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts

    Directory of Open Access Journals (Sweden)

    Keisha D. Bahr

    2015-05-01

    Full Text Available Kāneʻohe Bay, which is located on the on the NE coast of Oʻahu, Hawaiʻi, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāneʻohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Loʻe (Coconut Island in the southern region of the bay became home to the Hawaiʻi Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960’s the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of

  10. The unnatural history of Kāne'ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts.

    Science.gov (United States)

    Bahr, Keisha D; Jokiel, Paul L; Toonen, Robert J

    2015-01-01

    Kāne'ohe Bay, which is located on the on the NE coast of O'ahu, Hawai'i, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāne'ohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Lo'e (Coconut Island) in the southern region of the bay became home to the Hawai'i Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960's the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of K

  11. Modeling Agassiz's Desert Tortoise Population Response to Anthropogenic Stressors

    Science.gov (United States)

    Mojave Desert tortoise (Gopherus agassizii) populations are exposed to a variety of anthropogenic threats, which vary in nature, severity, and frequency. Tortoise management in conservation areas can be compromised when the relative importance of these threats is not well underst...

  12. RAMA: A file system for massively parallel computers

    Science.gov (United States)

    Miller, Ethan L.; Katz, Randy H.

    1993-01-01

    This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.

  13. Massive transfusion protocols: current best practice

    Directory of Open Access Journals (Sweden)

    Hsu YM

    2016-03-01

    Full Text Available Yen-Michael S Hsu,1 Thorsten Haas,2 Melissa M Cushing1 1Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA; 2Department of Anesthesia, University Children's Hospital Zurich, Zurich, Switzerland Abstract: Massive transfusion protocols (MTPs are established to provide rapid blood replacement in a setting of severe hemorrhage. Early optimal blood transfusion is essential to sustain organ perfusion and oxygenation. There are many variables to consider when establishing an MTP, and studies have prospectively evaluated different scenarios and patient populations to establish the best practices to attain improved patient outcomes. The establishment and utilization of an optimal MTP is challenging given the ever-changing patient status during resuscitation efforts. Much of the MTP literature comes from the trauma population, due to the fact that massive hemorrhage is the leading cause of preventable trauma-related death. As we come to further understand the positive and negative clinical impacts of transfusion-related factors, massive transfusion practice can be further refined. This article will first discuss specific MTPs targeting different patient populations and current relevant international guidelines. Then, we will examine a wide selection of therapeutic products to support MTPs, including newly available products and the most suitable of the traditional products. Lastly, we will discuss the best design for an MTP, including ratio-based MTPs and MTPs based on the use of point-of-care coagulation diagnostic tools. Keywords: hemorrhage, MTP, antifibrinolytics, coagulopathy, trauma, ratio, logistics, guidelines, hemostatic

  14. Galaxy bispectrum from massive spinning particles

    Science.gov (United States)

    Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora

    2018-05-01

    Massive spinning particles, if present during inflation, lead to a distinctive bispectrum of primordial perturbations, the shape and amplitude of which depend on the masses and spins of the extra particles. This signal, in turn, leaves an imprint in the statistical distribution of galaxies; in particular, as a non-vanishing galaxy bispectrum, which can be used to probe the masses and spins of these particles. In this paper, we present for the first time a new theoretical template for the bispectrum generated by massive spinning particles, valid for a general triangle configuration. We then proceed to perform a Fisher-matrix forecast to assess the potential of two next-generation spectroscopic galaxy surveys, EUCLID and DESI, to constrain the primordial non-Gaussianity sourced by these extra particles. We model the galaxy bispectrum using tree-level perturbation theory, accounting for redshift-space distortions and the Alcock-Paczynski effect, and forecast constraints on the primordial non-Gaussianity parameters marginalizing over all relevant biases and cosmological parameters. Our results suggest that these surveys would potentially be sensitive to any primordial non-Gaussianity with an amplitude larger than fNL≈ 1, for massive particles with spins 2, 3, and 4. Interestingly, if non-Gaussianities are present at that level, these surveys will be able to infer the masses of these spinning particles to within tens of percent. If detected, this would provide a very clear window into the particle content of our Universe during inflation.

  15. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  16. Bronchial Artery Embolization for Massive Hemoptysis: a Retrospective Study

    Directory of Open Access Journals (Sweden)

    Ali Fani

    2013-05-01

    Full Text Available   Introduction: To assess the efficacy and safety of bronchial artery embolization in the treatment of massive hemoptysis.   Materials and Methods: A retrospective study on 46 patients (26 males and 20 females who were referred to the Razavi Hospital from April 2009 to May 2012 with massive hemoptysis and had bronchial artery embolization procedures. General characteristics of the patients including age, gender, etiology, and thorax computed tomograms, findings of bronchial angiographic, results of the embolization, complications related to bronchial artery embolization and clinical outcome during follow-up were reviewed. Results: The etiology included previous pulmonary tuberculosis in 20 cases, previous tuberculosis with bronchiectasis in 16 cases, bronchiectasis in 6 cases, and active pulmonary tuberculosis in one case. No identifiable causes could be detected in three patients. Moreover, massive hemoptysis was successfully and immediately controlled following the embolization procedure in all patients. One patient developed recurrent hemoptysis during one month following the procedure and was treated by re-embolization. No major procedure–related complication such as bronchial infarction was identified However none of the patientsexperienced neurological complications. Conclusion: Bronchial artery embolization is a safe and effective means of controlling massive hemoptysis and should be regarded as the first-line treatment for this condition.

  17. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  18. THERE ARE NO STARLESS MASSIVE PROTO-CLUSTERS IN THE FIRST QUADRANT OF THE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Bressert, E. [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching bei Muenchen (Germany)

    2012-10-20

    We search the {lambda} = 1.1 mm Bolocam Galactic Plane Survey for clumps containing sufficient mass to form {approx}10{sup 4} M{sub Sun} star clusters. Eighteen candidate massive proto-clusters are identified in the first Galactic quadrant outside of the central kiloparsec. This sample is complete to clumps with mass M{sub clump} > 10{sup 4} M{sub Sun} and radius r {approx}< 2.5 pc. The overall Galactic massive cluster formation rate is CFR(M{sub cluster} > 10{sup 4}) {approx}<5 Myr{sup -1}, which is in agreement with the rates inferred from Galactic open clusters and M31 massive clusters. We find that all massive proto-clusters in the first quadrant are actively forming massive stars and place an upper limit of {tau}{sub starless} < 0.5 Myr on the lifetime of the starless phase of massive cluster formation. If massive clusters go through a starless phase with all of their mass in a single clump, the lifetime of this phase is very short.

  19. Cosmological viability of theories with massive spin-2 fields

    Energy Technology Data Exchange (ETDEWEB)

    Koennig, Frank

    2017-03-30

    Theories of spin-2 fields take on a particular role in modern physics. They do not only describe the mediation of gravity, the only theory of fundamental interactions of which no quantum field theoretical description exists, it furthermore was thought that they necessarily predict massless gauge bosons. Just recently, a consistent theory of a massive graviton was constructed and, subsequently, generalized to a bimetric theory of two interacting spin-2 fields. This thesis studies both the viability and consequences at cosmological scales in massive gravity as well as bimetric theories. We show that all consistent models that are free of gradient and ghost instabilities behave like the cosmological standard model, LCDM. In addition, we construct a new theory of massive gravity which is stable at both classical background and quantum level, even though it suffers from the Boulware-Deser ghost.

  20. World-wide anthropogenic climate changes: facts, uncertainties and open questions

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1994-01-01

    Various human activities are, without a doubt, leading to a steady increase world-wide in the emissions of trace gases which affect the climate into the atmosphere. As a result, the global climate is also forced to change. The evidence from climate models regarding this is uncertain, however, both with respect to the quantitative aspect and the regional aspect, especially concerning climatic elements apart from temperature. It is therefore important to examine the data of climate history for anthropogenic climate signals. It is difficult, though, to distinguish between natural and anthropogenic climate effects. Despite these uncertainties, however, which result in many questions remaining open, estimations of risk and the principle of responsibility lead to immediate, international climate protection measures being demanded. (orig.) [de

  1. Impact analysis on a massively parallel computer

    International Nuclear Information System (INIS)

    Zacharia, T.; Aramayo, G.A.

    1994-01-01

    Advanced mathematical techniques and computer simulation play a major role in evaluating and enhancing the design of beverage cans, industrial, and transportation containers for improved performance. Numerical models are used to evaluate the impact requirements of containers used by the Department of Energy (DOE) for transporting radioactive materials. Many of these models are highly compute-intensive. An analysis may require several hours of computational time on current supercomputers despite the simplicity of the models being studied. As computer simulations and materials databases grow in complexity, massively parallel computers have become important tools. Massively parallel computational research at the Oak Ridge National Laboratory (ORNL) and its application to the impact analysis of shipping containers is briefly described in this paper

  2. The Chukchi Sea zoobenthos: contemporary conditions and trends in anthropogenic influence.

    Directory of Open Access Journals (Sweden)

    Kirievskaya Dubrava

    2017-06-01

    Full Text Available The Chukchi Sea is a key region where rapid changes of the Arctic environment have been observed recently. Benthos of the Chukchi Sea is a sensitive indicator of these changes. In addition, the benthos can be used as an indicator of the anthropogenic load on the marine environment. A lot of researches have been conducted in the different parts of the Chukchi Sea. In this paper we summarized all the data collected for the last 30 years to evaluate contemporary conditions of the Chukchi Sea benthos as well as to discuss a potential response of the benthic ecosystem to the anthropogenic load. The Chukchi Sea zoobenthos is characterized by relatively high biodiversity compared to the seas of the western Arctic Ocean. The spatial distribution of zoobenthos is non-uniform. It is caused by a lot of factors: depth, bottom and sediment temperature, geochemical structure of the sediments, hydrodynamics, etc. Present environmental conditions of the Chukchi Sea biota can be considered to be close to the average long-term norms. By the reason of climate change scientists started to observe northing displacement of subarctic and temperate species of the benthic ecosystem. The Chukchi Sea is still included into the area with low anthropogenic pressure. The main potential threat for the Chukchi sea benthos results from continued oil and gas exploration and sea transport. For example, benthos around oil-wells (the Burger and the Klondike contains pollutants at a high concentration. The risk of rising anthropogenic load on the Chukchi Sea ecosystem poses the problem to additionally identify vulnerable areas of increased ecological significance for later receiving conservation status.

  3. Natural and Anthropogenic Methane Sources, New England, USA, 1990-1994

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains an inventory of natural and anthropogenic methane emissions for all counties in the six New England states of Connecticut, Rhode Island,...

  4. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  5. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    Science.gov (United States)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  6. Tritium recapture behavior at a nuclear power reactor due to airborne releases.

    Science.gov (United States)

    Harris, Jason T; Miller, David W; Foster, Doug W

    2008-08-01

    This paper describes the initiatives taken by Cook Nuclear Plant to study the on-site behavior of recaptured tritium released in its airborne effluents. Recapture is the process where a released radioactive effluent, in this case tritium, is brought back on-site through some mechanism. Precipitation, shifts in wind direction, or anthropogenic structures that restrict or alter effluent movement can all lead to recapture. The investigation was started after tritium was detected in the north storm drain outfall. Recent inadvertent tritium releases by several other nuclear power plants, many of which entered the groundwater, have led to increased surveillance and scrutiny by regulatory authorities and the general public. To determine the source of tritium in the outfall, an on-site surface water, well water, rainwater and air-conditioning condensate monitoring program was begun. Washout coefficients were also determined to compare with results reported by other nuclear power plants. Program monitoring revealed detectable tritium concentrations in several precipitation sample locations downwind of the two monitored containment building release vents. Tritium was found in higher concentrations in air-conditioning condensate, with a mean value of 528 Bq L(-1) (14,300 pCi L(-1)). The condensate, and to a lesser extent rainwater, were contributing to the tritium found in the north storm drain outfall. Maximum concentration values for each sample type were used to estimate the most conservative dose. A maximum dose of 1.1 x 10(-10) mSv (1.1 x 10(-8) mrem) total body was calculated to determine the health impact of the tritium detected.

  7. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Massey, Philip, E-mail: krs9tb@virginia.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-08-01

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  8. Avoiding Dangerous Anthropogenic Interference with the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Keller, K. [Department of Geosciences, Penn State, PA (United States); Hall, M. [Brookings Institution, Washington, DC (United States); Kim, Seung-Rae [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ (United States); Bradford, D.F. [Department of Economics, Princeton University, Princeton, NJ (United States); Oppenheimer, M. [Woodrow Wilson School and Department of Geosciences, Princeton University, Robertson Hall 448, Princeton, NJ, 08544 (United States)

    2005-12-01

    The UN Framework Convention on Climate Change calls for the avoidance of 'dangerous anthropogenic interference with the climate system'. Among the many plausible choices, dangerous interference with the climate system may be interpreted as anthropogenic radiative forcing causing distinct and widespread climate change impacts such as a widespread demise of coral reefs or a disintegration of the West Antarctic ice sheet. The geological record and numerical models suggest that limiting global warming below critical temperature thresholds significantly reduces the likelihood of these eventualities. Here we analyze economically optimal policies that may ensure this risk-reduction. Reducing the risk of a widespread coral reef demise implies drastic reductions in greenhouse gas emissions within decades. Virtually unchecked greenhouse gas emissions to date (combined with the inertia of the coupled natural and human systems) may have already committed future societies to a widespread demise of coral reefs. Policies to reduce the risk of a West Antarctic ice sheet disintegration allow for a smoother decarbonization of the economy within a century and may well increase consumption in the long run.

  9. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    Science.gov (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  10. Intercalibration of selected anthropogenic radionuclides for the GEOTRACES Program

    DEFF Research Database (Denmark)

    Kenna, Timothy C.; Masqué, Pere; Mas, Jose Luis

    2012-01-01

    As part of the GEOTRACES Program, six laboratories participated in an intercalibration exercise on several anthropogenic radionuclides of interest. The effort was successful for 239,240Pu activity, 240Pu/239Pu isotope ratio, and 137Cs activity measured in filtered seawater samples from the Bermuda...... Atlantic Time Series station (BATS) and a site on the continental slope of the Northeastern U.S. A limited number of analyses were reported for 237Np, 241Am, 90Sr, and 238Pu in filtered seawater. Intercalibration of any of the isotopes of interest in filtered particulate matter was unsuccessful due...... to insufficient size of the samples distributed. Methods used were based on traditional radio-counting techniques and inductively coupled plasma mass spectrometry (ICP-MS). Although the majority of analyses were performed on samples ≥ 60 L, one lab demonstrated the ability to analyze several of the anthropogenic...

  11. MAX-SLNR Precoding Algorithm for Massive MIMO System

    Directory of Open Access Journals (Sweden)

    Jiang Jing

    2016-01-01

    Full Text Available Pilot Contamination obviously degrades the system performance of Massive MIMO systems. In this paper, a downlink precoding algorithm based on the Signal-to- Leakage-plus-Noise-Ratio (SLNR criterion is put forward. First, the impact of Pilot Contamination on SLNR is analyzed,then the precoding matrix is calculated with the eigenvalues decomposition of SLNR, which not only maximize the array gains of the target user, but also minimize the impact of Pilot Contamination and the leak to the users of other cells. Further, a simplified solution is derived, in which the impact of Pilot Contamination can be suppressed only with the large-scale fading coefficients. Simulation results reveal that: in the scenario of the serious pilot contamination, the proposed algorithm can avoid the performance loss caused by the pilot contamination compared with the conventional Massive MIMO precoding algorithm. Thus the proposed algorithm can acquire the perfect performance gains of Massive MIMO system and has better practical value since the large-scale fading coefficients are easy to measure and feedback.

  12. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  13. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  14. Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86 provides annual estimates of anthropogenic...

  15. Massive pulmonary embolism: the predisposing and complicating factors, its current diagnostic approaches and critical importance of early diagnostic physical exam

    Directory of Open Access Journals (Sweden)

    Filip A. Konecny

    2006-12-01

    Full Text Available Massive pulmonary embolism (MPE often leads to circulation collapse, a form of shock. The process is set off by thrombus or multiple thrombi dislodgement followed by a rapid perfusion insufficiency of pulmonary arterial system. Patients experience severe hypotension with diastolic and systolic failure with an acute tricuspid regurgitation. On many occasions, release of an obstruction is unattainable and death is occurring frequently within one hour of presentation. A key reported source of MPE is its occurrence as a complication of deep vein thrombosis (DVT. While long-term immobilization and surgery are both directly associated with MPE, others such as previous DVT, malignancy, infectious lung and heart diseases, family thrombophilia, lower limb paralysis and pregnancy have to be considered as risk factors mainly due to its silent nature. Predisposing and complicating risks should be addressed by an early diagnostic physical exam. The clinician might offer a wide variety of diagnostic approaches, combining techniques into algorithms to better deal with the embolism severity. Multiple patient life-style changes and decisions to adhere to the proposed plan should be built up on patient-physician team effort. KEY WORDS: Massive pulmonary embolism, predisposing factors, current diagnostic approaches.

  16. Separating natural acidity from anthropogenic acidification in the spring flood of northern Sweden

    International Nuclear Information System (INIS)

    Laudon, Hjalmar

    2000-01-01

    Spring flood is an occasion for transient hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also very susceptible to anthropogenic acidification. Belief that acid deposition is primarily responsible for pH decline during spring flood has been an important factor in the decision to spend close to one billion Swedish crowns to lime surface waters in northern Sweden during the last decade. The objective of this work is to present an operational tool, the Boreal Dilution Model (BDM), for separating and quantifying the anthropogenic and natural contributions to episodic acidification during spring flood episodes in northern Sweden. The limited data requirements of 10-15 stream water samples before and during spring flood make the BDM suitable for widespread use in environmental monitoring programs. This creates a possibility for distinguishing trends and spatial patterns in the human impact as well as natural pH decline. The results from applying the BDM, and a one point 'pBDM' version of the model, in northern Sweden demonstrate that the anthropogenic component associated with spring flood episodes is now generally limited. Instead it is the combination of natural organic acidity and dilution of the buffering capacity that is the major driving mechanism of episodic acidity during spring flood events in the region. While the anthropogenic component of episodic acidification generally contributes 0.1 to 0.3 pH units to the natural pH decline of up to 2.5 pH units, the current regional extent of areas that are severely affected by anthropogenically driven episodes is approximately 6%. Prior to the initiation of the Swedish Environmental Protection Agency's 'Episode Project' the limited spring flood data together with lack of a systematic methodology for determining liming candidates forced the liming authorities to base the remediation strategy in northern Sweden on biological indications. But, since there are more

  17. The human footprint in the west: a large-scale analysis of anthropogenic impacts.

    Science.gov (United States)

    Leu, M.; Hanser, S.E.; Knick, S.T.

    2008-01-01

    Anthropogenic features such as urbanization, roads, and power lines, are increasing in western United States landscapes in response to rapidly growing human populations. However, their spatial effects have not been evaluated. Our goal was to model the human footprint across the western United States. We first delineated the actual area occupied by anthropogenic features, the physical effect area. Next, we developed the human footprint model based on the ecological effect area, the zone influenced by features beyond their physical presence, by combining seven input models: three models quantified top-down anthropogenic influences of synanthropic predators (avian predators, domestic dog and cat presence risk), and four models quantified bottom-up anthropogenic influences on habitat (invasion of exotic plants, human-caused fires, energy extraction, and anthropogenic wildland fragmentation). Using independent bird population data, we found bird abundance of four synanthropic species to correlate positively with human footprint intensity and negatively for three of the six species influenced by habitat fragmentation. We then evaluated the extent of the human footprint in relation to terrestrial (ecoregions) and aquatic systems (major rivers and lakes), regional management and conservation status, physical environment, and temporal changes in human actions. The physical effect area of anthropogenic features covered 13% of the western United States with agricultural land (9.8%) being most dominant. High-intensity human footprint areas (class 8–10) overlapped highly productive low-elevation private landholdings and covered 7% of the western United States compared to 48% for low-intensity areas (class 1–3), which were confined to low-productivity high-elevation federal landholdings. Areas within 1 km of rivers were more affected by the human footprint compared to lakes. Percentage human population growth was higher in low-intensity human footprint areas. The

  18. Diversity of medicinal plants and anthropogenic threats in the ...

    African Journals Online (AJOL)

    Diversity of medicinal plants and anthropogenic threats in the Samburu Central Sub-County of Kenya. ... Biodiversity of medicinal plants and effects of human activities on availability of traditional ... There is, therefore need to adopt management strategies that enhance the conservation of these valuable natural resources.

  19. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    Science.gov (United States)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  20. A review of marine anthropogenic CO2 definitions: introducing a thermodynamic approach based on observations

    International Nuclear Information System (INIS)

    Friis, Karsten

    2006-01-01

    A review of existing methods that define anthropogenic CO 2 as deduced from total inorganic carbon is presented. A refined approach to define anthropogenic CO 2 is introduced that has a stronger thermodynamic orientation than current methods, and is based on a back-calculation technique by Chen and Millero and Poisson and Chen. Anthropogenic CO 2 results of the new technique are compared with results from the original technique as well as with results of the technique of Gruber et al. The new technique is furthermore applied to three time-separated data sets in the subpolar North Atlantic and shows consistent results with regard to available data quality and anthropogenic CO 2 quantities. The difference between the new thermodynamic approach and the anthropogenic CO 2 definition of Gruber et al., which is termed mechanistic, is discussed. Here likely changes in the CO 2 solubility pump are a thermodynamic property of this definition, whereas it is a separate phenomenon in the mechanistic definition. The thermodynamic approach is not without caveats, but points to improvements by the synergistic use of model results and those from observations. Future improvements are considered for the initial saturation state of oxygen and CO 2 , at the instant the surface water loses contact with the atmosphere and for variations in the Redfield ratio

  1. THE CONCENTRATION OF PHOTOSINTHESIS PIGMENTS IN THE ANTHROPOGENIC PLANT COMMUNITIES IN TOBOLSK TOWN

    OpenAIRE

    Еlena Ivanovna Popova

    2016-01-01

    Photosynthesis means a lot in the life of a plant body. For the normal photosynthesis process it is necessary to have certain external and internal conditions. The topic of the research is the study of photosynthesis pigments in anthropogenic plant communities. The aim of our work was to study the pigment composition plants of anthropogenic phytocenoses. Methods: we have used the spectrophotometric method to define the concentration of pigments. Results: the research has shown that the concen...

  2. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  3. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: ines.gonzalez@co.ieo.es; Bode, Antonio

    2013-01-15

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ{sup 15}N). In this study δ{sup 15}N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ{sup 15}N was not related to either inorganic nitrogen concentrations or δ{sup 15}N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ{sup 15}N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ{sup 15}N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15 × 10{sup 3} inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ{sup 15}N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. - Highlights: ► Anthropogenic versus upwelling nitrogen effect on macroalgal δ{sup 15}N was studied. ► The influence of populations and upwelling has not been made before on macroalgal δ{sup 15}N. ► Natural variability has not been taken into account in most biomonitoring studies. ► Upwelling explains most of the variability in δ{sup 15}N in macroalgae.

  4. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  5. Detecting anthropogenic footprints in sea level rise: the role of complex colored noise

    Science.gov (United States)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Jensen, Jürgen

    2015-04-01

    While there is scientific consensus that global mean sea level (MSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Uncovering the anthropogenic contribution requires profound knowledge about the persistence of natural MSL variations. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we statistically estimate the upper bounds of naturally forced centennial MSL trends on the basis of two separate components: a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Resting on a combination of spectral analyses of tide gauge records, ocean reanalysis data and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate, the persistence of natural volumetric changes is underestimated. If each component is assessed separately, natural centennial trends are locally up to ~0.5 mm/yr larger than in case of an integrated assessment. This implies that external trends in MSL rise related to anthropogenic forcing might be generally overestimated. By applying our approach to the outputs of a centennial ocean reanalysis (SODA), we estimate maximum natural trends in the order of 1 mm/yr for the global average. This value is larger than previous estimates, but consistent with recent paleo evidence from periods in which the anthropogenic contribution was absent. Comparing our estimate to the observed 20th century MSL rise of 1.7 mm/yr suggests a minimum external contribution of at least 0.7 mm/yr. We conclude that an accurate detection of anthropogenic footprints in MSL rise requires a more careful assessment of the persistence of intrinsic natural variability.

  6. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    Science.gov (United States)

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  7. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  8. PARALLEL SPATIOTEMPORAL SPECTRAL CLUSTERING WITH MASSIVE TRAJECTORY DATA

    Directory of Open Access Journals (Sweden)

    Y. Z. Gu

    2017-09-01

    Full Text Available Massive trajectory data contains wealth useful information and knowledge. Spectral clustering, which has been shown to be effective in finding clusters, becomes an important clustering approaches in the trajectory data mining. However, the traditional spectral clustering lacks the temporal expansion on the algorithm and limited in its applicability to large-scale problems due to its high computational complexity. This paper presents a parallel spatiotemporal spectral clustering based on multiple acceleration solutions to make the algorithm more effective and efficient, the performance is proved due to the experiment carried out on the massive taxi trajectory dataset in Wuhan city, China.

  9. A discrete ordinate response matrix method for massively parallel computers

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1991-01-01

    A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry

  10. Has Research on Collaborative Learning Technologies Addressed Massiveness? A Literature Review

    Science.gov (United States)

    Manathunga, Kalpani; Hernández-Leo, Davinia

    2015-01-01

    There is a growing interest in understanding to what extent innovative educational technologies can be used to support massive courses. Collaboration is one of the main desired elements in massive learning actions involving large communities of participants. Accumulated research in collaborative learning technologies has proposed and evaluated…

  11. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar

    OpenAIRE

    Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore c...

  12. Historical releases of mercury to air, land, and water from coal combustion.

    Science.gov (United States)

    Streets, David G; Lu, Zifeng; Levin, Leonard; Ter Schure, Arnout F H; Sunderland, Elsie M

    2018-02-15

    Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8-98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01Ggyr -1 in 1850 to 1Ggyr -1 in 2010. Geographically, Asia and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2-68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6-30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transarterial embolization for postoperative massive hemorrhage in patients with abdominal tumors

    International Nuclear Information System (INIS)

    Wang Zhiwei; Shi Haifeng; Sun Hao; Zhou Kang; Li Xiaoguang; Pan Jie; Zhang Xiaobo; Liu Wei; Yang Ning; Jin Zhengyu

    2010-01-01

    Objective: To discuss the feasibility and effectiveness of transarterial embolization for the management of postoperative massive hemorrhage in patients with abdominal tumors. Methods: Between January 2004 and December 2009 in authors' hospital transarterial embolization for postoperative massive hemorrhage was performed in thirteen patients with abdominal tumors. The clinical data and the technical points were retrospectively analyzed. Results: Of 13 patients,the bleeding was completely controlled in 10 after single embolization procedure. Re-bleeding occurred in the other 3 patients, and angiography showed the new bleeding arteries. Trans arterial embolization was carried out again, and the bleeding was successfully stopped in 2 patients. The remaining one patient had to be treated with surgery as the microcatheter could not be super-selectively placed into the bleeding vessel. The overall clinical success rate of trans arterial embolization for postoperative massive hemorrhage was 92% (12 /13). No severe complications occurred. Conclusion: Trans arterial embolization is a safe and effective treatment for postoperative massive hemorrhage in patients with abdominal tumors. (authors)

  14. Massive vulvar edema in a woman with preeclampsia: a case report.

    Science.gov (United States)

    Daponte, Alexandros; Skentou, Hara; Dimopoulos, Konstantinos D; Kallitsaris, Athanasios; Messinis, Ioannis E

    2007-11-01

    Massive vulvar edema in a woman with preeclampsia preceded the development of massive ascites and impending eclampsia. A 17-year-old preeclamptic, primiparous woman was admitted with preeclampsia and massive vulvar edema. Other causes were excluded. The vulvar edema increased as the blood pressure and ascites increased, and a severe headache developed. Cesarean section for increasing preclampsia was performed. In the puerperium, the blood pressure improved and vulvar edema resolved. The clinical picture of the vulvar edema correlated with the severity of the preeclampsia. The presence of vulvar edema in women with preeclampsia should indicate immediate admission to the hospital. These patients must be considered as at high risk, and close monitoring must be instituted. In our case, vulvar edema preceded massive ascites development. We assume a common development mechanism for these signs in preeclampsia, due mainly to increased capillary permeability and hypoalbuminemia. The attending physician must be prepared for immediate delivery and possible preeclampsia complications in these patients.

  15. AMPHIBIAN COMMUNITIES IN BIOGEOCOENOSIS WITH DIFFERENT STAGES OF ANTHROPOGENIC CLYMAX

    Directory of Open Access Journals (Sweden)

    Marchenkovskaya А. А.

    2013-04-01

    Full Text Available We examined the abundance of juvenile (fingerlings and yearlings and sexually mature (3-6 years of various anurans at various biotopes with different degrees of anthropogenic influence. Population analysis has revealed that the number of juveniles in all the habitats are depended on type and level of anthropogenic influence. In all the habitats the most numerous species was synanthropic bufo viridis. In biotopes with high contamination of pollutants, only one species of amphibians - the marsh frog has populations with juveniles migrating here in the early fall. The highest number of mature individuals registered for the population of Bombina bombina, pelobates fuscus and in one biotope for hyla arborea. The populations of pelophylax ridibundus could be considered as the most balanced by number of juvenile and mature individuals.

  16. Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism

    International Nuclear Information System (INIS)

    Reekers, Jim A.; Baarslag, Henk Jan; Koolen, Maria G.J.; Delden, Otto van; Beek, Edwin J.R. van

    2003-01-01

    We report our technique and results of percutaneous mechanical thrombectomy in a consecutive series of eight patients with massive PE. We also discuss the possible role of mechanical PE thrombectomy. Eight consecutive patients with acute massive PE, with or without hemodynamic impairment, were treated with mechanical thrombectomy. We used a modified 7-fr hydrolyzer catheter. The treatment was combined with systemic fibrinolysis. From the logistic and technical point we encountered no problems. All patients showed significant improvement while still in the angiography suite. There were no bleeding complications and no other events related to the procedure. Despite the clinical improvement, one patient died shortly after the procedure from cardiac failure. In all patients there was an acute increase in PO2 to normal values. Only a mean of about 50% of all local thrombus could be removed (range 30-80%). The mean PAP pre-intervention decreased only minimally from 42.5 mmHg to 36.3 mm Hg post-intervention (not significant). In three patients, the PAP continues to remain high at follow-up. The most important feature of mechanical thrombectomy for massive PE is the immediate improvement of the cardiac output, PO2, and clinical situation, overcoming the first critical hours after massive PE. The amount of thrombus reduction seems not to be an important parameter

  17. Massive ovarian edema, due to adjacent appendicitis.

    Science.gov (United States)

    Callen, Andrew L; Illangasekare, Tushani; Poder, Liina

    2017-04-01

    Massive ovarian edema is a benign clinical entity, the imaging findings of which can mimic an adnexal mass or ovarian torsion. In the setting of acute abdominal pain, identifying massive ovarian edema is a key in avoiding potential fertility-threatening surgery in young women. In addition, it is important to consider other contributing pathology when ovarian edema is secondary to another process. We present a case of a young woman presenting with subacute abdominal pain, whose initial workup revealed marked enlarged right ovary. Further imaging, diagnostic tests, and eventually diagnostic laparoscopy revealed that the ovarian enlargement was secondary to subacute appendicitis, rather than a primary adnexal process. We review the classic ultrasound and MRI imaging findings and pitfalls that relate to this diagnosis.

  18. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  19. Evaluation of anthropogenic influences on the Luhuitou fringing reef via spatial and temporal analyses (from isotopic values)

    Science.gov (United States)

    Cao, D.; Cao, W.; Yu, K.; Wu, G.; Yang, J.; Su, X.; Wang, F.

    2017-05-01

    Coral reefs have suffered remarkable declines worldwide. Nutrient overenrichment is considered to be one of the primary local causes. The Luhuitou fringing reef in southern China is a well-known tourist destination that is subject to enormous coastal renovation. The mean δ13C, δ15N value, and carbon over nitrogen ratio (C/N) of particulate organic matter were -21.56 ± 1.94‰, 7.04 ± 3.81‰, and 5.81 ± 1.86, respectively, suggesting mixed sources of carbon and nitrogen. The IsoError calculations suggested that marine phytoplankton and marine benthic algae dominated the majority of carbon sources, while anthropogenic and terrestrial organic nitrogen dominated the nitrogen sources. A tendency toward greater terrestrial detritus and anthropogenic-derived discharges was found during dry seasons and greater marine-derived organic matter during wet seasons. These results demonstrated the existence of anthropogenic influences and high dissolved inorganic nitrogen concentrations and C/N ratios. Anthropogenic nutrient discharge moderated nitrogen limitation, whereas phosphorus became more important to the reef ecosystem. Despite the marine carbon sources dominated, freshwater and terrestrial-derived organic carbon sources were also very important. Meanwhile, anthropogenic and terrestrial organic nitrogen sources were dominant. Therefore, pollution from more extensive region and anthropogenic activities from riverine sewage discharges adjacent to reefs should be focused to effectively reduce human-derived nutrients on reefs.

  20. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  1. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  2. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  3. Massive and massless supersymmetry: Multiplet structure and unitary irreducible representations

    International Nuclear Information System (INIS)

    Jarvis, P.D.

    1976-01-01

    UIR's of the supersymmetry algebra for the massive and massless cases are analyzed covariantly (without the use of induced representations) in terms of their component spins. For the massive case normalized basis vectors vertical-barp 2 >0, j 0 ; sigma; pjlambda> are constructed, where j 0 is the ''superspin'' and sigma is an additional quantum number serving to distinguish the different vertical-barpjlambda>, the constituent p 2 >0, spin-j UIR's of the Poincare group. For the massless case, normalized basis vectors vertical-barp 2 =0, lambda 0 ; plambda> are similarly constructed, where lambda 0 is the ''superhelicity.'' Matrix elements of the supersymmetry generators, in these bases, are explicitly given. The ''sigma basis'' is used to define weight diagrams for the massive UIR's of supersymmetry, and their properties are briefly described. Eigenfunctions ω/sub sigma/(theta) are also defined, and their connection with the reduction of higher spin massive superfields PHI/subJ/(x,theta) is discussed. Finally, it is shown how gauge dependence necessarily arises with certain massless superfields. The massless scalar superfield, both gauge-dependent and gauge-independent, is discussed as an example

  4. Radiological environmental study in area to future anthropogenic transformations

    International Nuclear Information System (INIS)

    Grinnan, T.; MIller, C.R.A.

    1998-01-01

    In this work the existent relationship is identified between the data radioecologics and the geological formations to the north area Holguin with the objective to study the possible incidence that this can have in the rate environmental dose in the event of transformations anthropogenic the place

  5. Massive rectal bleeding from colonic diverticulosis

    African Journals Online (AJOL)

    ABEOLUGBENGAS

    Rapport De Cas: Nous mettons un cas d'un homme de 79 ans quiàprésente une hémorragie rectal massive ... cause of overt lower gastrointestinal (GI) ... vessels into the intestinal lumen results in ... placed on a high fibre diet, and intravenous.

  6. Massively parallel sequencing of forensic STRs

    DEFF Research Database (Denmark)

    Parson, Walther; Ballard, David; Budowle, Bruce

    2016-01-01

    The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that...

  7. Facial transplantation for massive traumatic injuries.

    Science.gov (United States)

    Alam, Daniel S; Chi, John J

    2013-10-01

    This article describes the challenges of facial reconstruction and the role of facial transplantation in certain facial defects and injuries. This information is of value to surgeons assessing facial injuries with massive soft tissue loss or injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  9. Anthropogenic CO2 distribution in the North Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C [National Sun Yat-Sen University, Kaohsiung (Taiwan, Province of China)

    1993-06-01

    This paper discusses the penetration depth of anthropogenic CO2 in the North Pacific Ocean based on carbonate data in the literature. The carbonate data in the literature were used to supplement the tracer data showing oceanic mixing features for waters formed in the last 140 years. The deepest penetration over 2,000m was found in the northwest North Pacific. On the other hand, the shallowest penetration to less than 400m was found in the eastern equatorial Pacific. Consequently, it was suggested that penetration depth of anthropogenic CO2 has been controlled by such factors as deep water formation in the Northwest Pacific, upwelling in the equatorial Pacific, and vertical mixing in the western boundary areas. It was revealed that these results are in harmony well with results implied from tritium, C-14, and freons distributions. The total inventory of excess carbon in the North Pacific was 14.7[plus minus]4[times]10[sup 15]g around 1980. 48 refs., 10 figs.

  10. Nuclear Renaissance in an Era of Anthropogenic Climate Change

    International Nuclear Information System (INIS)

    Bird, John

    2008-01-01

    This paper substantiates the anthropogenic origin of climate change, demonstrates the resulting consequences, and thereby establishes the need for a nuclear renaissance over the next thirty years. First, the mechanisms behind the natural cycles in global warming, specifically, cycles of precession and eccentricity in Earth's orbit, as measured in ice cores, are compared to the mechanisms of anthropogenic warming, revealing the scientific basis for the observed correlation between carbon dioxide and temperature. Second, the resulting climate change is exemplified by key results from experiments performed by the author in the Arctic and at the South Geographic Pole, and the author's experience of Switzerland's costliest natural catastrophe - the flash flood of 2005. Third, although facing barriers such as research and development requirements, political will and public acceptance, the potential for nuclear power to triple to 1,000 GWe by 2050 would mitigate climate change by holding carbon dioxide concentration below 500 ppm, thereby challenging the younger nuclear generation to contribute to the most important issue facing humanity. (authors)

  11. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    International Nuclear Information System (INIS)

    Thornber, Carol S.; DiMilla, Peter; Nixon, Scott W.; McKinney, Richard A.

    2008-01-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and δ 15 N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in δ 15 N among sites, but with two exceptions had δ 15 N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (δ 15 N = ∼14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries

  12. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Carol S. [Department of Biological Sciences, 100 Flagg Road, University of Rhode Island, Kingston, RI 02881 (United States)], E-mail: thornber@uri.edu; DiMilla, Peter; Nixon, Scott W. [Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI 02881 (United States); McKinney, Richard A. [US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882 (United States)

    2008-02-15

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and {delta}{sup 15}N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in {delta}{sup 15}N among sites, but with two exceptions had {delta}{sup 15}N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals ({delta}{sup 15}N = {approx}14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  13. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae.

    Science.gov (United States)

    Thornber, Carol S; DiMilla, Peter; Nixon, Scott W; McKinney, Richard A

    2008-02-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  14. Detecting anthropogenic footprints in regional and global sea level rise since 1900

    Science.gov (United States)

    Dangendorf, S.; Marcos, M.; Piecuch, C. G.; Jensen, J.

    2015-12-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Distinguishing both contributions requires an extensive knowledge about the persistence of natural high and low stands in GMSL and LMSL. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL (corrected for vertical land motion) into a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Based on a combination of spectral analyses of tide gauge records, barotropic and baroclinic ocean models and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate the spectra, the persistence of natural volumetric changes tends to be underestimated. If each component is assessed separately, natural centennial trends are locally up to ~1.0 mm/yr larger than in case of an integrated assessment, therefore erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  15. A massive, quiescent galaxy at a redshift of 3.717

    Science.gov (United States)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  16. Massive plexiform neurofibromas in childhood: natural history and management issues.

    Science.gov (United States)

    Serletis, Demitre; Parkin, Patricia; Bouffet, Eric; Shroff, Manohar; Drake, James M; Rutka, James T

    2007-05-01

    The authors review their experience with massive plexiform neurofibromas (PNs) in patients with pediatric neurofibromatosis Type 1 (NF1) to better characterize the natural history and management of these complex lesions. The authors performed a retrospective review of data obtained in seven patients with NF1 in whom massive PNs were diagnosed at The Hospital for Sick Children in Toronto, Ontario, Canada. These patients attended routine follow-up examinations conducted by a number of specialists, and serial neuroimaging studies were obtained to monitor disease progression. The most common presenting feature of PN was that of a painful, expanding lesion. Furthermore, two patients harbored multiple, distinct PNs affecting different body sites. With respect to management, two patients were simply observed, undergoing serial neuroimaging studies; two patients underwent biopsy sampling of their plexiform lesions; two patients underwent attempted medical treatment (farnesyl transferase inhibitor, R11577, and cyclophosphamide chemotherapy); and three patients required surgical debulking of their PNs because the massive growth of these tumors caused functional compromise. Ultimately, one patient died of respiratory complications due to progressive growth of the massive PN lesion. In this review of their experience, the authors found certain features that underscore the presentation and natural history of PNs. The management of these complex lesions, however, remains unclear. Slow-growing PNs may be observed conservatively, but the authors' experience suggests that resection should be considered in selected cases involving significant deterioration or functional compromise. Nevertheless, patients with massive PNs will benefit from close surveillance by a team of specialists to monitor for ongoing disease progression.

  17. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  18. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  19. Biogenic and anthropogenic isoprene in the near-surface urban atmosphere--a case study in Essen, Germany.

    Science.gov (United States)

    Wagner, Patrick; Kuttler, Wilhelm

    2014-03-15

    Isoprene is emitted in large quantities by vegetation, exhaled by human beings and released in small quantities by road traffic. As a result of its high reactivity, isoprene is an important ozone precursor in the troposphere and can play a key role in atmospheric chemistry. Measurements of isoprene in urban areas in Central Europe are scarce. Thus, in Essen, Germany, the isoprene concentration was measured at various sites during different seasons using two compact online GC-PID systems. Isoprene concentrations were compared with those of benzene and toluene, which represent typical anthropogenic VOCs. In the summer, the diurnal variation in isoprene concentration was dependent on the biogenic emissions in the city. It was found that its maximum concentration occurred during the day, in contrast to the benzene and toluene concentrations. During the measurement period in the summer of 2012, the average hourly isoprene concentrations reached 0.13 to 0.17 ppb between 10 and 20 LST. At high air temperatures, the isoprene concentration exceeded the benzene and toluene concentrations at many of the sites. Isoprene became more important than toluene with regard to ozone formation in the city area during the afternoon hours of summer days with high air temperatures. This finding was demonstrated by the contributions to OH reactivity and ozone-forming potential. It contradicts the results of other studies, which were based on daily or seasonal average values. With an isoprene/benzene ratio of 0.02, the contribution of anthropogenic isoprene decreased substantially to a very low level during the last 20 years in Central Europe due to a strong reduction in road traffic emissions. In the vicinity of many people, isoprene concentrations of up to 0.54 ppb and isoprene/benzene ratios of up to 1.34 were found in the atmosphere due to isoprene exhaled by humans. Copyright © 2013. Published by Elsevier B.V.

  20. Massive Pulmonary Embolism: Percutaneous Emergency Treatment Using an Aspirex Thrombectomy Catheter

    International Nuclear Information System (INIS)

    Popovic, Peter; Bunc, Matjaz

    2010-01-01

    Massive pulmonary embolism (PE) is a life-threatening condition with a high early mortality rate caused by acute right ventricular failure and cardiogenic shock. A 51-year-old woman with a massive PE and contraindication for thrombolytic therapy was treated with percutaneous mechanical thrombectomy using an Aspirex 11F catheter (Straub Medical AG, Wangs, Switzerland). The procedure was successfully performed and showed a good immediate angiographic result. The patient made a full recovery from the acute episode and was discharged on heparin treatment. Our case report indicates that in patients with contraindications to systemic thrombolysis, catheter thrombectomy may constitute a life-saving intervention for massive PE.

  1. Constrained dynamics of universally coupled massive spin 2-spin 0 gravities

    International Nuclear Information System (INIS)

    Pitts, J Brian

    2006-01-01

    The 2-parameter family of massive variants of Einsteins gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom

  2. Massive Open Online Courses

    Directory of Open Access Journals (Sweden)

    Tharindu Rekha Liyanagunawardena

    2015-01-01

    Full Text Available Massive Open Online Courses (MOOCs are a new addition to the open educational provision. They are offered mainly by prestigious universities on various commercial and non-commercial MOOC platforms allowing anyone who is interested to experience the world class teaching practiced in these universities. MOOCs have attracted wide interest from around the world. However, learner demographics in MOOCs suggest that some demographic groups are underrepresented. At present MOOCs seem to be better serving the continuous professional development sector.

  3. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  4. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  5. Deconstructing Demand: The Anthropogenic and Climatic Drivers of Urban Water Consumption.

    Science.gov (United States)

    Hemati, Azadeh; Rippy, Megan A; Grant, Stanley B; Davis, Kristen; Feldman, David

    2016-12-06

    Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.

  6. Impacts of atmospheric anthropogenic nitrogen on the open ocean

    NARCIS (Netherlands)

    Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; Geider, R.J.; Jickells, T.; Kuypers, M.M.; Langlois, R.; Liss, P.S.; Liu, S.; Middelburg, J.J.; Moore, C.M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L.L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L.

    2008-01-01

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to 3% of the annual new marine biological production, 0.3 petagram of carbon per year. This input could account

  7. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  8. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  9. Massive neutrinos in almost-commutative geometry

    International Nuclear Information System (INIS)

    Stephan, Christoph A.

    2007-01-01

    In the noncommutative formulation of the standard model of particle physics by Chamseddine and Connes [Commun. Math. Phys. 182, 155 (1996), e-print hep-th/9606001], one of the three generations of fermions has to possess a massless neutrino. [C. P. Martin et al., Phys. Rep. 29, 363 (1998), e-print hep-th-9605001]. This formulation is consistent with neutrino oscillation experiments and the known bounds of the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix). But future experiments which may be able to detect neutrino masses directly and high-precision measurements of the PMNS matrix might need massive neutrinos in all three generations. In this paper we present an almost-commutative geometry which allows for a standard model with massive neutrinos in all three generations. This model does not follow in a straightforward way from the version of Chamseddine and Connes since it requires an internal algebra with four summands of matrix algebras, instead of three summands for the model with one massless neutrino

  10. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  11. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  12. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  13. Three-dimensional Casimir piston for massive scalar fields

    International Nuclear Information System (INIS)

    Lim, S.C.; Teo, L.P.

    2009-01-01

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a 4 when a→0 + and decays exponentially when a→∞. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  14. Impact of anthropogenic aerosols on present and future climate

    International Nuclear Information System (INIS)

    Deandreis, C.

    2008-03-01

    Aerosols influence the Earth radiative budget both through their direct effect (scattering and absorption of solar radiation) and their indirect effect (impacts on cloud microphysics). The role of anthropogenic aerosol in climate change has been recognized to be significant when compared to the one of greenhouse gases. Despite many studies on this topic, the assessments of both anthropogenic aerosol radiative forcing and their impacts on meteorological variables are still very uncertain. Major reasons for these uncertainties stem from the insufficient knowledge of the emissions sources and of the processes of formation, transformation and deposition. Models used to study climate are often inadequate to study aerosol processes because of coarse spatial and temporal scales. Uncertainties due to the parameterization of the aerosol are added to the uncertainties in the representation of large scale dynamics and physical processes such as transport, hydrological cycle and radiative budget. To predict, the role of the anthropogenic aerosol impact in the future climate change, I have addressed some of these key uncertainties. In this study, I simulate interactively aerosols processes in a climate model in order to improve the estimation of their direct and indirect effects. I estimate a modification of the top of the atmosphere net flux of 60% for the present period. I also show that, for future projection, the representation of the emissions source is an other important source of error. I assess that aerosols radiative forcing differ by 40% between simulations performed with 2 different emissions inventories. These inventories are representative for a high and a low limit in term of carbonaceous aerosols emissions for the 2050 horizon. (author)

  15. The sea surface microlayer: biology, chemistry and anthropogenic enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J T

    1982-01-01

    Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters. The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 10/sup 2/-10/sup 4/, 1-10/sup 2/, and 1-10, respectively. The trophic relationships or intergrated functioning of these neustonic communities have not been examined. Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex. The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 10/sup 2/-10/sup 4/ greater than those in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear.

  16. Solid holography and massive gravity

    International Nuclear Information System (INIS)

    Alberte, Lasma; Baggioli, Matteo; Khmelnitsky, Andrei; Pujolàs, Oriol

    2016-01-01

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

  17. Solid holography and massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2016-02-17

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

  18. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  19. No hair theorem in quasi-dilaton massive gravity

    International Nuclear Information System (INIS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-01-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  20. No hair theorem in quasi-dilaton massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, De-Jun, E-mail: wudejun10@mails.ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Shuang-Yong, E-mail: sxz353@case.edu [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-10

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  1. Bosonization of fermions coupled to topologically massive gravity

    Science.gov (United States)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  2. Bosonization of fermions coupled to topologically massive gravity

    International Nuclear Information System (INIS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-01-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  3. Bosonization of fermions coupled to topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)

    2014-03-07

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  4. Efficient optimal joint channel estimation and data detection for massive MIMO systems

    KAUST Repository

    Alshamary, Haider Ali Jasim

    2016-08-15

    In this paper, we propose an efficient optimal joint channel estimation and data detection algorithm for massive MIMO wireless systems. Our algorithm is optimal in terms of the generalized likelihood ratio test (GLRT). For massive MIMO systems, we show that the expected complexity of our algorithm grows polynomially in the channel coherence time. Simulation results demonstrate significant performance gains of our algorithm compared with suboptimal non-coherent detection algorithms. To the best of our knowledge, this is the first algorithm which efficiently achieves GLRT-optimal non-coherent detections for massive MIMO systems with general constellations.

  5. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits.

    Science.gov (United States)

    Fourney, Francesca; Figueiredo, Joana

    2017-09-28

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sedimentation will enable corals to better endure ocean warming, we quantitatively assessed the combined effects of increased temperature and sedimentation (concentration and turbidity) on the survival of coral recruits of the species, Porites astreoides. We used sediment from a reef and a boat basin to mimic natural sediment (coarse) and anthropogenic (fine) sediment (common in dredging), respectively. Natural sediment did not negatively impact coral survival, but anthropogenic sediment did. We found that the capacity of coral recruits to survive under warmer temperatures is less compromised when anthropogenic sedimentation is maintained at the lowest level (30 mg.cm -2 ). Our study suggests that a reduction of US-EPA allowable turbidity from 29 Nephelometric Turbidity Units (NTU) above background to less than 7 NTU near coral reefs would facilitate coral recruit survival under current and higher temperatures.

  6. Seasonal latitudinal and secular variations in temperature trend - evidence for influence of anthropogenic sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, D E; Schwartz, S E; Wagener, R; Benkovitz, C M [University of California at San Diego, La Jolla, CA (United States). Scripps Institute of Oceanography

    1993-11-19

    Tropospheric aerosols increase the shortwave reflectivity of the Earth-atmosphere system both by scattering light directly, in the absence of clouds, and by enhancing cloud reflectivity. The radiative forcing of climate exerted by anthropogenic sulfate aerosols, derived mainly from SO[sub 2] emitted from fossil fuel combustion, is opposite that due to anthropogenic greenhouse gases and is estimated to be of comparable average magnitude in Northern Hemisphere midlatitudes. However, persuasive evidence of climate response to this forcing has thus far been lacking. Here we examine patterns of seasonal and latitudinal variations in temperature anomaly trend for evidence of such a response. Pronounced minima in the rate of temperature increase in summer months in Northern Hemisphere midlatitudes are consistent with the latitudinal distribution of anthropogenic sulfate and changes in the rate of SO[sub 2] emissions over the industrial era.

  7. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon.

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-12

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a -1 ) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  8. Massive scalar field evolution in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)

    2017-01-30

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  9. Multi-wavelength investigations on feedback of massive star formation

    Science.gov (United States)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar

  10. Newly diagnosed primary hypothyroidism applicant with massive pericardial effusion and acute renal failure

    Directory of Open Access Journals (Sweden)

    Ates I

    2016-01-01

    Full Text Available Objective. While non-symptomatic pericardial effusion is seen in primary hypothyroidism, massive pericardial effusion is a very rare finding. In the literature, newly diagnosed primary hypothyroidism cases presenting with massive pericardial effusion or acute renal failure are present, but we did not encounter any case first presenting with combination of two signs. In this case report, primary hypothyroidism case that presenting with massive pericardial effusion and acute renal failure will be discussed.

  11. The low-metallicity starburst NGC346: massive-star population and feedback

    Science.gov (United States)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  12. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    Science.gov (United States)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  13. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    International Nuclear Information System (INIS)

    Hohm, O.

    2006-07-01

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS 3 x S 3 x S 3 a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS 3 x S 3 x S 3 and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  14. Massive congenital tricuspid insufficiency in the newborn

    International Nuclear Information System (INIS)

    Bogren, H.G.; Ikeda, R.; Riemenschneider, T.A.; Merten, D.F.; Janos, G.G.

    1979-01-01

    Three cases of massive congenital tricuspid incompetence in the newborn are reported and discussed from diagnostic, pathologic and etiologic points of view. The diagnosis is important as cases have been reported with spontaneous resolution. (Auth.)

  15. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil.

    Science.gov (United States)

    Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu

    2016-12-01

    The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

  16. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet

    International Nuclear Information System (INIS)

    Pearson, Andrew J.; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N.

    2016-01-01

    To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for 137 Caesium, 90 Strontium and 131 Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide 210 Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. - Highlights: • A radionuclide monitoring program was undertaken across the New Zealand food supply. • 40 food types were analysed for 13 radionuclides. • 137 Cs was present in 15% of foods (range: 0.05–0.44Bq/kg). • Anthropogenic radionuclides displayed compliance with international limits. • 210 Po, 234 U and 238 U were present in most foods with large ranges of activities.

  17. 3-loop heavy flavor corrections to DIS with two massive fermion lines

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Klein, S.

    2011-06-01

    We report on recent results obtained for the massive operator matrix elements which contribute to the massive Wilson coefficients in deep-inelastic scattering for Q 2 >> m i 2 in case of sub-processes with two fermion lines and different mass assignment. (orig.)

  18. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  19. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ∼ 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg2

    International Nuclear Information System (INIS)

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ∼ 1 clusters of galaxies over an area of 10,000 deg 2 . Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates

  20. First record of invasive Burmese Python oviposition and brooding inside an anthropogenic structure

    Science.gov (United States)

    Hanslowe, Emma; Falk, Bryan; Collier, Michelle A. M.; Josimovich, Jillian; Rahill, Thomas; Reed, Robert

    2016-01-01

    We discovered an adult female Python bivittatus (Burmese Python) coiled around a clutch of 25 eggs in a cement culvert in Flamingo, FL, in Everglades National Park. To our knowledge, this is the first record of an invasive Burmese Python laying eggs and brooding inside an anthropogenic structure in Florida. A 92% hatch-success rate suggests that the cement culvert provided suitable conditions for oviposition, embryonic development, and hatching. Given the plenitude of such anthropogenic structures across the landscape, available sites for oviposition and brooding may not be limiting for the invasive Burmese Python population.