Experimental and Numerical Investigation of Enhancement of Heat and Mass Transfer in Adsorbent Beds
LiuZhenyan; FuZhumantffu
1994-01-01
Some interrelated parameters of heat and mass transfer in two phases of pressure rise and constant pressure are obtained by studying the desorption processes of two kinds of cylindrical adsorbent beds.with fins and without fins.Moreover,the effects of equivalent thermal conductivity of adsorbent beds,contact thermal transfer coefficient,heat transfer of fins,condensation temperature,uncondensable gas in the adsorber are analyzed.finally,enhancement of heat and mass transfer has been attained.
Experimental and computational investigations of heat and mass transfer of intensifier grids
Kobzar, Leonid; Oleksyuk, Dmitry; Semchenkov, Yuriy [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2015-09-15
The paper discusses experimental and numerical investigations on intensification of thermal and mass exchange which were performed by National Research Centre ''Kurchatov Institute'' over the past years. Recently, many designs of heat mass transfer intensifier grids have been proposed. NRC ''Kurchatov Institute'' has accomplished a large scope of experimental investigations to study efficiency of intensifier grids of various types. The outcomes of experimental investigations can be used in verification of computational models and codes. On the basis of experimental data, we derived correlations to calculate coolant mixing and critical heat flux mixing in rod bundles equipped with intensifier grids. The acquired correlations were integrated in subchannel code SC-INT.
Ultrasonic investigation of hydrodynamics and mass transfer in a gas-liquid(-liquid) stirred vessel
Cents, A. H. G.; Brilmant, D. W. F.; Versteeg, G. F.
2005-01-01
The rate of gas-liquid mass transfer is very important in several industrial chemical engineering applications. In many multi-phase reaction systems, however, the mechanism of mass transfer is not well understood. This is for instance the case in Gas-Liquid-Solid (G-L-S) and Gas-Liquid-Liquid (G-L-L
Roman S. Volkov
2014-06-01
Full Text Available The macroscopic regularities of heat and mass transfer and phase transitions during water droplets motion through high-temperature (more than 1000 K gases have been investigated numerically and experimentally. Water droplet evaporation rates have been established. Gas and water vapors concentrations and also temperature values of gas-vapor mixture in small neighborhood and water droplet trace have been singled out. Possible mechanisms of droplet coagulation in high-temperature gas area have been determined. Experiments have been carried out with the optical methods of two-phase gas-vapor-droplet mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging” usage to assess the adequateness of developed heat and mass transfer models and the results of numerical investigations. The good agreement of numerical and experimental investigation results due to integral characteristics of water droplet evaporation has been received.
Utomo, Tony; Jin, Zhenhua; Rahman, MSq; Jeong, Hyo Min; Chung, Han Shik [Gyeongsang National University, Jinju (Korea, Republic of)
2008-09-15
An investigation of the gas-liquid ejector has been carried out to study the influence of operating conditions and ejector geometries on the hydrodynamics and mass transfer characteristics of the ejector by using three-dimensional CFD modeling. The CFD results were validated with experimental data. Flow field analysis and prediction of ejector performance were also conducted. Variations of the operating conditions were made by changing the gas-liquid flow rates ratio in the range of 0.2 to 1.2. The length to diameter ratio of mixing tube (L{sub M}/D{sub M}) was also varied from 4 to 10. CFD studies show that at L{sub M}/D{sub M}=5.5, the volumetric mass transfer coefficient increases with respect to gas flow rate. Meanwhile, at L{sub M}/D{sub M}=4, the plot of volumetric mass transfer coefficient to gas-liquid flow rate ratio reaches the maximum at gas-liquid flow rate ratio of 0.6. This study also shows that volumetric mass transfer coefficient decreases with the increase of mixing tube length
Baehr, Hans Dieter
2011-01-01
This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added. The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
Mass Transfer with Chemical Reaction.
DeCoursey, W. J.
1987-01-01
Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)
Mass Transfer with Chemical Reaction.
DeCoursey, W. J.
1987-01-01
Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer
Bhat, M. K.; Vakili, A. D.; Wu, J. M.
1990-01-01
The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.
LITianwen; FEIWeiyang; 等
2002-01-01
Numerical simulation of transient mass transfer to a single drop controlled by the internal resistance or by the resistance in both phases was mathematically formulated and simulated in a boundary-fitted orthogonal coordinate system. The siumlated results on the transient mass transfer dominated by the internal resistance are in good agreement with the Newman and Kronig-Brink models for drops with low Reynolds number. When the drop Reynolds number is up to 200, the mass transfer coefficient from numerical simulation is very low as compared with the Handlos-Baron model.The cases with mass transfer resistance residing in both the continuous and drop phases were simulated successfully and compared with the experimental data in three extraction systems recommended by European Confederation of Chemical Engineering (EFCE).For single drops with Re<200, the numerically predicted values of the extraction fraction and overall mass transfer coefficient are in reasonable coincidence with the experimental data.It is concluded that the numerical simulation can be resorted in some cases of solvent extraction for conducting numerical experiments and parametric study.Nevertheless, for better resolution as higher Reynolds number drops are simulated,more sophisticated techniques should be developed and incorporated to deal with the large deformation and transient shape oscillation as well as possible Marangoni effect.
Sieres, Jaime; Fernandez-Seara, Jose [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No 9, 36310 Vigo (Spain)
2007-07-15
In ammonia water absorption refrigeration systems (AARS) a high efficiency purification process to remove the water content from the generated vapour is of great importance. One type of equipment to carry out this process is a packed column. Any type of detailed analysis of a packed column requires the calculation of mass transfer coefficients. Therefore, the correlations to obtain these coefficients become an essential tool for an accurate analysis and design of these devices. An experimental facility has been designed and built to analyze the ammonia-water rectification process in packed columns. In this paper a brief description of the experimental facility is given and the variables required to analyze the column performance are explained. An analytical method to determine mass transfer coefficients from the experimental data is developed. Results of mass transfer coefficients for 15 mm glass Raschig rings, (1)/(2){sup ''} ceramic Berl saddles and (1)/(2)'' ceramic Novalox saddles random packings are reported. The experimental results are compared with different mass transfer correlations proposed in the literature. In the paper corrected correlations are proposed for the packings considered. These correlations could be used to analyze and design a packed column for AARS. (author)
Rauert, C.; Harrad, S., E-mail: S.J.Harrad@bham.ac.uk
2015-12-01
Polybrominated diphenyl ethers (PBDEs) are widely detected in humans with substantial exposure thought to occur in indoor environments and particularly via contact with indoor dust. Despite this, knowledge of how PBDEs migrate to indoor dust from products within which they are incorporated is scarce. This study utilises an in-house designed and built test chamber to investigate the relative significance of different mechanisms via which PBDEs transfer from source materials to dust, using a plastic TV casing treated with the Deca-BDE formulation as a model source. Experiments at both room temperature and 60 °C revealed no detectable transfer of PBDEs from the TV casing to dust via volatilisation and subsequent partitioning. In contrast, substantial transfer of PBDEs to dust was detected when the TV casing was abraded using a magnetic stirrer bar. Rapid and substantial PBDE transfer to dust was also observed in experiments in which dust was placed in direct contact with the source. Based on these experiments, we suggest that for higher molecular weight PBDEs like BDE-209; direct dust:source contact is the principal pathway via which source-to-dust transfer occurs. - Highlights: • Transfer from a TV casing to dust of high molecular weight PBDEs examined. • Direct source:dust contact effected rapid and most substantial transfer. • Substantial source:dust transfer also occurred via abrasion of source.
Gao, Hong; Gritti, Fabrice; Guiochon, Georges
2013-06-14
This work is a systematic investigation of the linear velocity dependence of the external mass transfer coefficient provided by fitting experimental results to the solution of the GR (General Rate) model that was previously derived. The second and third statistical moments of eluted peaks were measured at different flow rates, under different experimental conditions and analyzed. The results of this analysis confirm the validity of this dependence under our current experimental conditions. The other mass transfer parameters provided by the GR model were determined. The variations of these parameters with the experimental conditions were measured. The results are discussed and interpreted. Copyright © 2013 Elsevier B.V. All rights reserved.
Xiong, Jun Ying
2016-12-29
A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.
Investigating wireless power transfer
St John, Stuart A.
2017-09-01
Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.
Piskunov Maxim V.
2016-01-01
Full Text Available The processes of heat and evaporation of heterogeneous water droplet with solid (by the example of carbon inclusion in hot (from 800 K to 1500 K gases were investigated by the developed models of heat and mass transfer. We defined the limited conditions, characteristics of the droplet and the gas medium which are sufficient for implementing the “explosive” destruction of heterogeneous droplet due to intensive vaporization on an inner interface, and intensive evaporation of liquid from an external (free droplet surface. The values of the main characteristic of the process (period from start of heating to “explosive” destruction obtained in response to using various heat and mass transfer models were compared.
Zakurdaeva Alia
2016-01-01
Full Text Available The results of mathematical modelling of the dynamics of a mixture of the viscous incompressible liquid and gas, which fills a spherical layer with free boundaries and contains a gas bubble within itself, are presented in this paper. Spherical symmetry is assumed, and it is considered that the dynamics of the layer is determined by thermal, diffusive and inertial factors. On the basis of constructed numerical algorithm the studies of the formation of the liquid glass layers, which contain the carbon dioxide gas within themselves, have been conducted. The impact of the external thermal regime, external pressure and the density of gas in the bubble at the initial time on the dynamics of the layer, diffusion and heat-and-mass processes inside it is investigated. The results of numerical investigation of the full and simplified thermal problem statement, without consideration of gas diffusion, are compared.
Quantification of mass transfer during spheronisation.
Koester, Martin; Thommes, Markus
2012-06-01
Spherical granules (pellets) are quite useful in many pharmaceutical applications. The extrusion spheronisation technique is well established as a method of producing pellets of a spherical shape and narrow size distribution. After the extrusion, the cylindrical extrudates are transformed to spherical pellets by spheronisation. The frequently used models consider deformation and breakage during this process. However, the adhesion of fine particles has been neglected as a mechanism in spheronisation for many years. This study quantifies the mass transfer between pellets during spheronisation. During the investigation, the pelletisation aids (microcrystalline cellulose and kappa-carrageenan), the drug (acetaminophen and ibuprofen) and water content were varied systematically. A novel parameter, namely, the "mass transfer fraction" (MTF), was defined to quantify the mass transfer between the pellets. All four investigated formulations had an MTF between 0.10 and 0.52 that implies that up to 50 % of the final pellet weight was involved in mass transfer. Both pelletisation aids showed similar MTF, independent of the drug used. Furthermore, an increase of the MTF, with respect to an increase of the water content, was found for microcrystalline cellulose formulations. In conclusion, the mass transfer between the pellets has to be considered as a mechanism for spheronisation.
Mass transfer between binary stars
Modisette, J. L.; Kondo, Y.
1980-01-01
The transfer of mass from one component of a binary system to another by mass ejection is analyzed through a stellar wind mechanism, using a model which integrates the equations of motion, including the energy equation, with an initial static atmosphere and various temperature fluctuations imposed at the base of the star's corona. The model is applied to several situations and the energy flow is calculated along the line of centers between the two binary components, in the rotating frame of the system, thereby incorporating the centrifugal force. It is shown that relatively small disturbances in the lower chromosphere or photosphere can produce mass loss through a stellar wind mechanism, due to the amplification of the disturbance propagating into the thinner atmosphere. Since there are many possible sources of the disturbance, the model can be used to explain many mass ejection phenomena.
Mass Transfer Method and Apparatus
1995-01-01
The invention relates to a method for transferring mass between a flow of a first fluid, preferably a gas phase such as a combustion flue gas, and a flow of a second fluid, preferably a liquid phase, where the first fluid is contacted with the outer surface of porous (semi-permeable) membranes, e.......g. polytetrafluoroethylene (PTFE, Teflon $m(3)) membranes, in the form of hollow fibres having gas-containing pores and contacting the second fluid with the inner surface of the membranes. Useful membranes are characterized in that they e.g. have a porosity ($g(e)) of at least 0.50, a mass transfer coefficient of e.......g. at least 3 cm/s, and a tortuosity factor of e.g. at the most 1.4/$g(e) when the porosity $g(e) is lower than 0.80 and at the most 1.3/$g(e) when the porosity $g(e) is 0.80 or higher. The membranes may also be arranged in hollow tubular members where the mass transfer coefficient of the membranes...
Mass Transfer Method and Apparatus
1995-01-01
.g. at least 3 cm/s, and a tortuosity factor of e.g. at the most 1.4/$g(e) when the porosity $g(e) is lower than 0.80 and at the most 1.3/$g(e) when the porosity $g(e) is 0.80 or higher. The membranes may also be arranged in hollow tubular members where the mass transfer coefficient of the membranes......The invention relates to a method for transferring mass between a flow of a first fluid, preferably a gas phase such as a combustion flue gas, and a flow of a second fluid, preferably a liquid phase, where the first fluid is contacted with the outer surface of porous (semi-permeable) membranes, e.......g. polytetrafluoroethylene (PTFE, Teflon $m(3)) membranes, in the form of hollow fibres having gas-containing pores and contacting the second fluid with the inner surface of the membranes. Useful membranes are characterized in that they e.g. have a porosity ($g(e)) of at least 0.50, a mass transfer coefficient of e...
Mitko Petrov; Tatiana Ilkova; Juris Vanags
2015-01-01
This study presents a mathematical model of a batch fermentation of lactose oxidation from a natural substratum in a cultivation by the strain Kluyweromyces marxianus var. lactis MC 5. In the model of the process, the mass transfer in the bioreactor for oxygen concentration in the gas phase (GP) and in the liquid phase (LP) is based on the dispersion model of the GP. In addition, perfect mixing in LP is included. Nine models were investigated for specific growth rate and specific oxygen consu...
Sheikholeslami, R; Ashorynejad, H.R; Barari, Amin
2013-01-01
Purpose – The purpose of this paper is to analyze hydromagnetic flow between two horizontal plates in a rotating system. The bottom plate is a stretching sheet and the top one is a solid porous plate. Heat transfer in an electrically conducting fluid bounded by two parallel plates is also studied...
Change of heat transfer- and mass transfer-coefficients with simultaneous heat- and mass transfer
Kast, W.
1981-01-01
The values of sensible and latent heat and of the resulting energy flow through laminar boundary layer have been developed for the four possible combinations of the directions of heat- and mass flows. When the values of heat- and mass flows are used with the correct sign according to the definitions of Fourier's law and Fick's law, the changes of heat transfer- and mass transfer coefficients can be described by one equation alone for all cases. The equations extended in that way are valid for arbitrary cases of countercurrent diffusing mass flows - not only for the well known case of Stefan diffusion.
Effect of Marangoni Convection on Mass Transfer in Liquid Phase
YU Liming; ZENG Aiwu; YU Kuo Tsung
2006-01-01
Marangoni convection and its influence on the mass transfer in the liquid phase were investigated.Marangoni convection was visualized using laser Schlieren technique.Orderly polygonal convection patterns and random interfacial turbulence were observed.The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqueous solution in the falling film.The experimental results show that Marangoni convection can speed up the surface renewal and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds.The corresponding empirical correlations are given in terms of the mass transfer enhancement factor.Furthermore,in considering the Marangoni effect,the conventional mass transfer correlation was modified.The differences between the values predicted by the correlation and the experimental data are within ± 8.2% and the average difference is 4.2%.
Second Law Analysis in Convective Heat and Mass Transfer
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Dynamical mass transfer in cataclysmic binaries
Melia, Fulvio; Lamb, D. Q.
1987-01-01
When a binary comes into contact and mass transfer begins, orbital angular momentum is stored in the accretion disk until the disk couples tidally to the binary system. Taam and McDermott (1987) have suggested that this leads to unstable dynamical mass transfer in many cataclysmic variables in which mass transfer would otherwise be stable, and that it explains the gap between 2 and 3 h in the orbital period distribution of these systems. Here the consequences of this hypothesis for the evolution of cataclysmic binaries are explored. It is found that systems coming into contact longward of the period gap undergo one or more episodes of dynamical mass transfer.
A Simple Experiment for Mass Transfer.
Rodriguez, Jesus M.; Henriquez, Vicente; Macias-Machin, Agustin
1998-01-01
Presents an experiment in which students use laboratory data to calculate the interphase mass transfer coefficient for a fluid passed over a sphere and obtain correlations for solid-gas mass transfer. Students develop a realistic mathematical model to describe the sublimation process. (DDR)
How We Make Mass Transfer Seem Difficult.
Cussler, E. L.
1984-01-01
Indicates that teaching of mass transfer can be improved by: (1) using a single, simple definition of mass transfer coefficients; (2) altering use of analogies; and (3) repeatedly stressing differences between mathematical models used for chemical reactions and the actual chemistry of these reactions. Examples for undergraduate/graduate courses…
How We Make Mass Transfer Seem Difficult.
Cussler, E. L.
1984-01-01
Indicates that teaching of mass transfer can be improved by: (1) using a single, simple definition of mass transfer coefficients; (2) altering use of analogies; and (3) repeatedly stressing differences between mathematical models used for chemical reactions and the actual chemistry of these reactions. Examples for undergraduate/graduate courses…
A Simple Experiment for Mass Transfer.
Rodriguez, Jesus M.; Henriquez, Vicente; Macias-Machin, Agustin
1998-01-01
Presents an experiment in which students use laboratory data to calculate the interphase mass transfer coefficient for a fluid passed over a sphere and obtain correlations for solid-gas mass transfer. Students develop a realistic mathematical model to describe the sublimation process. (DDR)
Mitko Petrov
2015-04-01
Full Text Available This study presents a mathematical model of a batch fermentation of lactose oxidation from a natural substratum in a cultivation by the strain Kluyweromyces marxianus var. lactis MC 5. In the model of the process, the mass transfer in the bioreactor for oxygen concentration in the gas phase (GP and in the liquid phase (LP is based on the dispersion model of the GP. In addition, perfect mixing in LP is included. Nine models were investigated for specific growth rate and specific oxygen consumptions rate: Monod, Mink, Tessier, Aiba, Andrews, Haldane, Luong, Edward and Han-Levenspiel. In regard to the parameter estimation, the worst observed error was used for all experiments as an objective function. This approach is a special case of multi objective parameter estimation problems allowing the parameter estimation problem to become a min-max problem. The results obtained (values of criteria, relative error and statistics λ for the specific growth rate showed that the best fit to experimental data is achieved when applying the Mink model. In a combination a Mink, and Monod, Mink, Luong, Haldane, and Han-Levenspiel are used for specific oxygen consumptions rate. Based on the investigation, it was discovered that the best fit belonged to the models of Mink and Haldane, Mink and Luong and Mink and Han-Levenspiel. Therefore, these particular models are used for modeling the batch processes.
Modeling ozone mass transfer in reclaimed wastewater.
Jiang, Pan; Chen, Hsiao-Ting; Babcock, Roger W; Stenstrom, Michael K
2009-01-01
Ozone mass transfer in reclaimed water was evaluated at pilot scale to determine mass-transfer characteristics and reaction kinetics and to assess the use of oxygen as a surrogate to measure this process. Tests were conducted in a 40-L/min pilot plant over a 3-year period. Nonsteady-state mass-transfer analyses for both oxygen and ozone were performed for superficial gas flow rates ranging from 0.13m/min to 0.40m/min. The psi factor, which is the ratio of volumetric mass-transfer coefficients of ozone to oxygen, was determined. The decrease in oxygen transfer rate caused by contaminants in reclaimed water was only 10 to 15% compared to tap water. A simple mathematical model was developed to describe transfer rate and steady state ozone concentration. Ozone decay was modeled accurately as a pseudo first-order reaction between ozone and ozone-demanding materials.
Mass Transfer Cooling Near The Stagnation Point
Roberts, Leonard
1959-01-01
A simplified analysis is made of mass transfer cooling, that is, injection of a foreign gas, near the stagnation point for two-dimensional and axisymmetric bodies. The reduction in heat transfer is given in terms of the properties of the coolant gas and it is shown that the heat transfer may be reduced considerably by the introduction of a gas having appropriate thermal and diffusive properties. The mechanism by which heat transfer is reduced is discussed.
Binary stars: Mass transfer and chemical composition
Lambert, D. L.
1982-01-01
It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.
Mass transfer coeficients in pulsed perforated-plate extraction columns
M. Torab-Mostaedi
2010-06-01
Full Text Available This study examined the mass transfer performance in a pulsed perforated-plate extraction column with diameter of 50 mm using two different liquid systems. Mass transfer coefficients have been interpreted in terms of the axial diffusion model. The effects of pulsation intensity and dispersed and continuous phase velocities on the mass transfer performance have been investigated. Three different operating regimes, namely mixer-settler, transition, and emulsion regimes, were observed when the input energy was changed. Effective diffusivity is substituted for molecular diffusivity in the Gröber equation for prediction of dispersed phase overall mass transfer coefficients. A single correlation is derived in terms of Reynolds number, Eötvös number and dispersed phase holdup for prediction of the enhancement factor in all operating regimes. The prediction of overall mass transfer coefficients from the presented model is in good agreement with experimental results.
Elleuch, Amal; Sahraoui, Melik; Boussetta, Ahlem; Halouani, Kamel; Li, Yongdan
2014-02-01
A two-dimensional modeling of a lab-scale planar Direct Carbon Fuel Cell (DCFC) of 20 mm in diameter is developed by taking into account of the electrochemical mechanisms and mass and heat transfer phenomena in all regions of the cell simultaneously. The electrodes and the electrolyte of the DCFC are both considered as distinct regions with different local properties such as permeability, conductivity and diffusivity. An improved packed bed anodic structure with a finite thickness is also adopted. General boundary conditions are implemented by taking into consideration the species concentrations at the DCFC inlet such as oxygen concentration which is a very important parameter to determine the cell efficiency. The effects of the main operating parameters such as temperature, inlet gas flow velocity and porosity of the electrolyte matrix on the DCFC efficiency are investigated. A sensitivity analysis based on numerical simulations of the effects of cathode kinetic parameters and the anode specific surface area is also performed. Good agreement is obtained between numerical results and experimental data with an absolute average deviation of about 9%.
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
Mass transfer performance in pulsed disc and doughnut extraction columns
M Torab-Mostaedi
2011-09-01
Full Text Available Mass transfer performance is presented for a 76 mm diameter pulsed disc and doughnut extraction column for the toluene-acetone-water system. The experiments were carried out for both mass transfer directions. The mass transfer data are interpreted in terms of the axial diffusion model, thus accounting for continuous phase axial dispersion. The effect of operating parameters on the overall volumetric mass transfer coefficients has been investigated. The results show that the column performance increases with an increase in pulsation intensity. At high pulsation intensity, however, the overall volumetric mass transfer coefficient decreases due to the production of very fine dispersed droplets. It was also found that the column performance decreases with both an increase in dispersed phase velocity and a decrease in continuous phase velocity. An empirical correlation for prediction of the continuous phase overall mass transfer coefficient is derived in terms of the overall Sherwood number, Reynolds number and dispersed phase holdup for each mass transfer direction. The prediction of continuous phase overall mass transfer coefficients from the presented correlations is in good agreement with experimental data.
X. Y. Ji
2010-12-01
Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsung
2017-01-01
This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-S...
Mass Transfer Operations for the Practicing Engineer
Theodore, Louis
2011-01-01
Part of the Essential Engineering Calculations Series, this book presents step-by-step solutions of the basic principles of mass transfer operations, including sample problems and solutions and their applications, such as distillation, absorption, and stripping. Presenting the subject from a strictly pragmatic point of view, providing both the principles of mass transfer operations and their applications, with clear instructions on how to carry out the basic calculations needed, the book also covers topics useful for readers taking their professional exams.
Mass transfer coefficients in metallurgical reactors
无
2003-01-01
An overview on the application and achievements of physico-mathematical modeling of metallurgical processes in Chinais briefly declared. The important role of coefficients in model formulation is shown from our experience. The mass transfer coeffi-cients of the slag-metal reactions and the gas-metal reactions are discussed referring to the flow conditions near the interface. Theinfluence of the surface-active species on the mass transfer and the inteffacial reaction is also discussed briefly.
Ozone mass transfer and kinetics experiments
Bollyky, L.J.; Beary, M.M.
1981-12-01
Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction.
Neural networks for predicting mass transfer parameters in supercritical extraction
A.P. Fonseca
2000-12-01
Full Text Available Neural networks have been investigated for predicting mass transfer coefficients from supercritical Carbon Dioxide/Ethanol/Water system. To avoid the difficulties associated with reduce experimental data set available for supercritical extraction in question, it was chosen to use a technique to generate new semi-empirical data. It combines experimental mass transfer coefficient with those obtained from correlation available in literature, producing an extended data set enough for efficient neural network identification. With respect to available experimental data, the results obtained to benefit neural networks in comparing with empirical correlations for predicting mass transfer parameters.
Mass transfer cycles in cataclysmic variables
King, A. R.; Frank, J.; Kolb, U.; Ritter, H.
1995-01-01
It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.
INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES
A. G. Kulakov
2005-01-01
Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of ope...
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
Mass transfer mechanism in hydrophilic interaction chromatography.
Gritti, Fabrice; Guiochon, Georges
2013-08-09
The mass transfer mechanism in HILIC was investigated in depth. The reduced heights equivalent to a theoretical plate (HETP) of five low molecular weigh compounds with retention factors of -0.05 (slight exclusion from the surface due to the presence of a water-rich layer in which naphthalene is insoluble) to 3.64 were measured at room temperature for a 4.6mm×100mm column packed with 3.5μm 140Å XBridge HILIC particles in a wide range of flow velocities. The mobile phase was a buffered acetonitrile-water mixture (92.5/7.5, v/v). Using a physically reliable model of effective diffusion in binary composite media (Torquato's model), the longitudinal diffusion and solid-liquid mass transfer resistance reduced HETP terms were measured. The reduced short-range eddy dispersion HETP was taken from the literature data. The long-range reduced HETP was directly measured from the subtraction of these HETP terms to the overall HETP measured from moment analysis. In contrast to RPLC, the plots of the reduced HETP versus the reduced velocity depend weakly on the retention factor, due to the constant, low intra-particle diffusivity observed in HILIC. So, the reduced longitudinal diffusion HETP is smaller and the reduced solid-liquid mass transfer resistance HETP is larger in HILIC than in RPLC. Whereas border effects can be concealed in RPLC for retained analytes due to fast radial equilibration across the column diameter, a residual long-range eddy dispersion term persists in 4.6mm I.D. HILIC columns, even at very slow flow rates. Experiments show that the minor differences in the long-range eddy dispersion term between analytes having different retention factors is directly correlated to the reciprocal of their bulk diffusion coefficient. The performance of HILIC columns packed with fine particles is then more sensitive to the inlet sample distribution and to the outlet sample collection than RPLC columns due to the relatively poor radial mixing controlled by lateral diffusion
Variations in mass transfer to single endothelial cells.
Van Doormaal, Mark A; Zhang, Ji; Wada, Shigeo; Shaw, James E; Won, Doyon; Cybulsky, Myron I; Yip, Chris M; Ethier, C Ross
2009-06-01
Mass transfer between flowing blood and arterial mural cells (including vascular endothelial cells) may play an important role in atherogenesis. Endothelial cells are known to have an apical surface topography that is not flat, and hence mass transfer patterns to individual endothelial cells are likely affected by the local cellular topography. The purpose of this paper is to investigate the relationship between vascular endothelial cell surface topography and cellular level mass transfer. Confluent porcine endothelial monolayers were cultured under both shear and static conditions and atomic force microscopy was used to measure endothelial cell topography. Using finite element methods and the measured cell topography, flow and concentration fields were calculated for a typical, small, blood-borne solute. A relative Sherwood number was defined as the difference between the computed Sherwood number and that predicted by the Leveque solution for mass transfer over a flat surface: this eliminates the effects of axial location on mass transfer efficiency. The average intracellular relative Sherwood number range was found to be dependent on cell height and not dependent on cell elongation due to shear stress in culture. The mass flux to individual cells reached a maximum at the highest point on the endothelial cell surface, typically corresponding to the nucleus of the cell. Therefore, for small receptor-mediated solutes, increased solute uptake efficiency can be achieved by concentrating receptors near the nucleus. The main conclusion of the work is that although the rate of mass transfer varies greatly over an individual cell, the average mass transfer rate to a cell is close to that predicted for a flat cell. In comparison to other hemodynamic factors, the topography of endothelial cells therefore seems to have little effect on mass transfer rates and is likely physiologically insignificant.
Zachara, J. M.
2009-12-01
The Hanford Integrated Field Research Challenge (IFRC) site is a DOE/BER-supported experimental and monitoring facility focused on multi-scale mass transfer processes (hanfordifc@pnl.gov). It is located within the footprint of a historic uranium (U) waste disposal pond that overlies a contaminated vadose zone and a 1 km+ groundwater U plume. The plume is under a regulatory clean-up mandate. The site is in hydraulic connectivity with the Columbia River that is located approximately 300 m distant. Dramatic seasonal variations in Columbia River stage cause 2m+ variations in water table and associated changes in groundwater flow directions and composition that are believed to recharge contaminant U to the plume through lower vadose zone pumping. The 60 m triangular shaped facility contains 37 monitoring wells equipped with down-hole electrical resistance tomography electrode and thermistor arrays, pressure transducers for continual water level monitoring, and specific conductance electrodes. Well spacings allow cross-hole geophysical interrogation and dynamic plume monitoring. Various geophysical and hydrologic field characterizations were performed during and after well installation, and retrieved sediments are being subjected to a hierarchal laboratory characterization process to support geostatistical models of hydrologic properties, U(VI) distribution and speciation, and equilibrium and kinetic reaction parameters for robust but tractable field-scale reactive transport calculations. Three large scale (10,000 gal+), non-reactive tracer experiments have been performed to evaluate groundwater flowpaths and velocities, facies scale mass transfer, and subsurface heterogeneity effects under different hydrologic conditions (e.g., flow vectors toward or away from the river). A passive monitoring experiment was completed during spring and summer of 2009 that documents spatially variable U(VI) release and plume recharge from the contaminated lower vadose zone during
Mass transfer kinetics, band broadening and column efficiency.
Gritti, Fabrice; Guiochon, Georges
2012-01-20
Important progress was recently made in our understanding of the physico-chemical aspects of mass transfer kinetics in chromatographic columns, in methods used for accurate determination of the different contributions to the height equivalent to a theoretical plate (HETP), and in the application of these advances to the elucidation of mass transfer mechanisms in columns packed with recent chromatographic supports (sub-2 μm fully porous particles, sub-3 μm core-shell particles, and monoliths). The independent contributions to the HETP are longitudinal diffusion, eddy dispersion, liquid-solid mass transfer (including trans-particle or trans-skeleton mass transfer and external film mass transfer), and the contributions caused by the thermal heterogeneity of the column. The origin and importance of these contributions are investigated in depth. This work underlines the areas in which improvements are needed, an understanding of the contribution of the external film mass transfer term, a better design of HPLC instruments providing a decrease of the extra-column band broadening contributions to the apparent HETP, the development of better packing procedures giving more radially homogeneous column beds, and new packing materials having a higher thermal conductivity to eliminate the nefarious impact of heat effects in very high pressure liquid chromatography (vHPLC) and supercritical fluid chromatography (SFC).
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Mass transfer trends occurring in engineered ex vivo tissue scaffolds.
Moore, Marc; Sarntinoranont, Malisa; McFetridge, Peter
2012-08-01
In vivo the vasculature provides an effective delivery system for cellular nutrients; however, artificial scaffolds have no such mechanism, and the ensuing limitations in mass transfer result in limited regeneration. In these investigations, the regional mass transfer properties that occur through a model scaffold derived from the human umbilical vein (HUV) were assessed. Our aim was to define the heterogeneous behavior associated with these regional variations, and to establish if different decellularization technologies can modulate transport conditions to improve microenvironmental conditions that enhance cell integration. The effect of three decellularization methods [Triton X-100 (TX100), sodium dodecyl sulfate (SDS), and acetone/ethanol (ACE/EtOH)] on mass transfer, cellular migration, proliferation, and metabolic activity were assessed. Results show that regional variation in tissue structure and composition significantly affects both mass transfer and cell function. ACE/EtOH decellularization was shown to increase albumin mass flux through the intima and proximate-medial region (0-250 μm) when compared with sections decellularized with TX100 or SDS; although, mass flux remained constant over all regions of the full tissue thickness when using TX100. Scaffolds decellularized with TX100 were shown to promote cell migration up to 146% further relative to SDS decellularized samples. These results show that depending on scaffold derivation and expectations for cellular integration, specificities of the decellularization chemistry affect the scaffold molecular architecture resulting in variable effects on mass transfer and cellular response.
An Entrance Region Mass Transfer Experiment.
Youngquist, G. R.
1979-01-01
This paper describes an experiment designed to reveal the consequences of the development of a concentration boundary layer. The rate of a mass transfer limited electrochemical reaction is measured and used to obtain the dependence of average Sherwood number on Reynolds number and entrance length. (Author/BB)
An Entrance Region Mass Transfer Experiment.
Youngquist, G. R.
1979-01-01
This paper describes an experiment designed to reveal the consequences of the development of a concentration boundary layer. The rate of a mass transfer limited electrochemical reaction is measured and used to obtain the dependence of average Sherwood number on Reynolds number and entrance length. (Author/BB)
Interrupted Binary Mass Transfer in Star Clusters
Leigh, Nathan W C; Toonen, Silvia
2016-01-01
Binary mass transfer is at the forefront of some of the most exciting puzzles of modern astrophysics, including Type Ia supernovae, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this time-scale to the mean time for stable mass transfer to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing mass transfer that are expected to be disrupted as a function of the host cluster pro...
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)
2014-11-25
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Mixing and Mass Transfer in Industrial Bioreactors
Villadsen, John
2015-01-01
becomes an important issue, and from mixing time as a function of the geometry of the reactor and the power input, one derives expressions for the transfer parameters. This chapter collects the most important empirical knowledge about design of mixers to achieve a particular goal. The resulting design......Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...
MOHAMMADREZA AZIMI; ROUZBEH RIAZI
2017-03-01
Investigation for unsteady squeezing viscous flow is one of the most important research topics due to its wide range of engineering applications such as polymer processing and lubrication systems. The aim of the present paper is to study the unsteady squeezing viscous graphene oxide–water nanofluid flow with heat transfer between two infinite parallel plates. The governing equations, continuity, momentum and energy for thisproblem are reduced to coupled nonlinear ordinary differential equations using a similarity transformation. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz., moving parameter,graphene oxide nanoparticles solid volume fraction, Eckert and Prandtl numbers. Nusselt number and skin friction parameter are obtained for various values of GO solid volume fraction and Eckert number. Comparisonbetween analytical results and numerical ones achieved by fourth order Runge–Kutta method revealed that our analytical method can be a simple, powerful and efficient technique for finding analytical solutions in scienceand engineering nonlinear differential equations.
Mass and Heat Transfer Enhancement of Chemical Heat Pumps
Gui－PingLin; Xiu－GanYuan
1993-01-01
An inert additive,expanded graphit(EG),has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps.The effects of mixing ratio and mixing method on the chemical reaction time are investigated.
The Role of Mass Transfer in Membrane Systems
Levent Gürel
2015-12-01
Full Text Available Membranes are situated in the foreground among the considerably popular treatment systems in the last years. The use of membranes was become widespread in many fields such as drinking water treatment, wastewater treatment and obtaining drinking water from sea water. The predominance of membranes against the classical systems regarding the wastewater treatment, and the decreasing cost of membrane materials each day provided these systems to enter among the preferable options. There are considerably different types of membranes. Microfiltration (MF, ultrafiltration (UF, nanofiltration (NF and reverse osmosis (RO are the processes drawing most attention. One of the most important considerations in membrane processes is the amount of constituents passing from the membrane and rejecting by the membrane. Mass transfer concept arises in this place. Mass transfer is a critically important case used in the design of treatment systems and the estimation of efficiency. In addition to the points mentioned above, investigation of mass transfer occurring in membranes is important in comparing of different membrane types. In this review article, general information about the membranes, membrane types, uses of membranes and module designs are given, concept of mass transfer is viewed and the mass transfer processes realizing in these treatment systems are assessed.
Heat and mass transfer during silica gel-moisture interactions
Sun, Jin; Besant, Robert W. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)
2005-11-01
An initially dry granular silica gel bed is subject to a sudden uniform air flow at a selected temperature and humidity. The coupled non-equilibrium heat transfer and moisture transfer were investigated experimentally and numerically. This study provides a fundamental view of heat and mass transfer process within the granular particle pores. It was found that only a small fraction of internal surface area of silica gel is exposed to water vapour during the test and this occurs very slowly with a time delay that must be accounted for in the model. This modified model gives transient response results that agree with the experimental data within the uncertainty bounds. (author)
Heat and Mass Transfer in a Semi Infinite Porous
H. N. Narang
1967-07-01
Full Text Available Unsteady axially symmetric transfer of heat and mass in a semi-infinite porous circular cylinder initially at a constant temperature and mass transfer potential has been considered. The circular boundary of the porous cylinder is maintained at temperature and mass transfer potential which are functions of both axial co-ordinate and time, whereas the plane end is impervious to heat and mass transfer. Both the axial and radial components of heat and diffusive mass transfer have been taken into account. A particular case when the temperature and mass transfer potential are unit step functions has been discussed in detail and some results have been exhibited graphically.
Investigating Knowledge Transfer Mechanisms for Oil Rigs
Vianello, Giovanna; Ahmed, Saeema
2009-01-01
It is widely recognized, both in industry and academia, that clear strategies in knowledge transfer positively influence the success of a firm. A firm should support the transfer of knowledge by standardizing communication channels within and across departments, based upon personalization......, codification or a combination of these two strategies. The characteristics of the business influence the choice of communication channels used for knowledge transfer. This paper presents a case study exploring the transfer of knowledge within and across projects, specifically the transfer of service knowledge...... in the case of complex machinery. The strategies used for knowledge transfer were analysed and compared with the expected transfer mechanisms, similarities and differences were investigated and are described. A family of four identical rigs for offshore drilling was the selected case. The transfer...
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.
Mass transfer and disc formation in AGB binary systems
Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason; Carroll-Nellenback, Jonathan
2017-07-01
We investigate mass transfer and the formation of discs in binary systems using a combination of numerical simulations and theory. We consider six models distinguished by binary separation, secondary mass and outflow mechanism. Each system consists of an asymptotic giant branch (AGB) star and an accreting secondary. The AGB star loses its mass via a wind. In one of our six models, the AGB star incurs a short period of outburst. In all cases, the secondary accretes part of the ejected mass and also influences the mass-loss rate of the AGB star. The ejected mass may remain gravitationally bound to the binary system and form a circumbinary disc, or contribute to an accretion disc around the secondary. In other cases, the ejecta will escape the binary system. The accretion rate on to the secondary changes non-linearly with binary separation. In our closest binary simulations, our models exemplify the wind Roche lobe overflow while in our wide binary cases, the mass transfer exhibits Bondi-Hoyle accretion. The morphologies of the outflows in the binary systems are varied. The variety may provide clues to how the late AGB phase influences planetary nebula shaping. We employ the adaptive-mesh-refinement code astrobear for our simulations and include ray tracing, radiation transfer, cooling and dust formation. To attain the highest computational efficiency and the most stable results, all simulations are run in the corotating frame.
Nonconservative Mass Transfer in Massive Binaries and the Formation of Wolf-Rayet+O Binaries
Shao, Yong
2016-01-01
The mass transfer efficiency during the evolution of massive binaries is still uncertain. We model the mass transfer processes in a grid of binaries to investigate the formation of Wolf-Rayet+O (WR+O) binaries, taking into account two kinds of non-conservative mass transfer models: Model I with rotation-dependent mass accretion and Model II of half mass accretion. Generally the mass transfer in Model I is more inefficient, with the average efficiency in a range of $\\sim0.2-0.7$ and $ \\lesssim0.2 $ for Case A and Case B mass transfer, respectively. We present the parameter distributions for the descendant WR+O binaries. By comparing the modeled stellar mass distribution with the observed Galactic WR+O binaries, we find that highly non-conservative mass transfer is required.
Flow-dependent mass transfer may trigger endothelial signaling cascades.
Vandrangi, Prashanthi; Sosa, Martha; Shyy, John Y-J; Rodgers, Victor G J
2012-01-01
It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades.
MASS-TRANSFER IN GAS-LIQUID SLURRY REACTORS
BEENACKERS, AACM; VANSWAAIJ, WPM
1993-01-01
A critical review is presented on the mass transfer characteristics of gas-liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas-liquid mass transfer coefficients (k(L
MASS-TRANSFER IN GAS-LIQUID SLURRY REACTORS
BEENACKERS, AACM; VANSWAAIJ, WPM
A critical review is presented on the mass transfer characteristics of gas-liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas-liquid mass transfer coefficients
Mass transfer in gas-liquid slurry reactors
Beenackers, A.A.C.M.; van Swaaij, Willibrordus Petrus Maria
1993-01-01
A critical review is presented on the mass transfer characteristics of gas¿liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas¿liquid mass transfer coefficients
Mass transfer in gas-liquid slurry reactors
Beenackers, A.A.C.M.; Swaaij, van W.P.M.
1993-01-01
A critical review is presented on the mass transfer characteristics of gas¿liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas¿liquid mass transfer coefficients (kLa
Review of mass transfer aspects for biological gas treatment
Kraakman, N.J.R.; Rocha-Rios, J.; Van Loosdrecht, M.C.M.
2011-01-01
This contribution reviews the mass transfer aspects of biotechnological processes for gas treatment, with an emphasis on the underlying principles and technical feasible methods for mass transfer enhancements. Understanding of the mass transfer behavior in bioreactors for gas treatment will result i
Mass transfer in gas-liquid slurry reactors
Beenackers, A.A.C.M.; van Swaaij, Willibrordus Petrus Maria
1993-01-01
A critical review is presented on the mass transfer characteristics of gas¿liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas¿liquid mass transfer coefficients (kLa
MASS-TRANSFER IN GAS-LIQUID SLURRY REACTORS
BEENACKERS, AACM; VANSWAAIJ, WPM
1993-01-01
A critical review is presented on the mass transfer characteristics of gas-liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas-liquid mass transfer coefficients (k(L
Modelling of heat and mass transfer processes in neonatology
Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Modelling of heat and mass transfer processes in neonatology.
Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Mass transfer in wetted-wall columns: correlations at high Reynolds numbers
Nielsen, Christian H.E.; Kiil, Søren; Thomsen, Henrik W.;
1998-01-01
The rate of gas-and liquid-phase mass transport in a pilot-scale wetted-wall column with an inner diameter of 3.26 cm and a length of 5 m was investigated. Empirical correlations for the physical liquid-phase mass transfer coefficient (k(L)(O)) and the gas-phase mass transfer coefficient (k...
Mass transfer parameters of celeriac during vacuum drying
Beigi, Mohsen
2016-09-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
Interrupted Binary Mass Transfer in Star Clusters
Leigh, Nathan W. C.; Geller, Aaron M.; Toonen, Silvia
2016-02-01
Binary mass transfer (MT) is at the forefront of some of the most exciting puzzles of modern astrophysics, including SNe Ia, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this timescale to the mean time for stable MT to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing MT that are expected to be disrupted as a function of the host cluster properties. We find that for lower-mass clusters (≲ {10}4 {M}⊙ ), on the order of a few to a few tens of percent of binaries undergoing MT are expected to be interrupted by an interloping single, or more often binary, star, over the course of the cluster lifetime, whereas in more massive globular clusters we expect \\ll 1% to be interrupted. Furthermore, using numerical scattering experiments performed with the FEWBODY code, we show that the probability of interruption increases if perturbative fly-bys are considered as well, by a factor ˜2.
Overall mass-transfer coefficients in non-linear chromatography
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Local Mass and Heat Transfer on a Turbine Blade Tip
P. Jin
2003-01-01
Full Text Available Local mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord are investigated at various exit Reynolds numbers (4–7 × 105 and turbulence intensities (0.2 and 12.0%.
Kinetics and mass transfer of atrazine ozonation
Bruno Abreu Calfa
2010-08-01
Full Text Available The kinetics of the atrazine oxidation in aqueous solution by ozone was studied under different initial pH conditions and in the presence of a hydroxyl radical scavenger at pH 2.8. It was verified that the process took place mainly through radical reaction, even in acid medium. Therefore, a relatively high value of 26.4 L/(mol.s for the rate constant of the direct reaction between molecular ozone and atrazine was found. After 10 minutes of oxidation, the degradation of the herbicide was more effective for pH 10.30 than for pHs 6.25 and 2.80. The mass transfer of ozone from the gas phase to the liquid phase was strongly affected by the oxygen flowrate and to a lesser extent by the stirring speed.
Heat and mass transfer in flames
Faeth, G. M.
1986-01-01
Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.
Analysis of heat and mass transfer on helical absorber
Kwon, O.K.; Kim, S.C.; Yun, J.H. [Korea Institute of Industrial Technology, Chonan (Korea); Lim, J.K.; Yoon, J.I. [Pukyong National University, Pusan (Korea)
2000-11-01
The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LiBr-H{sub 2}O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature, the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux. (author). 10 refs., 14 figs., 2 tabs.
Mass transfer in three-phase fluidized beds
Wu, B.W.; Cheng, Y.L.; Perini, J.R.; Roux-Buisson, J.L.
1978-04-26
The effects of superficial liquid and gas velocity, particle diameter, liquid viscosity, and column diameter on liquid dispersion (E/sub L) and mass transfer (K/sub L/a) in three-phase fluidized beds were investigated using a water--glycerol/oxygen--nitrogen (or oxygen--argon)/glass-bead system. Overall mass transfer coefficients were calculated based on plug flow, dispersed plug flow, and continuously stirred tank models. k/sub L/a was found to increase with gas velocity and particle diameter, but no correlation of K/sub L/a with liquid velocity was observed. At low liquid velocities, K/sub L/a was lower for the more viscous liquid; the reverse was true at high liquid flow rates. E/sub L/ increased rapidly for liquid flow rates at two to three times the minimum fluidization velocity.
Heat and mass transfer characteristics of a small helical absorber
Yoon, Jung-In [College of Engineering, School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of); Kwon, Oh-Kyung [KITECH, 35-3 Hongchon-ri, Ipjang-meon, Chonan, Chungnam 330-825 (Korea, Republic of); Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private bag 92019, Auckland (New Zealand); Moon, Choon-Geun; Lee, Ho-Saeng [Department of Refrigeration and Air-conditioning Engineering, Graduate School, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of)
2006-02-01
This paper presents experimental results of heat and mass transfer investigation of the falling film absorber (with strong lithium bromide solution) for a small household absorption chiller/heater. Various components (e.g. low temperature generator, absorber and evaporator) were arranged concentrically in cylindrical form such that the helical-arrangement of the heat exchangers allowed the system to be more compact than the conventional system. Measurements from the helical absorber were compared with data from the literature. The comparison revealed that the heat and mass transfer performance of the helical absorber tube is similar to the existing tube bundle absorber. As a result, the proposed helical absorber shows a good potential due its reduced size and weight for the future designs of small capacity absorption chillers/heaters. (author)
Mass transfer mechanism in chiral reversed phase liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2014-03-01
The mechanism of mass transfer in chiral chromatography was investigated using an experimental protocol already applied in RPLC and HILIC chromatography. The different contributions to the reduced height equivalent to a theoretical plate (HETP) include the longitudinal diffusion HETP term, the solid-liquid mass transfer resistance HETP term, the short-range eddy dispersion HETP term, and the long-range eddy dispersion HETP term. Their accurate measurement permits the determination of the adsorption rate constant kads of trans-stilbene enantiomers on a column packed with Lux 5 μm Cellulose-1 particles. The experimental results demonstrate that the number of adsorption-desorption steps per unit time of chiral compounds on polysaccharide-based chiral stationary phases is four orders of magnitude smaller than that of achiral compounds.
Pulse Method of Mass Transfer Intensification in Elastic Channels
Malyshev, V. L.
2016-01-01
The kinetics of internal mass transfer in the course of evaporation of liquids in elastic capillary systems in which the transverse dimensions of the pores can both decrease and increase on exposure to intense thermal effect is investigated. Structural transformations in a material arise as a result of its dehydration. It is assumed that the channel radius changes simultaneously over the entire length, synchronously with the interface motion. Three schemes are possible in principle: a uniform change during the process, a faster change in the initial stage, and, conversely, a faster change in the closing stage. The time-limited additional thermal effect during the period that makes the main contribution to the overall duration of the process is capable of substantially enhancing mass transfer with minimum energy consumption.
Mass transfer coefficients in a hanson mixer-settler extraction column
M. Torab-Mostaedi
2008-09-01
Full Text Available The volumetric overall mass transfer coefficients in a pilot plant Hanson mixer-settler extraction column of seven stages have been measured using toluene-acetone-water system. The effects of agitation speed and dispersed and continuous phases flow rates on volumetric overall mass transfer coefficients have been investigated. The results show that the volumetric overall mass transfer coefficient increases with increase in agitation speed and reaches a maximum. After having reached its maximum, it falls with further increase in agitation speed. It was found that the volumetric overall mass transfer coefficient increases with increase in dispersed phase flow rate, while it decreases with increase in continuous phase flow rate. By using interfacial area, the overall mass transfer coefficients for continuous and dispersed phases are determined from volumetric coefficients. An empirical correlation for prediction of the continuous phase overall mass transfer coefficient is proposed in terms of Sherwood and Reynolds numbers. Also the experimental data of the column investigated are compared with data for various extraction columns. Comparison between theoretical models and experimental results for the dispersed phase mass transfer coefficient shows that these models do not have enough accuracy for column design. Using effective diffusivity in the Gröber equation results in more accurate prediction of overall mass transfer coefficient. The prediction of overall mass transfer coefficients from the presented equations is in good agreement with experimental results.
Methods and problems in heat and mass transfer
Kotliar, Iakov Mikhailovich; Sovershennyi, Viacheslav Dmitrievich; Strizhenov, Dmitrii Sergeevich
The book focuses on the mathematical methods used in heat and mass transfer problems. The theory, statement, and solution of some problems of practical importance in heat and mass transfer are presented, and methods are proposed for solving algebraic, transcendental, and differential equations. Examples of exact solutions to heat and mass transfer equations are given. The discussion also covers some aspects of the development of a mathematical model of turbulent flows.
Mette Marie Løkke
2012-11-01
Full Text Available Volatile organic compounds (VOCs in cut onions (Allium cepa L. were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.
Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer
T.Hayat; S.Hina; Awatif A.Hendi
2011-01-01
@@ The effects of wall properties and heat and mass transfer on the peristalsis in a power-law fluid are investigated.The solutions for the stream function, temperature, concentration and heat transfer coefficient are obtained.The axial velocity, temperature and mass concentration are studied for different emerging parameters.
Rusyak, I. G.; Lipanov, A. M.
2016-11-01
The laws of combustion of powders under conditions close to those of firing an artillery shot have been investigated. A solid-state local heat ignition model was used, and the process of powder combustion was simulated on the basis of the notions of the Belyaev-Zel'dovich thermal combustion theory. The complete formulation of the combustion problem includes the nonstationary processes of heat propagation and chemical transformation in the k-phase, as well as the quasi-stationary processes in the chemically reacting two-stage turbulent boundary layer near the combustion surface related to the characteristics of the averaged nonstationary flow by the boundary conditions at the outer boundary of the boundary layer. The features of the joint solution of the equations of the thermal combustion theory and the equations of internal ballistics have been analyzed. The questions on the convergence of the conjugate problem have been considered. The influence of various factors on the rate of combustion of powder has been investigated. The investigations conducted enabled us to formulate an approximate method for calculating the nonstationary and erosion rates of combustion of artillery powders at a shot on the basis of the Lenouard-Robillard-Karakozov approach.
Mass-Transfer Characteristics of Air- Suction Type Fermentors
Alaa K. M.
2008-01-01
Full Text Available Liquid-side mass-transfer coefficients (KLa were measured in air-suction type fermentors using physical absorption of oxygen. A fermentor of 0. 5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of shrouded-disk/curved-blade turbine with six evacuated bending blades. The effect of liquid submergence (S was investigated. Further, the effects of the ratio of the impeller diameter (D to the tank diameter (T, and the clearance of the impeller from the tank bottom(C were also studied. The agitation speed (N was varied in the range of 50-800 rpm. It was found that the value of KLa increased as the impeller diameter increased, while it was decreased continuously with increasing the clearance. The effect of impeller submergence on the value of mass transfer coefficient (KLa is not much pronounced.Suitable correlation was developed for estimating mass transfer coefficient (KLa in this type of bioreactors.
Experimental investigation of ice slurry heat transfer in horizontal tube
Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per; Palm, Bjoern; Melinder, Aake [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology, Brinellvaegen 68, 10044 Stockholm (Sweden)
2009-09-15
Heat transfer of ice slurry flow based on ethanol-water mixture in a circular horizontal tube has been experimentally investigated. The secondary fluid was prepared by mixing ethanol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The heat transfer tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 22% depending on test performed. Measured heat transfer coefficients of ice slurry are found to be higher than those for single phase fluid, especially for laminar flow conditions and high ice mass fractions where the heat transfer is increased with a factor 2 in comparison to the single phase flow. In addition, experimentally determined heat transfer coefficients of ice slurry flow were compared to the analytical results, based on the correlation by Sieder and Tate for laminar single phase regime, by Dittus-Boelter for turbulent single phase regime and empirical correlation by Christensen and Kauffeld derived for laminar/turbulent ice slurry flow in circular horizontal tubes. It was found that the classical correlation proposed by Sieder and Tate for laminar forced convection in smooth straight circular ducts cannot be used for heat transfer prediction of ice slurry flow since it strongly underestimates measured values, while, for the turbulent flow regime the simple Dittus-Boelter relation predicts the heat transfer coefficient of ice slurry flow with high accuracy but only up to an ice mass fraction of 10% and Re{sub cf} > 2300 regardless of imposed heat flux. For higher ice mass fractions and regardless of the flow regime, the correlation proposed by Christensen and Kauffeld gives good agreement with experimental results. (author)
Golibrodo, L. A.; Krutikov, A. A.; Nadinskii, Yu. N.; Nikolaeva, A. V.; Skibin, A. P.; Sotskov, V. V.
2014-10-01
The hydrodynamics of working medium in the steam volume model implemented in the experimental setup constructed at the Leipunskii Institute for Physics and Power Engineering was simulated for verifying the procedure of calculating the velocity field in the steam space of steam generators used as part of the reactor plants constructed on the basis of water-cooled water-moderated power-generating reactors (VVER). The numerical calculation was implemented in the environment of the STAR-CCM+ software system with its cross verification in the STAR-CD and ANSYS CFX software systems. The performed numerical investigation served as a basis for substantiating the selection of the computation code and parameters for constructing the computer model of the steam receiving device of the PGV-1500 steam generator experimental model, such as the quantization scheme, turbulence model, and mesh model.
Mass transfer caused by gravitational instability at reactive solid–liquid interfaces
Otomo, Ryoko; Ishii, Nobuhiko; Takahashi, Keita; Harada, Shusaku
2014-01-01
Mass transfer in porous media has been investigated experimentally. In this paper, we present a visualization technique and discuss the behavior of a substance which transfers under the influence of gravity and reacts with the surface of porous media. Mass transfer by the reaction with porous media was demonstrated by means of electrochemical deposition experiment on particulate beds with complex structures. A copper plate (anode) and a stainless steel particulate bed (cathode) were respectiv...
Instability of mass transfer in a planet-star system
Jia, Shi; Spruit, H. C.
2017-02-01
We show that the angular momentum exchange mechanism governing the evolution of mass-transferring binary stars does not apply to Roche lobe filling planets, because most of the angular momentum of the mass-transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche lobe overflow. We explore the conditions for dynamically unstable Roche lobe overflow as a function of planetary mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depends somewhat sensitively on equation of state used. Silicate planets in the range 1 mass transfer before settling to slow overflow when their mass drops to less than 1 M⊕.
Mass transfer coefficients in cross-flow ultrafiltration
Berg, van den G.B.; Rácz, I.G.; Smolders, C.A.
1989-01-01
Usually, in concentration polarization models, the mass transfer coefficient is an unknown parameter. Also, its variation with changing experimental circumstances is in question. In the literature, many relationships can be found to describe the mass transfer coefficient under various conditions, as
Mass transfer coefficients in cross-flow ultrafiltration
van den Berg, G.B.; Racz, I.G.; Smolders, C.A.
1989-01-01
Usually, in concentration polarization models, the mass transfer coefficient is an unknown parameter. Also, its variation with changing experimental circumstances is in question. In the literature, many relationships can be found to describe the mass transfer coefficient under various conditions, as
Limits of mass-transfer in parallel plate dialyzers
Kolev, Spas D.; Linden, van der Willem E.
1992-01-01
The absolute limits of mass transfer across the membrane in a parallel-plate dialyser set by the flow pattern in both channels were determined on the basis of a mathematical model assuming axially dispersed plug flow. The lower limit corresponds to the case of mass transfer under laminar flow condit
The Mechanism of Interfacial Mass Transfer in Gas Absorption Process
马友光; 冯惠生; 徐世昌; 余国琮
2003-01-01
Based on the method of molecular thermodynamics ,the mass transfer mechanism at gas-liquid interface is studied theoretically,and a nowe mathematical model is proposed,Using laser holographic interference technique,the hydrodynamics and mass transfer characteristics of CO2 absorption are measured,It is shown that the calculated results are in good agreement with the experimental data.
THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER
Alexander P. Solodov
2013-01-01
Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations.
Tafreshi, H. Vahedi; Ercan, E.; Pourdeyhimi, B. [North Carolina State University, Nonwovens Cooperative Research Center, Raleigh, NC (United States)
2006-07-15
In this note, the evaporation rate from a vertical wet fabric sheet is calculated using a free convection heat transfer correlation. Chilton-Colburn analogy is used to derive a mass transfer correlation from a heat transfer correlation proposed by Churchill and Chu for free convection from a vertical isothermal plate. The mass transfer rate obtained from this expression has shown excellent agreement with experimental data. (orig.)
Transient mass transfer at the rotating disk electrode.
Nanis, L.; Klein, I.
1972-01-01
Transient mass transfer at the rotating disk has been investigated theoretically and experimentally for cathodic reduction of ferricyanide in the redox system ferricyanide-ferrocyanide with potassium hydroxide supporting electrolyte. It has been shown that overpotential-time predictions for the rotating disk are fitted very well for decay (current interruption) but poorly for build-up following switching on of constant current. As an explanation for this behavior, attention is directed to the inadequacy of the assumption that a radially independent concentration profile exists at the disk surface just at the start of galvanostatic current passage.
Mass Transfer Model of Desulfurization in the Electroslag Remelting Process
Hou, Dong; Jiang, Zhou-Hua; Dong, Yan-Wu; Li, Yang; Gong, Wei; Liu, Fu-Bin
2017-02-01
Experimental and theoretical studies have been carried out to investigate the effects of the slag on desulfurization during the electroslag remelting (ESR) process with a focus of developing a mass transfer model to understand the mechanism of desulfurization. Stainless steel 1Cr21Ni5Ti was used as the electrode and remelted with two different kinds of slags using a 50-kg ESR furnace. The contents of sulfur along the axial direction of product ingots were analyzed. It was found that the sulfur content of 350 ppm in the electrode is reduced to 71 to 95 ppm in the ingot by remelting with the slag containing 5 wt pct of CaO, and lowered more to 47 to 59 ppm with another slag having 20 wt pct CaO. On the basis of the penetration and film theories, the theoretical model developed in this work well elucidates the kinetics of desulfurization revealing the mechanism of sulfur transfer during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that when sulfur content in electrode is given, there is a corresponding minimum value of sulfur content in the ingot due to the kinetics limit. This lowest sulfur content cannot be further reduced even with increasing L S (sulfur distribution coefficient between metal and slag phases) or decreasing sulfur content in the slag. Constant addition of extra amount of CaO to the molten slag with the increase of sulfur content in the slag during the remelting process can improve the macrosegregation of sulfur distributed along the axial direction of ESR ingots. Since the rate-determining steps of the sulfur mass transfer lie in the metal phase, adding calcium as deoxidizer can change mass transfer of sulfur and thus promote desulfurization further during the ESR process.
Heat and mass transfer and hydrodynamics in swirling flows (review)
Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.
2017-02-01
Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.
Instability of mass transfer in a planet-star system
Jia, Shi
2016-01-01
We show that the angular momentum exchange mechanism governing the evolution of mass transferring binary stars does not apply to Roche-lobe filling planets, because most of the angular momentum of the mass transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche-lobe overflow. We explore the conditions for dynamically unstable Roche-lobe overflow as a function of planet mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depend somewhat sensitively on equation of state used. Silicate planets in the range $1 M_{\\oplus}
Influence of mass transfer on bubble plume hydrodynamics
IRAN E. LIMA NETO
2016-03-01
Full Text Available ABSTRACT This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities, both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes.
Mass transfer in electromembrane extraction - The link between theory and experiments
Huang, Chuixiu; Jensen, Henrik; Seip, Knut Fredrik
2016-01-01
and liquid–liquid extraction, and the fundamental principles for mass transfer have only partly been investigated. Thus, although there is great interest in electromembrane extraction, the fundamental principle for mass transfer has to be described in more detail for the scientific acceptance of the concept....... This review summarizes recent efforts to describe the fundamentals of mass transfer in electromembrane extraction, and aim to give an up-to-date understanding of the processes involved....... typically been combined with chromatography, mass spectrometry, and electrophoresis for analyte separation and detection. At the moment, close to 125 research papers have been published with focus on electromembrane extraction. Electromembrane extraction is a hybrid technique between electrophoresis...
Impact of NAPL architecture on interphase mass transfer: A pore network study
Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.
2016-09-01
Interphase mass transfer in porous media is commonly modeled using Sherwood number expressions that are developed in terms of fluid and porous medium properties averaged over some representative elementary volume (REV). In this work the influence of sub-grid scale properties on interphase mass transfer was investigated using a two-dimensional pore network model. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity, (v) REV or domain size and (vi) pore scale heterogeneity of the porous media on interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. Hence, explicitly accounting for the interfacial area does not eliminate the uncertainty of the mass transfer coefficient. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is defined influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer. It was also demonstrated that the spatial variability of pore scale parameters such as pore throat diameters may result in different rates of interphase mass transfer even for the same pore size distribution index.
A Mass Transfer Model Based on Individual Bubbles and an Unsteady State Film Mechanism
赵斌; 王铁峰; 王金福
2004-01-01
A gas-liquid mass transfer model based on an unsteady state film mechanism applied to a single bubble is presented. The mathematical model was solved using Laplace transform to obtain an analytical solution of concentration profile in terms of the radial position r and time t. The dynamic mass transfer flux was deduced and the influence of the bubble size was also determined. A mathematical method for deducing the average mass transfer flux directly from the Laplace transformed concentration is presented. Its accuracy is verified by comparing the numerical results with those from the indirect method. The influences of the model parameters, namely, the bubble size R, liquid film thickness δ, and the surface renewal constant s on the average mass transfer flux were investigated. The proposed model is useful for a better understanding of the mass transfer mechanism and an optimum design of gas-liquid contact equipment.
Mass transfer between debris discs during close stellar encounters
Jilkova, Lucie; Hammer, Michael; Zwart, Simon Portegies
2016-01-01
We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distributions in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new hos...
Development of a correlation for aqueous-vapor phase mass transfer in porous media
Szatkowski, Andrew; Imhoff, Paul T.; Miller, Cass T.
1995-03-01
In many situations vapor-phase extraction procedures (e.g., soil venting, air sparging, and bioventing) may be suitable methods for remediating porous media contaminated by volatile organic compounds. This has led to increased study of operative processes in these systems, including aqueous-vapor phase mass transfer. Past work has shown the importance of the flow regime on this process, but a quantitative estimate of mass-transfer coefficients is lacking, especially for systems not confounded by uncertainties involving interfacial area between the phases. An experimental investigation was conducted to isolate the resistance to aqueous-vapor phase mass transfer at the phase boundary, using an ideal porous medium system. Mass-transfer coefficients were measured for toluene for a wide range of Reynolds numbers. An empirical model was fit to the data in dimensionless form. The mass-transfer model was coupled with an available interfacial area model, yielding a dimensionless expression for the mass-transfer rate coefficient. This expression was used to compare results from this work to three other experimental studies reported in the literature. These comparisons showed that for experiments where infiltrating water flowed uniformly within the porous medium, the predicted mass-transfer coefficients were within a factor of 5 of the measured coefficients. Mass transfer was significantly slower than the rate predicted, using the results from this work, in experiments where infiltrating water flowed nonuniformly.
Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation.
Chen, Yiming; Hou, Deyi; Lu, Chunhui; Spain, Jim C; Luo, Jian
2016-09-06
Most of the models for simulating vapor intrusion accept the local equilibrium assumption for multiphase concentration distributions, that is, concentrations in solid, liquid and vapor phases are in equilibrium. For simulating vapor transport with aerobic biodegradation controlled by counter-diffusion processes, the local equilibrium assumption combined with dual-Monod kinetics and biomass decay may yield near-instantaneous behavior at steady state. The present research investigates how predicted concentration profiles and fluxes change as interphase mass transfer resistances are increased for vapor intrusion with aerobic biodegradation. Our modeling results indicate that the attenuation coefficients for cases with and without mass transfer limitations can be significantly different by orders of magnitude. Rate-limited mass transfer may lead to larger overlaps of contaminant vapor and oxygen concentrations, which cannot be simulated by instantaneous reaction models with local equilibrium mass transfer. In addition, the contaminant flux with rate-limited mass transfer is much smaller than that with local equilibrium mass transfer, indicating that local equilibrium mass transfer assumption may significantly overestimate the biodegradation rate and capacity for mitigating vapor intrusion through the unsaturated zone. Our results indicate a strong research need for field tests to examine the validity of local equilibrium mass transfer, a widely accepted assumption in modeling vapor intrusion.
Acoustic Streaming and Heat and Mass Transfer Enhancement
Trinh, E. H.; Gopinath, A.
1996-01-01
A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.
Mass Transfer and Porous Media (MTPM)
Rotenberg, B.; Marry, V.; Malikova, N.; Vuilleumier, R.; Giffaut, E.; Turq, P.; Robinet, J.C.; Diaz, N.; Sardini, P.; Goutelard, F.; Menut, D.; Parneix, J.C.; Sammartino, S.; Pret, D.; Coelho, D.; Jougnot, D.; Revil, A.; Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.F.; Talandier, J.; Berne, P.; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; Van der Lee, J.; Birchall, D.J.; Harrington, J.F.; Noy, D.J.; Sellin, P.; Bildstein, O.; Piault, E.; Trotignon, L.; Montarnal, P.; Deville, E.; Genty, A.; Le Potier, C.; Imbert, C.; Semete, P.; Desgree, P.; Fevrier, B.; Courtois, A.; Touze, G.; Sboui, A.; Roberts, J.E.; Jaffre, J.; Glaus, M.A.; Rosse, R.; Van Loon, L.R.; Matray, J.M.; Parneix, J.C.; Tinseau, E.; Pret, D.; Mayor, J.C.; Ohkubo, T.; Kikuchi, H.; Yamaguchi, M.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Siitari-Kauppi, M.; Leskinen, A.; Rigato, V.; Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.; Dai, Z.; Samper, J.; Wolfsberg, A.; Levitt, D.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Schampera, B.; Dultz, S.; Riebe, B.; Samper, J.; Yang, Q.; Genty, A.; Perraud, D.; Poller, A.; Mayer, G.; Croise, J.; Marschall, P.; Krooss, B.; Matray, J.M.; Tanaka, T.; Vogel, P.; Lavanchy, J.M.; Enssle, C.P.; Cruchaudet, M.; Dewonck, S.; Descostes, M.; Blin, V.; Radwan, J.; Poinssot, C.; Mibus, J.; Sachs, S.; Devol-Brown, I.; Motellier, S.; Tinseau, E.; Thoby, D.; Marsal, F.; DeWindt, L.; Tinseau, E.; Pellegrini, D.; Bauer, A.; Fiehn, B.; Marquardt, Ch.; Romer, J.; Gortzen, A.; Kienzler, B
2007-07-01
This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo
Jiao, Anjun; Zhang, Yuwen; Ma, Hongbin; Critser, John
2009-03-01
Heat and mass transfer in a circular tube subject to the boundary condition of the third kind is investigated. The closed form of temperature and concentration distributions, the local Nusselt number based on the total external heat transfer and convective heat transfer inside the tube, as well as the Sherwood number were obtained. The effects of Lewis number and Biot number on heat and mass transfer were investigated.
Mass transfer coefficients determination from linear gradient elution experiments.
Pfister, David; Morbidelli, Massimo
2015-01-02
A procedure to estimate mass transfer coefficients in linear gradient elution chromatography is presented and validated by comparison with experimental data. Mass transfer coefficients are traditionally estimated experimentally through the van Deemter plot, which represents the HETP as a function of the fluid velocity. Up to now, the HETP was obtained under isocratic elution conditions. Unfortunately, isocratic elution experiments are often not suitable for large biomolecules which suffer from severe mass transfer hindrances. Yamamoto et al. were the first to propose a semi-empirical equation to relate HETPs measured from linear gradient elution experiments to those obtained under isocratic conditions [7]. Based on his pioneering work, the approach presented in this work aims at providing an experimental procedure supported by simple equations to estimate reliable mass transfer parameters from linear gradient elution chromatographic experiments. From the resolution of the transport model, we derived a rigorous analytical expression for the HETP in linear gradient elution chromatography.
Experimental Investigation of two-phase nitrogen Cryo transfer line
Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.
2017-02-01
A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.
Study of Interfacial Mass Transfer on Vapor Bubbles in Microgravity
Johannes Straub
2005-03-01
Full Text Available The knowledge of interfacial heat and mass transfer is important for environmental and technical applications, especially nowadays for numerical simulations of two phase problems. However, the data available up to now are inconsistent, because most experiments performed on earth suffer under buoyancy and convection, and thus the boundary conditions at the evaluation could not clearly be defined. Therefore, we seized the opportunity to investigate interfacial heat and mass transfer in microgravity environment. In these experiments the growth and collapse in the overall superheated and subcooled bubles, respectively, liquid or free vapor bubbles were observed at various liquid temperature and pressure states and over periods of from a few seconds up to 300 seconds. It was for the first time that such very long periods of bubble growth could be observed. The experimental set-up allowed the control of the liquid supersaturation before the bubbles were initiated by a short heat pulse at a miniaturized heater. Therefore it was possible to perform a systematic parametric study. The measured curves for vapor bubble growth are in good agreement with our numerical simulation. Based on this model the kinetic coefficients for the evaporation and condensation according to Hertz-Knudsen have been derived from the experimental data.
Correlation of liquid-film cooling mass transfer data.
Gater, R. A.; L'Ecuyer, M. R.
1972-01-01
An empirical correlation proposed by Gater and Ecuyer (1970) for liquid-film cooling mass transfer, accounting for film roughness and entrainment effects, is extended to include liquid films of arbitrary length. A favorable comparison between the predicted results and the experimental data of Kinney et al. (1952) and Emmons and Warner (1964) shows the utility of the mass transfer correlation for predictions over a wide range of experimental parameters.
Buoyancy induced MHD transient mass transfer flow with thermal radiation
N. Ahmed
2016-09-01
Full Text Available The problem of a transient MHD free convective mass transfer flow past an infinite vertical porous plate in presence of thermal radiation is studied. The fluid is considered to be a gray, absorbing-emitting radiating but non-scattered medium. Analytical solutions of the equations governing the flow problem are obtained. The effects of mass transfer, suction, radiation and the applied magnetic field on the flow and transport characteristics are discussed through graphs.
Imaging Heat and Mass Transfer Processes Visualization and Analysis
Panigrahi, Pradipta Kumar
2013-01-01
Imaging Heat and Mass Transfer Processes: Visualization and Analysis applies Schlieren and shadowgraph techniques to complex heat and mass transfer processes. Several applications are considered where thermal and concentration fields play a central role. These include vortex shedding and suppression from stationary and oscillating bluff bodies such as cylinders, convection around crystals growing from solution, and buoyant jets. Many of these processes are unsteady and three dimensional. The interpretation and analysis of images recorded are discussed in the text.
Local Heat and Mass Transfer for Gas—Solid Two Phase Flow in CFB
FengLu; Ming－HengShi
1994-01-01
An experimental investigation on the flow characteristics and the local heat and mass transfer between coarse wet particles and hot gas in the circulaing fluidized bed(CFB) has been performed.A twothermocouple contrast method was developed to measure the local gas and solid temperature along the height of the bed.The influences of air superficial velocity,solid rate and initial moisture content on the local heat and mass transfer between gas and sloid were examined.The correlations of heat and mass transfer coefficients between gas and coarse wet particles in CFB were obtained.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Influence of pluronic F68 on oxygen mass transfer.
Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael
2013-01-01
Pluronic F68 is one of the most used shear protecting additives in cell culture cultivations. It is well known from literature that such surface-active surfactants lower the surface tension at the gas-liquid interface, which influences the mass transfer. In this study, the effect of Pluronic F68 on oxygen mass transfer in aqueous solutions was examined. Therefore, the gassing in/gassing out method and bubble size measurements were used. At low concentrations of 0.02 g/L, a 50% reduction on mass transfer was observed for all tested spargers and working conditions. An explanation of the observed effects by means of Higbie's penetration or Dankwerts surface renewal theory was applied. It could be demonstrated that the suppressed movement of the bubble surface layer is the main cause for the significant drop down of the kL a-values. For Pluronic F68 concentrations above 0.1 g/L, it was observed that it comes to changes in bubble appearance and bubble size strongly dependent on the sparger type. By using the bubble size measurement data, it could be shown that only small changes in mass transfer coefficient (kL ) take place above the critical micelle concentration. Further changes on overall mass transfer at higher Pluronic F68 concentrations are mainly based on increasing of gas holdup and, more importantly, by increasing of the surface area available for mass transfer. © 2013 American Institute of Chemical Engineers.
Principles of heat and mass transfer
Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S
2013-01-01
Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Turbulent mass transfer through a flat shear-free surface
Magnaudet, Jacques; Calmet, Isabelle
2006-04-01
Mass transfer through the flat shear-free surface of a turbulent open-channel flow is investigated over a wide range of Schmidt number (1 ≤ Sc ≤ 200) by means of large-eddy simulations using a dynamic subgrid-scale model. In contrast with situations previously analysed using direct numerical simulation, the turbulent Reynolds number Re is high enough for the near-surface turbulence to be fairly close to isotropy and almost independent of the structure of the flow in the bottom region (the statistics of the velocity field are identical to those described by I. Calmet & J. Magnaudet J. Fluid Mech. vol. 474, 2003, p. 355). The main statistical features of the concentration field are analysed in connection with the structure of the turbulent motion below the free surface, characterized by a velocity macroscale u and an integral length scale L. All near-surface statistical profiles are found to be Sc-independent when plotted vs. the dimensionless coordinate Sc({1) / 2}yu/nu (y is the distance to the surface and nu is the kinematic viscosity). Mean concentration profiles are observed to be linear throughout an inner diffusive sublayer whose thickness is about one Batchelor microscale, i.e. LSc({) - 1 / 2 }Re({) - 3 / 4}. In contrast, the concentration fluctuations are found to reach their maximum near the edge of the outer diffusive layer which scales as LSc({) - 1 / 2}Re({) - 1 / 2}. Instantaneous views of the near-surface isovalues of the concentration and vertical velocity are used to reveal the influence of the Schmidt number. In particular, it is observed that at high Schmidt number, the tiny concentration fluctuations that subsist in the diffusive sublayer just mirror the divergence of the two-component surface velocity field. Co-spectra of concentration and vertical velocity fluctuations indicate that the main contribution to the turbulent mass flux is provided by eddies whose horizontal size is close to L, which strongly supports the view that the mass
F M Abbasi; A Alsaedi; T Hayat
2014-01-01
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
The evolution of the mass-transfer functions in liquid Yukawa systems
Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2016-09-15
The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.
Mass transfer of phosphorus in high-phosphorus hot-metal refining
Jiang Diao; Xuan Liu,; Tao Zhang; Bing Xie
2015-01-01
Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO−FetO−SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents Al2O3 or Na2O into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower [Si] heat is much higher than that in the higher [Si] heat. It is concluded that both fluxing agents and lower [Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Fur-thermore, the addition of Na2O could also prevent rephosphorization at the end of the experiment.
A mass transfer in heterogeneous systems by the adsorption method (
N. Bošković-Vragolović
2009-01-01
Full Text Available A mass transfer coefficient between: a liquid and single sphere and a liquid and column wall in packed and fluidized beds of a spherical inert particle have been studied experimentally using the adsorption method. The experiments were conducted in a column 40 mm in diameter for packed and fluidized beds, and in a two-dimensional column 140 mm×10 mm for the flow past single sphere. In all runs, the mass transfer rates were determined in the presence of spherical glass particles, 3 mm in diameter, for packed and fluidized beds. The mass transfer data were obtained by studying transfer for flow past single sphere, 20 mm in diameter. This paper discusses the possibilities of application of the adsorption method for fluid flow visualization. Local and average mass transfer coefficients were determined from the color intensity of the surface of the foils of silica gel. Correlations, Sh = f(Re and jD = f(Re, were derived using the mass transfer coefficient data.
Numerical study on passive convective mass transfer enhancement
Aravind, G. P.; Muhammed Rafi, K. M.; Deepu, M.
2017-04-01
Passive mixing mechanisms are widely used for heat and mass transfer enhancement. Vortices generated in flowfield lead to gradients that favour convective mass transfer. Computations on enhancement of convective mass transfer of sublimating solid fuel by baroclinic torque generated vortices in the wake of a swept ramp placed in high speed flow is presented here. Advection Upstream Splitting Method (AUSM) based computational scheme employed in the present study, to solve compressible turbulent flow field involving species transport, could capture the complex flow features resulted by vortex boundary layer and shock boundary layer interactions. Convective mass transfer is found to get improved in regions near boundary layer by horseshoe vortex and further transported to other regions by counter rotating vortex pair. Vortices resulted by flow expansion near aft wall of wedge and recompression wave-boundary layer interactions also promotes convective mass transport. Extensive computations have been carried out to reveal the role of vortices dominance at various lateral sweep angles in promotion of convective mass transfer in turbulent boundary layer.
Monolithic supports with unique geometries and enhanced mass transfer.
Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward
2004-01-01
The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsong
2014-01-01
This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...
Investigating Knowledge Transfer Mechanisms for Oil Rigs
Vianello, Giovanna; Ahmed, Saeema
2009-01-01
of lessons learnt from one rig to the next, and the actual situation emerged. Various approaches for transferring knowledge were elicited and analysed with regard to the types of knowledge that were transferred and the context in which they were used. This study indicates factors that should be considered......It is widely recognized, both in industry and academia, that clear strategies in knowledge transfer positively influence the success of a firm. A firm should support the transfer of knowledge by standardizing communication channels within and across departments, based upon personalization......, codification or a combination of these two strategies. The characteristics of the business influence the choice of communication channels used for knowledge transfer. This paper presents a case study exploring the transfer of knowledge within and across projects, specifically the transfer of service knowledge...
Sepinsky, J F; Kalogera, V; Rasio, F A
2009-01-01
We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, allowing for both mass and angular momentum loss from the system. Adopting a delta function mass transfer rate at the periastron of the binary orbit, we find that, depending on the initial binary properties at the onset of mass transfer, the orbital semi-major axis and eccentricity can either increase or decrease at a rate linearly proportional to the magnitude of the mass transfer rate at periastron. The range of initial binary mass ratios and eccentricities that leads to increasing orbital semi-major axes and eccentricities broadens with increasing degrees of mass loss from the system and narrows with increasing orbital angular momentum loss from the binary. Comparison with tidal evolution timescales shows that the usual assumption of rapid circularization at the onset of mass transfer in eccentric binaries is not justified, irrespective of the degree of systemic mass and angular ...
Unsteady Mass transfer Across the Sediment-Water Interface
McCluskey, Alexander; Grant, Stanley; Stewardson, Michael
2017-04-01
Fluxes across the sediment-water interface (SWI) are of high ecological significance, as they promote biogeochemical processes that support benthic ecosystems within the hyporheic zone. The SWI marks a boundary between the turbulent water column (typically modelled by Navier Stokes equations) and the interstitial pore fluids in the sediment column, which are typically laminar (and modelled by Darcy's law). Although models of these two flow regimes are generally not coupled, flow in the turbulent boundary layer is affected by the sediment permeability and a slip velocity at the SWI, which decays exponentially into the streambed across a characteristic mixing length. Momentum is transferred across this region (known as the Brinkman layer) through the penetration of coherent structures and turbulent mixing, however, these turbulent structures also promote turbulent mass transfer. Mass transfer within the hyporheic zone can be conceptualised in terms of: (1) the downwelling of solutes from the stream; (2) retention of solutes in the sediment; and (3) the upwelling of solutes back into the stream. Recent work by the authors has shown that a mass transfer coefficient can be defined where a downwelling-upwelling unit cell exists across a concentration gradient. Such unit cells are generated at the SWI by pressure variation from: (1) steady-state influences, such as stream geometry and velocity variation; and (2) unsteady pressure waves produced by coherent turbulent structures. With this definition, mass transfer coefficients can be defined for: steady exchange, by adopting the Elliott and Brooks [1997] advective pumping model; and unsteady exchange, induced by streamwise propagation of upwelling-downwelling unit cells migrating downstream with a characteristic celerity associated with turbulent eddies. We hypothesize that beneath the Brinkman layer (where Laplace equation applies) these mass transfer coefficients can be summed to yield the total mass flux. Although, it
Mass transfer intensification of nanofluid single drops with effect of temperature
Saien, Javad; Zardoshti, Mahdi [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2015-11-15
The hydrodynamics and mass transfer of organic nanofluid single drops in liquid-liquid extraction process were investigated within temperature range of 20 to 40 .deg. C. Nanofluid drops of toluene+acetic acid, containing surface modified magnetite nanoparticles (NPs) with concentration within the range of (0.0005-0.005) wt%, were conducted in aqueous continuous phase. The rate of solute mass transfer was generally enhanced with NPs until about 0.002wt%, and small drops benefited more. The enhancement reached 184.1% with 0.002 wt% of NPs at 40 .deg. C; however, adding more NPs led to the mass transfer to either remain constant or face a reduction, depending on the applied temperature. The mass transfer coefficient was nicely reproduced using a developed correlation for enhancement factor of molecular diffusivity as a function of Reynolds and Schmidt numbers.
Mass Transfer Studies on Adsorption of Phenol from Wastewater Using Lantana camara, Forest Waste
C. R. Girish
2016-01-01
Full Text Available Adsorption is one of the important treatment methods for the removal of pollutants from wastewater. The determination of rate controlling step in the process is important in the design of the process. Therefore, in the present work, mass transfer studies were done to evaluate the rate-limiting step in the adsorption of phenol from aqueous solution onto Lantana camara. Different mass transfer models were used to find the rate-limiting step and also to find the values of external mass transfer coefficient and diffusion coefficient. The Biot number was found to investigate the importance of external mass transfer to intraparticle diffusion. From the various models studied and the Biot numbers obtained, it was found that the adsorption on Lantana camara was controlled by film diffusion. The sensitivity analysis was performed to study the significance of the model parameters on the adsorption process.
Studies on mass transfer in electrochemical systems
Sundstroem, L.G.
1997-10-01
The first part is of an introductory nature. It contains a description of the methods used, a discussion of the physics of electrochemical cells with a liquid electrolyte, and a summary of the different studies made, including both those which have been reported in papers, and those which have not. Contributions with novel aspects include (* a derivation of the electro-neutrality condition from Maxwell`s equations of electrodynamics, and **) an argument in favour of the use of mass-averaged velocity in ion transport expressions. The second part focuses on specific cases. It consists of seven research papers which give a more detailed presentation of the main studies 40 refs, 6 figs
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Limiting current technique in the research of mass/heat transfer in nanofluid
Wilk, J.; Grosicki, S.
2016-09-01
In the paper the authors focused on the application of the electrochemical limiting diffusion current technique to the study of mass transfer in nanofluid flow. As mass and heat transfer are analogical phenomena, analysing mass transfer helps understand heat transfer processes in nanofluids. The paper begins with a short review of the available literature on the subject followed by the authors' results of mass transfer coefficient measurements and the conclusions concerning mass/heat transfer enhancement in nanofluids.
刘彬; 原如冰; 张强; 童明伟
2011-01-01
为了开发高教合理的柑桔皮渣发酵-干燥成套设备,需要进行发酵柑桔皮渣的干燥机理分析、传热传质的研究.该文采用流化干燥方法对发酵柑桔皮渣的干燥进行试验研究,建立了小型的流化床干燥试验台,分析了风速、颗粒粒径、初始含水率等对发酵柑桔皮渣流化干燥过程中传热传质的影响.试验表明:流化床的传热传质性能与流体的物理性质、操作参数、颗粒本身的物理性质以及流化床的特性密切相关.试验结果表明,传热系数沿流化床床高增加而减小,在床高4～6 cm之间,传热系数减小的幅度较大；在风速、颗粒粒径、初始含水率3个影响因素中,风速对传热系数的影响最大,当风速从2.06 m/s增大到2.75 m/s时,床高2～4 cm区域的平均局部传热系数增大了近92％.根据试验结果建立了传热传质数学模型并获得了传热无因次准则方程式,为强化传热传质以提高干燥效果提供了理论依据.%It is necessary to research the heat and mass transfer law in drying process of the zymotic orange peel for the purpose of industrial production of the zymotic orange peel feed. A fluidized drying method was used to research the drying characteristics of zymotic orange peel, and the experimental equipment of fluidized bed drying was built, the influences of drying parameters, such as air velocity, particle diameters, the initial moisture content etc on heat and mass transfer were analyzed. The results indicated that the heat and mass transfer characteristics of the fluidized bed were affected by the flow velocity, operating conditions, the physical characteristics of the zymotic orange peel and the fluidized bed. The experiment results showed that the local heat transfer coefficient decreased with the increasing of fluidized bed height, especially at the height from 4 to 6 cm. The air velocity had bigger influence on the local heat transfer coefficient compared to that
RESEARCH OF THE MASS TRANSFER AT MEMBRANE CLEANING OF BIOGAZ
Marat SATAYEV
2015-04-01
Full Text Available Everyone has long known the benefits and effectiveness of biogas. Particularly, getting biogas from the agricultural waste is very promising. But, the question is if we can use such a useful and effective biogas at 100%. Today, we use only a half of the benefit, because to get the biogas we spend more energy than we get. In this regard, the work on the study of the biogas development is extremely important. The study of the biogas formation requires numerous experiments. This article analyzes the biogas mass transfer with the membrane purification and identification of the of mass transfer mechanisms through the membrane pores.
Non-isothermal mass transfer of ferrocolloids through porous membrane
Blums, E., E-mail: eblums@sal.l [Institute of Physics, University of Latvia, Salaspils, Miera 32, LV-2169 (Latvia); Kronkalns, G; Mezulis, A; Sints, V [Institute of Physics, University of Latvia, Salaspils, Miera 32, LV-2169 (Latvia)
2011-05-15
The present paper deals with transport properties of ferrofluid nanoparticles in non-isothermal capillary-porous layer. Experiment establishes that the temperature difference, which is applied across the layer, induces a thermoosmotic pressure gradient directed toward increasing temperature. The measurement results are interpreted in a frame of phenomenology of linear irreversible thermodynamics. The transport coefficients are evaluated comparing the measured separation curves with approximate solution of the corresponding mass transfer problem. - Research Highlights: Mass transfer in binary liquid dispersions. Thermophoresis and thermoosmosis in nanocolloids. Filtration of nanocolloids through porous layers. Unsteady separation of nanoparticles.
Gas-liquid mass transfer : influence of sparger location
Sardeing, Rodolphe; Aubin, Joelle; Poux, Martine; Xuereb, Catherine
2004-01-01
The performance of three sparger diameters (DS = 0.6D, DS = D, DS = 1.6D) in combination with three positions (below, above or level with the impeller) for gas-liquid dispersion and mass transfer were evaluated in the case of the Rushton turbine and the A315 propeller in up- or down-pumping mode. The results show that the best results in terms of gas handling and mass transfer capacities are obtained for all impellers with the sparger placed below it and with a diameter at least e...
Effects of the Mass Transfer Process in Oil Spill
FabiÃ¡n Betancourt
2005-01-01
Full Text Available A revision of the models used to study the behavior of the mass loss processes associated with petroleum spills on water and to compare those models with experimental data. The processes of mass transfer studied in this work are evaporating, dissolution, vertical dispersion, emulsification and the changes of properties associated with these. The comparison of the estimations with the field data allowed determining the utility and the degree of adjustment of the expressions.
Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang
2010-01-01
This paper reports the results of an investigation, based on fundamental fluid dynamics and mass transfer theory, carried out to obtain a general understanding of ammonia mass transfer from an emission surface. The effects of airflow and aqueous ammonium solution temperature on ammonia mass...... to investigate the surface concentration distribution and mass transfer coefficient at different temperatures and velocities for which the Reynolds number is from 1.36 × 104 to 5.43 × 104 (based on wind tunnel length). The surface concentration increases as velocity decreases and varies...... greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation...
N-body Simulation of Binary Star Mass Transfer
Hutyra, Taylor; Sumpter, William
2017-01-01
Over 70% of the stars in our galaxy are multiple star systems, many of which are two stars that orbit around a common center of mass. The masses of the individual stars can be found using Newton’s and Kepler’s Laws. This allows astronomers to use these systems as astrophysical laboratories to study properties and processes of stars and galaxies. Among the many types observed, the dynamics of contact systems are the most interesting because they exhibit mass transfer, which changes the composition and function of both stars. The process by which this mass exchange takes place is not well understood. The lack of extensive mass transfer analysis, inadequate theoretical models, and the large time scale of this process are reasons for our limited understanding. In this work, a model was made to give astronomers a method for gaining a deeper knowledge and visual intuition of how the mass transfer between binary stars takes place. We have built the foundations for a simulation of arbitrary systems, which we plan to elaborate on in the future to include thermodynamics and nuclear processes.
Investigating stellar-mass black hole kicks
Repetto, Serena; Sigurdsson, Steinn
2012-01-01
We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of order 10-30 Rsun. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks to the newly-formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the large distances above the Galactic plane achieved by some binaries. Further, we find that the distribution of natal kicks would seem to be similar to that of neutron stars, rather than one where the kick velocities are reduced by the ratio of black hole to neutron-star mass (i.e. where the ki...
Mass Transfer via Low Velocity Impacts into Regolith
Jarmak, Stephanie; Colwell, Josh E.; Brisset, Julie; Dove, Adrienne
2016-10-01
The study of low velocity collisions (mass transfer from regolith onto an impactor at these velocities in microgravity. We have subsequently carried out ground-based experiments in which a cm-scale sphere impacts and rebounds from a bed of granular material in 1-g laboratory conditions at low impact speeds with the aid of a spring. This allows impacts at vmass transfer under these conditions. Further experiments with a range of regolith properties, impactor composition and surface properties, impact velocities, and atmospheric conditions will be performed in the laboratory to study the effects of each of these properties on the contact transfer of regolith onto the impactor. Further microgravity experiments with PRIME and in a small drop tower are planned to then study bulk mass transfer with conditions informed by the ground-based experiments. Impacts with the COLLIDE and PRIME microgravity experiments showed mass transfer at speeds < 40 cm/s into JSC-1 lunar regolith simulant and quartz sand targets. We will present the free-fall and laboratory results and implications for the collisional evolution of dust, pebbles and boulders in the protoplanetary disk as well as particles in planetary ring systems.
Grathwohl, Peter; Haberer, Cristina; Ye, Yu;
Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
Mass transfer in rolling rotary kilns : a novel approach
Heydenrych, M.D.; Greeff, P.; Heesink, A. Bert M.; Versteeg, G.F.
2002-01-01
A novel approach to modeling mass transfer in rotary kilns or rotating cylinders is explored. The movement of gas in the interparticle voids in the bed of the kiln is considered, where particles move concentrically with the geometry of the kiln and gas is entrained by these particles. The approach c
Kinetics and mass transfer phenomena in anaerobic granular sludge
Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G.; Kleerebezem, R.
2001-01-01
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (Vup). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (KS) for each dat
Gas-Liquid Mass Transfer Coefficient in Stirred Tank Reactors
Yawalkar, Archis A.; Heesink, Albertus B.M.; Versteeg, Geert F.; Pangarkar, Vishwas G.
2002-01-01
Volumetric gas—liquid mass transfer coefficient (kLa) data available in the literature for larger tanks (T = 0.39 m to 2.7 m) have been analyzed on the basis of relative dispersion parameter, N/Ncd. It was observed that at a given superficial gas velocity (VG), kLa values were approximately the same
Gas–Liquid Mass Transfer Coefficient in Stirred Tank Reactors
Yawalkar, Archis A.; Heesink, Albertus B.M.; Versteeg, Geert F.; Pangarkar, Vishwas G.
2002-01-01
Volumetric gas–liquid mass transfer coefficient (kLa) data available in the literature for larger tanks (T = 0.39 m to 2.7 m) have been analyzed on the basis of relative dispersion parameter, N/Ncd. It was observed that at a given superficial gas velocity (VG), kLa values were approximately the same
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
A Course in Advanced Topics in Heat and Mass Transfer.
Shaeiwitz, Joseph A.
1983-01-01
A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)
Dissociation and Mass Transfer Coefficients for Ammonia Volatilization Models
Process-based models are being used to predict ammonia emissions from manure sources, but their accuracy has not been fully evaluated for cattle manure. Laboratory trials were conducted to measure the dissociation and mass transfer coefficients for ammonia volatilization from media of buffered ammon...
Atmospheric composition affects heat- and mass-transfer processes
Blakely, R. L.; Nelson, W. G.
1970-01-01
For environmental control system functions sensitive to atmospheric composition, components are test-operated in helium-oxygen and nitrogen-oxygen mixtures, pure oxygen, and air. Transient heat- and mass-transfer tests are conducted for carbon dioxide adsorption on molecular sieve and for water vapor adsorption on silica gel.
Transient natural convection heat and mass transfer in crystal growth
Han, Samuel S.
1990-01-01
A numerical analysis of transient combined heat and mass transfer across a rectangular cavity is performed. The physical parameters are selected to represent a range of possible crystal growth in solutions. Good agreements with measurement data are observed. It is found that the thermal and solute fields become highly oscillatory when the thermal and solute Grashof numbers are large.
A Course in Advanced Topics in Heat and Mass Transfer.
Shaeiwitz, Joseph A.
1983-01-01
A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)
Predicting the Liquid Phase Mass Transfer Resistance of Structured Packings
Olujic, Z.; Seibert, A.F.
2014-01-01
Published correlations for estimating the liquid phase mass transfer coefficients of structured packings are compared using experimental evidence on the efficiency of Montz-Pak B1–250MN and B1–500MN structured packings as measured in total reflux distillation tests using the chlorobenzene/ethylbenze
Modelling toluene oxidation : Incorporation of mass transfer phenomena
Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.
2005-01-01
The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the m
Modelling toluene oxidation : Incorporation of mass transfer phenomena
Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.
The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the
Mass Transfer over a Film-Cooled Turbine Blade
Ping-Hei Chen
1996-01-01
edge region. The mass transfer measurements were conducted in a range of blowing ratios from 0.6 to 1.2 at two different mainstream turbulence levels (0.4% and 6.0% while keeping the exit Reynolds number, Re2, at a constant value of 397,000.
Simulation of heat and mass transfer in spray drying
Lijn, van der J.
1976-01-01
A survey is given of heat and mass transfer around droplets in spray dryers and the diffusional transport inside them. A calculational model is developed which includes variable diffusion coefficients in the drying liquid and swelling or shrinking of droplets. Calculations for droplets containing so
Modelling toluene oxidation : Incorporation of mass transfer phenomena
Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.
2005-01-01
The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the m
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
LUT observations of the mass-transferring binary AI Dra
Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping
2016-06-01
Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Hydrodynamics and Mass Transfer in a Modified Three-phase Airlift Loop Reactor
Liu Mengxi; Lu Chunxi; Shi Mingxian; Ge Baoli; Huang Jie
2007-01-01
A modified internal-loop airlift reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.
Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John
2014-03-20
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Bibliography on augmentation of convective heat and mass transfer
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report.
Fem Formulation for Heat and Mass Transfer in Porous Medium
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
Imhoff, Paul T.; Jaffé, Peter R.
1994-09-01
Gas-water phase mass transfer was examined in a homogeneous sand with both the gas and water phase mobile: water was infiltrated from the top of the sand column while benzene-laden air flowed upward from the bottom. Mass-transfer limitations for this situation may be important for applications of bioventing, where water and nutrients are added at the ground surface simultaneously with induced air movement to carry oxygen and volatile organics to microbial populations. Gas- and water-phase samples indicate that gas-water phase mass transfer was sufficiently fast that equilibrium between gas and water phases was achieved at all sampling locations within the porous medium. Lower-bound estimates for the gas-water mass-transfer rate coefficient show that mass transfer was at least 10-40 times larger than predictions made from an empirical model developed for gas-water phase mass transfer in an identical porous medium. A water-phase tracer test demonstrates that water flow was much more uniform in this study than in those earlier experiments, which is a likely explanation for the differing rates of gas-water phase mass transfer. It is hypothesized that the liquid distribution in previous laboratory experiments was less uniform because of preferential flow paths due to wetting front instabilities. Gas-water phase mass-transfer rate coefficients reported in this investigation are for an ideal situation of uniform water infiltration: mass-transfer rates in field soils are expected to be significantly smaller.
Griffioen, J.
1998-01-01
The concept of first-order mass transfer between mobile and immobile regions, which mathematically simplifies the concept of Fickian diffusion in stagnant areas, has often been used to describe physical nonequilibrium transport of solutes into natural porous media. This study compares the two
Griffioen, J.
1998-01-01
The concept of first-order mass transfer between mobile and immobile regions, which mathematically simplifies the concept of Fickian diffusion in stagnant areas, has often been used to describe physical nonequilibrium transport of solutes into natural porous media. This study compares the two concep
The effect of interfacial evaporation on heat and mass transfer of falling liquid film
WANG; Buxuan; (
2001-01-01
［1］Wasden, F.K., Dukler, A.E., Insight into the hydrodynamics of free falling wavy films, AIChE J., 1989, 35(2): 187.［2］Jayanti, S., Hewitt, G.F., Hydrodynamics and heat transfer of wavy thin film flow, Int. J. Heat Mass Transfer, 1997, 40(10): 179.［3］Seban, R.A., Faghri, A., Evaporation and heating with turbulent falling liquid films, ASME J. Heat Transfer, 1976, 98C: 315.［4］Yang, W.M., Evaporation cooling of liquid film in turbulent mixed convection channel flows, Int. J. Heat Mass Transfer, 1998, 41(23): 3719.［5］Wang, B.X., Zhang, J.T., Peng, X.F., Experimental study on the dryout heat flux of falling liquid film, accepted by Int. J. Heat Mass Transfer as HMT# 2507.［6］Udell, K.S., Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects, ASME J. Heat Transfer, 1983, 105: 485.［7］Carey, V.P., Liquid-Vapor Phase-Change Phenomena——An Introduction to the Thermophysics of Vaporization and Conduction Processes in Heat Transfer Equipment, Washington: Hemisphere Publishing Corporation, 1992, 112.［8］Eames, I.W., Marr, N.J., Sabir, H., The evaporation coefficient of water: a review, Int. J. Heat Mass Transfer, 1997, 40(12): 2963.［9］Israelachvili, J.N., Intermolecular and Surface Forces, San Diego: Academic Press, 1990, 16-30.［10］Holman, J.P., Heat Transfer, 5th ed., Tokyo: McGraw-Hill, Inc, 1981.［11］Zhang, J.T., Wang, B.X., Peng, X.F., Falling liquid film thickness measurement by optical-electronic method, Rev. Scientific Instruments, 2000, 71(4): ［12］Zhang, J.T., Wang, B.X., Peng, X.F., Investigation on the interfacial evaporation of falling liquid film with wall heating, accepted by J. Tsinghua University.［13］Fujita, T., Ueda, T., Heat transfer to falling liquid films and film breakdown, Int. J. Heat Mass Transfer, 1978, 21: 97.［14］Bohn, M.S., Davis, S.H., Thermocapillary breakdown of falling liquid films at high Reynolds numbers, Int. J. Heat Masss Transfer, 1993, 36
Effects of mass transfer between Martian satellites on surface geology
Nayak, Michael; Nimmo, Francis; Udrea, Bogdan
2016-03-01
Impacts on planetary bodies can lead to both prompt secondary craters and projectiles that reimpact the target body or nearby companions after an extended period, producing so-called "sesquinary" craters. Here we examine sesquinary cratering on the moons of Mars. We model the impact that formed Voltaire, the largest crater on the surface of Deimos, and explore the orbital evolution of resulting high-velocity ejecta across 500 years using four-body physics and particle tracking. The bulk of mass transfer to Phobos occurs in the first 102 years after impact, while reaccretion of ejecta to Deimos is predicted to continue out to a 104 year timescale (cf. Soter, S. [1971]. Studies of the Terrestrial Planets. Cornell University). Relative orbital geometry between Phobos and Deimos plays a significant role; depending on the relative true longitude, mass transfer between the moons can change by a factor of five. Of the ejecta with a velocity range capable of reaching Phobos, 25-42% by mass reaccretes to Deimos and 12-21% impacts Phobos. Ejecta mass transferred to Mars is caused by Deimos material. However the high-velocity ejecta mass reaccreted to Deimos from a Voltaire-sized impact is comparable to the expected background mass accumulated on Deimos between Voltaire-size events. Considering that the high-velocity ejecta contains only 0.5% of the total mass sent into orbit, sesquinary ejecta from a Voltaire-sized impact could feasibly resurface large parts of the Moon, erasing the previous geological record. Dating the surface of Deimos may be more challenging than previously suspected.
Study of molecular iodine-epoxy paint mass transfer
Belval-Haltier, E. [Inst. de Protection et Surete Nucleaire, IPSN, CEN Cadarache, St. Paul-lez-Durance (France)
1996-12-01
The mass transfer phenomena may have a significant influence on the quantity of I{sub 2} which could be released following a severe accident of a nuclear power plant and specially the mass transfer of iodine onto containment surfaces. So, the objective of the present work was to evaluate which phase limited the adsorption process of iodine onto gaseous epoxy paint under a range of conditions which may be relevant to a severe reactor accident. In this aim, a series of experiments was conducted in which the sorption kinetics of molecular iodine, labelled with {sup 131}I, was measured by monitoring continuously the accumulation of this species on the epoxy surface. For each test condition, the initial deposition velocity was determined and the corresponding gas phase mass transfer, kg, was estimated by using the heat transfer analogy for a laminar flow passing over a flat plate. Then, the surface reaction rate, Kr, was deduced from these two values. Experiments performed indicated that iodine adsorption onto epoxy paint is highly dependent on temperature, relative humidity of the carrier gas and moisture content of the painted coupon. In dry air flow conditions, the adsorption of iodine onto paint was found to increase with temperature and to be limited by the surface reaction rate, Kr. The I{sub 2} adsorption rate was found to increase with the humidity of carrier gas and in some studied conditions, the initial deposition velocity appeared to be controlled by gas phase mass transfer rather than surface interaction. The same phenomenon has been observed with an increase of the initial water content of the painted coupon. (author) 6 figs., 1 tab., 8 refs.
Heat and mass transfer in a vertical flue ring furnace
Jacobsen, Mona
1997-12-31
The main emphasis of this thesis was the design of a mathematical simulation model for studying details in the baking of anodes in the Hydro Aluminium anode baking furnace. The change of thermal conductivity, density, porosity and permeability during heat treatment was investigated. The Transient Plane Source technique for measuring thermal conductivity of solids was used on green carbon materials during the baking process in the temperature range 20-600 {sup o}C. Next, change of mass, density, porosity and permeability of anode samples were measured after being baked to temperatures between 300 and 1200 {sup o}C. The experimental data were used for parameter estimation and verification of property models for use in the anode baking models. Two distinct mathematical models have been modified to study the anode baking. A transient one-dimensional model for studying temperature, pressure and gas evolution in porous anodes during baking was developed. This was extended to a two-dimensional model incorporating the flue gas flow. The mathematical model which included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation and turbulent channel flow, was developed by source code modification of the Computational Fluid Dynamics code FLUENT. The two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke and anode was used for studying the effect of different firing strategies, raw materials properties and packing coke thickness. The model proved useful for studying the effects of heating rate, geometry and anode properties. 152 refs., 73 figs, 11 tabs.
Rates of mass, momentum, and energy transfer at the magnetopause
Hill, T. W.
1979-01-01
Empirical estimates of the global rates of transfer of solar wind mass, tangential momentum, and energy at the Earth's magnetopause are presented for comparison against model estimates based on the four principal mechanisms that have been proposed to explain such transfer. The comparisons, although not quite conclusive, strongly favor a model that incorporates some combination of direct magnetic connection and anomalous cross field diffusion. An additional global constraint, the rate at which magnetic flux is cycled through the magnetospheric convection system, strongly suggests that direct magnetic connection plays a significant if not dominant role in the solar wind/magnetosphere interaction.
Oxygen mass transfer in fermentation of bacillus thuringiensis
R. Ríos
2011-12-01
Full Text Available The purpose of this work was to obtain a correlation based on literature, depicting the relationships betwen the physical oxygen transfer rate (OTR and microbial oxygen uptake rate (OUR in order to determine the conditions (mass transfer coefficient, resulting on diferents combinations of aereations and agitations rates, under which growth will not be limited by oxygen. This correlation was adapted to culture with B. thuringiensis in order to estimate what biomass concentration are feasible for the physical limits set by operations conditions before microbial activity becomes limited by oxygen.
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and
Transferring data objects: A focused Ada investigation
Legrand, Sue
1988-01-01
The use of the Ada language does not guarantee that data objects will be in the same form or have the same value after they have been stored or transferred to another system. There are too many possible variables in such things as the formats used and other protocol conditions. Differences may occur at many different levels of support. These include program level, object level, application level, and system level. A standard language is only one aspect of making a complex system completely homogeneous. Many components must be standardized and the various standards must be integrated. The principal issues in providing for interaction between systems are of exchanging files and data objects between systems which may not be compatible in terms of their host computer, operating system or other factors. A typical resolution of the problem of invalidating data involves at least a common external form, for data objects and for representing the relationships and attributes of data collections. Some of the issues dealing with the transfer of data are listed and consideration is given on how these issues may be handled in the Ada language.
Geoelectrical inference of mass transfer parameters using temporal moments
Day-Lewis, F. D.; Singha, K.
2008-01-01
We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT-estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments. Copyright 2008 by the American Geophysical Union.
Heat and mass transfer in the melting of frost
Mohs, William F
2015-01-01
This Brief is aimed at engineers and researchers involved in the refrigeration industry: specifically, those interested in energy utilization and system efficiency. The book presents what the authors believe is the first comprehensive frost melting study involving all aspects of heat and mass transfer. The volume’s description of in-plane and normal digital images of frost growth and melting is also unique in the field, and the digital analysis technique offers an advantage over invasive measurement methods. The scope of book’s coverage includes modeling and experimentation for the frost formation and melting processes. The key sub-specialties to which the book are aimed include refrigeration system analysis and design, coupled heat and mass transfer, and phase-change processes.
Mass-transfer in close binary and their companions
Liao, Wenping; Qian, Shengbang; Zhu, Liying; Li, Linjia
2016-07-01
Secular and/or cyclical orbital period variations of close binaries can be derived by analyzing the (O-C) diagram. The secular variations are usually explained as mass transfer between components, while the most plausible explanation of the cyclic period changes is the light-travel time effect (LTTE) through the presence of a third body. Mass transfer and additional companions in close binary systems are important for understanding the formation and evolution of the systems. Here, UV light curves of several close binaries based on the Lunar-based Ultraviolet Telescope (LUT) observations are presented and analyzed with the Wilson-Devinney (W-D) method. Then, based on those light-curve solutions and new analysis of the orbital period variations, the multiplicity, geometrical structure and evolution state of targets are discussed.
Theoretical study of rock mass investigation efficiency
Holmen, Johan G.; Outters, Nils [Golder Associates, Uppsala (Sweden)
2002-05-01
The study concerns a mathematical modelling of a fractured rock mass and its investigations by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency (precision) of such investigations and determine the amount of investigations necessary to obtain reliable estimations of the structural-geological parameters of the studied rock mass. The study is not about estimating suitable sample sizes to be used in site investigations.The purpose of the study is to analyse the amount of information necessary for deriving estimates of the geological parameters studied, within defined confidence intervals and confidence level In other words, how the confidence in models of the rock mass (considering a selected number of parameters) will change with amount of information collected form boreholes and surfaces. The study is limited to a selected number of geometrical structural-geological parameters: Fracture orientation: mean direction and dispersion (Fisher Kappa and SRI). Different measures of fracture density (P10, P21 and P32). Fracture trace-length and strike distributions as seen on horizontal windows. A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock mass. The DFN-model was primarily based on the properties of an actual fracture network investigated at the Aespoe Hard Rock Laboratory. The rock mass studied (DFN-model) contained three different fracture sets with different orientations and fracture densities. The rock unit studied was statistically homogeneous. The study includes a limited sensitivity analysis of the properties of the DFN-model. The study is a theoretical and computer-based comparison between samples of fracture properties of a theoretical rock unit and the known true properties of the same unit. The samples are derived from numerically generated boreholes and surfaces that intersect the DFN-network. Two different boreholes are analysed; a vertical borehole and a borehole that is
Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate
Han, B.; Qu, H. Y.; Niemi, H.
2014-01-01
Precipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)(2)) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman...... on the dissolution of Mg(OH)(2). In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3 center dot 3H(2)O), as needle-like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation...
Rong, Li; Nielsen, Peter V; Zhang, Guoqiang
2010-04-01
This paper reports the results of an investigation, based on fundamental fluid dynamics and mass transfer theory, carried out to obtain a general understanding of ammonia mass transfer from an emission surface. The effects of airflow and aqueous ammonium solution temperature on ammonia mass transfer are investigated by using computational fluid dynamics (CFD) modeling and by a mechanism modeling using dissociation constant and Henry's constant models based on the parameters measured in the experiments performed in a wind tunnel. The validated CFD model by experimental data is used to investigate the surface concentration distribution and mass transfer coefficient at different temperatures and velocities for which the Reynolds number is from 1.36 x 10(4) to 5.43 x 10(4) (based on wind tunnel length). The surface concentration increases as velocity decreases and varies greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related.
Mass transfer performance of structured packings in a CO2 absorption tower
Wei Yang; Xiaodan Yu; Jianguo Mi; Wanfu Wang; Jian Chen
2015-01-01
This paper studies the mass transfer performance of structured packings in the absorption of CO2 from air with aqueous NaOH solution. The Eight structured packings tested are sheet metal ones with corrugations of different geometry parameters. Effective mass transfer area and overall gas phase mass transfer coefficient have been measured in an absorption column of 200 mm diameter under the conditions of gas F-factor in 0.38–1.52 Pa0.5 and aqueous NaOH solution concentration of 0.10–0.15 kmol·m−3. The effects of gas/liquid phase flow rates and packing geometry parameters are also investigated. The results show that the effective mass transfer area changes not only with packing geometry parameters and liquid load, but also with gas F-factor. A new effective mass transfer area correlation on the gas F-factor and the liquid load was proposed, which is found to fit experiment data very well.
Lemouari, M. [Department of Processes Engineering, Faculty of Sciences and Engineering, University of Bejaia (Algeria); Boumaza, M. [Department of Chemical Engineering, College of Engineering - King Saud University, P.O. Box 800, Riyadh (Saudi Arabia); Kaabi, A. [Department of Genie Climatique, Faculty of Engineering, University of Constantine, Constantine (Algeria)
2009-06-15
This paper deals with an experimental analysis of simultaneous heat and mass transfer phenomena between water and air by direct contact in a packed cooling tower. The tower is filled with a ''VGA.'' (Vertical Grid Apparatus) type packing. The packing is 0.42 m high and consists of four (04) galvanised sheets having a zigzag form, between which are disposed three (03) metallic vertical grids in parallel with a cross-sectional test area of 0.15 m x 0.148 m. This study investigates the effect of the air and water flow rates on the global heat and mass transfer coefficient as well as the evaporation rate of water into the air stream, for different inlet water temperatures. Two operating regimes were observed during the air/water contact inside the tower, a Pellicular Regime (PR) and a Bubble and Dispersion Regime (BDR). These two regimes can determine the best way to promote the heat and mass transfer phenomena in such device. The BDR regime seems to be more efficient than the Pellicular Regime, as it enables to achieve relatively higher values of the global heat and mass transfer coefficient and larger water evaporation rates. The comparison between the obtained results and some of those available in the literature for other types of packing indicates that this type possesses good heat and mass transfer characteristics. (author)
Mass transfer from the wall of a column to the fluid in a fluidized bed of inert spherical particles
Brzić Danica V.
2004-01-01
Full Text Available Mass transfer in fluidized beds is an important operation for separation processes. Two effects can be achieved by using fluidized beds in mass transfer processes increasing interface area and relative movement between the phases. These effects are both desirable because they lead to greater process rates. This paper presents an experimental investigation regarding mass transfer from the wall of a column to the fluid in a fluidized bed of inert spherical particles. The experiments were conducted in column 40 mm in diameter with spherical particles 0,8-3 mm in diameter and water as one fluidizing fluid. The method of dissolution of benzoic acid was used to provide very low mass flux. The average wall-to-fluid mass transfer coefficients were determined for two systems: single-phase fluid flow and a fluidized bed of inert particles The measurements encompassed a Reynolds number range from 100-4000 for single-phase flow and 600-4000 in fluidized beds. The mass transfer coefficients for both systems were calculated from weight loss of benzoic acid. The effects of superficial liquid velocity and particle diameter on the mass transfer coefficient were investigated. It was found that mass transfer was more intensive in the fluidized bed in comparison with single phase flow. The best conditions for mass transfer were reached at a minimum fluidization velocity, when the mass transfer coefficient had the greatest value. The experimental data were correlated in the form: jd = f(Re, where jd is the dimensionless mass transfer factor and Re the Reynolds number.
Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor.
Tang, Bing; Qiu, Bing; Huang, Shaosong; Yang, Kanghua; Bin, Liying; Fu, Fenglian; Yang, Huiwen
2015-04-01
This work investigated the DO distribution and the factors influencing the mass transfer of DO in a multi-habitat membrane bioreactor. Through the continuous measurements of an on-line automatic system, the timely DO values at different zones in the bioreactor were obtained, which gave a detailed description to the distribution of oxygen within the bioreactor. The results indicated that the growth of biomass had an important influence on the distribution of oxygen. As the extension of operational time, the volumetric oxygen mass transfer coefficient (kLa) was generally decreased. With the difference in DO values, a complex environment combining anoxic and oxic state was produced within a single bioreactor, which provided a fundamental guarantee for the total removal of TN. Aeration rate, the concentration and apparent viscosity of MLSS have different influences on kLa, but adjusting the viscosity is a feasible method to improve the mass transfer of oxygen in the bioreactor.
李成; 李俊明
2011-01-01
Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.
Empirical approach to solid-liquid mass transfer in a three-phase sparged reactor
Gogoi, N.C.; Dutta, N.N. [Regional Research Laboratory, Jodrhat (India). Chemical Engineering Division
1996-08-01
Solid-liquid mass transfer coefficients were determined in three-phase sparged reactors (TPSRs) using benzoic acid dissolution. Experiments were performed in three acrylic column reactors of internal diameter 0.1, 0.2 and 0.3 m respectively. The superficial gas velocities were varied up to 0.35 m s{sup -1}. Using experimental data generated in this work and data reported in the literature for a 0.4-m diameter reactor, the effect of the reactor diameter on the solid-liquid mass transfer coefficient, k{sub SL}, was investigated. It is demonstrated that an empirical approach can be used to determine k{sub SL} from an appropriate mass transfer correlation useful for the design of TPSRs. 20 refs., 5 figs., 3 tabs.
Mass transfer controlled by fracturing in micritic carbonate rocks
Richard, James; Coulon, Michel; Gaviglio, Patrick
2002-05-01
The fractured Coniacian chalk from the Omey area (Paris Basin, France) displays strong evidence of modifications controlled by brittle deformation. Fracturing is associated with important changes in pore space (decrease in total porosity and pore interconnection, change in distribution of pore access diameters and capillary characteristics), nannofacies (gradual evolution from a point-contact fabric to a welded, interlocked or coalescent fabric) and chemical composition (Sr concentration decrease). These modifications result from fluid-rock interaction that control significant mass transfer (percentage of secondary calcite >50%). Sr is a remarkable indicator of these mass transfers. Sr analyses allowed us to prove that the deformed zone (26.7 m) is wider than the fractured zone (11.3 m). They also indicate that the footwall block is less affected than the hanging wall block. A physicochemical model of the deformation mechanism is proposed. It shows that a cyclic process of fracturing controls the temporal evolution of the fluid saturation and fluid pressure and, consequently, the mass transfer.
Sepinsky, J F; Kalogera, V; Rasio, F A
2007-01-01
We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, assuming conservation of total system mass and orbital angular momentum. Assuming a delta function mass transfer rate centered at periastron, we find rates of secular change of the orbital semi-major axis and eccentricity which are linearly proportional to the magnitude of the mass transfer rate at periastron. The rates can be positive as well as negative, so that the semi-major axis and eccentricity can increase as well as decrease in time. Adopting a delta-function mass-transfer rate of $10^{-9} M_\\sun {\\rm yr}^{-1}$ at periastron yields orbital evolution timescales ranging from a few Myr to a Hubble time or more, depending on the binary mass ratio and orbital eccentricity. Comparison with orbital evolution timescales due to dissipative tides furthermore shows that tides cannot, in all cases, circularize the orbit rapidly enough to justify the often adopted assumption of instantan...
Secondary and subsequent DNA transfer during criminal investigation.
Fonneløp, Ane Elida; Egeland, Thore; Gill, Peter
2015-07-01
With the introduction of new multiplex PCR kits and instrumentation such as the Applied Biosystems 3500xl, there has recently been a rapid change in technology that has greatly increased sensitivity of detection so that a DNA profile can routinely be obtained from only a few cells. Research to evaluate the risks of passive transfer has not kept pace with this development; hence the risk of innocent DNA transfer at the crime-scene is currently not properly understood. The purpose of this study was to investigate the possibility of investigator-mediated transfer of DNA traces with disposable nitrile-gloves used during crime-scene examinations. We investigated the primary transfer of freshly deposited DNA from touched plastic, wood or metal substrates and secondary and tertiary transfer by a person wearing disposable nitrile-gloves and onto a third object. We show that with use of the new highly sensitive technologies available in forensic DNA analysis there is an enhanced probability to obtain a DNA-profile which has not been directly deposited on the object but is an outcome of one or more transfer events. The nitrile-gloves used by investigators during exhibit examination can act as a vector for DNA transfer from one item to another. We have shown that the amount of DNA deposited on an object affects the probability of transfer. Secondly, the type of substrate material that DNA is deposited onto has an impact on transfer rates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Proton Transfer Time-of-Flight Mass Spectrometer
Watson, Thomas B [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-01
The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.
Mass Transfer in a closed stirred gas/liquid contactor: Part 1: The mass transfer rate kLS
Koetsier, W.T.; Thoenes, D.; Frankena, J.F.
1973-01-01
Liquid phase mass transfer rates kLS for the absorption of oxygen in tap water and in aqueous ionic solutions have been determined in two closed stirred tank contactors for a power input between 3 and 70 W/kg and (impeller diameter)f(tank diameter) ratios DifT of 0.3, 0.35 and 0.4. The contactors
Mass transfer and loss of the massive semi-detached binary AI Crucis
Er-Gang Zhao; Sheng-Bang Qian; E.Fernández Lajús; Carolina von Essen; Li-Ying Zhu
2010-01-01
AI Crucis is a short-period semi-detached massive close binary (P =1.41771d,Sp.=B 1.5) in the open cluster NGC 4103. It is a good astrophysical laboratory for investigating the formation and evolution of massive close binary stars via case A mass transfer. Orbital period variations of the system were analyzed based on one newly determined eclipse time and the others compiled from the literature. It is discovered that the orbital period of the binary is continuously increasing at a rate of dP/dt = +1.00(+0.04) x 10-7 d yr-1. After the long-term increase is subtracted from the O-C diagram,weak evidence indicates the presence of a cyclic oscillation with a period of 30.1 yr,which may reveal a very cool stellar companion in the system. The long-term period increase can be explained by mass transfer from the less massive component to the more massive one. This is in agreement with the semidetached configuration of the binary,indicating that the system is undergoing a slow mass-transfer stage on the nuclear time scale of the secondary. However,it is found that the slow mass transfer is insufficient to cause the observed period increase,which suggests that the stellar wind from the hot component should contribute to the amount of period increase dP/dt = +0.54×10-7 d yr-1 that corresponds to a mass loss rate of M1 = 2.72×10-7 M⊙yr-1. It is estimated that the hot component lost a total mass of 4.1 M⊙ during the slow mass-transfer stage and,thus,the evolution of the binary system should be changed greatly by the mass loss.
Tribological behavior of a friction couple functioning with selective mass transfer
Ilie, Filip
2017-02-01
Experimental researches on different lubricated friction couples, have confirmed that it is useful to investigate thermodynamic processes which are unstable in lubricant and on the friction couples surfaces in the first stage of the friction process. This presupposes that, in operating conditions, physical-chemical processes which are favourable to friction, such as: polymerization, formation of colloids, formation of other active substances at the contact surfaces and of other compounds with low resistance to shear take place. Friction in such conditions takes place with selective mass transfer, and it is used there where the friction of the mixed and adherence layers is not safe enough, or the durability of the friction couples is not assured. The selective mass transfer allows the transfer of some elements of the materials in contact from one surface to the other, covering them with a thin, superficial layer, with superior properties at minimal friction and wear. The aim of this paper is to analyse the physical-chemical factors and the proper processes for achieving the selective mass transfer for the couple steel/bronze, which in optimal conditions, forms a thin layer of copper on the contact surfaces areas. Also, it presents some studies and researches concerning the tribological behaviour of the surfaces of a friction couple with linear contact (roll/roll) which operates with selective mass transfer, tested on Amsler tribometer.
Tribological behavior of a friction couple functioning with selective mass transfer
Ilie, Filip
2016-06-01
Experimental researches on different lubricated friction couples, have confirmed that it is useful to investigate thermodynamic processes which are unstable in lubricant and on the friction couples surfaces in the first stage of the friction process. This presupposes that, in operating conditions, physical-chemical processes which are favourable to friction, such as: polymerization, formation of colloids, formation of other active substances at the contact surfaces and of other compounds with low resistance to shear take place. Friction in such conditions takes place with selective mass transfer, and it is used there where the friction of the mixed and adherence layers is not safe enough, or the durability of the friction couples is not assured. The selective mass transfer allows the transfer of some elements of the materials in contact from one surface to the other, covering them with a thin, superficial layer, with superior properties at minimal friction and wear. The aim of this paper is to analyse the physical-chemical factors and the proper processes for achieving the selective mass transfer for the couple steel/bronze, which in optimal conditions, forms a thin layer of copper on the contact surfaces areas. Also, it presents some studies and researches concerning the tribological behaviour of the surfaces of a friction couple with linear contact (roll/roll) which operates with selective mass transfer, tested on Amsler tribometer.
Influence of drying air parameters on mass transfer characteristics of apple slices
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
Heat and mass transfers in the jets; Transferts de chaleur et de masse dans les jets
NONE
2001-07-01
This day on the heat and mass transfers in the jets, was organized by the SFT (French Society of Thermic) to present the state of the art in the domain. Fifteen presentations allowed the participants to discuss about turbulent flows, simulation of fluid flow and jets impacts. (A.L.B.)
Sulfide emissions in sewer networks: focus on liquid to gas mass transfer coefficient.
Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre
2017-04-01
H2S emission dynamics in sewers are conditioned by the mass transfer coefficient at the interface. This work aims at measuring the variation of the mass transfer coefficient with the hydraulic characteristics, with the objective of estimating H2S emission in gravity pipes, and collecting data to establish models independent of the system geometry. The ratio between the H2S and O2 mass transfer coefficient was assessed in an 8 L mixed reactor under different experimental conditions. Then, oxygen mass transfer measurements were performed in a 10 m long gravity pipe. The following ranges of experimental conditions were investigated: velocity flow [0-0.61 m.s(-1)], Reynolds number [0-23,333]. The hydrodynamic parameters at the liquid/gas interface were calculated by computational fluid dynamics (CFD). In the laboratory-scale reactor, the O2 mass transfer coefficient was found to depend on the stirring rate (rph) as follows: KL,O2 = 0.016 + 0.025 N(3.85). A KL,H2S/KL,O2 ratio of 0.64 ± 0.24 was found, in accordance with previously published data. CFD results helped in refining this correlation: the mass transfer coefficient depends on the local interface velocity ui (m.h(-1)): KL,O2 = 0.016 + 1.02 × 10(-5) ui(3.85) In the gravity pipe device, KL,O2 also exponentially increased with the mean flow velocity. These trends were found to be consistent with the increasing level of turbulence.
Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles
Jaćimovski Darko R.
2014-01-01
Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
A mass transfer model for VOC emission from silage
Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan
2012-07-01
Silage has been shown to be an important source of emissions of volatile organic compounds (VOCs), which contribute to the formation of ground-level ozone. Measurements have shown that environmental conditions and silage properties strongly influence emission rates, making it difficult to assess the contribution of silage in VOC emission inventories. In this work, we present an analytical convection-diffusion-dispersion model for predicting emission of VOCs from silage. It was necessary to incorporate empirical relationships from wind tunnel trials for the response of mass transfer parameters to surface air velocity and silage porosity. The resulting model was able to accurately predict the effect of temperature on ethanol emission in wind tunnel trials, but it over-predicted alcohol and aldehyde emission measured using a mass balance approach from corn silage samples outdoors and within barns. Mass balance results confirmed that emission is related to gas-phase porosity, but the response to air speed was not clear, which was contrary to wind tunnel results. Mass balance results indicate that alcohol emission from loose silage on farms may approach 50% of the initial mass over six hours, while relative losses of acetaldehyde will be greater.
Direct geoelectrical evidence of mass transfer at the laboratory scale
Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy
2012-01-01
Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.
Studies on the Influence of Third Component on Gas-Liquid Mass Transfer
无
2000-01-01
The influence of the third component on gas-liquid mass transfer was studied by use of laser holographic interferometry. Four surfactants were added respectively and experimental results show that the microamount of surfactants can change obviously the concentration near the interface on bubble mass transfer process, which indicated that the third component has a significant effect on the bubble mass transfer process.
Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface
2008-01-01
A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.
Mass Transfer From Fundamentals to Modern Industrial Applications
Asano, Koichi
2006-01-01
This didactic approach to the principles and modeling of mass transfer as it is needed in modern industrial processes is unique in combining a step-by-step introduction to all important fundamentals with the most recent applications. Based upon the renowned author's successful new modeling method as used for the O-18 process, the exemplary exercises included in the text are fact-proven, taken directly from existing chemical plants. Fascinating reading for chemists, graduate students, chemical and process engineers, as well as thermodynamics physicists.
Hydrodynamics and Mass Transfer Performance in Supercritical Fluid Extraction Columns
石冰洁; 张泽廷; 等
2002-01-01
New models for describing hydrodynamics and mass transfer performance in supercritical fluid extraction columns were proposed.Those models were proved by experimental data,which were obtained in supercritical fluid extraction packed column,spray column and sieve tray column respectively.The inner diameter of those columns areΦ25mm，These experimental systems include supercritical carbon dioxideisopropanol-water and supercritical carbon dioxide-ethanol-water,in which supercritical carbon dioxide was dispersed phase,and another was continuous phase.The extraction processes were operated with continuous countercurrent flow.The predicted values are agreed well with experimental data.
Mass transfer in porous media with heterogeneous chemical reaction
Souza S.M.A.G.Ulson de
2003-01-01
Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.
Gas stream in Algol. [mass transfer in binary star systems
Cugier, H.; Chen, K.-Y.
1977-01-01
Additional absorption features in the red wings of the Mg II resonance lines near 2800 A are found in observations of Algol made from the Copernicus satellite. The absorption features were clearly seen only during a part of the primary eclipse, in the phase interval 0.90-0.03. The observations are interpreted as being produced by a stream of matter flowing from Algol B in the direction of Algol A. The measured Doppler shifts of the features give the value of 150 km/s as the characteristic velocity of matter in the stream. The mass transfer connected with the stream is estimated to be of the order of 10 to the -13th power solar mass per year.
Mass Transfer Model for a Breached Waste Package
C. Hsu; J. McClure
2004-07-26
The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss.
E. R. Gouveia
2000-12-01
Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.
Laboratory Investigations of Lava Flow Heat Transfer
Fagents, S. A.; Rumpf, M. E.; Hamilton, C. W.
2011-12-01
To investigate the effectiveness with which lava can heat substrates of different types, we conducted a suite of experiments in which molten basalt was poured onto solid or particulate materials, and the downward propagation of the heat pulse was measured. The motivation for this work lies in seeking to understand how lava flows on the Moon would have heated the underlying regolith, and thus to determine the depths at which solar wind particles implanted in the regolith would have been protected from the heat of the overlying flow. Extraction and analysis of ancient solar wind samples would provide a wealth of information on the evolution and fate of the Sun. Our experimental device consists of a box constructed from 1"-thick calcium silicate sheeting with interior dimensions of 20 x 20 x 25 cm. The substrate material (a particulate lunar regolith simulant or solid basalt) occupies the lower 15 cm of the box, which is embedded with an array of 8 thermocouples. Up to 6 kg of crushed basalt collected from the 2010 Kilauea lava flows is heated to supraliquidus temperatures and poured directly onto the substrate. The evolution of the temperature profile within the lava flow and substrate is recorded as the basalt cools, and the surface temperature distribution is recorded using a Forward Looking Infrared Radiometer (FLIR) video camera. We have been using the experimental data sets to validate a numerical model of substrate heating. If the physics is appropriately formulated, the model will accurately predict both surface and internal temperature distribution as a function of time. A key issue has been incorporation of valid temperature-dependent thermophysical properties, because particulate materials are not well characterized at elevated temperatures. Regolith thermal conductivity in particular exerts a strong control over the depth of penetration of the thermal wave, so its accurate description is essential for a robust model. Comparison of experimental vs. modeled
Rosinski Stefan
2003-01-01
Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.
Dan, Marius; Guillochon, James; Ramirez-Ruiz, Enrico
2011-01-01
We present the results of a systematic numerical study of the onset of mass transfer in double degenerate binary systems and its impact on the subsequent evolution. All investigated systems belong to the regime of direct impact, unstable mass transfer. In all of the investigated cases, even those considered unstable by conventional stability analysis, we find a long-lived mass transfer phase continuing for as many as several dozen orbital periods. This settles a recent debate sparked by a discrepancy between earlier SPH calculations that showed disruptions after a few orbital periods and newer grid-based studies in which mass transfer continued for tens of orbits. As we show that these binaries can survive at small separation for hundreds of orbital periods, their associated gravitational wave signal should be included when calculating the gravitational wave foreground (although expected to below LISA's sensitivity at these high frequencies). We also show that the inclusion of the entropy increase associated ...
Hornblendite delineates zones of mass transfer through the lower crust
Daczko, Nathan R.; Piazolo, Sandra; Meek, Uvana; Stuart, Catherine A.; Elliott, Victoria
2016-08-01
Geochemical signatures throughout the layered Earth require significant mass transfer through the lower crust, yet geological pathways are under-recognized. Elongate bodies of basic to ultrabasic rocks are ubiquitous in exposures of the lower crust. Ultrabasic hornblendite bodies hosted within granulite facies gabbroic gneiss of the Pembroke Valley, Fiordland, New Zealand, are typical occurrences usually reported as igneous cumulate hornblendite. Their igneous features contrast with the metamorphic character of their host gabbroic gneiss. Both rock types have a common parent; field relationships are consistent with modification of host gabbroic gneiss into hornblendite. This precludes any interpretation involving cumulate processes in forming the hornblendite; these bodies are imposter cumulates. Instead, replacement of the host gabbroic gneiss formed hornblendite as a result of channeled high melt flux through the lower crust. High melt/rock ratios and disequilibrium between the migrating magma (granodiorite) and its host gabbroic gneiss induced dissolution (grain-scale magmatic assimilation) of gneiss and crystallization of mainly hornblende from the migrating magma. The extent of this reaction-replacement mechanism indicates that such hornblendite bodies delineate significant melt conduits. Accordingly, many of the ubiquitous basic to ultrabasic elongate bodies of the lower crust likely map the ‘missing’ mass transfer zones.
Pattern formation and mass transfer under stationary solutal Marangoni instability.
Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin
2014-04-01
According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated.
Mass Transfer During Osmotic Dehydration Using Acoustic Cavitation
孙宝芝; 淮秀兰; 姜任秋; 刘登瀛
2005-01-01
An experimental study on intensifying osmotic dehydration was carried out in a state of nature and with acoustic cavitation of different cavitating intensity (0.5A, 0.TA and 0.9A) respectively, in which the material is apple slice of 5 mm thickness. The result showed that acoustic cavitation remarkably enhanced the osmotic dehydration, and the water loss was accelerated with the increase of cavitating intensity. The water diffusivity coefficients ranged from 1.8 × 10-10 m2.s-1 at 0.5A to 2.6 × 10-10 m2.s-1 at 0.9A, and solute diffusivity coefficients ranged from 3.5×10-11 m2.s-1 at 0.5A to 4.6×10-11 m2.s-1 at 0.9A. On the basis of experiments, a mathematical model was established about mass transfer during osmotic dehydration, and the numerical simulation was carried out. The calculated results agree well with experimental data, and represent the rule of mass transfer during osmotic dehydration intensified by acoustic cavitation.
Analysis of ultrafiltration and mass transfer in a bioartificial pancreas.
Jaffrin, M Y; Reach, G; Notelet, D
1988-02-01
A bioartificial pancreas is an implantable device which contains insulin secreting cells (Langerhans islets), separated from the circulating blood by a semi-permeable membrane to avoid rejection. This paper describes the operation of such a device and evaluates the respective contributions of diffusion and ultrafiltration to the glucose and insulin mass transfer. It is shown that the pressure drop along the blood channel produces across the first half of the channel an ultrafiltration flux toward the islet compartment followed in the second half by an equal flux in reverse direction from islets to blood. The mass transfer analysis is carried out for an optimal geometry in which a U-shaped blood channel surrounds closely a very thin islet compartment formed by a folded flat membrane. A complete model of insulin release by this device is developed and is compared with in vitro data obtained with rats islets. Satisfactory kinetics is achieved with a polyacrylonitrile membrane used in hemodialysis. But the model shows that the membrane hydraulic permeability should be increased by a factor of 10 to significantly improve the performance.
Effect of acoustic streaming on the mass transfer from a sublimating sphere
Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.
2000-04-01
The effect of the acoustic streaming on the mass transfer from the surface of a sphere positioned in an ultrasonic acoustic levitator is studied both experimentally and theoretically. Acoustic levitation using standing ultrasonic waves is an experimental tool for studying the heat and mass transfer from small solid or liquid samples, because it allows an almost steady positioning of a sample at a fixed location in space. However, the levitator introduces some difficulties. One of the main problems with acoustic levitation is that an acoustic streaming is induced near the sample surface, which affects the heat and mass transfer rates, as characterized by increased Nusselt and Sherwood numbers. The transfer rates are not uniform along the sample surface, and the aim of the present study is to quantify the spatial Sherwood number distribution over the surface of a sphere. The experiments are based on the measurement of the surface shape of a sphere layered with a solid substance as a function of time using a charge-coupled device (CCD) camera with backlighting. The sphere used in this research is a glass sphere layered with a volatile solid substance (naphthalene or camphor). The local mass transfer from the surface both with and without an ultrasonic acoustic field is investigated in order to evaluate the effect of the acoustic streaming. The experimental results are compared with predictions following from the theory outlined [A. L. Yarin, M. Pfaffenlehner, and C. Tropea, J. Fluid Mech. 356, 65 (1998); A. L. Yarin, G. Brenn, O. Kastner, D. Rensink, and C. Tropea, ibid. 399, 151 (1999)] which describes the acoustic field and the resulting acoustic streaming, and the mass transfer at the surface of particles and droplets located in an acoustic levitator. The results are also compared with the experimental data and with the theoretical predictions of Burdukov and Nakoryakov [J. Appl. Mech. Tech. Phys. 6, 51 (1965)], which are valid only in the case of spherical
Mass transfer in eccentric binary systems using the binary evolution code BINSTAR
Davis, P J; Deschamps, R
2013-01-01
We present the first calculations of mass transfer via RLOF for a binary system with a significant eccentricity using our new binary stellar evolution code. The study focuses on a 1.50+1.40 Msun main sequence binary with an eccentricity of 0.25, and an orbital period of about 0.7 d. The reaction of the stellar components due to mass transfer is analyzed, and the evolution of mass transfer during the periastron passage is compared to recent smooth particle hydrodynamics (SPH) simulations. The impact of asynchronism and non-zero eccentricity on the Roche lobe radius, and the effects of tidal and rotational deformation on the stars' structures, are also investigated. Calculations were performed using the state-of-the-art binary evolution code BINSTAR, which calculates simultaneously the structure of the two stars and the evolution of the orbital parameters. The evolution of the mass transfer rate during an orbit has a Gaussian-like shape, with a maximum at periastron, in qualitative agreement with SPH simulation...
Mass-transfer properties of insulin on core-shell and fully porous stationary phases.
Lambert, Nándor; Kiss, Ibolya; Felinger, Attila
2014-10-31
The mass-transfer properties of three superficially-porous packing materials, with 2.6 and 3.6μm particle and 1.9, 2.6, and 3.2μm inner core diameter, respectively, were investigated and compared with those of fully porous packings with similar particle properties. Several sources of band spreading in the chromatographic bed have been identified and studied according to the general rate model of chromatography. Besides the axial dispersion in the stream of the mobile phase, and the external mass transfer resistance, the intraparticle diffusion was studied in depth. The first absolute and the second central moments of the peaks of human insulin, over a wide range of mobile phase velocities were measured and used for the calculation of the mass-transfer coefficients. The experimental data were also analyzed using the stochastic or molecular dynamic model of Giddings and Eyring. The dissimilarities of the mass-transfer observed in the different columns were identified and evaluated. Copyright © 2014 Elsevier B.V. All rights reserved.
Removal of Hg~0 with sodium chlorite solution and mass transfer reaction kinetics
无
2010-01-01
The absorption behavior of Hg0 was studied experimentally by using sodium chlorite solution(NaClO2) as the absorbent in a bubble reactor.Primary influencing factors on removal efficiency of Hg0 such as NaClO2 concentration,pH,reaction temperature and the concentration of Hg0 were investigated.The results indicated that 72.91% of Hg0 removal efficiency could be achieved in acidic NaClO2 solution.The removal mechanism of Hg0 was proposed by analyzing of Hg2+ concentration in ab-sorption solution after reaction and comparing the electrode potentials between NaClO2 species and Hg2+/Hg0.The experimental results of mass transfer-reaction kinetics on oxidation of Hg0 by NaClO2 solution showed that with the increase of NaClO2 concentration and the decrease of pH value,the enhancement factor(E) and ratio of KG(Hg0)/kG(Hg0) increased and the liquid phase mass transfer resistance decreased,which is benefit to the mass transfer adsorption reaction.Although the increase of reaction temperature could improve the enhancement factor(E),but the ratio of KG(Hg0)/kG(Hg0) decreased;as a result,the liquid phase mass transfer resistance increased,therefore,the reaction rate for removal of Hg0 decreased.
Mass transfer in thin films under counter-current gas: experiments and numerical study
Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant
2016-11-01
Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.
Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence
Lombardi, James C; Dooley, Katherine L; Gearity, Kyle; Kalogera, Vassiliki; Rasio, Frederic A
2010-01-01
Motivated by suggestions that binaries with almost equal-mass components ("twins") play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low mass cores (M_c ~0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. We discuss the implications of our results to the formation of binary neutron stars.
Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov
2014-01-01
Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.
Radiation Effect on Mhd Heat and Mass Transfer Flow over a Shrinking Sheet with Mass Suction
patkar ramesh
2014-01-01
Full Text Available A numerical analysis has been carried out to study the effects radiation and heat source/sink on the steady two dimensional magnetohydrodynamic (MHD boundary layer flow of heat and mass transfer past a shrinking sheet with wall mass suction. In the dynamic system, a uniform magnetic field acts normal to the plane of flow. The governing partial differential equations are transformed into self-similar equations are solved by employing finite difference using the quasilinearization technique. From the analysis it is found that the velocity inside the boundary layer increases with increase of wall mass suction and magnetic field and accordingly the thickness of the momentum boundary layer decreases. The temperature decreases with Hartmann number, Prandtl number, and heat sink parameter and the temperature increases with heat source parameter, radiation parameter. The concentration decreases with an increase of Hartmann number, mass suction parameter, Schmidt number, chemical reaction parameter.
Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels
Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)
2015-03-23
The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in
Numerical study on heat and mass transfer in hygroscopic rotor during sorption process
Shin, Hyun-Geun; Park, Il Seouk
2017-02-01
Recently, interest in hygroscopic dehumidifiers has rapidly increased in the indoor environment industry because of their potential contribution to the development of hybrid (refrigerating + hygroscopic) dehumidifiers. Heat and mass transport phenomena such as adsorption and desorption, and their complex interactions occur in a desiccant rotor, which comprises many small hygroscopic channels. This study numerically investigated the conjugated heat and mass transfers in a channel modeled with the flow and porous desiccant regions, where only ordinary and surface diffusions (excluding Knudsen diffusion) during the sorption processes were considered. The change in the dehumidification performance depending on operating conditions such as the rotor's rotating speed, air flow rate, and adsorption-desorption ratio, was examined under various working environments. The temporal and spatial variations in the temperature, vapor mass fraction, and liquid water mass fraction in the channel were considered in detail. The closely linked heat and mass transports were clarified for a better understanding of the sorption processes in the desiccant rotor.
Numerical study on heat and mass transfer in hygroscopic rotor during sorption process
Shin, Hyun-Geun; Park, Il Seouk
2016-06-01
Recently, interest in hygroscopic dehumidifiers has rapidly increased in the indoor environment industry because of their potential contribution to the development of hybrid (refrigerating + hygroscopic) dehumidifiers. Heat and mass transport phenomena such as adsorption and desorption, and their complex interactions occur in a desiccant rotor, which comprises many small hygroscopic channels. This study numerically investigated the conjugated heat and mass transfers in a channel modeled with the flow and porous desiccant regions, where only ordinary and surface diffusions (excluding Knudsen diffusion) during the sorption processes were considered. The change in the dehumidification performance depending on operating conditions such as the rotor's rotating speed, air flow rate, and adsorption-desorption ratio, was examined under various working environments. The temporal and spatial variations in the temperature, vapor mass fraction, and liquid water mass fraction in the channel were considered in detail. The closely linked heat and mass transports were clarified for a better understanding of the sorption processes in the desiccant rotor.
Gharami, Prabir; Rahaman, Farook
2014-01-01
Mass transfer in close binaries is often non-conservative and the modeling of this kind of mass transfer is mathematically challenging as in this case due to the loss of mass as well as angular momentum the governing system gets complicated and uncertain. In the present work a new mathematical model has been prescribed for the non-conservative mass transfer in a close binary system taking in to account the gradually decreasing profile of the mass accretion rate by the accreting star with respect to time as well as with respect to the increase in mass of the accreting star. The process of mass transfer is understood to occur up to a critical mass limit of the accreting star beyond which this process may cease to work.
Investigating mass customization and sustainability compatibilities
DR OKE
International Journal of Engineering, Science and Technology. Vol. 7, No. 1, 2015 ... compromise between pure customisation and mass production, between individualism and efficiency, between variety and complexity ..... Journal of Cleaner.
Investigating young children's learning of mass measurement
Cheeseman, Jill; McDonough, Andrea; Ferguson, Sarah
2014-06-01
This paper reports results of a design experiment regarding young children's concepts of mass measurement. The research built on an earlier study in which a framework of "growth points" in early mathematics learning and a related, task-based, one-to-one interview to assess children's understanding of the measurement of mass were developed. Prompted by the results and recommendations from the earlier study, five lessons were developed that offered rich learning experiences regarding concepts of mass. The 119 Year 1 and 2 children participating in the study were interviewed using the same protocol before and after the teaching period. The assessment data showed that the majority of these children moved from using nonstandard units to using standard units and instruments for measuring mass. The findings from this study challenge the traditional approach of using informal units for an extended period before the introduction of standard units.
Formation pathway of Population III coalescing binary black holes through stable mass transfer
Inayoshi, Kohei; Hirai, Ryosuke; Kinugawa, Tomoya; Hotokezaka, Kenta
2017-07-01
We study the formation of stellar mass binary black holes (BBHs) originating from Population III (PopIII) stars, performing stellar evolution simulations for PopIII binaries with mesa. We find that a significant fraction of PopIII binaries form massive BBHs through stable mass transfer between two stars in a binary, without experiencing common envelope phases. We investigate necessary conditions required for PopIII binaries to form coalescing BBHs with a semi-analytical model calibrated by the stellar evolution simulations. The BBH formation efficiency is estimated for two different initial conditions for PopIII binaries with large and small separations, respectively. Consequently, in both models, ˜10 per cent of the total PopIII binaries form BBHs only through stable mass transfer and ˜10 per cent of these BBHs merge due to gravitational wave emission within the Hubble time. Furthermore, the chirp mass of merging BBHs has a flat distribution over 15 ≲ Mchirp/M⊙ ≲ 35. This formation pathway of PopIII BBHs is presumably robust because stable mass transfer is less uncertain than common envelope evolution, which is the main formation channel for Population II BBHs. We also test the hypothesis that the BBH mergers detected by LIGO originate from PopIII stars using the total number of PopIII stars formed in the early universe as inferred from the optical depth measured by Planck. We conclude that the PopIII BBH formation scenario can explain the mass-weighted merger rate of the LIGO's O1 events with the maximal PopIII formation efficiency inferred from the Planck measurement, even without BBHs formed by unstable mass transfer or common envelope phases.
Koetsier, W.T.; Thoenes, D.
1973-01-01
The liquid phase mass transfer coefficient kL for the absorption of oxygen in tap water and in ionic solutions has been calculated from the quotien It is concluded that the liquid phase mass transfer coefficient is roughly proportional to the stirrer speed. The gas fraction e apparently has little
Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces
LinZhiping; MaTongze; 等
1994-01-01
Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.
Analysis of Heat-and-Mass Transfer Conjugated Problem Solution while Forming Thin-Wall Castings
R. I. Еsman
2009-01-01
Full Text Available The paper contains an analysis of heat-and-mass transfer conjugated problem in case of moving of liquid melts in channels of metallic forms (moulds, dies, crystallizers etc.. Investigations of velocity profiles at various flow sections, current lines in the calculated area, pressure and viscosity fields in non-stationary state have been carried out in the paper.The paper reveals that current is of parabolic shape in the annular channel at rather large distance from a projection up and down the flow and pressure along channel section is practically unchangeable.The executed investigations of heat-and-mass transfer in the moving melt make it possible to create a data base of control parameters for development of prospective technologies of special casting methods.
Monodisperse droplet generation for microscale mass transfer studies
Roberts, Christine; Rao, Rekha; Grillet, Anne; Jove-Colon, Carlos; Brooks, Carlton; Nemer, Martin
2011-11-01
Understanding interfacial mass transport on a droplet scale is essential for modeling liquid-liquid extraction processes. A thin flow-focusing microfluidic channel is evaluated for generating monodisperse liquid droplets for microscale mass transport studies. Surface treatment of the microfluidic device allows creation of both oil in water and water in oil emulsions, facilitating a large parameter study of viscosity and flow rate ratios. The unusually thin channel height promotes a flow regime where no droplets form. Through confocal microscopy, this regime is shown to be highly influenced by the contact angle of the liquids with the channel. Drop sizes are found to scale with a modified capillary number. Liquid streamlines within the droplets are inferred by high speed imagery of microparticles dispersed in the droplet phase. Finally, species mass transfer to the droplet fluid is quantitatively measured using high speed imaging. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.
Turbulent heat/mass transfer at oceanic interfaces
Enstad, Lars Inge
2005-07-01
The thesis studies heat/mass transfer and uses various simulation techniques. A numerical method has been developed. 4 papers which describes the work, are included. In the first paper we look at such flow configuration where the flow is driven by a constant pressure gradient and the interface is cooled from above. Papers 2 and 3. 2: The effect of stable density stratification on turbulent vortical structures near an atmosphere-ocean interface driven by low wind shear. 3: Low shear turbulence structures beneath a gas-liquid interface under neutral and stable stratified conditions. A well known feature of the upper layer of the ocean is the presence of counter-rotating streamwise vorticity, so called Langmuir circulation. Earlier numerical investigations show that similar vortex structures appear on small scale induced by shear instability only. Short wave solar radiation may create a stable situation which affects the turbulence near the interface. In these papers we investigate such a flow situation by employing a uniform and constant shear stress at the interface together with a similar heat flux into the interface. In both articles we also use a two-point correlation to give a statistical representation of the streamwise vorticity. The spatial extent and intensity are decreased by stable stratification. In addition, in article 3, we find that the Reynolds stress is damped by stable stratification. This leads to an increased mean velocity since decreased Reynolds stress is compensated by a larger mean velocity gradient. The cospectra of the Reynolds stress in the spanwise direction show that the production of Reynolds stress is decreased at lower wave numbers and thus shifted to higher wave numbers in the presence of stable stratification. The streak structure created by the streamwise vorticity is disorganized by stable stratification. Article 4: A numerical study of a density interface using the General Ocean Turbulence Model (GOTM) coupled with a Navier Stokes
Effect of Different Blood Cycle Modes on Mass Transfer of Artificial Kidney
LIU Tao; He Li-qun; DING Wei-ping; Zhao Gang; GAO Da-yong
2005-01-01
Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail ,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.
Kinetics of mass transfer during deep fat frying of yellow fleshed cassava root slices
Oyedeji, A. B.; Sobukola, O. P.; Henshaw, F. O.; Adegunwa, M. O.; Sanni, L. O.; Tomlins, K. I.
2016-05-01
Kinetics of mass transfer [moisture content, oil uptake, total carotenoid (TC) and shrinkage] during frying of yellow fleshed cassava roots (TMS 01/1371) was investigated. Slices were divided into (i) fresh and (ii) pre-dried to 75 % moisture content before atmospheric frying and (iii) vacuum fried. Percentage TC and activation energies of vacuum, fresh and pre-dried fried samples were 76, 63 and 61 %; and 82, 469.7, 213.7 kJ/mol, respectively.
Investigation of radiative heat transfer in fixed bed biomass furnaces
T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics
2008-08-15
This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.
Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)
2017-06-15
As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.
Gilbert, Dorthea; Jakobsen, Hans H.; Winding, Anne
2014-01-01
The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new...... experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve...... as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement...
Mass transfer inside oblate spheroidal solids: modelling and simulation
J. E. F. Carmo
2008-03-01
Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.
Mass transfer in binary X-ray systems
Mccray, R.; Hatchett, S.
1975-01-01
The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.
Endoreversible four-mass-reservoir chemical pump with diffusive mass transfer law
Dan Xia, Lingen Chen, Fengrui Sun
2011-11-01
Full Text Available The performance of an isothermal endoreversible four-mass-reservoir chemical pump, in which the mass transfer obeys diffusive law, is analyzed and optimized in this paper. The relation between the rate of energy pumping and the coefficient of performance of the isothermal chemical pump is derived by using finite-time thermodynamics. Moreover, the optimal operating regions and the influences of some parameters on the performance of the cycle are studied. The results obtained herein can provide some new theoretical guidelines for the optimal design of a class of apparatus such as mass exchangers, and electrochemical, photochemical, and solid-state devices, as well as fuel pumps for solar-energy conversion systems.
Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface
Muhammad Qasim
2013-01-01
Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.
Diffusive heat and mass transfer in oscillatory pipe flow
Brereton, G. J.; Jalil, S. M.
2017-07-01
The enhancement of axial heat and mass transfer by laminar flow oscillation in pipes with axial gradients in temperature and concentration has been studied analytically for the cases of insulated and conducting walls. The axial diffusivity can exceed its molecular counterpart by many orders of magnitude, with a quadratic scaling on the pressure-gradient amplitude and the Prandtl or Schmidt number, and is a bimodal function of oscillatory frequency: quasi-steady behavior at low frequencies and a power-law decay at high frequencies. When the pipe wall is conductive and of sufficient thickness, and the flow oscillation is quasi-steady, the axial diffusivity may be enhanced by a further factor of about ten as a result of increased radial diffusion, for liquid and gas flows in pipes with walls with a wide range of thermal conductivities. Criteria for the wall thickness required to achieve this additional enhancement and for the limits placed on the validity of these solutions by viscous dissipation are also deduced. When the heat transfer per unit flow work achieved by oscillatory pipe flow is contrasted with that of a conventional parallel-flow heat exchanger, it is found to be of comparable size and the ratio of the two is shown to be a function only of the pipe geometry, heat-exchanger mean velocity, and fluid viscosity.
Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes.
Wang, Kai; Zhang, Liming; Zhang, Wanlu; Luo, Guangsheng
2016-04-01
Varied interfacial tension caused by the unsaturated adsorption of surfactants on dripping droplet surfaces is experimentally studied. The mass transfer and adsorption of surfactants, as well as the generation of fresh interfaces, are considered the main factors dominating the surfactant adsorption ratio on droplet surfaces. The diffusion and convective mass transfer of the surfactants are first distinguished by comparing the adsorption depth and the mass flux boundary layer thickness. A characterized mass transfer time is then calculated by introducing an effective diffusion coefficient. A time ratio is furthermore defined by dividing the droplet generation time by the characteristic mass transfer time, t/tm, in order to compare the rates of surfactant mass transfer and droplet generation. Different control mechanisms for different surfactants are analyzed based on the range of t/t(m), and a criterion time ratio using a simplified characteristic mass transfer time, t(m)*, is finally proposed for predicting the appearance of dynamic interfacial tension.
Bio-inspired Murray materials for mass transfer and activity
Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian
2017-04-01
Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.
Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions
Ahmed, Wael H., E-mail: ahmedw@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia); Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia)
2012-11-15
Highlights: Black-Right-Pointing-Pointer Mass transfer downstream of orifices was numerically and experimentally investigated. Black-Right-Pointing-Pointer The surface wear pattern is measured and used to validate the present numerical results. Black-Right-Pointing-Pointer The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. Black-Right-Pointing-Pointer The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. Black-Right-Pointing-Pointer The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO{sub 4}{center_dot} Vulgar-Fraction-One-Half H{sub 2}O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice
Mass transfer in electromembrane extraction--The link between theory and experiments.
Huang, Chuixiu; Jensen, Henrik; Seip, Knut Fredrik; Gjelstad, Astrid; Pedersen-Bjergaard, Stig
2016-01-01
Electromembrane extraction was introduced in 2006 as a totally new sample preparation concept for the extraction of charged analytes present in aqueous samples. Electromembrane extraction is based on electrokinetic migration of the analytes through a supported liquid membrane and into a μL-volume of acceptor solution under the influence of an external electrical field. To date, electromembrane extraction has mostly been used for the extraction of drug substances, amino acids, and peptides from biological fluids, and for organic micropollutants from environmental samples. Electromembrane extraction has typically been combined with chromatography, mass spectrometry, and electrophoresis for analyte separation and detection. At the moment, close to 125 research papers have been published with focus on electromembrane extraction. Electromembrane extraction is a hybrid technique between electrophoresis and liquid-liquid extraction, and the fundamental principles for mass transfer have only partly been investigated. Thus, although there is great interest in electromembrane extraction, the fundamental principle for mass transfer has to be described in more detail for the scientific acceptance of the concept. This review summarizes recent efforts to describe the fundamentals of mass transfer in electromembrane extraction, and aim to give an up-to-date understanding of the processes involved.
Gharami, Prabir; Ghosh, Koushik; Rahaman, Farook
2016-01-01
In contact binaries mass transfer is usually non-conservative which ends into loss of mass as well as angular momentum in the system. In the present work we have presented a new mathematical model of the non-conservative mass transfer with a uniform mass accretion rate in a contact binary system with lower angular momentum. The model has been developed under the consideration of reverse mass transfer which may occur simultaneously with the original mass transfer as a result of the large scale circulations encircling the entire donor and a significant portion of the gainer. These circulations in contact binaries with lower angular momentum are caused by the overflow of the critical equipotential surface by both the components of the binary system making the governing system more intricate and uncertain.
Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface
QUAN ZhenHua; CHEN YongChang; MA ChongFang
2008-01-01
A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.
Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution
Olbricht, M.; Addy, J.; Luke, A.
2016-09-01
Horizontal tube bundles are often used as falling film evaporators in absorption chillers, especially for systems working at low pressure as H2O/LiBr. Experimental investigations are carried out in a falling film evaporator consisting of a horizontal tube bundle with eighty horizontal tubes installed in an absorption chiller because of a lack of consistent data for heat and mass transfer in the literature. The heat and mass transfer mechanisms and the flow pattern in the falling film are analysed and compared with correlations from literature. The deviations of the experimental data from those of the correlations are within a tolerance of 30%. These deviations may be explained by a change of the flow pattern at a lower Reynolds number than compared to the literature.
Heat and mass transfer with evaporation cooling of a porous plate
Makarova, S. N.; Shibaev, A. A.
2016-10-01
In this paper the results of experimental and theoretical investigation of heat and mass transfer with adiabatic evaporation of bicomponent water/ethanol fluid to an air flow are presented. An innovative test section for the wind tunnel with an active thermal stabilization system, maintaining the cuvette temperature equal to the evaporation surface temperature, is used to provide the evaporation adiabatic conditions. The wall temperature obtained experimentally shows the presence of expressed quasi-stationary evaporation area, qualitatively similar to sublimation curves of volatile organometallic compounds. A theoretical model based on the similarity of heat and mass transfer processes for each of the evaporating solution component is suggested. This model allows to determine evaporation surface temperature (sublimation temperature) accounting for radiation effect.
The mass transfer rate in X1916-053 - It is driven by gravitational radiation?
Swank, J. H.; Taam, R. E.; White, N. E.
1985-01-01
A 50-minute period for a binary system harboring an X-ray burster would allow several alternatives for the mass-giving secondary, including an H-shell burning-plus-He degenerate core composite model. The burst properties of X1916-053 are presently used to argue against the He degenerate as well as the He main sequence solutions and to estimate whether, for any of the other solutions, the mass transfer rate could be consistent with that expected from gravitational radiation (GR). Within an uncertainty of a factor of 2, the transfer rate for the composite model solution is consistent with gravitational radiation, but enhancement by other mechanisms should be investigated.
Evaluation of the mass transfer effect of the stalk contraction cycle of Vorticella
Zhou, Jiazhong; Admiraal, David; Ryu, Sangjin
2014-03-01
Vorticella is a protozoan with a contractile stalk that can contract pulling the cell body toward the substrate in less than 10 ms and return to the extended state in a few seconds. Although this stalk contraction is one of the fastest cellular motions, it is unknown why Vorticella contracts. Because the flow field induced by Vorticella shows different characteristics between contraction and relaxation, it has been suggested that Vorticella augments mass transfer near the substrate based on its stalk contraction-relaxation. We investigate this hypothesis using computational fluid dynamics (CFD) simulations and particle image velocimetry (PIV) experiments. In both approaches, Vorticella is modelled as a solid sphere that translates perpendicular to a solid surface in liquid based on the measured stalk length changes of Vorticella. Based on the computationally and experimentally simulated flow, we evaluate the mass transfer capability of Vorticella, for a possible application of the stalk contraction of Vorticella as a biomimetic model system for microfluidic mixers.
Mass transfer mathematical model for one-side plate steady-state ultrafiltration
QIU Yun-ren; ZHANG Qi-xiu
2005-01-01
A mass transfer mathematical model was developed based on one-side plate steady-state ultrafiltration (UF), and the numerical solution was obtained by Crank-Nicolson finite difference method. The effects of the feed concentration, channel length, axial velocity, and diffusion coefficient on the concentration at membrane surface and the concentration profiles were investigated. Furthermore, the operation parameters and the parameters of membrane module were all transformed into dimensionless ones, and the parameter rejection was included in the mass transfer model, therefore, it can be used to calculate the steady-state ultrafiltration with different rejections. The model was used for the calculation of the ultrafiltration of metal-cutting oil emulsion. The results show that the concentration polarization can be reduced by increasing the axial velocity to some extent, but the reduction of concentration polarization is very small when the resistance of ultrafiltration is very great.
Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions
Plavšić Dragana V.
2012-01-01
Full Text Available The effects of osmotic dehydration on mass transfer properties and microbiological profile were investigated in order to determine the usefulness of this technique as pre-treatment for further treatment of meat. Process was studied in two solutions (sugar beet molasses, and aqueous solution of sodium chloride and sucrose, at two temperatures (4 and 22°C at atmospheric pressure. The most significant parameters of mass transfer were determined after 300 minutes of the dehydration. The water activity (aw values of the processed meat were determined, as well as the change of the microbiological profile between the fresh and dehydrated meat. At the temperature of 22°C the sugar beet molasses proved to be most suitable as an osmotic solution, despite the greater viscosity.
PAHs and organic matter partitioning and mass transfer from coal tar particles to water.
Benhabib, Karim; Simonnot, Marie-Odile; Sardin, Michel
2006-10-01
The coal tar found in contaminated soils of former manufactured gas plants and coking plants acts as a long-term source of PAHs. Organic carbon and PAH transfer from coal tar particles to water was investigated with closed-looped laboratory column experiments run at various particle sizes and temperatures. Two models were derived. The first one represented the extraction process at equilibrium and was based on a linear partitioning of TOC and PAHs between coal tar and water. The partition coefficient was derived as well as the mass of extractable organic matter in the particles. The second model dealt with mass transfer. Particle diffusion was the limiting step; organic matter diffusivity in the coal tar was then computed in the different conditions. A good consistency was obtained between experimental and computed results. Hence, the modeling of PAH migration in contaminated soils at the field scale requires taking into account coal tar as the source-term for PAH release.
Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza
2015-08-01
To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.
Mathematical Model of Coupled Heat and Mass Transfer in Unsaturated Soils
CHENYONGPING; JINFENG; 等
1998-01-01
A systematic study of coupled heat and mass transfer in unsaturated soils under complex boundary conditions wa carried out and a mathematical model of heat and mass transfer in unsaturated soils was established by non-equilibrium thermodynamic theory.The gradient of volumetric moisture ontent,the gradient of emperature, the salt mass concentration and vapor pressure were the primary driving fores influencing the process of heat and mass transfer in unsaturated soils .Based on the thermodynamic analysis and the mass and energy conservation principles,a set of mass and energy equations were develped,The intial and boundary conditions of soil coulumn for on dimension were aslo given out.
An Investigation of Crosslinguistic Transfer in EFL Learners' Phraseology
Liao, Ern-Huei
2010-01-01
The problem. The purpose of this study is to investigate positive and negative cross-linguistic transfer on EFL learners' phraseological competence in collocations and its relationship to learners' linguistic proficiency. Method. A quantitative study was conducted. Two instruments, multiple choice test and grammaticality judgment test, were…
Kinetic investigation on the hydrogen transfer from dihydropyridines to hydrazyls
Abou-Elenien, G.; Rieser, J.; Ismail, N.; Wallenfels, K.
1981-03-01
The results of a kinetic study on the hydrogen transfer between different dihydropyridines and mono-, bis- and trishydrazyls of the tricyanobenzene series are described. The reactions have been found to obey in all cases a second-order law. The influences of solvent medium, redox-potentials of the reactants and temperature on the rates of reactions have been investigated.
张燕来; 朱慧铭; 尹秋响
2011-01-01
A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method （AAM） that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by （10 20）% and the pressure drop decreases by （15-55）%.
Investigation of transferred-electron oscillations in diamond
Suntornwipat, N.; Majdi, S.; Gabrysch, M.; Isberg, J.
2016-05-01
The recent discovery of Negative Differential Mobility (NDM) in intrinsic single-crystalline diamond enables the development of devices for high frequency applications. The Transferred-Electron Oscillator (TEO) is one example of such devices that uses the benefit of NDM to generate continuous oscillations. This paper presents theoretical investigations of a diamond TEO in the temperature range of 110 to 140 K where NDM has been observed. Our simulations map out the parameter space in which transferred-electron oscillations are expected to occur for a specific device geometry. The results are promising and indicate that it is possible to fabricate diamond based TEO devices.
Micro-scale mass-transfer variations during electrodeposition
Sutija, D.P.
1991-08-01
Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.
Investigation of Transferred-Arc Cleaning for Thin Film Removal
Hollis, K.; Castro, R.G.; Bartram, B.
1998-03-17
Transferred-arc cleaning is being investigated as a precision cleaning method for thin films on electrically conducting substrates as well as the traditional cleaning and roughening pretreatment for LPPS. Transferred-arc cleaning of copper substrates has been studied to identify the effect of processing conditions on cleaning and roughening characteristics. A Box-Behnken response surface design experiment varying the chamber pressure, substrate standoff distance, and torch current while observing the transferred arc voltage, voltage fluctuation, current, emitted light, and surface cleanliness was performed. The result of the analysis show the effect of the various independent variables on the measured responses. Distinct stages in the cleaning process are identified by their sample cleanliness, voltage level, voltage fluctuation, emitted light, and erosion rate.
Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities
Marziale, M. L.; Mayle, R. E.
1984-01-01
Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions.
Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product
Zhang, Song; Sun, Simei; Zhou, Miaomiao; Wang, Lian; Zhang, Bing
2017-01-01
We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S1 state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S0 and S1 states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S1 potential surface. The ISC from the S1 state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products. PMID:28233835
Heat and mass transfer in unsaturated porous media. Final report
Childs, S.W.; Malstaff, G.
1982-02-01
A preliminary study of heat and water transport in unsaturated porous media is reported. The project provides background information regarding the feasibility of seasonal thermal energy storage in unconfined aquifers. A parametric analysis of the factors of importance, and an annotated bibliography of research findings pertinent to unconfined aquifer thermal energy storage (ATES) are presented. This analysis shows that heat and mass transfer of water vapor assume dominant importance in unsaturated porous media at elevated temperature. Although water vapor fluxes are seldom as large as saturated medium liquid water fluxes, they are important under unsaturated conditions. The major heat transport mechanism for unsaturated porous media at temperatures from 50 to 90/sup 0/C is latent heat flux. The mechanism is nonexistent under saturated conditions but may well control design of unconfined aquifer storage systems. The parametric analysis treats detailed physical phenomena which occur in the flow systems study and demonstrates the temperature and moisture dependence of the transport coefficients of importance. The question of design of an unconfined ATES site is also addressed by considering the effects of aquifer temperature, depth to water table, porous medium flow properties, and surface boundary conditions. Recommendations are made for continuation of this project in its second phase. Both scientific and engineering goals are considered and alternatives are presented.
The Heat and Mass Transfer Analysis of a Leaf
Hong Ye; Zhi Yuan; Shuanqin Zhang
2013-01-01
Understanding the heat and mass transfer processes of plant leaves is essential for plant bionic engineering.A general thermophysical model was established for a plant leaf with particular emphasis on the transpiration process.The model was verified by the field measured stomatal resistance and temperature of a camphor leaf.A dynamical simulation revealed that diurnal transpiration water consumption is dominated by the solar irradiance and the day-average temperature of the leaf is dominated by the ambient air temperature; transpiration plays an important role in the cooling of the leaf,in average it could dissipate around 32.9％ of the total solar energy absorbed by the leaf in summer.To imitate the thermal infared characteristic of the real leaf,the up surface of the bionic leaf must have emissivity and solar absorptivity close to those of a real leaf and its shape and surface roughness must be similar to those of the real leaf.The key point is that the bionic leaf must be able to evaporate water to simulate the transpiration of a plant leaf,appropriate adsorbent can be used to realize this function.
Biological conversion of synthesis gas. Mass transfer/kinetic studies
Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.
1992-03-01
Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}0 {yields} CO{sub 2} + H{sub 2}. C. thiosulfatophilum is also a H{sub 2}S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25{degree} and 30{degree}C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30{degree}, 32{degree} or 34{degree}C. The rate of conversion of COs and H{sub 2}O to CO{sub 2} and H{sub 2}S may be modeled by a first order rate expression. The rate constant at 30{degree}C was found to be 0.243 h{sup {minus}1}. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: {mu} = {sub 351} + I{sub o}/{sup 0.152}I{sub o}. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.
Heat and mass transfer in unsaturated porous media. Final report
Childs, S.W.; Malstaff, G.
1982-02-01
A preliminary study of heat and water transport in unsaturated porous media is reported. The project provides background information regarding the feasibility of seasonal thermal energy storage in unconfined aquifers. A parametric analysis of the factors of importance, and an annotated bibliography of research findings pertinent to unconfined aquifer thermal energy storage (ATES) are presented. This analysis shows that heat and mass transfer of water vapor assume dominant importance in unsaturated porous media at elevated temperature. Although water vapor fluxes are seldom as large as saturated medium liquid water fluxes, they are important under unsaturated conditions. The major heat transport mechanism for unsaturated porous media at temperatures from 50 to 90/sup 0/C is latent heat flux. The mechanism is nonexistent under saturated conditions but may well control design of unconfined aquifer storage systems. The parametric analysis treats detailed physical phenomena which occur in the flow systems study and demonstrates the temperature and moisture dependence of the transport coefficients of importance. The question of design of an unconfined ATES site is also addressed by considering the effects of aquifer temperature, depth to water table, porous medium flow properties, and surface boundary conditions. Recommendations are made for continuation of this project in its second phase. Both scientific and engineering goals are considered and alternatives are presented.
Lichtenberg, Mads; Nørregaard, Rasmus Dyrmose; Kühl, Michael
2017-03-01
The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant-microbe interactions.
Mass transfer characteristics in a rotating packed bed with split packing
Youzhi Liu; Deyin Gu; Chengcheng Xu; Guisheng Qi; Weizhou Jiao
2015-01-01
The rotating packed bed (RPB) with split packing is a novel gas–liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3–H2O was used for characterizing the gas volumetric mass transfer coeffi-cient (kyae) and the effective interfacial area (ae) was determined by chemical absorption in the CO2–NaOH sys-tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar operating conditions.
Numerical simulation of coupled heat and mass transfer in wood dried at high temperature
Zhu, Zhenggang; Kaliske, Michael
2011-03-01
The mutual effect between heat and mass transfer is investigated for wood dried at high temperature. A numerical model of coupled heat and mass transfer under the effect of the pressure gradient is presented. Based on the macroscopic viewpoint of continuum mechanics, the mathematical model with three independent variables (temperature, moisture content and gas pressure) is constructed. Mass transfer in the pores involves a diffusional flow driven by the gradient of moisture content, convectional flow of gaseous mixture governed by the gradient of gas pressure, the Soret effect and phase change of water. Energy gain or loss due to phase change of water is taken as the heat source. Numerical methods, the finite element method and the finite difference method are used to discretize the spatial and time dimension, respectively. A direct iteration method to solve the nonlinear problem without direct evaluation of the tangential matrix is introduced. The local convergence condition based on the contraction-mapping principle is discussed. The mathematical model is applied to a 3-D wood board dried at high temperature with the Neumann boundary conditions for both temperature and moisture content, and the Dirichlet boundary conditions for gas pressure.
Lulu Wang
2016-01-01
Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.
Numerical study of streamwise and cross flow in the presence of heat and mass transfer
Rizwan-ul-Haq; Soomro, Feroz Ahmed; Khan, Z. H.; Al-Mdallal, Qasem M.
2017-05-01
The present model is devoted to investigate the streamwise and cross flow of a viscous fluid over a heated moving surface. Viscous dissipation effects are also considered with heat and mass transfer effects and these effects with cross flow have not been explored yet in the literature. Governing boundary layer equations consist in the form of nonlinear partial differential equations (PDEs). Compatible transformations are applied to change such equations into ordinary differential equations which are further solved using the Runge-Kutta technique and shooting method. Linear stability analysis is also performed over the obtained solutions to validate the results and to determine the smallest eigenvalues. Three different kinds of fluids namely: acetone, water and ethaline glycol are investigated to analyse the heat transfer rate. The problem contains important physical parameters namely: Prandtl number, Eckert numbers and Lewis number. The obtained solutions are discussed in detail against each physical parameter using graphs and tables.
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John
2014-03-10
. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.
Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa
2016-01-01
A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.
ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?
Mist, R. T.; Owen, C.J.
2002-01-01
A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz in...
ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?
Mist, R. T.; Owen, C.J.
2002-01-01
A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmh...
Kumrić, Ksenija R; Vladisavljević, Goran T; Đorđević, Jelena S; Jönsson, Jan Åke; Trtić-Petrović, Tatjana M
2012-09-01
In this study, the mass transport resistance in liquid-phase microextraction (LPME) in a single hollow fiber was investigated. A mathematical model has been developed for the determination of the overall mass transfer coefficient based on the acceptor phase in an unsteady state. The overall mass transfer coefficient in LPME in a single hollow fiber has been estimated from time-dependent concentration of extracted analyte in the acceptor phase while maintaining a constant analyte concentration in the donor phase. It can be achieved either using a high volume of donor to acceptor phase ratio or tuning the extraction conditions to obtain a low-enrichment factor, so that the analyte concentration in the sample is not significantly influenced by the mass transfer. Two extraction systems have been used to test experimentally the developed model: the extraction of Lu(III) from a buffer solution and the extraction of three local anesthetics from a buffer or plasma solution. The mass transfer resistance, defined as a reciprocal values of the mass transfer coefficient, was found to be 1.2 × 10(3) cm(-1) min for Lu(III) under optimal conditions and from 1.96 to 3.3 × 10(3) cm(-1) min for the local anesthetics depending on the acceptor pH and the hydrophobicity of the drug.
Experimental investigation of heat transfer from a 2 × 2 rod bundle to supercritical pressure water
Wang, Han [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Bi, Qincheng, E-mail: qcbi@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Linchuan; Lv, Haicai [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Leung, Laurence K.H. [Atomic Energy of Canada Limited, Chalk River, Ont., Canada K0J 1J0 (Canada)
2014-08-15
Highlights: • Heat transfer of supercritical water through a 2 × 2 rod bundles is investigated. • Circumferential wall temperature distribution is obtained. • Effects of system parameters on heat transfer characteristics are analyzed. • Heat transfer correlations are compared against the rod bundle test data. - Abstract: Heat transfer experiments with supercritical pressure water flowing vertically upward through a 2 × 2 rod bundle have been performed at Xi’an Jiaotong University. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. The experiments covered the pressure range of 23–28 MPa, mass-flux range of 350–1000 kg/(m{sup 2} s) and heat-flux range on the rod surface of 200–1000 kW/m{sup 2}. Heat transfer characteristics of supercritical pressure water through the bundle were examined with respect to variations of heat flux, system pressure, and mass flux. These characteristics were shown to be similar to those previously observed in tubes or annuli. The experimental data indicate a non-uniform circumferential wall-temperature distribution around the heated rod. A maximum wall temperature was observed at the surface facing the corner gap between the heated rod and the ceramic tube, while the minimum wall temperature was observed at the surface facing the center subchannel. The difference between maximum and minimum wall temperatures varies with heat flux and/or mass flux. Eight heat transfer correlations developed for supercritical water were assessed against the current set of test data. Prediction of the Jackson correlation agrees closely with the experimental Nusselt number. A new correlation has been derived based on Jackson correlation to improve the prediction accuracy of supercritical heat transfer coefficient in a 2 × 2 rod bundle.
Investigation of the unbound 21C nucleus via transfer reaction
Fukui Tokuro
2014-03-01
Full Text Available The cross section of the transfer reaction 20C(d,p21C at 30.0 MeV is investigated. The continuum-discretized coupled-channels method (CDCC is used in order to obtain the final state wave function. The smoothing procedure of the transition matrix and the channel-coupling effect on the cross section are discussed.
Papyrological investigations: transferring perception and interpretation into the digital world
Ségolène M. Tarte
2011-01-01
Deciphering ancient and damaged documents is a complex investigative task that papyrologists routinely undertake to extract meaning from the script. Perception and interpretation play an essential role. In this paper, we present methods for transferring to the digital world some of the processes that experts draw upon when interpreting a text, with the ultimate aim of constructing an Interpretation Support System (ISS) for papyrologists. Image-capture and image-processing approaches that refl...
Evaluation of magnetization transfer ratio in ascites and pelvic cystic masses
Okada, Susumu [Nippon Medical School, Inba, Chiba (Japan). Chiba-Hokuso Hospital; Kato, Tomoyasu; Yamashita, Takashi [and others
1997-12-01
To investigate the feasibility of magnetization transfer contrast (MTC) in characterization of pelvic cystic masses and ascites, in vitro studies were performed. Cystic fluids were taken from operative specimens of ten ovarian cystic masses (five mucinous cystadenomas, one cystadenocarcinoma, two serous cystadenocarcinomas, two clear cell carcinomas) and three non-ovarian pelvic cysts (one paraovarian cyst, one pseudomyxoma peritonei, one pelvic abscess). Samples of ascitic flied were drawn by peritoneal puncture in twenty patients (thirteen with peritonitis carcinomatosa, five with liver dysfunction, two with renal dysfunction). Total protein content in ascitic fluids was measured. Magnetization transfer ratio (MTR) was calculated by the signal intensities under the gradient echo sequence with and without the application of off-resonance pulses. The relative signal intensities (RSI) relative to water in T{sub 1} and T{sub 2} weighted images were obtained using spin echo sequence. There was no correlation between histological type of pelvic mass and MTR and RSI. Good correlation (R{sup 2}=0.761) was obtained between MTR and protein content in ascitic fluids, whereas no correlation was noted between RSI and protein content in ascitic fluids. These results suggest that MTC is not useful in the characterization of pelvic masses but is applicable in the differentiation between exudative ascites and transudative ascites. (author)
Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon
Long, Z. Q.; Zhang, P.
2013-10-01
The heat transfer performance of a cryogenic thermosyphon filled with helium as the working fluid is investigated experimentally with a G-M cryocooler as the heat sink in this study. The cryogenic thermosyphon acts as a thermal link between the cryocooler and the cooled target (the copper evaporator with a large mass). Helium is charged in different filling ratios, and the cooling down process and the heat transfer characteristics of the cryogenic thermosyphon are investigated. The cooling down process of the cooled target can be significantly accelerated by the presence of helium in the cryogenic thermosyphon and the cooling down period can be further shortened by the increase of filling ratio. The heat transfer mode changes from the liquid-vapor phase change to natural convection as the increase of the heating power applied on the evaporator. The heat transfer limit and thermal resistance are discussed for the liquid-vapor phase change heat transfer, and they can be estimated by empirical correlations. For the natural convection heat transfer, it can be enhanced by increasing the filling ratio, and the natural convection of supercritical helium is much stronger than that of gaseous helium.
3D modelling of coupled mass and heat transfer of a convection-oven roasting process
Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist
2013-01-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are b...
Pinto, Diego D D; Emonds, Rob; Versteeg, Geert F.
2016-01-01
The absorption process is strongly influenced by the effective contact area. In absorber columns, this is related to the type of the internals used in the columns. Therefore, a good representation of the effective mass-transfer area and mass-transfer coefficients (kL or kg) is also essential for
Absorption and desorption mass transfer rates in non-reactive systems
Hamborg, Espen S.; Kersten, Sascha R. A.; Versteeg, Geert F.
2010-01-01
Liquid phase mass transfer coefficients have been measured in a controlled environment during gas absorption into a liquid and gas desorption from a liquid in a batch operated stirred tank reactor over a wide range of operating conditions. At identical operating conditions, the mass transfer
Determination of Mass Transfer Parameters During Deep Fat Frying of Rice Crackers
Mohammad Taghi Hamed MOSAVIAN; Vahid Mohammadpour KARIZAKI
2012-01-01
The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity,mass transfer Biot number and mass transfer coefficient) in the case of frying food,is essential and important for designing,modeling and process optimization.This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150,170 and 190 ℃.These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying.Effective moisture diffusivity,mass transfer Biot number and mass transfer coefficient ranged between 1.24×10-8 to 2.36×10-8 m2/s,1.96 to 2.34 and 5.51×10-6 to 9.70×10-6 m/s,respectively.Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature,whereas mass transfer Biot number decreased.An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.
A variance propagation algorithm for stochastic heat and mass transfer problems in food processes
Scheerlinck, N.; Verboven, P.; Stigter, J.D.; Baerdemaeker, de J.; Impe, van J.F.; Nicolai, B.M.
2001-01-01
A variance propagation algorithm for stochastic coupled heat and mass transfer problems subjected to first order autoregressive random process boundary conditions was developed. The algorithm is based on the finite element formulation of Luikov's coupled heat and mass transfer equations and involves
The effects of dual-domain mass transfer on the tritium-helium-3 dating method.
Neumann, Rebecca B; Labolle, Eric M; Harvey, Charles F
2008-07-01
Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.
Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests.
Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D B; Criddle, C S; Kitanidis, P K; Brooks, S C; Jardine, P M; Luo, J
2010-09-20
Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.
张秀莉; 张泽廷; 张卫东; 郝欣
2004-01-01
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
ENHANCEMENT OF GAS TO WATER MASS-TRANSFER RATES BY A DISPERSED ORGANIC-PHASE
VANEDE, CJ; VANHOUTEN, R; BEENACKERS, AACM
1995-01-01
Experimental data are presented on the enhancement of oxygen mass transfer into an aqueous sulphite solution in a stirred cell, due to the presence of a dispersed liquid octene phase. The observed enhancement factors can be described with a new mass transfer theory, called the Film Variable Hold-up
Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors
Cents, Antonius Harold Gerrit
2003-01-01
It can be concluded from the research study described in this thesis that the mechanism of mass transfer in gas-liquid-liquid systems is still not completely clear. In this work mass transfer experiments were carried out with five different organic dispersed liquids, toluene, 1-octanol, n-heptane, n
Nahon, D.F.; Harrison, M.; Roozen, J.P.
2000-01-01
The penetration theory of interfacial mass transfer was used to model flavor release from aqueous solutions containing different concentrations of sucrose. The mass transfer coefficient and the gas/solution partition coefficient are the main factors of the model influencing the release in time. Para
Mixing and mass transfer in a pilot scale U-loop bioreactor
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay;
2017-01-01
A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...
Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD
Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina
2017-01-01
transfer coefficients were determined from six Trichoderma reesei fermentations at different well-defined process conditions. Similarly the mass transfer was predicted by Higbie’s penetration model from two-phase CFD simulations using a correlation of bubble size and power input, and the overall mass...
Marcelis, C.L.M.; Leeuwen, van M.; Polderman, H.G.; Janssen, A.J.H.; Lettinga, G.
2003-01-01
A mathematical model was developed in order to describe the mass transfer rate of dibenzothiophene within the oil droplet to the oil/water interface of droplets created in a stirred tank reactor. The mass transfer rate of dibenzothiophene was calculated for various complex hydrocarbon distillates an
Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems
Ratkovich, Nicolas Rios; Nopens, Ingmar
2012-01-01
to remove particulates due to the high shear rates and high mass transfer between the membrane surface and the bulk region. However, to calculate the mass transfer coefficient in an efficient and accurate way is not straightforward. Indeed, for accurate determination, numerous complex experimental...... measurements are required. Therefore, this work proposes an alternative method that uses already existing heat transfer relationships for two phase flow and links them through a dimensionless number to the mass transfer coefficient (Sherwood number) to obtain an empirical relationship which can be used...
Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems
Sun, Ning
Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface
Herranz, J.; Bloxom, S.R.; Keeler, J.B.; Roth, S.R.
1975-12-17
In the proposed Molten Salt Breeder Reactor flowsheet, a fraction of the rare earth fission products is removed from the fuel salt in mass transfer cells. To obtain design parameters for this extraction, the effect of cell size, blade diameter, phase volume, and agitation rate on the mass transfer for a high density ratio system (mercury/water) in nondispersing square cross section contactors was determined. Aqueous side mass transfer coefficients were measured by polarography over a wide range of operating conditions. Correlations for the experimental mass transfer coefficients as functions of the operating parameters are presented. Several techniques for measuring mercury-side mass transfer coefficients were evaluated and a new one is recommended. (auth)
A generic model-based methodology for quantification of mass transfer limitations in microreactors
Van Daele, Timothy; Fernandes del Pozo, David; Van Hauwermeiren, Daan
2016-01-01
Microreactors are becoming more popular in the biocatalytic field to speed up reactions and thus achieve process intensification. However, even these small-scale reactors can suffer from mass transfer limitations. Traditionally, dimensionless numbers such as the second Damköhler number are used...... to determine whether the reaction is either kinetically or mass transfer limited. However, these dimensionless numbers only give a qualitative measure of the extent of the mass transfer limitation, and are only applicable to simple reactor configurations. In practice, this makes it difficult to rapidly...... quantify the importance of such mass transfer limitations and compare different reactor configurations. This paper presents a novel generic methodology to quantify mass transfer limitations. It was applied to two microreactor configurations: a microreactor with immobilised enzyme at the wall and a Y...
Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry
Chaofan ZHAO; Youguang MA; Chunying ZHU
2008-01-01
This paper aims at the interracial phenomena of liquid-liquid mass transfer and its characteristic. By using the real-time holographic technique, the concen-tration distributions on the aqueous side were obtained according to holographic diagrams of mass transfer of ethanol through the interface of oil and water at different initial concentrations. Furthermore, the concentrations near the interface and the mass transfer coefficients were attained. A correlation of concentration near the interface to the concentration of the solute in the oil side was proposed. An approach of interfacial energy with solute concentration was established, and the calculated results are at good agreement with the experimental data. It is indicated that the liquid-liquid mass transfer process is approximately in accordance with two-film theory, the interfacial performance may be changed by the addition of the solute, and the interface of liquid-liquid is non-equilibrium thermodynamically during the mass transfer process.
Macroscopic and microscopic analysis of mass transfer in reversed phase liquid chromatography.
Bacskay, Ivett; Felinger, Attila
2009-02-20
For the correct description of a chromatographic process, the determination of mass-transfer kinetics in the column is required because the influence of the mass-transfer kinetics on the shape of chromatographic band profiles is crucial. Several sources of mass transfer in a chromatographic bed have been identified and studied: the axial dispersion in the stream of mobile phase, the external mass-transfer resistance, intraparticle diffusion, and the kinetics of adsorption-desorption In this study we compare mass-transfer coefficients obtained in a reversed phase chromatographic column using macroscopic and microscopic approaches. The general rate model, the plate height equation, moment analysis, and stochastic analysis were used to assess chromatographic process during the separation of alkylbenzenes.
Mass transfer and adsorption equilibrium for low volatility alkanes in BPL activated carbon.
Wang, Yu; Mahle, John J; Furtado, Amanda M B; Glover, T Grant; Buchanan, James H; Peterson, Gregory W; LeVan, M Douglas
2013-03-01
The structure of a molecule and its concentration can strongly influence diffusional properties for transport in nanoporous materials. We study mass transfer of alkanes in BPL activated carbon using the concentration-swing frequency response method, which can easily discriminate among mass transfer mechanisms. We measure concentration-dependent diffusion rates for n-hexane, n-octane, n-decane, 2,7-dimethyloctane, and cyclodecane, which have different carbon numbers and geometries: straight chain, branched chain, and cyclic. Micropore diffusion is determined to be the controlling mass transfer resistance except at low relative saturation for n-decane, where an external mass transfer resistance also becomes important, showing that the controlling mass transfer mechanism can change with system concentration. Micropore diffusion coefficients are found to be strongly concentration dependent. Adsorption isotherm slopes obtained from measured isotherms, the concentration-swing frequency response method, and a predictive method show reasonably good agreement.
Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients
无
2000-01-01
A theoretical approach and laboratory practice of determining the alpha factors of volatile organic compound (VOC) liquid-phase mass transfer coefficients are present in this study.Using Purge Trap Concentrator, VOC spiked water samples are purged by high-purity nitrogen in the laboratory, the VOC liquid-phase mass transfer rate constants under the laboratory conditions are then obtained by observing the variation of VOCs purged out of the water with the purge time.The alpha factors of VOC liquid-phase mass transfer coefficients are calculated as the ratios of the liquid-phase mass transfer rate constants in real water samples to their counterparts in pure water under the same experimental conditions. This direct and fast approach is easy to control in the laboratory, and would benefit mutual comparison among researchers, so might be useful for thestudy of VOC mass transfer across the liquid-gas interface.
On the Sieder state correction and its equivalent in mass transfer
Trinh, K T
2010-01-01
The physical background behind the success of the Sieder-Tate correction in heat transfer is analysed. The equivalent correction for mass transfer correlations is based on the ratio of diffusivities at the wall and bulk concentrations. This correction is not required if the Prandtl/Schmidt numbers are evaluated at the wall layer conditions and the Reynolds number at the bulk conditions. This technique brings heat and mass transfer coefficients into agreement.
李天文; 毛在砂; 陈家镛; 费维扬
2002-01-01
Numerical simulation of transient mass transfer to a single drop controlled by the internal resistance or by the resistance in both phases was mathematically formulated and simulated in a boundary-fitted orthogonal coordinate system. The simulated results on the transient mass transfer dominated by the internal resistance are in good agreement with the Newman and Kronig-Brink models for drops with low Reynolds number. When the drop Reynolds number is up to 200, the mass transfer coefficient from numerical simulation is very low as compared with the Handlos-Baron model. The cases with mass transfer resistance residing in both the continuous and drop phases were simulated successfully and compared with the experimental data in three extraction systems recommended by European Confederation of Chemical Engineering (EFCE). For single drops with Re ＜ 200, the numerically predicted values of the extraction fraction and overall mass transfer coefficient are in reasonable coincidence with the experimental data. It is concluded that the numerical simulation can be resorted in some cases of solvent extraction for conducting numerical experiments and parametric study. Nevertheless, for better resolution as higher Reynolds number drops are simulated, more sophisticated techniques should be developed and incorporated to deal with the large deformation and transient shape oscillation as well as possible Marangoni effect.
Zhou, Guo-Yan; Tu, Shan-Tung; Ma, Hu-gen
2014-09-01
As one of the key devices in the high temperature gas turbine system, cross-corrugated recuperators provide high heat transfer capabilities with compact size, light weight, strong mechanical strength and are mandatory to achieve 30 % electrical efficiency or higher for micro turbine engines. Flow in such geometries is usually laminar with lower Reynolds numbers. In order to understand mechanisms of flowing and heat transfer, periodic fully developed fluid flow and heat transfer in two types of cross-corrugated structures with inclination angle at 90° are investigated numerically and experimentally. Periodicity was used to reduce the complexity of the channel geometry and enables the smallest possible segment of the flow channel to be modeled. The velocity and temperature distributions were obtained in the three-dimensional complex domain. Besides a detailed flow analysis, comparison of the local heat and mass transfer and the pressure losses for these geometries are presented. It is shown that the flow phenomena caused by the different geometries were of significant influence on the homogeneity and on the quantity of the local heat and mass transfer as well as on the pressure drop. As a recuperator for micro turbine engines, cross-corrugated sinusoidal channels are more preferable to triangular channels.
Effect of Polyvinylidene Fluoride Hollow Fiber Membranes on Mass Transfer of Samarium
无
2000-01-01
The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained.
Mass transfer kinetics during deep fat frying of wheat starch and gluten based snacks
Sobukola, O. P.; Bouchon, P.
2014-06-01
Mass transfer (moisture loss and oil uptake) kinetics during deep fat frying of wheat starch and gluten based snacks was investigated. Both followed a modified first order reaction. Activation energies, z-value, and highest values of D and k for moisture loss and oil uptake were 28.608 kJ/mol, 129.88 °C, 490 and 0.0080 s-1; and 60.398 kJ/mol, 61.79 °C, 1,354.71 and 0.0052 s-1, respectively.
Mass Transfer of Corrosion Products in the Nonisothermal Sodium Loop of a Fast Reactor
Varseev, E. V.; Alekseev, V. V.
2014-11-01
The mass transfer of the products of corrosion of the steel surface of the sodium loop of a fast nuclear power reactor was investigated for the purpose of optimization of its parameters. The problem of deposition of the corrosion products on the surface of the heat-exchange unit of the indicated loop was considered. Experimental data on the rate of accumulation of deposits in the channel of this unit and results of the dispersion analysis of the suspensions contained in the sodium coolant are presented.
Convective mass transfer from a horizontal rotating cylinder in a slot air jet flow
Hongting MA; Dandan MA; Na YANG
2009-01-01
The effects of air jet impinging on the mass transfer characteristics from a rotating spinning cylinder surface were experimentally investigated. The effects of rotational Reynolds numberRer, jet-exit Reynolds number Rej, the nozzle width-to-cylinder diameter ratio B/d, and the ratio of the distance between nozzle exit and the front of cylinder to nozzle width L/B on the mean Sh were determined. The phenomena of the first and second critical point was analyzed and validated. On the basis of experimental data, the correlation equation was obtained.
Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges
2012-11-01
The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems
Theoretical Investigation on Triplet Excitation Energy Transfer in Fluorene Dimer
Yu-bing Si; Xin-xin Zhong; Wei-wei Zhang; Yi Zhao
2011-01-01
Triplet-triplet energy transfer in fluorene dimer is investigated by combining rate theories with electronic structure calculations.The two key parameters for the control of energy transfer,electronic conpling and reorganization energy,are calculated based on the diabatic states constructed by the constrained density functional theory.The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation.Succeedingly,the diagonal and off-diagonal fluctuations of thc Hamiltonian are mapped from the correlation functions of those parameters,and the rate is then estimated both from the perturbation theory and wavepacket diffusion method.The results manifest that both the static and dynamic fluctuations enhance the rate significantly,but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.
Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Malakhovskii, S. A.
2015-03-01
Results from systematic investigations of heat transfer and pressure drop for water flow in an annular channel using an efficient method for enhancing heat transfer on a convex heating surface are presented. The main technical data of the thermal-hydraulic experimental setup are given together with a brief description of the control, monitoring, and physical parameters measurement and recording systems, as well as primary experimental data processing and storage system. The test section, the enhancement method based on setting up swirl flows, the geometrical characteristics of intensifiers, their schematic design, and installation technology are described. The experimental data are obtained in a wide range of coolant flow parameters under the conditions of single-phase convection with using intensifiers having different shapes. The test measurements carried out on a smooth annular channel showed good agreement with the classic correlations both for heat transfer and pressure drop, thereby confirming reliability of the experimental data. A considerable improvement in heat removal efficiency on the convex heating surface is obtained. The value of heat transfer coefficient is a factor of 1.8 higher than it is for smooth annular channels. The region of the values of intensifier geometrical characteristics and Reynolds numbers for which the growth of heat transfer prevails over the growth of pressure drop is established. It is shown that the maximums of heat transfer and pressure drop are observed at quite definite values of intensifier geometrical characteristics. The primary experimental data are processed and presented as a dependence of the Nusselt number on the Reynolds number for different values of the intensifier's relative fin height Ḣ. The value of Ḣ at which heat transfer reaches its maximum is found. The experiments were carried out in the pressure range p = 3.0-10.0 MPa and at the constant temperature of liquid at the test section inlet equal to 100
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
J.C. Misra
2016-03-01
Full Text Available In the present paper, the problem of oscillatory MHD flow of blood in a porous arteriole in presence of chemical reaction and an external magnetic field has been investigated. Heat and mass transfer during arterial blood flow are also studied. A mathematical model is developed and analyzed by using appropriate mathematical techniques. Expressions for the velocity profile, volumetric flow rate, wall shear stress and rates of heat and mass transfer have been obtained. Variations of the said quantities with different parameters are computed by using MATHEMATICA software. The quantitative estimates are presented through graphs and table.
ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?
R. T. Mist
Full Text Available A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.
Key words. Magnetospheric physics (magnetotail boundary layers; plasma convection; plasma sheet
ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?
Mist, R. T.; Owen, C. J.
2002-05-01
A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.
A numerical study on gas–liquid mass transfer in the rotor–stator spinning disc reactor
Eeten, van K.M.P.; Verzicco, R.; Schaaf, van der J.; Heijst, van G.J.F.; Schouten, J.C.
2015-01-01
The gas–liquid mass transfer coefficient was investigated in a novel multiphase reactor: the rotor–stator spinning disc reactor. Direct Numerical Simulations of the flow field around a single bubble in the reactor showed that vortex stretching invoked the presence of turbulence inside the thin liqui
Mulder, H.; Breure, A.M.; Andel, van J.G.; Grotenhuis, J.T.C.; Rulkens, W.H.
2000-01-01
External and internal mass-transfer resistances influencing the bioavailability of sorbed naphthalene in a synthetic model matrix for soil aggregates were investigated in batch experiments in mixed reactors. Amberlite? adsorption resins (XAD4 and XAD7) were used as the synthetic model for soil aggre
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-14
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc(-0.5), and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-01
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc‑0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Numerical investigation of flow and heat transfer performances of horizontal spiral-coil pipes
季家东; 葛培琪; 毕文波
2016-01-01
The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied. The numerical results are compared with the experimental data, to verify the numerical method. The effects of the inlet water mass flow rate, the structural parameters, the helical pitch and the radius ratio on the heat transfer performances are investigated. Perfor- mances of the secondary fluid flow with different radius ratios are also investigated. Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch. The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio isequal to 1.00. In addition, the fluid particle moves spirally along the pipe and the velocity changes periodically. The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio. Besides, the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies, and the eddy intensity decreases significantly along the pipe owing to the change of curvature. The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
Veidenbergs, I; Blumberga, D; Vīgants, E; Kozuhars, G
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the Microsoft Office Excel environment...
Qureshi, M. Zubair Akbar; Ali, Kashif; Iqbal, M. Farooq; Ashraf, Muhammad; Ahmad, Shazad
2017-01-01
The numerical study of heat and mass transfer for an incompressible magnetohydrodynamics (MHD) nanofluid flow containing spherical shaped nanoparticles through a channel with moving porous walls is presented. Further, another endeavour is to study the effect of two types of fluids, namely the metallic nanofluid (Au + water) and metallic-oxides nanofluid (TiO2 + water) are studied. The phenomena of spherical metallic and metallic-oxides nanoparticles have been also mathematically modelled by using the Hamilton-Crosser model. The influence of the governing parameters on the flow, heat and mass transfer aspects of the problem is discussed. The outcome of the investigation may be beneficial to the application of biotechnology and industrial purposes. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analysed.
Ionic liquid matrix-enhanced secondary ion mass spectrometry: the role of proton transfer.
Dertinger, Jennifer J; Walker, Amy V
2013-03-01
Room temperature ionic liquids (ILs) are effective matrices in secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization (MALDI). In this paper, we examine the role of proton transfer in the mechanism of secondary ion enhancement using IL matrices in SIMS. We employ hydrogenated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as analytes to investigate the origin of proton transfer. The data indicate that protons from the IL anion transfer to the analyte in solution leading to an increase in the secondary ion intensity of the protonated molecular ion. The chemical identity of the matrix cation also affects analyte signal intensities. Using deuterated DPPC we observe that protons (deuterium) from the DPPC tail group react with the cation of the IL liquid leading to an increase in (cation + D)(+) ion intensities. Further, the data suggest that the transfer kinetics of deuterium (hydrogen) is correlated with the secondary ion enhancements observed. The highest secondary ion enhancements are observed for the least sterically hindered cation. Neither the proton affinity nor the pKa of the IL cation have a large effect on the analyte ion intensities, suggesting that steric factors are important in determining the efficacy of IL matrices for a given analyte.
TZ Lyrae: an Algol-type Eclipsing Binary with Mass Transfer
Yuan-Gui Yang; Xin-Guo Yin
2007-01-01
We present a detailed investigation of the Algol-type binary TZ Lyrae, based on 55 light minimum timings spanning 90 years. It is found that the orbital period shows a long-term increase with a cyclic variation superimposed. The rate of the secular increase is dP/dt =+7.18 × 10-8d yr-1, indicating that a mass transfer from the less massive component to the more massive one at a rate of dm = +2.21 × 10-8M⊙ yr-1. The cyclic component, with a period of P3= 45.5 yr and an amplitude of A = 0d.0040, may be interpreted as either the light-time effect in the presence of a third body or magnetic activity cycles in the components.Using the latest version Wilson-Devinney code, a revised photometric solution was deduced from B and V observations. The results show that TZ Lyf is an Algol-type eclipsing binary with a mass ratio of q = 0.297(±0.003). The semidetached configuration with a lobe-filling secondary suggests a mass transfer from the secondary to the primary, which is in agreement with the long-term period increase of the binary system.
TZ Lyrae: an Algol-type Eclipsing Binary with Mass Transfer
Yang, Yuan-Gui; Yin, Xin-Guo
2007-04-01
We present a detailed investigation of the Algol-type binary TZ Lyrae, based on 55 light minimum timings spanning 90 years. It is found that the orbital period shows a long-term increase with a cyclic variation superimposed. The rate of the secular increase is dP/dt=+7.18× 10^{-8} d yr^{-1}, indicating that a mass transfer from the less massive component to the more massive one at a rate of dm=+2.21×10^{-8} M_⊙ yr^{-1}. The cyclic component, with a period of P_{3}=45.5 yr and an amplitude of A=0.0040°, may be interpreted as either the light-time effect in the presence of a third body or magnetic activity cycles in the components. Using the latest version Wilson-Devinney code, a revised photometric solution was deduced from B and V observations. The results show that TZ Lyr is an Algol-type eclipsing binary with a mass ratio of q=0.297(±0.003). The semidetached configuration with a lobe-filling secondary suggests a mass transfer from the secondary to the primary, which is in agreement with the long-term period increase of the binary system.
Heat transfer crisis on sintered porous surfaces – experimental investigations
Wojcik Tadeusz Michal
2012-04-01
Full Text Available There were presented the results of theoretical analysis of boiling heat transfer on heating surfaces covered with thin-layered capillary porous structures. The paper discussed the results of experimental investigations into intralayer boiling crisis and accompanying phenomena. It was observed that the structural parameters of the porous covering affected the course of the process. Hysteresis phenomenon manifested itself when the heat flux initiating intralayer heat crisis was reached. The crisis mechanism hypotheses, the description of which was available in literature, were discussed.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2016-06-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Experimental researches on mass and heat transfer in new typical cross-flow rotating packed bed
CHEN Haihui; ZENG Yingying; GAO Wenshuai
2006-01-01
New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.
Wall mass transfer and pressure gradient effects on turbulent skin friction
Watson, R. D.; Balasubramanian, R.
1984-01-01
The effects of mass injection and pressure gradients on the drag of surfaces were studied theoretically with the aid of boundary-layer and Navier-Stokes codes. The present investigation is concerned with the effects of spatially varying the injection in the case of flat-plate drag. Effects of suction and injection on wavy wall surfaces are also explored. Calculations were performed for 1.2 m long surfaces, one flat and the other sinusoidal with a wavelength of 30.5 cm. Attention is given to the study of the effect of various spatial blowing variations on flat-plate skin friction reduction, local skin friction coefficient calculated by finite difference boundary-layer code and Navier-Stokes code, and the effect of phase-shifting sinusoidal mass transfer on the drag of a sinusoidal surface.
Non-classical diffusion model for heat and mass transfer in laser drying
Xiulan Huai; Guoxiang Wang; Renqiu Jiang; Bin Li
2004-01-01
A numerical analysis of the laser drying process by employing a generalized, Maxwell-Cattaneo equation to treat both heat and mass transfer was presented. Calculations were performed to illustrate the non-classical transport of heat and moisture. The effect of the heat flux density and the initial moisture content on water removal was also investigated. The results indicate that the nonequilibrium mass diffusion plays an important role during the very early stages of moisture removal, especially at the surface of the medium. Away from the surface, the non-Fickian model shows a delay in the reduction of the moisture content. The calculation resuits also show that the initial moisture content of the medium has a considerable effect on water removal.
Mass transfer in the absorption of SO2 and NOx using aqueous euchlorine scrubbing solution
DESHWAL Bal-Raj; LEE Hyung-Keun
2009-01-01
Attempts have been made to generate euchlorine gas by chlorate-chloride process and to utilize it further to clean up SO2 and NOx from the flue gas in a lab scale bubbling reactor.Preliminary experiments were carried out to determine the gas and liquid phase mass transfer coefficients and their correlation equations have been established.Simultaneous removal of SO2 and NOx from the simulated flue gas using aqueous euchlorine scrubbing solution has been investigated.Euchlorine oxidized NO into NO2 completely and the later subsequently absorbed into the scrubbing solution in the form of nitrate.SO2 removal efficiency of around 100% and NOx removal efficiency of around 72 % were achieved under optimized conditions.Mass balance has been confirmed by analyzing the sulfate, nitrate, euchlorine and chloride ion using ion chromatograph/auto-titrator and comparing it with their corresponding calculated values.
Experimental Study on Gas—Solid Mass Transfer in Circulating Fluidized Beds.
WANGLinna; ZHANGLing; 等
2002-01-01
This study is devoted to gas-solid mass transfer behavior in heterogeneous two-phase flow. Experiments were carried out in a cold circulating fluidized bed of 3.0m in height and 72mm in diameter with naphthalene particles. Axial and radial distributions of sublimated naphthalene concentration in air were measured with an online concentration monitoring system HP GC-MS. Mass transfer coefficients were obtained under various operating condition, showing that heterogeneous flow structure strongly influences the axial and radial profiles of mass transfer coefficients. In the bottom dense region, mass transfer rate is high due to intensive dynamic behavior and higher relative slip velocity between gas and clusters. In the middle transition region and the upper diluter region, as a result of low mass transfer driving force and the influence of flow structure, mass transfer rate distribution becomes non-uniform. In conclusion, among the operating parameters influencing mass transfer coefficients, the superficial gas velocity is the most important factor and the solid circulation rate should be also taken into account.
Kunikata, Satoru; Fukuda, Makoto; Yamamoto, Ken-ichiro; Yagi, Yutaka; Matsuda, Masato; Sakai, Kiyotaka
2009-01-01
Dialysis fluid flow and mass transfer rate of newly developed dialyzers were evaluated using mass transfer correlation equations of dialysis fluid-side film coefficient. Aqueous creatinine clearance and overall mass transfer coefficient for APS-15S (Asahi Kasei Kuraray) as a conventional dialyzer, and APS-15SA (Asahi Kasei Kuraray), PES-150Salpha (Nipro), FPX140 (Fresenius), and CS-1.6U (Toray) as newly developed dialyzers were obtained at a blood-side flow rate (QB) of 200 ml/min, dialysis fluid-side flow rates (QD) of 200-800 ml/min and a net filtration rate (QF) of 0 ml/min. Mass transfer correlation equations between Sherwood number (Sh) containing dialysis fluid-side mass transfer film coefficient and Reynolds number (Re) were formed for each dialyzer. The exponents of Re were 0.62 for APS-15S whereas approximately 0.5 for the newly developed dialyzers. The dialysis fluid-side mass transfer film coefficients of the newly developed dialyzers were higher than those of the conventional dialyzer. Based on the mass transfer correlation equations, introduction of short taper, full baffle of dialyzer jacket and further wave-shaped hollow fiber improves the dialysis fluid flow of the newly developed dialyzers.
Boukadida, N. [Faculte des Sciences, Dept. of Physics, Monastir (Tunisia); Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Dept. of Energetics (Tunisia)
2001-01-01
A detailed numerical analysis concerning the mechanism of heat and mass transfer during water evaporation in a two dimensional steady laminar flow of dry air or air-vapor mixture in a horizontal channel is studied. The gas is considered as absorbing, emitting and non-scattering medium with variable thermophysical properties. The results show the effect of different state variables on the coefficients of heat and mass transfer and the domain where the analogy between the heat and mass transfer is valid. They also show the effect of the thermal radiation on the ratio between Sherwood and Nusselt numbers. The comparison between the present results and those obtained in previous published studies [32-34] features to a satisfactory agreement. (authors)
Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.
Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal
2012-05-15
Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.
Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.
1996-01-01
The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.
Mass transfer in a 1370 C (2500 F) lithium thermal convection loop
Scheuermann, C. M.
1974-01-01
Experimental results from a test to evaluate interstitial element mass transfer effects on T-111, ASTAR 811C, and ASTAR 1211C after 5000 hours in flowing lithium at 1370 C (2500 F) are presented. No gross corrosion effects were observed. However, hafnium and nitrogen transfer to cooler regions within the loop were noted. Oxygen was in general removed from test specimens, but there was no evidence to indicate that it was a major factor in the mass transfer process. Carbon and hydrogen transfer were not detected.
CONJUGATE MODEL FOR HEAT AND MASS TRANSFER OF POROUS WALL IN THE HIGH TEMPERATURE GAS FLOW
A.F. Polyakov; D.L.Reviznikov; 沈青; 魏叔如
2001-01-01
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow.The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
The mass transfer approach to multivariate discrete first order stochastic dominance
Østerdal, Lars Peter Raahave
2010-01-01
A fundamental result in the theory of stochastic dominance tells that first order dominance between two finite multivariate distributions is equivalent to the property that the one can be obtained from the other by shifting probability mass from one outcome to another that is worse a finite number...... of times. This paper provides a new and elementary proof of that result by showing that starting with an arbitrary system of mass transfers, whenever the resulting distribution is first order dominated one can gradually rearrange transfers, according to a certain decentralized procedure, and obtain...... a system of transfers all shifting mass to outcomes that are worse....
Numerical calculations of mass transfer flow in semi-detached binary systems. [of stars
Edwards, D. A.; Pringle, J. E.
1987-01-01
The details of the mass transfer flow near the inner Lagrangian point in a semidetached binary system are numerically calculated. A polytropic equation of state with n = 3/2 is used. The dependence of the mass transfer rate on the degree to which the star overfills its Roche lobe is calculated, and good agreement with previous analytic estimates is found. The variation of mass transfer rate which occurs if the binary system has a small eccentricity is calculated and is used to cast doubt on the model for superhumps in dwarf novae proposed by Papaloizou and Pringle (1979).
Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations☆
Jinjin Zhang; Zhengming Gao; Yating Cai; Ziqi Cai; Jie Yang; Yuyun Bao
2016-01-01
The gassed power demand and volumetric mass transfer coefficient (kLa) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six types of impellers (six-half-elliptical-blade disk turbine (HEDT), four-wide-blade hydrofoil impeller (WH) pumping down (D) and pumping up (U), parabolic-blade disk turbine (PDT), and CBY narrow blade (N) and wide blade (W)) were used to form five combinations identified by PDT + 2CBYN, PDT + 2CBYW, PDT + 2WHD, HEDT + 2WHD and HEDT + 2WHU, respectively. The results show that the relative power demand of HEDT+2WHU is higher than that of other four impeller combinations under all operating conditions. At low superficial gas velocity (uG), kLa differences among impeller combinations are not obvious. However, when uG is high, PDT+2WHD shows the best mass transfer performance and HEDT+2WHU shows the worst mass trans-fer performance under al operating conditions. At high uG and a given power input, the impel er combinations with high agitation speed and big projection cross-sectional area lead to relatively high values of kLa. Based on the experimental data, the regressed correlations of gassed power number with Froude number and gas flow number, and kLa with power consumption and superficial gas velocity are obtained for five different impeller combinations, which could be used as guidance for industrial design.
Kakran, Mitali; Sahoo, Nanda Gopal; Antipina, Maria N; Li, Lin
2013-07-01
The main aim of this study was to modify the supercritical antisolvent precipitation method to enhance the mass transfer in order to prepare smaller nanoparticles of drugs. The supercritical antisolvent apparatus was customized by introducing a titanium horn in the precipitation chamber for generation of the ultrasonic field for enhanced mass transfer and the method was called supercritical antisolvent with enhanced mass transfer (SAS-EM). The effects of flow rate, ultrasonic amplitude, drug concentration and flow time on the particle size were investigated. The results showed that increasing the flow rate, incrementing the ultrasonic power up to an optimum point, decreasing the drug concentration and reducing the flow time helped to achieve smaller quercetin particles in the range of 120-450 nm. It is also shown that there is a tradeoff between the particle size and the yield; therefore the process parameters can be selected based on the particle size requirement. DSC studies suggested that the crystallinity of SAS-EM prepared quercetin nanoparticles decreased as compared to original quercetin powder. The dissolution of SAS-EM prepared nanoparticles increased significantly in comparison with the original quercetin powder. However, there was no significant difference in the dissolution of various quercetin nanoparticles samples prepared by the SAS-EM process. The best dissolution percent achieved was 75% for the smallest size sample prepared at the flow rate of 5 ml/min, power supply of 200 W, drug concentration of 10mg/ml, and flow time of 4 min. Copyright © 2013. Published by Elsevier B.V.
Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.
2009-10-01
In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.
Simulation of Single Crystal Growth: Heat and Mass Transfer
Zhmakin, A I
2015-01-01
The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.
Viscous Flow over an Unsteady Shrinking Sheet with Mass Transfer
FANG Tie-Gang; ZHANG Ji; YAO Shan-Shan
2009-01-01
The unsteady viscous flow over a continuously shrinking surface with mass suction is studied. The solution is fortunately an exact solution of the unsteady Navier-Stokes equations. Similarity equations are obtained through the application of similarity transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the mass suction parameters" and the unsteadiness parameters. Results show that multiple solutions exist for a certain range of mass suction and unsteadiness parameters. Quite different flow behaviour is observed for an unsteady shrinking sheet from an unsteady stretching sheet.
Hesheng Cheng
2016-01-01
Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.
Zheng, Yankun; Wang, Zhong
2011-07-01
In cereal seed, there are no symplastic connections between the maternal tissues and the endosperm. In order to facilitate solute transport, both the nucellar projection and its opposite endosperm epithelial cells in wheat caryopsis differentiate into transfer cells. In this paper, we did contrast observation and investigation of wheat endosperm transfer cells (ETC) and nucellar projection transfer cells (NPTC). The experimental results showed that there were some similarities and differences between ETC and NPTC. ETC and NPTC almost developed synchronously. Wall ingrowths of ETC and NPTC formed firstly in the first layer nearest to the endosperm cavity, and formed later in the inner layer further from the endosperm cavity. The mature ETC were mainly three layers and the mature NPTC were mainly four layers. Wall ingrowths of ETC were flange type and wall ingrowths of NPTC were reticulate type. NPTC were not nutrient-storing cells, but the first layer of ETC had aleurone cell features, and the second layer and third layer of ETC accumulated starch granules and protein bodies.
Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow
Calmet, Isabelle; Magnaudet, Jacques
1997-02-01
normal velocity fluctuations emphasizes the fact that the large-scale structures play an essential role in the turbulent mass transfer process at high Schmidt number. Overall the picture that emerges from this investigation fully confirms the conclusions of Campbell and Hanratty [AIChE J. 29, 221 (1983)]: high-Schmidt-number mass transfer at a solid wall is governed by the low-frequency part of the normal velocity fluctuation gradient at the wall, i.e., by the large-scale structures observed in planes parallel to the wall in the viscous sublayer.
Mixing and mass transfer in a pilot scale U-loop bioreactor
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay
2017-01-01
determined in a 0.15 m3 forced flow U-loop fermenter of a novel construction. The effect on the impeller drawn power when a gas was introduced into the system was also studied.Mixing time decreased and mass transfer increased with increasing volumetric liquid flow rate and specific power input. This happened......A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients were...... also for a large volume fraction of the gas, which was shown to have only minor effect on the power drawn from the pump impeller.Very large mass transfer coefficients, considerably higher than those obtainable in an STR and previous tubular loop reactors, could be achieved in the U-loop fermenter...
Spanwise mass transfer variations on a cylinder in 'nominally' uniform crossflow
Mayle, R. E.; Marziale, M.
1982-01-01
Mass transfer experiments on a circular cylinder in a 'nominally' uniform crossflow are described. Experiments were conducted at the tunnel's turbulence level and with a woven-wire turbulence screen. In both cases spanwise and circumferential mass transfer measurements were made. Without the turbulence screen, the results were found to be spanwise independent and agreed quite well with both theory and the result of others. In addition to the mass transfer measurements, spanwise traverse measurements of the mean velocity and turbulence quantities in the incident flow were made and showed that the screen produced a small-amplitude spanwise periodic perturbation in the incident flow. Although this perturbation was only one quarter of a percent in the mean velocity and buried in the stream's turbulence, disproportionately large spanwise variations of 15 percent were found in the mass transfer rate.
Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer
Cho, Eun Su [Hoseo University, Asan (Korea, Republic of)
2015-12-15
A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy- Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, Ra{sub D} and the porous medium Schmidt number, Sc{sub p}. For the Darcy's limit of Sc{sub p}>>Ra{sub D}, the Sherwood number, Sh is a function of Ra{sub D} only. However, for the region of high Ra{sub D}, Sh can be related with Ra{sub D}Sc{sub p}. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.
Mass Transfer Enhancement of Gas Absorption by Adding the Dispersed Organic Phases
张志刚; 许天行; 李文秀; 纪智玲; 许光荣
2011-01-01
Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases （heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane） were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
Terminal Effect of Drop Coalescence on Single Drop Mass Transfer Measurements and Its Minimization
无
2001-01-01
For the mass transfer to single drops during the stage of steady buoyancy-driven motion, experimental measurement is complicated with the terminal effect of additional mass transfer during drop formation and coa lescence at the drop collector. Analysis reveals that consistent operating conditions and experimental procedure are of critical significance for minimizing the terminal effect of drop coalescence on the accuracy of mass transfer measurements. The novel design of a totally-closed extraction column is proposed for this purpose, which guaran tees that the volumetric rate of drop phase injection is exactly equal to that of withdrawal of drops. Tests in two extraction systems demonstrate that the experimental repeatability is improved greatly and the terminal effect of mass transfer during drop coalescence is brought well under control.
Modeling of mass transfer characteristics of bubble column reactor with surfactant present
赵伟荣; 史惠祥; 汪大翚
2004-01-01
Danckwert's method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing superficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
Modeling of mass transfer characteristics of bubble column reactor with surfactant present
赵伟荣; 史惠祥; 汪大翚
2004-01-01
Danckwert's method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, κL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interracial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing superficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, κL, and κLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
Tabares Velasco, P. C.
2011-04-01
This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'
Heat and mass transfer intensification and shape optimization a multi-scale approach
2013-01-01
Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes. A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...
A multiscale modeling study for the natural convection mass transfer in a subsurface aquifer
Alam, Jahrul M
2013-01-01
Quantitative and realistic computer simulations of mass transfer associated with CO2 disposal in subsurface aquifers is a challenging endeavor. This article has proposed a novel and efficient multiscale modeling framework, and has examined its potential to study the pen- etrative mass transfer in a CO2 plume that migrates in an aquifer. Nu- merical simulations indicate that the migration of the injected CO2 enhances the vorticity generation, and the dissolution of CO2 has a strong effect on the natural convection mass transfer. The vorticity decays with the increase of the porosity. The time scale of the vertical migration of a CO2 plume is strongly dependent on the rate of CO2 dissolution. Comparisons confirm the near optimal performance of the proposed multiscale model. These primary results with an idealized computational model of the CO2 migration in an aquifer brings the potential of the proposed multiscale model to the field of heat and mass transfer in the geoscience.
Zhi-Yong Wu
2014-07-01
Full Text Available The objective of this present study is to propose an approach to predict mass transfer time relaxation parameter for boiling simulation on the shell-side of LNG spiral wound heat exchanger (SWHE. The numerical model for the shell-side of LNG SWHE was established. For propane and ethane, a predicted value of mass transfer time relaxation parameter was presented through the equivalent evaporation simulations and was validated by the Chisholm void fraction correlation recommended under various testing conditions. In addition, heat transfer deviations between simulations using the predicted value of mass transfer time relaxation parameter and experiments from Aunan were investigated. The boiling characteristics of SWHE shell-side were also visualized based on the simulations with VOF model. The method of predicting mass transfer time relaxation parameter may be well applicable to various phase change simulations.
On computational experiments in some inverse problems of heat and mass transfer
Bilchenko, G. G.; Bilchenko, N. G.
2016-11-01
The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Tirunehe, Gossaye; Norddahl, B
2016-04-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.
Mass transfer effect of the stalk contraction-relaxation cycle of Vorticella convallaria
Zhou, Jiazhong; Admiraal, David; Ryu, Sangjin
2014-11-01
Vorticella convallaria is a genus of protozoa living in freshwater. Its stalk contracts and coil pulling the cell body towards the substrate at a remarkable speed, and then relaxes to its extended state much more slowly than the contraction. However, the reason for Vorticella's stalk contraction is still unknown. It is presumed that water flow induced by the stalk contraction-relaxation cycle may augment mass transfer near the substrate. We investigated this hypothesis using an experimental model with particle tracking velocimetry and a computational fluid dynamics model. In both approaches, Vorticella was modeled as a solid sphere translating perpendicular to a solid surface in water. After having been validated by the experimental model and verified by grid convergence index test, the computational model simulated water flow during the cycle based on the measured time course of stalk length changes of Vorticella. Based on the simulated flow field, we calculated trajectories of particles near the model Vorticella, and then evaluated the mass transfer effect of Vorticella's stalk contraction based on the particles' motion. We acknowlege support from Laymann Seed Grant of the University of Nebraska-Lincoln.
Influence of mass transfer and chemical reaction on ozonation of azo dyes
Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)
2003-07-01
Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)
Measuring Nitrous Oxide Mass Transfer into Non-Aqueous CO2BOL CO2 Capture Solvents
Whyatt, Greg A.; Freeman, Charles J.; Zwoster, Andy; Heldebrant, David J.
2016-03-28
This paper investigates CO2 absorption behavior in CO2BOL solvents by decoupling the physical and chemical effects using N2O as a non-reactive mimic. Absorption measurements were performed using a wetted-wall contactor. Testing was performed using a “first generation” CO2 binding organic liquid (CO2BOL), comprised of an independent base and alcohol. Measurements were made with N2O at a lean (0.06 mol CO2/mol BOL) and rich (0.26 mol CO2/mol BOL) loading, each at three temperatures (35, 45 and 55 °C). Liquid-film mass transfer coefficients (kg') were calculated by subtracting the gas film resistance – determined from a correlation from literature – from the overall mass transfer measurement. The resulting kg' values for N2O in CO2BOLs were found to be higher than that of 5 M aqueous MEA under comparable conditions, which is supported by published measurements of Henry’s coefficients for N2O in various solvents. These results suggest that the physical solubility contribution for CO2 absorption in CO2BOLs is greater than that of aqueous amines, an effect that may pertain to other non-aqueous solvents.
Tube-side mass transfer for hollow fibre membrane contactors operated in the low Graetz range.
Wang, C Y; Mercer, E; Kamranvand, F; Williams, L; Kolios, A; Parker, A; Tyrrel, S; Cartmell, E; McAdam, E J
2017-02-01
Transformation of the tube-side mass transfer coefficient derived in hollow fibre membrane contactors (HFMC) of different characteristic length scales (equivalent diameter and fibre length) has been studied when operated in the low Graetz range (Gzlow Gz range, mass transfer is generally described by the Graetz problem (Sh=3.67) which assumes that the concentration profile comprises a constant shape over the fibre radius. In this study, it is experimentally evidenced that this assumption over predicts mass transfer within the low Graetz range. Furthermore, within the low Gz range (below 2), a proportional relationship between the experimentally determined mass transfer coefficient (Kov ) and the Graetz number has been identified. For Gz numbers below 2, the experimental Sh number approached unity, which suggests that mass transfer is strongly dependent upon diffusion. However, within this diffusion controlled region of mass transfer, tube-side fluid velocity remained important. For Gz numbers above 2, Sh could be satisfactorily described by extension to the Lévêque solution, which can be ascribed to the constrained growth of the concentration boundary layer adjacent to the fibre wall. Importantly this study demonstrates that whilst mass transfer in the low Graetz range does not explicitly conform to either the Graetz problem or classical Lévêque solution, it is possible to transform the experimentally derived overall mass transfer coefficient (Kov ) between characteristic length scales (dh and L). T h is was corroborated by comparison of the empirical relationship determined in this study (Sh=0.36Gz) with previously published studies operated in the low Gz range. This analysis provides important insight for process design when slow tube-side flows, or low Schmidt numbers (coincident with gases) constrain operation of hollow fibre membrane contactors to the low Gz range.
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.
Kreulen, H.; Versteeg, G.F.; Smolders, C.A.; Swaaij, van W.P.M.
1993-01-01
Gas-liquid mass transfer has been studied in a membrane module with non-wetted microporous fibres in the laminar flow regime. This new type of gas/liquid contactor can be operated stabily over a large range of gas and liquid flows because gas and liquid phase do not influence each other directly. Th
Duret, S.; Hoang, H. -M.; Flick, Denis; Laguerre, O.
2014-01-01
Temperature and moisture heterogeneity, with non-uniform airflow in cold rooms was observed in several studies. This heterogeneity can lead to a deterioration of food quality and safety. Heat and mass transfer in cold rooms is a complex phenomenon because of the presence of the product (airflow modification, heat of respiration.) and the coupling between heat transfer and airflow. Temperature, velocity, humidity and heat transfer coefficient measurements were carried out in a ventilated cold ...
Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor
Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van
1995-01-01
A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by
Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor
Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van
1995-01-01
A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by
Interfacial mass transfer to a cylinder endwall during spin-up/spin-down
Larrousse, Mark F.; Wilcox, William R.
1990-01-01
The local rate of mass transfer to the bottom endwall of a large aspect ratio cylinder was measured during spin-up/spin-down. The local mass transfer rate was a strong function radial position along the endwall. At the center during spin-up from rest, the maximum enhancement in mass transfer occurred after the Ekman time scale and before the viscous time scale. At the center during spin-down to rest, a stagnation vortex formed, causing the mass transfer rate to decay and then increase back to the original value of the order of the viscous time scale. Away from the center a much more complicated pattern was observed, but spin-up and spin-down were similar. Two peaks in mass transfer rate occurred for an Ekman number over 0.0074. Alternating spin-up and spin-down with a short period caused the center of the endwall to experience a nearly sinusoidal variation in mass transfer with the frequency equal to the forcing frequency. Near the edge the frequency was twice the forcing frequency.
Connection Between Liquid Distribution and Gas-Liquid Mass Transfer in Monolithic Bed
许闽; 刘辉; 李成岳; 周媛; 季生福
2011-01-01
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors （nozzle and packed bed distributors）. Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within ＋30%.
An active wound dressing for controlled convective mass transfer with the wound bed.
Cabodi, Mario; Cross, Valerie L; Qu, Zheng; Havenstrite, Karen L; Schwartz, Suzanne; Stroock, Abraham D
2007-07-01
Conventional wound dressings-gauze, plastic films, foams, and gels-do not allow for spatial and temporal control of the soluble chemistry within the wound bed, and are thus limited to a passive role in wound healing. Here, we present an active wound dressing (AWD) designed to control convective mass transfer with the wound bed; this mass transfer provides a means to tailor and monitor the chemical state of a wound and, potentially, to aid the healing process. We form this AWD as a bilayer of porous poly(hydroxyethyl methacrylate) (pHEMA) and silicone; the pHEMA acts as the interface with the wound bed, and a layer of silicone provides a vapor barrier and a support for connecting to external reservoirs and pumps. We measure the convective permeability of the pHEMA sponge, and use this value to design a device with a spatially uniform flow profile. We quantify the global coefficient of mass transfer of the AWD on a dissolvable synthetic surface, and compare it to existing theories of mass transfer in porous media. We also operate the AWD on model wound beds made of calcium alginate gel to demonstrate extraction and delivery of low molecular weight solutes and a model protein. Using this system, we demonstrate both uniform mass transfer over the entire wound bed and patterned mass transfer in three spatially distinct regions. Finally, we discuss opportunities and challenges for the clinical application of this design of an AWD.
Drop oscillation and mass transfer in alternating electric fields
Carleson, T.E.
1992-06-24
In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.
E-2-benzylidenebenzocyclanones. II. IR and mass spectrometric investigations
Tarczay, Gy; Vékey, K.; Ludányi, K.; Perjési, P.; Sohár, P.
2000-03-01
A series of E-2-benzylideneindanones (a) -tetralones (b) and -benzosuberones (c) with OCH 3 ( 2- 4), NO 2 ( 5- 7) and F ( 8- 10) substituents in ortho, meta or para position was studied by IR and mass spectrometry. The most important IR bands were assigned and stated correlations between some frequencies and the stereostructure or conjugation feature of the molecules investigated. IR spectra were also analyzed in order to find frequencies characteristic of the size of the alkanone ring. The mass spectrometric investigation aimed at determining fragmentation pathways and finding correlations between them and the ring size of the alkanone ring or the position of the substituents.
Mass transfer during ice particle collisions in planetary rings
Mcdonald, J. S. B.; Hatzes, A.; Bridges, F.; Lin, D. N. C.
1989-01-01
Experimental results are presented from laboratory environment simulations of the ice particle collisional properties defining the structure and dynamical evolution of planetary rings. It is inferred from these data that there is a dependence of the interacting volume on the impact velocity. Although the volume fraction exchanged during a collision is small, the net amount of material transferred can be substantially smaller. Attention is given to the implications of these determinations for planetary ring structure and evolution.
Computing masses and surface tension from effective transfer matrices
Hasenbusch, M; Pinn, K
1994-01-01
We propose an effective transfer-matrix method that allows a measurement of tunnelling correlation lengths that are orders of magnitude larger than the lattice extension. Combining this method with a particularly efficient implementation of the multimagnetical algorithm we were able to determine the interface tension of the 3D Ising model close to criticality with a relative error of less than 1 per cent.
Turbulent heat and mass transfers across a thermally stratified air-water interface
Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.
1986-01-01
Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.
Bouchaala, Adam; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.
2016-10-01
We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.
Bouchaala, Adam M.
2016-08-31
We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.
Bouchaala, Adam M.
2016-12-05
We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.
Mass and Energy Transfer Between the Solar Photosphere and Corona
Peter, H.
2015-12-01
The problem of chromospheric and coronal heating is also a problem of mass supply to the corona. On average we see redshifts at transition region temperatures of the order of 10 km/s. If interpreted as downflows, this would quickly empty the corona, and fresh material has to be transported into the corona. Several models have been proposed to understand this mass cycle between the different atmospheric layers. However, as of yet all these proposals have serious shortcomings. On the observational side open questions remain, too. With the new IRIS mission we can observe the transition region at unprecedented spatial and spectral resolution, but the observational results are still puzzling. In particular the finding that the spatial distribution of line widths and Doppler shifts do not change with increasing resolution is against physical intuition. This shows that even with IRIS we still have significant velocity gradients along the line-of-sight, indicating that shocks might play a significant role. Likewise the temporal evolution might be a key for our understanding of the mass cycle. It might well be that the filling and draining of hot plasma occurs on significantly different time scales, which might be part of the difficulty to arrive at a conclusive observational picture. Considering the progress made for the quiet Sun, it seems clear that the processes responsible for the mass exchange are not resolved (yet). Therefore one might wonder to what extent one could use larger and resolved individual events in more active parts of the Sun to understand the details of the mass transport. In particular a common understanding of reconnection events such as Ellerman bombs in the photosphere, explosive events in the transition region and the recently discovered IRIS bombs in-between might provide the key to better understand the mass cycle throughout the atmospheric layers from the photosphere to the corona.
Contaminant Mass Transfer During Boiling in Fractured Geologic Media
2011-04-01
make the dough , i.e. C0, and DCA and bromide mass recovery during heating, normalized to the inside mass, measured by extraction of clay dough ...gradually to the powder. The mixture was manually kneaded into a uniform dough - like material that was divided into three parts. Each part was placed...process took about 15- 20 min to mix and knead the dough , another 15-20 min to pack the dough into the container and seal it. The sample weight was
Modeling Heat and Mass Transfer from Fabric-Covered Cylinders
Phillip Gibson
2009-03-01
Full Text Available Fabric-covered cylinders are convenient analogs forclothing systems. The geometry is well defined andincludes many of the effects that are important ingarments. Fabric-covered cylinder models are usedin conjunction with laboratory measurements ofmaterial properties to calculate heat and mass transferproperties of clothing under specific conditions ofenvironmental wind speed, temperature, and relativehumidity.
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
Specifics of heat and mass transfer in spherical dimples under the effect of external factors
Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.
2017-06-01
The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.
Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto
2017-09-01
The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity (D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature (T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates (T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates (T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.
Gilbert, Dorothea; Jakobsen, Hans H; Winding, Anne; Mayer, Philipp
2014-04-15
The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of T. pyriformis, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs.
Ramoso Patrick
2016-01-01
Full Text Available An alternative process for the removal of organic pollutants in aqueous systems is photocatalysis. The challenges hindering its industrial use are electron-hole recombination and mass-transfer limitations. In order to address these problems, the objective of this study is to introduce air by sparging, and design an air-sparged photocatalytic reactor using titanium dioxide immobilized on borosilicate glass. The performance of the reactor on the removal of the model pollutant, methylene blue (MB, was evaluated and compared against the reactor operated without sparging. The effect of mass-transfer limitations on reactor performance was also investigated by regression using a Langmuir-type model equation. The sparged photocatalytic reactor was able to degrade 57% MB in 2 hours, an improvement of 40% compared to no sparging, and is comparable to similar reactors in literature, but with the advantage of using less expensive materials of construction and simpler immobilization technique. Mass-transfer limitation studies showed a good fitting of the initial reaction rate r, with r = 0.1399Q / (0.6120 + Q for the sparged operation, and Q is the volumetric flowrate of water (L/min. The model also shows that the reactor operates near the reaction-limited regime, and that the extent of mass-transfer limitation effects was reduced by the present reactor.
An Experiment to Introduce Mass Transfer Concepts Using a Commercial Hollow Fiber Blood Oxygenator
McIver, Keith; Merrill, Thomas; Farrell, Stephanie
2017-01-01
A commercial hollow fiber blood oxygenation laboratory experiment was used to introduce lower level engineering students to mass balances in a two-phase system. Using measured values of concentration and flow rate, students calculated the rate of mass transfer from the gas phase and into the liquid phase, and compared the two values to determine…
Freunberger, S. A.
2007-07-01
This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt
VOLUMETRIC MASS TRANSFER COEFFICIENT BETWEEN SLAG AND METAL IN COMBINED BLOWING CONVERTER
Z.H. Wu; Z.S. Zou; W. Wu
2005-01-01
The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and benzoic acid as the transferred substance between water and oil. The results show that, with lance level of 2.Im and the top blowing rate of 25000Nm3/h, the volumetric mass transfer coefficient changes most significantly when the bottom blowing rate ranges from 384 to 540Nm3/h. The volumetric mass transfer coefficient reaches its maximum when the lance level is 2. lm, the top blowing rates is 30000Nm3/h, and the bottom blowing rate is 384Nrr3/h with tuyeres located symmetrically at 0.66D of the converter bottom.
Stability of coaxial jets confined in a tube with heat and mass transfer
Mohanta, Lokanath; Cheung, Fan-Bill; Bajorek, Stephen M.
2016-02-01
A linear temporal stability of coaxial confined jets in a vertical tube involving heat and mass transfer at the interface is presented in this paper. A potential flow analysis that includes the effect of viscosity at the interface is performed in analyzing the stability of the system. Film boiling in a vertical tube gives rise to the flow configuration explored in this work. The effects of various non-dimensional parameters on the growth rate and the neutral curve are discussed. The heat transfer at the interface has been characterized by introducing a heat flux ratio between the conduction heat flux and the evaporation heat flux. Viscous forces and the heat and mass transfer at the interface are found to stabilize the flow both in the capillary instability region and Kelvin-Helmholtz instability region. Increasing heat and mass transfer at the interface stabilizes the flow to small as well as very large wave numbers.
Macro- to Nanoscale Heat and Mass Transfer: The Lagging Behavior
Ghazanfarian, Jafar; Shomali, Zahra; Abbassi, Abbas
2015-07-01
The classical model of the Fourier's law is known as the most common constitutive relation for thermal transport in various engineering materials. Although the Fourier's law has been widely used in a variety of engineering application areas, there are many exceptional applications in which the Fourier's law is questionable. This paper gathers together such applications. Accordingly, the paper is divided into two parts. The first part reviews the papers pertaining to the fundamental theory of the phase-lagging models and the analytical and numerical solution approaches. The second part wrap ups the various applications of the phase-lagging models including the biological materials, ultra-high-speed laser heating, the problems involving moving media, micro/nanoscale heat transfer, multi-layered materials, the theory of thermoelasticity, heat transfer in the material defects, the diffusion problems we call as the non-Fick models, and some other applications. It is predicted that the interest in the field of phase-lagging heat transport has grown incredibly in recent years because they show good agreement with the experiments across a wide range of length and time scales.
Heat and mass transfer problems for film cooling
Leontiev, A.I.
1999-07-01
An advance in many branches of engineering is connected with using of more and more high working temperatures, perfection of cooling systems of power installations and further development of the theory of heat transfer. One of the most promising methods of thermal protection of heating surfaces is using of the gas film cooling. Despite intensive development of numerical methods of calculation of film cooling problems, simple and reliable correlations, which are based on clear physical models, that make it possible to generalize experimental data for complex boundary conditions, are necessary for complex engineering calculations. It is well known, that an increase in an initial gas temperature of the gas at the turbine inlet is the basic method to advance technical and economical parameters of the gas turbine units and engines. Modern gas turbine engines are designed to operate at inlet temperatures of 1,800--2,000 K, which are far above the allowable temperatures of the metal. Under these conditions, the turbine blades should be cooled in order to ensure a reasonable lifetime. In the paper the review of calculation methods and of experimental results on heat transfer under film cooling is presented. The effect of an arrangement of film cooling, longitudinal gradient of pressure, nonisothermality and compressibility of gas, swirling of flow, and turbulent pulsations of the main gas flow on effectiveness of the gas film cooling is considered. A method of calculation of combined cooling (film, porous or transpiration and convective) is proposed.
Mass transfer enhancement for LiBr solution using ultrasonic wave
韩晓东; 张仕伟; 汤勇; 袁伟; 李斌
2016-01-01
The methods were studied to improve the cooling performance of the absorption refrigeration system (ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boiling mass transfer in LiBr solution was also analyzed with experiment. The experimental results indicate that, under the driving heat source of 60–100 ºC and the ultrasonic power of 20–60 W, the mass flux of cryogen water in LiBr solution is higher after the application of ultrasonic wave than auxiliary heating with electric rod of the same power, so the ultrasonic application effectively enhances the heat utilization efficiency. The distanceH from ultrasonic transducer to vapor/liquid interface significantly affects mass transfer enhancement, so an optimalHoptcorresponding to certain ultrasonic power is beneficial to reaching the best strengthening effect for ultrasonic mass transfer. When the ultrasonic power increases, the mass transfer obviously speeds up in the cryogen water; however, as the power increases to a certain extent, the flux reaches a plateau without obvious increment. Moreover, the ultrasound-enhanced mass transfer technology can reduce the minimum temperature of driving heat source required by ARS and promote the application of solar energy during absorption refrigeration.
Medhat M. Helal
2013-10-01
Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 0.5.
Investigating Transfer Learning in the Urban Combat Testbed
2007-09-10
We begin by briefly discussing the psychological research suggesting human transfer capabilities, and then review research using three cognitive...especially in educational settings, and have found evidence of transfer in human cognition across related tasks (Anderson, 2005, pp. 304-311). There is...support for the theory that the human capability to transfer knowledge is performed over abstractions of identical elements ( Thorndike , 1903
Hall effects on MHD free convective flow and mass transfer over a stretching sheet
Shit, G C
2010-01-01
Of concern in this paper is an investigation of heat and mass transfer over a stretching sheet under the influence of an applied uniform magnetic field and the effects of Hall current are taken into account. The non-linear boundary layer equations together with the boundary conditions are reduced to a system of non-linear ordinary differential equations by using the similarity transformation. The system of non-linear ordinary differential equations are solved by developing a suitable numerical techniques such as finite difference scheme and Newton's method of linearization. The numerical results concerned with the velocity, temperature and concentration profiles as well as the skin-friction coefficient, local Nusselt number Nu and the local sherhood number Sh for various values of the nondimensional parameters presented graphically.
Qasim, M.; Khan, Z. H.; Lopez, R. J.; Khan, W. A.
2016-01-01
The heat and mass transport of a nanofluid thin film over an unsteady stretching sheet has been investigated. This is the first paper on nanofluid thin film flow caused by unsteady stretching sheet using Buongiorno's model. The model used for the nanofluid film incorporates the effects of Brownian motion and thermophoresis. The self-similar non-linear ordinary differential equations are solved using Maple's built-in BVP solver. The results for pure fluid are found to be in good agreement with the literature. Present analysis shows that free surface temperature and nanoparticle volume fraction increase with both unsteadiness and magnetic parameters. The results reveal that effect of both nanofluid parameters and viscous dissipation is to reduce the heat transfer rate.
Nie, Jinzhe; Fang, Lei
2014-01-01
recovery unit with polymer membrane foils was used as refeering unit in this study. The experiments were conducted with different outdoor thermal climates e.g. warm-humid and cold-dry climates; isothermal and non isothermal as well as equal humidity and non equal humidity with indoor climate. Three......Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...
Uncover the Aesthetic Simplicity Associated with Mass Transfer in Energy Materials
Jiang-Wei Li; Jia Li; Ke-Chun Wen
2016-01-01
Aesthetics, referred frequently to as a philosophical term, has played a starring role in forming and evolving a number of aspects of human society, including arts, politics, economics, ethics, etc. Indeed, exploring and investigating the aesthetic phenomena in the scientific field have aroused insightful research findings, which in turn has stimulated research interests in such a science-aesthetics field. In particular, better-evaluated aesthetic aspects of the materials field are expected to be uncovered upon the exceedingly-exposed fundamental breakthroughs in researching the basic structure and functionality of materials. In this report, we glimpse into the aesthetic simplicity of energy materials and comprehend specifically the mass transfer functionalities of key categories of energy materials through an intuitive and bottom-up approach. Our effort aspires to shed new lights on the functionality understanding and manipulation of functional materials in general.
Tirunehe, Gossay; Norddahl, B.
2016-01-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC...... solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas–liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (UG) range of 0.0004–0.0025 m....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...
SIVA ESWARA RAO, M.; SREERAMULU, DOWLURU; ASIRI NAIDU, D.
2016-09-01
Nano fluids are used for increasing thermal properties in heat transfer equipment like heat exchangers, radiators etc. This paper investigates the heat transfer rate of Nano fluids using a shell and tube heat exchanger in single and multi tubes under turbulent flow condition by a forced convection mode. Alumina Nanoparticles are prepared by using Sol-Gel method. Heat transfer rate increases with decreasing particle size. In this experiment Alumina Nano particles of about 22 nm diameter used. Alumina Nano fluids are prepared with different concentrations of Alumina particles (0.13%, 0.27%, 0.4%, and 0.53%) with water as a base fluid using ultra-sonicator. Experiment have been conducted on shell and tube heat exchanger for the above concentrations on parallel and counter flow conditions by keeping constant inlet temperatures and mass flow rate. The result shows that the heat transfer rate is good compared to conventional fluids. The properties of Nano fluids and non-dimensional numbers have been calculated.
Peng, Quan; He, Yaling; Mao, Yijin
2016-01-01
A thermal model of chemical vapor deposition of titanium nitride (TiN) on the spherical particle surface under irradiation by a nanosecond laser pulse is presented in this paper. Heat and mass transfer on a single spherical metal powder particle surface subjected to temporal Gaussian heat flux is investigated analytically. The chemical reaction on the particle surface and the mass transfer in the gas phase are also considered. The surface temperature, thermal penetration depth, and deposited film thickness under different laser fluence, pulse width, initial particle temperature, and particle radius are investigated. The effect of total pressure in the reaction chamber on deposition rate is studied as well. The particle-level model presented in this paper is an important step toward development of multiscale model of LCVI.
The Analysis of Distillation Tray Column Efficiency by Fluid Dynamics and Mass Transfer Computation
刘春江; 袁希钢; 余国琮
2005-01-01
It has long been found that the flow pattern of the liquid phase on distillation tray is of great importance on distillation process performance. But until now, there was very few published work on quantitative investigation of this subject. By combining the computational fluid dynamics (CFD) with the mass transfer equation, a theoretical model is proposed for predicting the details of velocity and concentration distributions as well as the tray efficiency of distillation tray column. Using the proposed model, four different cases corresponding to different assumptions of liquid and vapor flowing condition for a distillation tray column were investigated. In Case I, the distributions of velocity and concentration of the incoming liquid from the downcomer and the uprising vapor from the underneath tray spacing are uniform. In Case Ⅱ, the distribution of the incoming liquid is non-uniform but the uprising vapor is uniform. In Case Ⅲ, the distribution of the incoming liquid is uniform but the uprising vapor is non-uniform.In Case IV, the distributions of both the incoming liquid and the uprising vapor are non-uniform. The details of velocity and concentration distributions on a multiple sieve tray distillation column in four different cases were simulated using the proposed model. It is found that the shape of the simulated concentration profiles of vapor and the liquid is quite different from case to case. The computed results also show that the tray efficiency is highly reduced by the maldistribution of velocity and concentration of the incoming liquid and uprising vapor. The tray efficiency for Case Ⅰ is higher than Case Ⅱ or Case Ⅲ, and that for Case Ⅳis the lowest. It also reveals that the accumulated effect of maldistribution becomes more pronounced when the number of column trays increased. The present study demonstrates that the use of computational method to predict the mass transfer efficiency for the tray column, especially for the large one, is
Mass transfer of large molecules through collagen and collagen-silica hybrid membranes
Jofre-Lora, Pedro
Diabetes is a growing concern in the United States and around the world that must be addressed through new treatment options. Current standard treatment options of diabetes are limiting and have tremendous impacts on patient's lives. Emerging therapies, such as the implantation of encapsulated islets, are promising treatment options, but have not yet materialized due to unsolved problems with material properties. Hybrid silica-collagen membranes address some of these unsolved problems and are a promising material for cell encapsulation. However, the mass transfer properties of large molecules, such as insulin, TNF-alpha, IL1beta, and other important proteins in the etiology of diabetes, through these hybrid membranes are poorly characterized. In order to begin characterizing these properties, a device was constructed to accurately and efficiently measure the mass transfer of other similar large molecules, fluorescein isothiocyanate dextrans (FITC-dextran), through collagen-silica hybrid membranes. The device was used to measure diffusion coefficients of 4, 20, 40, and 150 kDa FITC-dextrans through non-silicified and silicified samples of 200 and 1000 Pa porcine skin collagen. Diffusion coefficients were found to be in the 10-7-10-6 cm2s -1 range, which is in agreement with previously published data for similar molecules through similar hydrogels. The effects of collagen stiffness, FITC-dextran molecular weight, and silicification treatment on diffusion were investigated. It was found that collagen stiffness and FITC-dextran molecular weight had a negative correlation with diffusion, whereas silicification treatment had no global impact on diffusion. The device created, and the results of this preliminary investigation, can be used to develop collagen-silica hybrid membranes as an alternative material for cell encapsulation in a forward-design manner.
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-01-01
Abstracts of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics inlcude: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
Mayr, D; Margesin, R.; Klingsbichel, E.; E. Hartungen; Jenewein, D.; Schinner, F.; Märk, T.D.
2003-01-01
The evolution of the microbial spoilage population for air- and vacuum-packaged meat (beef and pork) stored at 4°C was investigated over 11 days. We monitored the viable counts (mesophilic total aerobic bacteria, Pseudomonas spp., Enterobacteriaceae, lactic acid bacteria, and Enterococcus spp.) by the microbiological standard technique and by measuring the emission of volatile organic compounds (VOCs) with the recently developed proton transfer reaction mass spectrometry system. Storage time,...
Experimental Investigation of Heat Transfer during Night-Time Ventilation
Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.
2010-01-01
is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night...
Baker, Jordan J; Crivellari, Francesca; Gagnon, Zachary; Betenbaugh, Michael J
2016-09-01
A microfluidic device (channels mass transfer efficiency at low flow rates. The convergence of one gas and two liquid channels at a Y-junction generates bubbles via cyclic changes in pressure. At low flow rates, the bubbles had an average diameter of 110 μm, corresponding to a volumetric mass transfer KL a of 1.43 h(-1) . Values of KL a normalized per flow rate showed that the microbubbler had a 100-fold increased transfer efficiency compared to four other commonly used bubblers. The calculated percentage of oxygen transferred was approximately 90%, which was consistent with a separate off-gas analysis. The improved mass transfer was also tested in an algae bioreactor in which the microbubbler absorbed approximately 90% of the CO2 feed compared to 2% in the culture with an alternative needle bubbling method. The microbubbler yielded a cell density 82% of the cell density for the alternative needle tip with an 800-fold lower flow rate (0.5 mL/min versus 400 mL/min) and a 700-fold higher ratio of biomass to fed carbon dioxide. The application of microfluidics may transform interfacial processing in order to increase mass transfer efficiencies, minimize gas feeding, and provide for more sustainable multiphase processes. Biotechnol. Bioeng. 2016;113: 1924-1933. © 2016 Wiley Periodicals, Inc.
An Experimental Study of Liquid-Liquid Microflow Pattern Maps Accompanied with Mass Transfer
邵华伟; 吕阳成; 王凯; 骆广生
2012-01-01
This paper presents the experimental results of liquid-liquid microflows in a coaxial microfluidic device with mass transfer. Three working systems were n-butanol ＋ phosphoric acid （PA） ＋ water, methyl isobutyl ketone （MIBK） ＋ PA ＋ water, 30% kerosene in tri-n-butylphosphate （TBP）＋ PA ＋ water. The direction and intensity of mass transfer were adjusted by adding PA in one of two phases mutual saturated in advance. When PA transferred from the organic phase to the aqueous phase, tiny aqueous droplets may generate inside the organic phase by mass transfer inducement to form a new W/O/W flow pattern directly on some special cases. Once the PA concentration was very high, violent Marangoni effect could be observed to throw part of organic phase out of droplets as tail. The interphase transfer of PA could expand the jetting flow region, in particular for systems with low or medium interfacial tension and when the mass transfer direction was from the aqueous phase to the organic phase.
Hong, Sang Woo; Ahn, Sang Hyeok; Chung, Jae Dong [Sejong University, Seoul (Korea, Republic of); Kwon, Oh Kyung [Korea Institute of Industrial Technology, Chonan (Korea, Republic of)
2014-05-15
This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube type adsorption bed using a two dimensional numerical model with silica-gel/water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of intra-particle models used to simulate mass transfer kinetics such as the equilibrium, LDF, and solid-diffusion models are examined, and the valid ranges of the diffusion ratio for each model are proposed. An intra-particle diffusion model should be carefully implemented; otherwise, seriously distorted results may be produced, i.e., over-estimation for the equilibrium model and under estimation for the LDF model.
Zhang, Y; Xiong, J; Mo, J; Gong, M; Cao, J
2016-02-01
Mass transfer is key to understanding and controlling indoor airborne organic chemical contaminants (e.g., VVOCs, VOCs, and SVOCs). In this study, we first introduce the fundamentals of mass transfer and then present a series of representative works from the past two decades, focusing on the most recent years. These works cover: (i) predicting and controlling emissions from indoor sources, (ii) determining concentrations of indoor air pollutants, (iii) estimating dermal exposure for some indoor gas-phase SVOCs, and (iv) optimizing air-purifying approaches. The mass transfer analysis spans the micro-, meso-, and macroscales and includes normal mass transfer modeling, inverse problem solving, and dimensionless analysis. These representative works have reported some novel approaches to mass transfer. Additionally, new dimensionless parameters such as the Little number and the normalized volume of clean air being completely cleaned in a given time period were proposed to better describe the general process characteristics in emissions and control of airborne organic compounds in the indoor environment. Finally, important problems that need further study are presented, reflecting the authors' perspective on the research opportunities in this area.
Kiss, Ibolya; Bacskay, Ivett; Kilár, Ferenc; Felinger, Attila
2010-06-01
The characterization of mass-transfer processes in a chromatographic column during a separation process is essential, since the influence of the mass-transfer kinetics on the shape of the chromatographic band profiles and on the efficiency of the separation is crucial. Several sources of mass transfer in a chromatographic bed have been identified and studied: the axial dispersion in the stream of mobile phase, the external mass-transfer resistance, intraparticle diffusion, and the kinetics of adsorption-desorption. We measured and compared the characteristics and performance of a new brand of shell particles and those of a conventional brand of totally porous silica particles. The shell stationary phase was made of 2.7-microm superficially porous particles (a 1.7-microm solid core is covered with a 0.5-microm-thick shell of porous silica). The other material consisted of totally porous particles of conventional 3.5-microm commercial silica. We measured the first and second central moments of the peaks of human insulin over a wide range of mobile phase velocities (from 0.02 to 1.3 mL/min) at 20 degrees C. The plate height equations were constructed and the axial dispersion, external mass transfer, as well as the intraparticle diffusion coefficients were calculated for the two stationary phases.
Opitz, Armin W; Czymmek, Kirk J; Wickstrom, Eric; Wagner, Norman J
2013-02-01
Targeted delivery of imaging agents to cells can be optimized with the understanding of uptake and efflux rates. Cellular uptake of macromolecules is studied frequently with fluorescent probes. We hypothesized that the internalization and efflux of fluorescently labeled macromolecules into and out of mammalian cells could be quantified by confocal microscopy to determine the rate of uptake and efflux, from which the mass transfer coefficient is calculated. The cellular influx and efflux of a third generation poly(amido amine) (PAMAM) dendrimer labeled with an Alexa Fluor 555 dye was measured in Capan-1 pancreatic cancer cells using confocal fluorescence microscopy. The Capan-1 cells were also labeled with 5-chloromethylfluorescein diacetate (CMFDA) green cell tracker dye to delineate cellular boundaries. A dilution curve of the fluorescently labeled PAMAM dendrimer enabled quantification of the concentration of dendrimer in the cell. A simple mass transfer model described the uptake and efflux behavior of the PAMAM dendrimer. The effective mass transfer coefficient was found to be 0.054±0.043μm/min, which corresponds to a rate constant of 0.035±0.023min(-1) for uptake of the PAMAM dendrimer into the Capan-1 cells. The effective mass transfer coefficient was shown to predict the efflux behavior of the PAMAM dendrimer from the cell if the fraction of labeled dendrimer undergoing non-specific binding is accounted for. This work introduces a novel method to quantify the mass transfer behavior of fluorescently labeled macromolecules into mammalian cells.
Effect of electric fields on mass transfer to droplets. Final report
Carleson, T.E.; Budwig, R.
1994-02-01
During the six year funding period, the effects of a direct and alternating field upon single drop hydrodynamics and mass transfer were evaluated both experimentally and theoretically. Direct current field effects upon drop size, velocity and mass transfer rates were also observed for multiple drops formed in a three stage sieve tray column. Drop size, velocity, and mass transfer rates were measured experimentally and compared to simple models for direct current electric fields. Agreement between theory and experiment was found for drop charge, size, and velocity. Drop mass transfer coefficients were substantially larger than theoretical predictions while extraction efficiencies were moderately higher. Drop distortion and oscillation were observed and are thought to result in the experimentally observed higher values. For alternating current fields, drop flow streamlines and oscillations were measured and found to compare well with predictions from a solved mathematical model. In addition, equipment was constructed to determine mass transfer rates to oscillating drops. Concentration profiles in still and oscillating drops were measured and qualitatively compared to theoretical predictions.
Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions
Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep
2017-02-01
Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes - scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 μm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints - are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded
Pore-scale supercritical CO_{2} dissolution and mass transfer under drainage conditions
Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep
2017-02-01
Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO_{2} (scCO_{2}) and a prolonged depletion of residual scCO_{2}. In this study, pore-scale scCO_{2} dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO_{2} into the sandstone-analogue pore network initially saturated by water without dissolved CO_{2} (dsCO_{2}). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO_{2}-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO_{2} dissolution and phase equilibrium occurs when scCO_{2} bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO_{2} dissolution at phase interfaces and diffusion of dsCO_{2} at the pore scale (10-100 µm) observed after scCO_{2} bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO_{2} in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase
Heat and mass transfer boundary conditions at the surface of a heated sessile droplet
Ljung, Anna-Lena; Lundström, T. Staffan
2017-07-01
This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.
Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina
2017-09-01
Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.
Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett
2012-01-01
The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.
Wind mass transfer in S-type symbiotic binaries II. Indication of wind focusing
Shagatova, Natalia; Carikova, Zuzana
2016-01-01
Context. The wind mass transfer from a giant to its white dwarf companion in symbiotic binaries is not well understood. For example, the efficiency of wind mass transfer of the canonical Bondi-Hoyle accretion mechanism is too low to power the typical luminosities of the accretors. However, recent observations and modelling indicate a considerably more efficient mass transfer in symbiotic binaries. Aims. We determine the velocity profile of the wind from the giant at the near-orbital-plane region of eclipsing S-type symbiotic binaries EG And and SY Mus, and derive the corresponding spherical equivalent of the mass-loss rate. With this approach, we indicate the high mass transfer ratio. Methods. We achieved this aim by modelling the observed column densities taking into account ionization of the wind of the giant, whose velocity profile is derived using the inversion of Abel's integral operator for the hydrogen column density function. Results. Our analysis revealed the spherical equivalent of the mass-loss rat...
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers
Gokoglu, S. A.; Rosner, D. E.
1986-01-01
Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion.
Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix
2016-09-01
The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.
Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold.
Strikwerda, Andrew C; Zalkovskij, Maksim; Iwaszczuk, Krzysztof; Lorenzen, Dennis Lund; Jepsen, Peter Uhd
2015-05-01
We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design.
EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER THE DIMPLED SURFACE
Dr. Sachin L. Borse
2012-08-01
Full Text Available Over the past couple of years the focus on using concavities or dimples provides enhanced heat transfer has been documented by a number of researchers. Dimples are used on the surface of internal flow passages because they produce substantial heat transfer augmentation. This project work is concerned with experimentalinvestigation of the forced convection heat transfer over the dimpled surface. The objective of the experiment is to find out the heat transfer and air flow distribution on dimpled surfaces and all the results obtained are compared with those from a flat surface. The varying parameters were i Dimple arrangement on the plate i.e.staggered and inline arrangement and ii Heat input iiiDimple density on the plate. Heat transfer coefficients and Nusselt number were measured in a channel with one side dimpled surface. Thespherical type dimples were fabricated, and the diameter and the depth of dimple were 6 mm and 3 mm, respectively. Channel height is 25.4mm, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 5000 to 15000.Study shown that thermal performance is increasing with Reynolds number. With the inline and staggered dimple arrangement, the heat transfer coefficients, Nusselt number and the thermal performance factors were higher for the staggered arrangement.
Action-Type Variational Principles For Hyperbolic and Parabolic Heat & Mass Transfer
Stanislaw Sieniutycz
2010-01-01
For the field or Eulerian description of heat conduction, a method is discussed associated with description of thermal fields by a variational principle involving suitably constructed potentials rather than original physical variables. The considered processes are: simple hyperbolic heat transfer and coupled parabolic transfer of heat, mass and electric charge. By using various gradient or nongradient representations of original physical fields in terms of potentials, which are quantities of ...
Vilser, L.
1982-11-22
At five finned tubes of different geometries measurements were made of the heat and mass transfer during spraying with water and simultaneous passing of an air stream. Mass flow, air temperature, air moisture and air velocity were varied. From the results of the measurements the overall heat flux, the heat flux removed by the spray film, the heat flux transfered to the air by convection, the amount of evaporated water, the heat transfer coefficient between tube wall and spray film, the heat transfer coefficient between spray film and air stream, the mass transfer coefficient and the pressure drop in the air stream were calculated. The results are presented in diagrams, the heat transfer coefficient between spray film and air and the mass transfer coefficient are described by formulae. The comparison of the heat flux densities at the five different tubes shows that for the combination of dry cooling and spraying of the finned tubes, tubes with a small inner tube diameter and small height of the fins are most suited. The assumption frequently made, that the heat transfer coefficient between a gas flow and a spray film may be described by the mathematical interrelationships valid for the gas flow at a stationary wall is true only to a very limited extent. The same is valid for the determination of the pressure loss at the gas side. With a theoretical model it was tried to evaluate the phenomena at the finned tube by means of calculation. Starting from an overall concept described in the introduction formulations for solutions of partial problems were elaborated and results are presented. Because of the necessary simplifications a correlation with the results of the measurements was only achieved in subdomains. Possible starting points for improving the mathematical model are qualitatively described.
Mansour, M A; El-Kabeir, S M
2000-01-01
Steady laminar boundary layer analysis of heat and mass transfer characteristics in magnetohydrodynamic (MHD) flow of a micropolar fluid on a circular cylinder maintained at uniform heat and mass flux has been conducted. The solution of the energy equation inside the boundary layer is obtained as a power series of the distance measured along the surface from the front stagnation point of the cylinder. The results of dimensionless temperature, Nusselt number, wall shear stress, wall couple stress and Sherwood number have been presented graphically for various values of the material parameters. The results indicate that the micropolar fluids display a reduction in drag as well as heat transfer rate when compared with Newtonian fluids.
Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes.
Babauta, Jerome T; Beyenal, Haluk
2014-02-01
Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens biofilms. Here, we use electrochemical impedance spectroscopy to demonstrate the effect of mass transfer processes on electron transfer by G. sulfurreducens biofilms grown in situ on an electrode that was subsequently rotated. By rotating the biofilms up to 530 rpm, we could control the microscale gradients formed inside G. sulfurreducens biofilms. A 24% increase above a baseline of 82 µA could be achieved with a rotation rate of 530 rpm. By comparison, we observed a 340% increase using a soluble redox mediator (ferrocyanide) limited by mass transfer. Control of mass transfer processes was also used to quantify the change in biofilm impedance during the transition from turnover to non-turnover. We found that only one element of the biofilm impedance, the interfacial resistance, changed significantly from 900 to 4,200 Ω under turnover and non-turnover conditions, respectively. We ascribed this change to the electron transfer resistance overcome by the biofilm metabolism and estimate this value as 3,300 Ω. Additionally, under non-turnover, the biofilm impedance developed pseudocapacitive behavior indicative of bound redox mediators. Pseudocapacitance of the biofilm was estimated at 740 µF and was unresponsive to rotation of the electrode. The increase in electron transfer resistance and pseudocapacitive behavior under non-turnover could be used as indicators of acetate limitations inside G. sulfurreducens biofilms.
Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model
Park, Jehun; Lee, Jae W. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2016-02-15
This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.
Mathematical modeling of non-stationary heat and mass transfer in disperse systems
Ermakova, L. A.; Krasnoperov, S. Y.; Kalashnikov, S. N.
2016-09-01
The work describes mathematical model of non-stationary heat and mass transfer processes in dispersed environment, taking into account the phase transition; presents the results of numeric modelling for conditions of direct reduction in high-temperature reducing atmosphere, corresponding to the direct reduction in the jet-emulsion unit according to the principles of self-organization. The method was developed for calculation of heat and mass transfer of the aggregate of iron material particles in accordance with the given distribution law.
Rosner, D. E.
1985-01-01
The effects of Soret diffusion (for vapors) and thermophoresis (for particles) are illustrated using recent optical experiments and boundary layer computations. Mass transfer rate augmentations of up to a factor of 1000 were observed and predicted for submicron-particle capture by cooled solid surfaces, while mass transfer suppressions of more than 10 to the -10th-fold were predicted for 'overheated' surfaces. It is noted that the results obtained are of interest in connection with such technological applications as fly-ash capture in power generation equipment and glass droplet deposition in optical-waveguide manufacture.
Wall—Liquid Mass Transfer for Taylor Bubbles Rising Through Liquid in a Vertical Tube
YUNJunxian; SHENZiqiu; 等
2002-01-01
Wall-liquid mass transfer for Taylor bubbles rising through liquid column in vertical tubes is an important and fundamental topic in industrial processes.In this work,the characteristics of wall-liquid mass transfer for this special case of slug flow were studied experimentally by limiting diffusion current technique (LDCT). Based on the experimental results and the analysis of hydrodynamic mechanisms,it was proposed that four different zones exist,i.e.the laminar falling film zone,the turbulent falling film zone,the wake region and the remaining liquid slug zone.The corresponding correlations for all these zones were developed.
Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature and
无
2001-01-01
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients κLα are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict κLα values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.
A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell
Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen
2011-01-01
This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...
A new index for precise design and advanced operation of mass transfer in slug flow
Aoki, Nobuaki; Tanigawa, Shin; Mae, Kazuhiro
2011-01-01
Slug flow, one of the ordered multi-phase flow patterns in a small channel, has the advantage of the enhancement of mixing in each phase and mass transfer between two phases due to the internal circulation flow. To form stable slug flow, the throughput of order of μL min−1 has been employed. To use slug flow in industrial scale, however, controlled and high throughput mass transfer and an index for design of a channel with slug flow are required. To address this requirement, we examined the i...
Studies on oxygen mass transfer in stirred bioreactors 2: Suspensions of bacteria, yeasts and fungis
Galaction Anca-Irina
2003-01-01
Full Text Available The aim of these experiments is to study the oxygen mass transfer rate by means of the mass transfer coefficient, for a stirred bioreactor and different fermentation broths, using a large domain of operating variables. For quantifying the effects of the considered factors (concentration and morphology of the biomass, specific power input, superficial air velocity surface aeration on ka, the experiments were carried out for non-respirating biomass suspensions of Propionibacterium shermanii Saccharomyces cerevisiae and Penicillium chrysogenum, mycelial aggregates (pellets and free mycelia morphological structures.
New method for mass transfer across the surface of non-spherical particles in turbulence
Oehmke, T.; Variano, E. A.
2016-12-01
We present a method for making model particles that allow for the interfacial mass transfer rate to be measured. This is similar to traditional use of gypsum plaster used to measure erosion rates on the timescale of weeks to years. Our new method is useful for measuring erosion rates on the timescale of minutes. We use this to measure the manner in which particle shape affects its rate of dissolution in turbulent flow. The related questions are relevant to mass transfer in turbulence, e.g. in cases of marine biology and pollution by microplastics.
Kinetics of diffusive decomposition in the case of several mass transfer mechanisms
Alexandrov, D. V.
2017-01-01
An analytical description of the final stage of diffusive decomposition leaning upon the Slezov theory is developed for several mass transfer mechanisms. The process of formation and relaxation of the crystal size distribution function from the initial ripening stage to its final state corresponding to the universal distribution is studied. The boundary points of a transition region responsible for the tails of the distribution functions on the right of the relevant stopping points are found analytically. The explicit time-dependent analytical expressions for the distribution function and particle growth rates are derived with allowance for the plausible mechanisms of mass transfer.
Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold
Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof
2015-01-01
We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic...... response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics...
张焕军; 朱国才
2004-01-01
The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor.The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined. The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determination of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process.The apparent activation energy was calculated to be 32.8kJ·mo1-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.
Karaś, Marcin; Zając, Daniel; Ulbrich, Roman
2014-03-01
This paper presents the results of studies in two phase gasliquid flow around tube bundle in the model of shell tube heat exchanger. Experimental investigations of heat transfer coefficient on the tubes surface were performed with the aid of electrochemical technique. Chilton-Colburn analogy between heat and mass transfer was used. Twelve nickel cathodes were mounted on the outside surface of one of the tubes. Measurement of limiting currents in the cathodic reduction of ferricyanide ions on nickel electrodes in aqueous solution of equimolar quantities of K3Fe(CN)6 and K4Fe(CN)6 in the presence of NaOH basic solution were applied to determine the mass transfer coefficient. Controlled diffusion from ions at the electrode was observed and limiting current plateau was measured. Measurements were performed with data acquisition equipment controlled by software created for this experiment. Mass transfer coefficient was calculated on the basis of the limiting current measurements. Results of mass transfer experiments (mass transfer coefficient) were recalculated to heat transfer coefficient. During the experiments, simultaneously conducted was the the investigation of two-phase flow structures around tubes with the use of digital particle image velocimetry. Average velocity fields around tubes were created with the use of a number of flow images and compared with the results of heat transfer coefficient calculations.
Karaś Marcin
2014-03-01
Full Text Available This paper presents the results of studies in two phase gasliquid flow around tube bundle in the model of shell tube heat exchanger. Experimental investigations of heat transfer coefficient on the tubes surface were performed with the aid of electrochemical technique. Chilton-Colburn analogy between heat and mass transfer was used. Twelve nickel cathodes were mounted on the outside surface of one of the tubes. Measurement of limiting currents in the cathodic reduction of ferricyanide ions on nickel electrodes in aqueous solution of equimolar quantities of K3Fe(CN6 and K4Fe(CN6 in the presence of NaOH basic solution were applied to determine the mass transfer coefficient. Controlled diffusion from ions at the electrode was observed and limiting current plateau was measured. Measurements were performed with data acquisition equipment controlled by software created for this experiment. Mass transfer coefficient was calculated on the basis of the limiting current measurements. Results of mass transfer experiments (mass transfer coefficient were recalculated to heat transfer coefficient. During the experiments, simultaneously conducted was the the investigation of two-phase flow structures around tubes with the use of digital particle image velocimetry. Average velocity fields around tubes were created with the use of a number of flow images and compared with the results of heat transfer coefficient calculations.
Enhancement of solubility and mass transfer coefficient of salicylic acid through hydrotropy
S.THENESHKUMAR; D.GNANAPRAKASH; N.NAGENDRA GANDHI
2009-01-01
This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid.The solubility and mass transfer studies were performed using the hydrotropes,i.e.,sodium acetate,sodium salicylate,citric acid,and urea at concentrations of 0～3.0 mol/L and system temperatures of 303-333 K.It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature.All hydrotropes used in this work showed an enhancement in solubility and mass transfer coefficient to difierent degrees.The maximum enhancement factor values were determined for all hydrotropes used in this study.The highest value was 28.08 for solubility studies and 10.42 for mass trailsfer studies.The performance of hydrotropes Was measured in terms of the Setschenow constant(Ks).The highest value observed was 0.696.
Binaries at Low Metallicity: ranges for case A, B and C mass transfer
de Mink, S E; Yoon, S -C
2007-01-01
The evolution of single stars at low metallicity has attracted a large interest, while the effect of metallicity on binary evolution remains still relatively unexplored. We study the effect of metallicity on the number of binary systems that undergo different cases of mass transfer. We find that binaries at low metallicity are more likely to start transferring mass after the onset of central helium burning, often referred to as case C mass transfer. In other words, the donor star in a metal poor binary is more likely to have formed a massive CO core before the onset of mass transfer. At solar metallicity the range of initial binary separations that result in case C evolution is very small for massive stars, because they do not expand much after the ignition of helium and because mass loss from the system by stellar winds causes the orbit to widen, preventing the primary star to fill its Roche lobe. This effect is likely to have important consequences for the metallicity dependence of the formation rate of var...
Mobile, Michael; Widdowson, Mark; Stewart, Lloyd; Nyman, Jennifer; Deeb, Rula; Kavanaugh, Michael; Mercer, James; Gallagher, Daniel
2016-04-01
Better estimates of non-aqueous phase liquid (NAPL) mass, its persistence into the future, and the potential impact of source reduction are critical needs for determining the optimal path to clean up sites impacted by NAPLs. One impediment to constraining time estimates of source depletion is the uncertainty in the rate of mass transfer between NAPLs and groundwater. In this study, an innovative field test is demonstrated for the purpose of quantifying field-scale NAPL mass transfer coefficients (klN) within a source zone of a fuel-contaminated site. Initial evaluation of the test concept using a numerical model revealed that the aqueous phase concentration response to the injection of clean groundwater within a source zone was a function of NAPL mass transfer. Under rate limited conditions, NAPL dissolution together with the injection flow rate and the radial distance to monitoring points directly controlled time of travel. Concentration responses observed in the field test were consistent with the hypothetical model results allowing field-scale NAPL mass transfer coefficients to be quantified. Site models for groundwater flow and solute transport were systematically calibrated and utilized for data analysis. Results show klN for benzene varied from 0.022 to 0.60 d- 1. Variability in results was attributed to a highly heterogeneous horizon consisting of layered media of varying physical properties.
Mobile, Michael; Widdowson, Mark; Stewart, Lloyd; Nyman, Jennifer; Deeb, Rula; Kavanaugh, Michael; Mercer, James; Gallagher, Daniel
2016-04-01
Better estimates of non-aqueous phase liquid (NAPL) mass, its persistence into the future, and the potential impact of source reduction are critical needs for determining the optimal path to clean up sites impacted by NAPLs. One impediment to constraining time estimates of source depletion is the uncertainty in the rate of mass transfer between NAPLs and groundwater. In this study, an innovative field test is demonstrated for the purpose of quantifying field-scale NAPL mass transfer coefficients (kl(N)) within a source zone of a fuel-contaminated site. Initial evaluation of the test concept using a numerical model revealed that the aqueous phase concentration response to the injection of clean groundwater within a source zone was a function of NAPL mass transfer. Under rate limited conditions, NAPL dissolution together with the injection flow rate and the radial distance to monitoring points directly controlled time of travel. Concentration responses observed in the field test were consistent with the hypothetical model results allowing field-scale NAPL mass transfer coefficients to be quantified. Site models for groundwater flow and solute transport were systematically calibrated and utilized for data analysis. Results show kl(N) for benzene varied from 0.022 to 0.60d(-1). Variability in results was attributed to a highly heterogeneous horizon consisting of layered media of varying physical properties.
Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere
Bell, Christopher G.
2014-01-01
Prior research into the effect of convection on steady-state mass transfer from a spherical particle embedded in a porous medium has used the Darcy model to describe the flow. However, a limitation of the Darcy model is that it does not account for viscous effects near boundaries. Brinkman modified the Darcy model to include these effects by introducing an extra viscous term. Here we investigate the impact of this extra viscous term on the steady-state mass transfer from a sphere at low Péclet number, Pe 1. We use singular perturbation techniques to find the approximate asymptotic solution for the concentration profile. Mass-release from the surface of the sphere is described by a Robin boundary condition, which represents a first-order chemical reaction. We find that a larger Brinkman viscous boundary layer renders mass transport by convection less effective, and reduces the asymmetry in the peri-sphere concentration profiles. We provide simple analytical expressions that can be used to calculate the concentration profiles, as well as the local and average Sherwood numbers; and comparison to numerical simulations verifies the order of magnitude of the error in the asymptotic expansions. In the appropriate limits, the asymptotic results agree with solutions previously obtained for Stokes and Darcy flow. The solution for Darcy flow with a Robin boundary condition has not been considered previously in the literature and is a new result. Whilst the article has been formulated in terms of mass transfer, the analysis is also applicable to heat transfer, with concentration replaced by temperature and the Sherwood number by the Nusselt number. © 2013 Elsevier Ltd. All rights reserved.
On the multi-physics of mass-transfer across fluid interfaces
Bothe, Dieter
2015-01-01
Mass transfer of gaseous components from rising bubbles to the ambient liquid can be described based on continuum mechanical sharp-interface balances of mass, momentum and species mass. In this context, the standard model consists of the two-phase Navier-Stokes equations for incompressible fluids with constant surface tension, complemented by reaction-advection-diffusion equations for all constituents, employing Fick's law. This standard model is inconsistent with the continuity equation, the momentum balance and the second law of thermodynamics. The present paper reports on the details of these severe shortcomings and provides thermodynamically consistent model extensions which are required to capture various phenomena which occur due to the multi-physics of interfacial mass transfer. In particular, we provide a simple derivation of the interface Maxwell-Stefan equations which does not require a time scale separation, while the main contribution is to show how interface concentrations and interface chemical ...
Thermal compression waves. 2: Mass adjustment and vertical transfer of the total energy
Nicholls, Melville E.; Pielke, Roger A.
1994-01-01
A fully compressible model is used to simulate the mass adjustment that occurs in response to a prescribed heat source. Results illustrate the role that thermal compression waves have in this process. The vertical mass transport associated with compression waves decreases rapidly with height. Most of the mass transport occurs in the horizontal, with the vertical structure of the disturbance similar to that of a Lamb wave. The vertical transfer of total energy in a thermally driven mixed layer is also examined. It is shown that the upward transport of total energy is accomplished by a compression effect rather than by the exchange of warm and cold air by buoyant thermals. Model results are analyzed to determine budgets of total energy, mass and entropy. It is demonstrated that buoyant thermals are predominantly responsible for a transfer of entropy, rather than total energy. In the light of these results the notion of 'heat transport' in a fluid is discussed.
M. M. ABO ELAZM
2013-02-01
Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.
Experimental investigation on heat transfer from square jets issuing from perforated nozzles
Muvvala, Pullarao; Balaji, C.; Venkateshan, S. P.
2017-02-01
This paper reports the results of an experimental investigation of fluid flow and heat transfer carried out with square jets issuing from perforated nozzles. This is accomplished by an impinging square jet on a uniformly heated plate of finite thickness (5 mm). The medium under consideration is air. Three different nozzle configurations are used in the study namely a single nozzle and perforated nozzles with four and nine holes, which are accommodated in the same available jet area 4.6 mm × 4.6 mm. This arrangement is akin to introducing a wire mesh at the nozzle exit plane. The effects of dimensionless jet-to-plate distance (2-9) and the mass flow rate of the jet fluid on the heat transfer rate are studied. Jet centerline mean velocity and turbulence intensity measurements are made with a hot-wire anemometer. The pressure drop across the orifice nozzle plate is measured and corresponding pumping power values are calculated. A comparison of the heat transfer performance and pumping power penalty of the three nozzle configurations is done.
Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar
2016-08-01
Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube (d t ), diameter of the coil (D c ), diameter of the particle (d p ), pitch difference (p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.
Investigation of plasma hydrogenation and trapping mechanism for layer transfer
Chen, Peng; Chu, Paul K.; Höchbauer, T.; Lee, J.-K.; Nastasi, M.; Buca, D.; Mantl, S.; Loo, R.; Caymax, M.; Alford, T.; Mayer, J. W.; Theodore, N. David; Cai, M.; Schmidt, B.; Lau, S. S.
2005-01-01
Hydrogen ion implantation is conventionally used to initiate the transfer of Si thin layers onto Si wafers coated with thermal oxide. In this work, we studied the feasibility of using plasma hydrogenation to replace high dose H implantation for layer transfer. Boron ion implantation was used to introduce H-trapping centers into Si wafers to illustrate the idea. Instead of the widely recognized interactions between boron and hydrogen atoms, this study showed that lattice damage, i.e., dangling bonds, traps H atoms and can lead to surface blistering during hydrogenation or upon postannealing at higher temperature. The B implantation and subsequent processes control the uniformity of H trapping and the trap depths. While the trap centers were introduced by B implantation in this study, there are many other means to do the same without implantation. Our results suggest an innovative way to achieve high quality transfer of Si layers without H implantation at high energies and high doses.
Experimental Investigation on Heat Transfer Enhancement in Composite Porous Media
无
2002-01-01
The method of composite porous media with mini-longitudinal channels at the surface and with beads packing between plates was put foward to improve the integated performance of flow and heat transfer in porous media. The experimental results in the corresponding porous media were reported and analyzed. The experiments indicate that with proper matching of the particle diameter dp, the mini-channel width w, the channel depth d and the distance between plates δr the heat transfer in the composite porois media is enhanced and flow resistence reduced compared with those of no mini-longitudinal channels at the surface. So this is an effective method to improve the integrated performance of flow and heat transfer in porous media.
Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas
2017-02-01
The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.
Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas
2016-06-01
The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.
Evidence of a non-conservative mass transfer for XTE J0929-314
Marino, A.; Di Salvo, T.; Gambino, A. F.; Iaria, R.; Burderi, L.; Matranga, M.; Sanna, A.; Riggio, A.
2017-07-01
Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (>100 Hz) pulsations in low-mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims: We aim to demonstrate that a conservative mass transfer in this system will result in an X-ray luminosity that is higher than the observed, long-term averaged X-ray luminosity. Methods: Under the hypothesis of a conservative mass transfer driven by gravitational radiation, as expected for this system given the short orbital period of about 43.6 min and the low-mass of the companion implied by the mass function derived from timing techniques, we calculate the expected mass transfer rate in this system and predict the long-term averaged X-ray luminosity. This is compared with the averaged, over 15 years, X-ray flux observed from the system, and a lower limit of the distance to the source is inferred. Results: This distance is shown to be >7.4 kpc in the direction of the Galactic anticentre, implying a large height, >1.8 kpc, of the source with respect to the Galactic plane, placing the source in an empty region of the Galaxy. We suggest that the inferred value of the distance is unlikely. Conclusions: This problem can be solved if we hypothesize that the source is undergoing a non-conservative mass transfer, in which most of the mass transferred from the companion star is ejected from the system, probably because of the (rotating magnetic dipole) radiation pressure of the pulsar. If confirmed by future observations, this may be another piece of
Diffusive mass transfer by nonequilibrium fluctuations: Fick’s law revisited
D. Brogioli; Vailati, A.
2000-01-01
Recent experimental and theoretical works have shown that giant fluctuations are present during diffusion in liquid systems. We use linearized fluctuating hydrodynamics to calculate the net mass transfer due to these non equilibrium fluctuations. Surprisingly the mass flow turns out to coincide with the usual Fick's one. The renormalization of the hydrodynamic equations allows us to quantify the gravitational modifications of the diffusion coefficient induced by the gravitational stabilizatio...
On the stream-accretion disk interaction - Response to increased mass transfer rate
Dgani, Ruth; Livio, Mario; Soker, Noam
1989-01-01
The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
Multidirectional Tibial Tubercle Transfer Technique: Rationale and Biomechanical Investigation.
Sarin, Vineet K; Camisa, William; Leasure, Jeremi M; Merchant, Alan C
This study describes a new surgical technique to transfer the tibial tubercle, explains the rationale for its development, and reports the results of initial biomechanical testing. The design goals were to create a tibial tubercle osteotomy that would provide equivalent or better initial fixation compared with traditional techniques, yet would be more flexible, reproducible, accurate, less invasive, and safer. The results of the biomechanical analysis suggest that initial fixation with this novel tubercle transfer technique is as strong as traditional Elmslie-Trillat and anteromedialization procedures.
Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS
A. Guenther
2009-04-01
Full Text Available The ability to measure sesquiterpenes (SQT; C_{15}H_{24} by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated. SQT calibration standards were prepared by a capillary diffusion method and the PTR-MS-estimated mixing ratios were derived from the counts of product ions and proton transfer reaction constants. These values were compared with mixing ratios determined by a calibrated Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions from soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149^{+} and 205^{+}, out of seven major product ions (m/z 81^{+}, 95^{+}, 109^{+}, 123^{+}, 135^{+}, 149^{+} and 205^{+}, are accounted for. Considerable fragmentation of bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, cause the accuracy to be reduced to 50% if only the parent ion (m/z 205^{+} is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m^{−3} (4.5 mg m^{−2} h^{−1}, 1.2 μg m^{−3} (0.21 mg m^{−2} h^{−1}, and 0.0016 μg m^{−3} (0.10 mg m^{−2} h^{−1}, respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly
Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS
S. Kim
2008-12-01
Full Text Available The ability to measure sesquiterpenes (SQT; C_{15}H_{24} by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated with SQT standards, prepared by a capillary diffusion method, and the estimated mixing ratios, derived from the counts of product ions and proton transfer reaction constants were intercompared with measured mixing ratios, measured by a complementary Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions due to soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149^{+} and 205^{+} out of seven major product ions (m/z 81^{+}, 95^{+}, 109^{+}, 123^{+}, 135^{+}, 149^{+} and 205^{+} are accounted for. Bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, showed considerable fragmentation causing the accuracy of their analysis to be reduced to 50% if only the parent ion (m/z 205 is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred Average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m^{−3} (4.5 mg m^{−2} h^{−1}, 1.2 μg m^{−3} (0.21 mg m^{−2} h^{−1} and 0.0016 μg m^{−3} (0.10 mgm^{−2} h^{−1} respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly underestimated OH
Pei－XueJiang; Ze－PeiRen; 等
1993-01-01
A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures.The influence of variable properties at super-critical pressures on natural convertion has been analyzed.The difference between heat and mass transfer under cooling or heating conditions is also discussed and some correlations for heat and mass transfer under cooling conditions are recommended.